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Quality Impr ovement Methods for System-le vel Stim uli
Generation

ABSTRACT
Functionalverificationis known to beamajorpartof thehardware
designeffort. Systemverification is aimedat validating the inte-
grationof severalpreviouslyverifiedcomponents.As such,it deals
with complex designs,andinvariablysuffers from tight schedules
and scarceresources.We presenta set of methods,collectively
known astestingknowledge, aimedat increasingthequality of au-
tomaticallygeneratedsystem-level test-cases.Thesemethodsare
basedon the commonalityof somebasicarchitecturalconcepts.
Testingknowledgereducesthe time andeffort requiredto achieve
high coverageof theverifieddesign.Towardstheendof thepaper,
we comparethecoverageachieved with andwithout the usageof
testingknowledge,anddescriberelatedhardwarebugs.

1. INTRODUCTION
Functionalverificationis widely acknowledgedasthebottleneck

in thehardwaredesigncycle [3]. Simulationis themainfunctional
verification vehicle for large andcomplex designs,and therefore
stimuli generationplaysa centralrole in thisfield.

Duringthelastfew years,complex hardwaredesignshaveshifted
from customASICs towardsSystemon a Chip (SoC) basedde-
signs,which includereadymadecomponents(IP, cores).Theveri-
ficationof suchsystemsrequiresnew toolsandmethodologiesthat
areupto thenew challengesraisedby thecharacteristicsof systems
andSoCs.At theheartof thesechallengesstandstherequirement
to verify theintegrationof severalpreviouslydesignedcomponents
in a relatively shorttime.

In this paper, we presenta setof methodsaimedto improve the
quality of automaticallygeneratedtest-casesfor system-level veri-
fication.

Coverageis the prime measurementfor the quality of a setof
test-cases.Simply stated,the ideain coverage[10, 7] is to create,
in a systematicfashion,a largeandcomprehensive list of tasksand
checkthat eachtask is coveredin the testingphase. Ultimately,
highercoveragemeanshigherchancesof exposinga bug. Cover-
agecanhelpmonitorthequalityof testinganddirecttestgenerators
to createteststhatcoverareasthathavenotbeenadequatelytested.
We maymeasurewhatcoverageis achievedby a givensetof test-
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cases.We may alsomeasurethe additionalcoverageachieved by
thesetest-cases,given thata previously usedpool of test-casesal-
readyachievedsomecoverageof theverifieddesign.Disregarding
theissueof coverage,a simplisticmeasurementof thequality of a
test-casebucket is thenumberbugsfoundin theverifieddesign.

In this paper, we explore a setof genericmethodsuseful for a
varietyof hardwaredesigns.We claim thatthesemethodsincrease
the coveragefor many typical coveragemodels,andaim at areas
whichare,becauseof their inherentcomplexity, bugprone.Weuse
the term TestingKnowledge (TK) to refer to genericmethodsfor
increasingthequalityof test-cases.

Theideaof a testingknowledgewaspreviously implementedin
test-casegeneratorsorientedat theverificationof processors[2, 6,
12, 1]1. Testingknowledgefor theverificationof addresstransla-
tion mechanismwasalsopresented.We arenot aware,however,
of a significanteffort to developa setof testingknowledgemecha-
nismsfor thesystemlevel.

Generalpurposeverificationenvironments,suchasSpecman[13],
Vera [8], andTestBuilder[5] provide meansfor implementingtest-
ing knowledgein theform of non-mandatory(or ’soft’) constraints.
However, softconstraintsalonedonotcontainany semanticknowl-
edgeof theverified design. In [4, 14], the authorsdealwith con-
structinga constraintsolver for stimuli-generation.Suchsolvers
provide randomsolutions,andat thesametime supportbothhard
(mandatory)andsoft (non-mandatory)constraints.As such,they
providemeansfor implementingtestingknowledgeoncetheusers,
theverificationengineers,comeup with waysfor increasingstim-
uli quality. Noneof thesepapers,however, provide actualtesting
knowledgemechanisms.

The rest of this paperis structuredas follows: Section2 de-
scribestheconceptof testingknowledge,providesmotivation,and
explainswhy the ideaof testingknowledgeis especiallyadvanta-
geousin systemverification. Sections3 through6 describea set
of systemorientedtestingknowledgemechanisms.Section7 pro-
vides two examplesof hardware bugs found using the described
TK mechanisms,andexaminesthecoverageachievedby two com-
parabletools—onethat usesTK, andone that doesnot. Finally,
Section8 concludesthepaper.

2. MOTIVATION: TESTING KNOWLEDGE
AND SYSTEM VERIFICA TION

2.1 TestingKnowledge
Thestimuli generationlayerof averificationenvironmentcanbe

roughly partitionedinto two (seeFigure1): knowledgeaboutthe

1In the first reference,the term ’testingknowledge’ is usedin a
slightly differentmannerthanhere.
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specificationof theverifiedsystem,andknowledgeabouttheway
it should� beverified. The formerdefinesthesetof valid teststhat
canbeinjectedto theDesignUnderVerification(DUV). Thelatter,
which implementsthe verificationplan, is a mixture of two types
of information: the first determineswhich testswill actually be
generated.It is expressedthrough’test-templates’of theform “100
transactionsof typeA, and50transactionsof typesB”. Thesecond
type aimsat increasingthe quality of all the generatedtest-cases,
andcontainsstatementsof the type “by default, the ratio between
valid anderroneoustransactionsshouldbe 4:1”—this is what we
referto asTK.

Givena test-templateasinput,a randomtest-casegeneratorpro-
ducesa setof different test-cases,all satisfyingthe requirements
specifiedin thetest-template.In mostcases,generatinghigh-quality,
complex scenarios,require complex test templates. Developing
thesetest-templatesis a costly effort: this createsan incentive to
move someof the burdenfrom the test-templatesto the testing-
knowledge.By doingso,we allow all thegeneratedtests,andnot
justasmallfractionof them,to benefitfrom theintelligenceimple-
mentedin a complex test-template.

It shouldbenotedthattheseparationbetweentest-templatesand
testingknowledge is not absolute. For testingknowledge to be
usedto its full extent, the user—the test-templatewriter—should
have somecontrol over what typesof testingknowledgeareused
in conjunctionwith a specifictest-template.Following the previ-
ousexamplesfor testingknowledgeandfor a test-template,a user
may combineboth aspects,for example,by constructingthe test-
template“100 transactionsof typeA, and50 transactionsof types
B, with a ratioof 3:2betweenvalid anderroneoustransactions”.

� Knowledgerequiredfor stimuli generation

– Systemspecification:definestestvalidity

– Verificationplanimplementation
� Testtemplates� Testingknowledge

Figure 1: High-level classificationof knowledgein stimuli gen-
eration

In principal, randomstimuli generationenvironmentsproduce
test-caseswhich areuniformly selectedfrom the domainof valid
test-cases.Testingknowledgebiasestherandomselectionof test-
casestowardsareasthathavehigherchancesof increasingcoverage
or exposinghardwarebugs(SeeFigure2). Thisconceptis therefore
closelyrelatedto non-uniformdistribution functions,andtheideas
describedin Sections3 through6 canbeseenasinstancesof such
functions.

2.2 SystemVerification
Wedefinea’system’assetof componentsconnectedusingsome

sort of interconnect,capableof performinga given set of trans-
actions. Componentsmay includeprocessorsandotherprocess-
ing elements,caches,varioustypesof memories,bridges,interrupt
controllers,DMA engines,etc. In many cases,a systemcontains
multiple instancesof a certaintype of component:for example,
a systemwith symmetricmulti-processingwould containseveral
processors.Examplesof transactionsincludeMemoryMappedI/O
(MMIO), Direct Memory Access(DMA), andsimplestore or
load instructionsfrom a processorto a memory.

Systemverificationdeals,in essence,with thevalidationof the
integrationof several previously verified components(cores,IP).
Inherently, it dealswith largedesigns:verificationmethodologies

Test−cases affected by testing knowledge

Valid test−cases

Figure2: Testingknowledgeasnon-uniform distrib ution. Each
dark arearepresentsa classof ’inter esting’ cases,targetedby a
testingknowledgemechanism.

thatareapt to theunit or componentlevel arenot necessarilysuit-
ablefor thesystemlevel. A relatedfactorthatis alsocrucialto ver-
ification is the intricacy of thespecificationof thesystem.As the
aimof theverificationeffort is to show thatadesignimplementsits
specification,complex specificationsrequirespecialattentionand
affect the verification process.Other than the sizeof the design
andthecomplexity of thespecification,themainchallengerelated
to systemverification is limited resources,and specificallyshort
schedules.Verifying theentiresystemcanoftenstartonly afterall
its componentswerebroughtto a certainlevel of stability, which,
in many cases,leavesonly asmalltimewindow for thesystemver-
ification effort itself.

Themaindirectionproposedasapossiblesolutionto thesechal-
lengesis reuse.Checkers(e.g.,assertions)written for lower level
interfacesandcomponentscanbereusedat thesystemlevel. The
sameis true for Bus FunctionalModels (BFMs): a BFM written
for theverificationof a PCI/X core,for example,canbereusedto
inject input to thesystemasawhole.Standard,or commonlyused,
interfacescall for verification IP, which is anotherform of reuse.
For example,a BFM for an AMBA bus canbe purchasedfrom a
third partycompany, andthenusedfor theverificationof multiple
systems(evenacrossdifferentorganizations).

Testingknowledgeembodiesanothertype of reuse. Here, we
gainknowledgeaboutprone-to-bug areasin onesystem,andreuse
thisknowledgefor theverificationof others.An evenstrongerform
of reusemay beachieved if thestimuli generatoritself allows the
integrationof generaltestingknowledgefor aspecificdomain(e.g.,
systemsor SoCs).TK mechanismscanthenbeconfigureddiffer-
ently for differentsystems.This allows the verificationengineer
to avoid implementinga pieceof testingknowledgefor eachnew
design.

Theability to usegeneralideasof testingknowledge,andapply
themto a wide variety of systems,is basedon the fact thatarchi-
tecturalconceptsoftenappearin similar formsin multiplesystems.
For example, the concepts(and correspondingunits) of address
translation,caches,complex interconnect,andmultiple instances
of processingelementsappearin many systems.Testingknowl-
edgethataimsat theverificationof systemscontainingsuchunits
canbethenusedmultiple times.

3. BASICS: WEIGHTED RANDOM CHOICE
Themostbasicform of testingknowledge,supportedby all ex-

isting verification environments,is weightedrandomchoice. A
givenpropertyP of thestimuli canrandomlyacceptavaluefrom a
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domain(set)DP of valid values.A uniform distribution would re-
sult in� anequalprobabilityof 1�

DP
� for all thevaluesin DP. In many

cases,however, we would like to attachdifferentprobabilitiesto
differentvaluesin thedomainof P. For example,generatingread
transactions80%of the time, andwrite transactions20%of the
time.

Weightedrandomchoiceis unary: it modifiesthe distribution
of a single propertyof the stimuli, independentlyof other prop-
erties. Weight functionsmay vary from a simple two-value step
function to, e.g., the Poissondistribution. Non uniform distribu-
tion functionscanalsoapplyto therelationshipsbetweenmultiple
properties.For example,given a systemwhoseinterfacecontains
two properties,a andb, we mayrequirethat theratio betweenthe
casesof a � b anda � b would be5:1.

It shouldbenotedthatdistribution functionscanbeattachedto
virtual propertiesof the stimuli, aswell asto real ones. Accord-
ing to this terminology, realpropertiesaresyntacticallypresenton
the interfacesof the DUV, while virtual propertiesare not. For
anexampleof a virtual propertythat is importantfrom a verifica-
tion point-of-view, considerthe processorinstructionload Rt ��
Ra 	 Rb 
 . Here, the contentsof the memorycell at the address

givenby thesumof registersRa andRb is transferredinto register
Rt . In this case,theindicesof thethreeregisterst, a, andb arereal
properties,while theaddressof thememorycell, thevalueRa 	 Rb,
is a virtual property.

In additionto thetransactionsthatcomprisethestimuli,weighted
randomchoicecanalsoapply to systeminitialization. Here,a set
of registers,andpotentiallyotherresources,is randomlyinitialized.
Theinitializationvaluesarethenusedlaterin thetest-case.A sim-
ple form of testingknowledgemay bias the randomselectionof
valuesfor eachregister(or resource)separately. A moreadvanced
form is to createdependenciesbetweendifferentregisters(or regis-
terfields)of thesamecomponent,andanevenmoreadvancedform
is to createdependenciesbetweenresourcesfrom differentcompo-
nents. The precisenatureof thesedependenciesis relatedto the
functionof theDUV.

4. RESOURCECONTENTION
System-level bugsareoftenrelatedto scenariosin whichseveral

consumerscontendfor theusageof asingleresource.It is therefore
beneficialto createa TK mechanismthatcausesmultiple ’agents’
in thesystemto accessa singleresource,preferablyduringa lim-
ited time interval. Note that theexistenceof several consumersis
closelyrelatedto systems:it is derivedfrom theexistenceof mul-
tiple components.

Oneway to causecontentionfor resourcesis thoughanaddress
collision mechanism.In many systemsthe conceptof a system-
addressis themainway to identify resources.In thesesystems,it
is typically beneficialto causemultiple accessesto the samead-
dresses.This is especiallytruein systemswith acomplex cachehi-
erarchy:Completelyrandomaccesseswouldpracticallyonly cause
cachemisses,while addresscollisionswouldalsocausecachehits,
cast-outs,andpotentiallyvariouscacherelatedcornercases.

An addresscollision mechanismcan be implementedusing a
queuethat containspairsof the form � address� length (length is
the numberof bytesaccessesby a transaction).Following every
transactionthatusesanaddress,wepushanew pair into thequeue,
andpotentiallyremove a pair if thequeueis full. With someprob-
ability, the addressandlengthpropertiesof a new transactionare
generatedto form a collisionwith oneof thepairsin thequeue.

Consideran examplewith a queueof size3. At somepoint of

thegenerationprocess,thequeuecontainsthepairs
� � 0x1000� 0x10���� 0x1100� 0x20���� 0x1200 � 0x30 


At thatpoint,wegenerateanew transaction,andrandomlydecideit
will notbebiasedby theaddresscollisionmechanism.Theaddress
and length of the new transactionareselectedto be � 1300� 0x8 .
Following this transaction,thestateof thequeueis

� � 1300� 0x8���� 0x1000� 0x10���� 0x1100� 0x20 

We thenchooseto generatea transactionthatis affectedby thead-
dresscollision mechanism,for example � 10F8 � 0x20 . This trans-
actioncollideswith thelastpair in thequeue.

The usageof a queueasa datastructurefor holding candidate
pairs for collision serves two purposes.First, it allows for a per-
formanceefficient generationprocess.Saving all thepreviousac-
cessesmayresultin ahugedatastructure,whichin turnslowsdown
thegeneration.Second,it aimsat collisionsnot only on a certain
resource(e.g.,a cacheline), but alsoin time.

Thebasicaddresscollisionmechanismdescribedherecanbeex-
pandedin variousways.In Section6, wewill show how thismech-
anismcanbecombinedwith topologyandconfigurationbasedTK
mechanisms.Anotherenhancementwould be to provide morein-
formationto thealgorithmthat causescollisionsfor a newly gen-
eratedtransaction.For example,for a DUV that includesan L2
cache,we may aim for transactionsthat collide on the sameL2
cache-line,andnotnecessarilyontheexactsameaddress.Thiscan
be further enhancedto collision mechanismsfor variousaddress-
basedresourcesin thesystem(e.g.,cachecongruenceclasses,trans-
lationpages,etc.).

An examplefor a differentenhancementis the usageof an ad-
dresscollision mechanismfor thelarx andstcx instructionsof
the PowerPC[11] architecture. Thesetwo typesof instructions
provide a meansfor implementingsemaphoresandothersynchro-
nizationmechanismsin anMP system:larx createsa reservation
for a singleprocessoron a certainlocationin memory, andstcx
provides an atomic test-and-setoperator. Most PowerPCimple-
mentationscontainsspecialpurposehardwarefor supportingthese
instructions,andspecificallyfor supportingtheir combinedusage.
To improve theverificationof this hardware,we mayadda testing
knowledgemechanismthat increasesthe probability of collisions
specificallybetweenastcx instructionandthelarx instructions
precedingit.

Finally, theaddresscollisionmechanismcanbeeasilyexpanded
to createcontentionon resourcesthatarenot identifiedby address
andlength. Here,thequeueof � address� length pairsis replaced
by a queueof othertypesof resourceidentifiers.

5. TESTING KNOWLEDGE FOR ADDRESS
TRANSLATION

Mostmodernsystemssupportseveraladdressspaces.First,com-
plex processorstypically distinguishbetweena ’virtual’ address
space,asseenby applications,andthe’real’, or ’physical’ address
space,as seenby the operatingsystem. The hardware provides
mechanismsfor translatingbetweenthesetwo addressspaces.Sec-
ond, thereare often addresstranslationmechanismsbetweenthe
systemaddressspace(asviewedon thesystem,or processorbus)
andI/O addressspace(asseen,for example,onaPCIbus).Finally,
high-speedinterconnecttechnologies,suchasInfiniBand [9], also
supportcomplex addresstranslationmechanisms.

Onetypeof testingknowledgefor addresstranslationis anatural
follow-on to theresourcecontentionmechanismdescribedin Sec-
tion 4. With largetranslationtables,theprobabilityof randomlyus-
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ing thesametranslationentrytwicewithin asingletestis relatively
low. However, it is beneficialto verify thesystemunderscenarios
that reusethesameentrymultiple times. We would thereforelike
to biasthetesttowardssuchscenarios.This is especiallyimportant
whenthesystem,or thetranslatingcomponent,containsacachefor
translationentries,usuallyknown as’ translationlook-asidebuffer’
(TLB).

A morecomplex scenariorelatedto theTLB is translationentry
invalidate. Here,the translationtable is modifiedduring the test,
to validatethat the relevant componentcontinuesto function cor-
rectly. Othertypesof testingknowledgefor addresstranslationare
mentionedotherpapers.

A differenttypeof testingknowledgerelatedto addresstransla-
tion dealswith theplacementof accessesrelativeto virtual pagesor
segments.Most translationmechanismspartitiontheaddressspace
into a setof pages,or segments.Somearchitecturessupporta sin-
gle page(segment)size,while otherssupportmultiple sizes. The
placementtestingknowledgeis aimedto betterstimulateaddress
translationrelatedhardware. With someprobability, this mecha-
nism placesan accessin a mannerthat would causeoneof three
placementevents(seeFigure3):

� Vicinity: an accessis placednearthe beginning of a page
(segment),or nearits end.

� Boundary: anaccessis placedattheverybeginningof apage
(segment),or at theveryendof it.

� Crossing: an accessstartsin a certainpage(segment),and
endsin another.

Eachof thesethreeeventsmayactivatea control-logicthat relates
to a certaincorner-casein the DUV. For a specificexample,see
sub-section7.3.

’Vicinity’ placement

’Crossing’ placement

’Boundary’ placement

Figure3: Placementtestingknowledge

6. TOPOLOGY AND CONFIGURATION
BASED TESTING KNOWLEDGE

Thetestingknowledgemechanismspresentedin Sections3 and4
aresuitablefor systems,but someof themcanalsobeusedfor the
verificationof a singleunit or component.This sectiondealswith
mechanismsthat areonly applicablefor systemscontainingmul-
tiple components,andin mostcasesmultiple instancesof a single
componenttype.

Considerthesystemdepictedin Figure4. This systemis com-
prisedof four nodes,connectedtogetherwith someform of inter-
connect.Eachnodecontainstwo processingelements(e.g.,a pro-
cessor),anda memory. Accordingto thespecificationof this sys-
tem, eachprocessingelementmay accessthe memoryof its own
node,aswell asthethememoryof any of theothernodes.

The first type of testingknowledgemechanismwe describein
thissectionis basedontheunderstandingof suchtopologies.From

the point of view of the processingelements,accessingthe local
memoryandtheremotememoryrequiresthesameoperation(e.g.,
a regularload or store instructionin the caseof a processor),
only to a differentaddressspace.However, from thepoint of view
of the hardware, accessesto different memoriesstimulatediffer-
ent control mechanisms.Note, that the addressspaceof eachof
the four memoriesis not necessarilyfixed, and can depend,for
example,on a configurationregister. An examplefor a configu-
ration basedtestingknowledgemechanismis therefore:the ratio
betweenaccessesto local memoriesandaccessesto remotememo-
ries shouldbe3:1. In thegeneralcase,this kind of TK mechanism
requiresknowledgeof the topology and the configurationof the
verifiedsystem.Basedon thisknowledge,it canthenbiasbetween
differentvaluesfor propertiesof thestimuli.

Mem 0

P1 P4 P5

Mem 2

P2 P3

Mem 1

P0

P6 P7

Mem 3

S3

S0

S1

S2

Figure 4: A samplesystem: four nodes,of two processingele-
mentsand a memory each,connectedwith someform of inter-
connect.

A secondtypeof configurationbasedTK is actorchoicepattern
(ACP).Thesystemshown in Figure4containseightprocessingele-
mentsandfourmemories.Disregardingtheprevioustestingknowl-
edgemechanisms,the probability of generatinga transactionbe-
tweenany pairof aprocessingelementandamemoryis 1

4 � 8 � 1
32.

ACPaimsat generatingmore’interesting’pattersfor transactions
that involve several components(actors). The mechanismcreates
a non-uniformdistribution function, andusesthis function when
choosingactorsfor newly generatedtransactions.Thedistribution
functionfor a transactionthat involvesn actorscanberepresented
asann-dimensionalmatrix. For example,theuniform distribution
matrix for a processor- memorytransactionfor thesystemshown
in Figure4 is shown in Table1 (a). An examplefor a non-uniform
distributionmatrix is shown in Table1 (b).

Sparsematricesliketheoneshown in Table1 (b) causethetraffic
in a certaintest-caseto concentratein somepartsof the intercon-
nect.ThebasicTK behindACPis thatfor eachtest-case,a sparse
probabilitymatrix is created.This probabilitymatrix canbecom-
pletelyrandom,or, it cantake into accountissueslike thetopology
of theDUV, or its configuration.Overa largenumberof test-cases,
we will thenform differentpatternsof stresson differentpartsof
the interconnect.Theeffectivenessof ACPis drivenfrom thefact
that it increasesthequality of interconnecttesting,with almostno
knowledgeof thestructureof thesystem,andthroughaneasy-to-
useandeasy-to-implement,mechanism.

Pathaware testingknowledgegoesonestepfurther. For thesys-
temshown in Figure4, it takesinto accountnotonly knowledgeof
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P0 P1 P2 P3 P4 P5 P6 P7
Mem0 1

32
1
32

1
32

1
32

1
32

1
32

1
32

1
32

Mem1 1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

Mem2 1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

Mem3 1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

(a)Uniform probabilitymatrix

P0 P1 P2 P3 P4 P5 P6 P7
Mem0 1

16
1
16

1
8

Mem1 1
16

1
16

1
8

Mem2 1
16

1
16

1
8

Mem3 1
16

1
16

1
8

(b) Non-uniformprobabilitymatrix

Table 1: Probability matrices

which memoryresideswith which processingelementin thesame
node,but alsoknowledgeof thepathbetweenany two nodes(and
any two components).For example,to stresstheswitchS1 it may
biasthe transactionsgeneratedin a test-casetowardsonesthat in-
volveS1. Thisstresscanbeviewedasanotherform of system-level
resourcecontention.

In the generalcase,path aware testingknowledgecreatestest-
casesin which largeportionof thetransactionsgo throughasingle
component,or a setof components,in the interconnectbetween
transactionsinitiators (e.g., processors)and targets(e.g., memo-
ries).

Lastly, knowledgeaboutthe topologyandconfigurationof the
systemcanbeintegratedinto theresourcecontentiontestingknowl-
edgemechanismpresentedin Section4. To do that, we parti-
tion thesetof consumers(e.g.,processors)in thesysteminto sev-
eral groups. This partition can be completelyrandom,it can be
basedon the topology of the system(e.g., processorsfrom the
samenodewould be in the samegroup),or it canbe basedon a
mixtureof randomnessandknowledgeof thetopology. Thequeue
of � address� length pairs describedin Section4 is expandedto
include triplets of the form � address� length � consumer . Whena
collisionis generated,eachconsumerwouldcollideonly with other
consumersfrom its own group.

7. COVERAGE AND SAMPLE
HARDWARE BUGS

7.1 Coverage
Table2 comparesthecoverageachievedby two comparabletools,

usedsimultaneouslyfor theverificationof thesamedesign—ahigh-
endMPsystem—andimplementingthesameverificationplan.The
first line shows thenumberof simulationcyclesconsumedfor tests
generatedby eachof the two tools (normalizedto 100, the real
numbersarein the rangeof billions of cycles). Tool 1, which did
not useany testingknowledge,generatedaboutfive timesasmany
cyclesasTool2, thatdid2. Becauseof theuseof testingknowledge,
thenumberof test-templates(shown in thesecondline) requiredto
implementthe verificationplan wasmuchsmallerin Tool 2 than
in Tool 1. The restof the tableshows the coverageachieved by
the two toolson a setof coveragemodelsfor activities on various
buses.TheTK basedtool reachedbettercoverageonall of thecov-
eragemodels.Theresultsshow thepercentageof coveredeventsas
part of thecompletecrossproductmodel. Thepercentagesout of
thearchitecturallylegal eventsarenot available. Coverageresults
for othermodels,not shown here,aresimilar.
2Thenamesof thetoolsareremovedfor review anonymity.

Category Tool 2 Tool 1
With TK No TK

Simulationcycles(normalized) 100 479
No. of test-templates 737 7168
Coveragemodel1 40.57% 37.10%
Coveragemodel2 43.84% 26.88%
Coveragemodel3 74.28% 68.30%
Coveragemodel4 61.14% 59.17%

Table 2: Comparison betweenthe coverage achieved by two
tools: oneusing testing knowledge,and onedoesnot.

We describetwo hardware bugs found by test-casesthat were
significantlyinfluencedby someof the testingknowledgemecha-
nismsdescribedabove. In thetwo caseswedescribebelow, thebug
would not have beenfound,or would have beenfoundlater in the
verificationprocess,if it wasn’t for therelevant testingknowledge
mechanism.

7.2 AddressCollision
Thisbugwasfoundin asystemcontainingseveralprocessors,as

well asa complex I/O sub-system(Figure5). ExternalI/O devices
canconnectto thesystemthroughaPCI/X bus.Thesedevicesthen
communicatewith therestof thesystemthroughaseriesof bridges
and controllers. To improve performance,one of the bridgesin
that seriesmaintainsa cacheof areasin memoryreadby PCI/X
devices.Whenaprocessoror anotherI/O devicewritesto acached
area,a ’kill cache-line’transactionis sentdown from thecontroller
residingbetweenthebridgeandthesystembus.

...

Controller

System bus

CPU nCPU 0

Bridge

PCI/X bus

PCI/.X
device

Figure5: Addr esscollision relatedbug: systemsketch

For performancereasons,thehardwareis trying to avoid asitua-
tion in which every write on thesystembusis convertedto a ’kill’
by thecontroller, andsentdown to thebridge.For thatpurpose,the
controllermaintainsa list of 4K pagesaccessedby the bridge. A
’kill’ is sentfrom thecontrollerto thebridgeonly whenanaddress
in oneof thosepagesis written to.

In the flawed design,this list of cachedpageswithin the con-
troller wasnot updatedcorrectly. The bug wasfound becauseof
the addresscollision testingknowledgemechanism.Without any
furtherinput from theverificationengineer, thetest-casegenerator

5



producedcollisions betweenreadaccessesfrom a PCI/X device,
andwrite� accessesfrom a processor. This triggeredthe’kill’ mes-
sagesthatexposedthebug.

7.3 AddressPlacement
Theotherbug wasfoundin a state-of-the-art,high-endSoCde-

sign.Oneof thecomponentsin thissystemis responsible,aspartof
a wider operation,to performa seriesof memoryaccesses,eachof
apotentiallydifferentsize(numberof bytes).Thephysicaladdress
of eachaccessis the resultof a translationprocess,thatacceptsa
virtual addressasinput.

The virtual addressesare split into two—high order bits, and
low orderbits—andthe two partsaregiven throughtwo different
means.A bug wasfoundin a casein which anaccessis placedon
the upperboundaryof a translationpage. To illustratethis point,
considera pagesizeof 0x1000.An accessof size0x8, startingat
virtual address0xFF8,would,undersomecircumstances,causethe
designto behave incorrectly3.

Thisbugwasfoundby theaddressplacementtestingknowledge
mechanism,that aimsat ’boundary’ eventsof the type described
above.

8. CONCLUSIONS
We definedtestingknowledgeasa generalterm that relatesto

methodswhosepurposeis to increasethequality of automatically
generatedstimuli. Wethenexplainedwhy theideaof testingknowl-
edgeis particularly suitablefor system-level verification: it im-
provesthequalityof theverification,with arelatively low cost,in a
placeweretimeandresourcesarescarce,andin whichverification
is a significantchallenge.

We thenpresenteda setof testingknowledgemechanismsori-
entedat the systemlevel. Theseincludemechanismsthat aim at
increasingresourcecontention,methodstargetedat addresstrans-
lation mechanisms,andmethodsthat arebasedon understanding
of thetopologyandconfigurationof thesystem.

Wecomparedthecoveragegainedby two environmentsusedfor
stimuli generationfor the samedesign: oneusing testingknowl-
edge,andanotherthatdoesnot. The test-casegeneratorthatused
testingknowledgeachievedbettercoverage,with significantlyless
simulationandhumanresources.We alsodescribedtwo sample
bugsthatwereexposedby theusageof system-level testingknowl-
edge.

The testingknowledgemechanismsand methodsdescribedin
thispaperwereimplementedin XXX, arandomtest-casegenerator
usedfor theverificationof severalsystemsin YYY 4.
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