
H-0229 (H0407-001) July 3, 2004
Computer Science

IBM Research Report

Automata Construction for Regular Expressions in
Model Checking

Shoham Ben-David, Dana Fisman*, Sitvanit Ruah
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

*and Weizmann Institute of Science

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Automata Construction for Regular Expressions in
Model Checking

Shoham Ben-David1 Dana Fisman1,2 Sitvanit Ruah1

1 IBM Haifa Research Lab 2 Weizmann Institute of Science

June 30, 2004

Abstract. Industrial temporal languages like PSL/Sugar and ForSpec have aug-
mented the language with Regular Expressions (REs). An RE specification repre-
sents a sequence of Boolean events a model may or may not exhibit. A common
way of usingREs for specification is in a negative way: anot RE! property de-
scribes an undesirable behavior of the model. Anot r! formula has the nature
that it is sufficient to find one execution path of the model satisfyingr in order
to conclude the formula does not hold in the model. This nature allows anot r!
formula to be modeled by a non-deterministic finite automaton (NFA) Nr, which
accepts sequences satisfyingr, and which is linear in the size ofr.
In this paper we discuss the translation of anot RE! into an NFA. While many
translation methods exist in the literature ([12, 11]), to the best of our knowledge,
the adoption of such a method to model-checking has never been explicitly dis-
cussed before. We present our method, which adopts that of Glushkov [11] to
better suit model checking needs, and discuss its advantages.

1 Introduction

Symbolic model checking has been found extremely efficient in the verification of hard-
ware designs, and has been widely adopted in industry in recent years. While traditional
model checkers ([15]) used the temporal logicsCTL or LTL as their specification lan-
guage, contemporary industrial languages, have sought ways to make the specification
language easier to learn and use. The industry-standard language PSL/Sugar [1], as
well as other industry oriented languages (e.g. [2]), augment the logic with the use of
Regular Expressions (REs using the formulation of [1]).

An RE specification can be viewed as a sequence of Boolean events describing a de-
sirable behavior of the model. For example, theRE formulaϕ = {req·¬ack∗·ack} as-
serts that on all execution paths of the model,req is active on the first cycle,ack is then
inactive for zero or more cycles, and thenack becomes active. Similarly, the formula de-
scribes anundesireable behavior of the model. Thus the formulanot {req·¬ack∗·ack}!
asserts that theredoes not existan execution path on whichreq is active on the first cy-
cle,ack is then inactive for zero or more cycles, and thenack becomes active.

In this paper we consider formulas of the formnot RE!. A not r! formula has the
nature that it is sufficient to find one execution path of the model satisfyingr, in order to
conclude the formula does not hold in the model. This nature allows us to model anot
r! formula by a non-deterministic finite automaton (NFA) Nr, which accepts sequences

1

2

satisfyingr, and which is linear in the size ofr. Running it together with the model,
we then verify the invariant propertyAG¬(accepting state ofNr). The reduction to an
invariant property is very important, since invariant properties are easier to verify by
different model checking engines [6]. In fact, several engines can only verify invariant
formulas [3, 16]. As shown in [5] manyCTL andSERE-based properties can be trans-
lated intonot r! properties. Since thoseCTL properties are in the common fragment of
ACTL andLTL [14], we get that manyLTL formulas can also be translated tonot RE!
properties. Because of these two advantages,not RE! s properties have become a major
component of the IBM model checking tool-set RuleBase [4].

Many algorithms exist for the translation of anRE into anNFAḢowever, the adoption
of it to model checking needs several adjustments which were never discussed before.
Copty et al. in [9] mention they compile a ForSpec formula into an invariant, but do not
explain which formulas or how it is done. Beer et al. in [5] sketch the idea of translating
an RCTL formula into anNFA, but do not elaborate any further.

In this paper we present the translation of anot r! formula into anNFA which is lin-
ear in the size ofr. Our construction follows that of Glushkov [11], to build aposition
NFA (See section 3). This construction is considered thenatural NFA of r in the sense
that every letter inr corresponds to a state inNr. Several differences exist between our
construction and Glushkov’s, which adjust theNFA to better suit model checking needs.

The rest of the paper is organized as follows. Section 2 covers some preliminaries.
In section 3 we give ourNFA translation, and discuss its unique characteristics. Section
4 concludes the paper.

2 Preliminaries

2.1 The computational Model -DTS

We represent a finite state program by adiscrete transition system. A discrete transition
system (DTS) is a symbolic representation of a finite automaton on finite or infinite
words. The definition is derived from the definition of a fair discrete system (FDS) [13].
A DTSD : 〈V,Θ, ρ,A,J 〉 consists of the following components:

– V = {u1, . . . , un}: A finite set of typedstate-variablesover possibly infinite do-
mains. We define astates to be a type-consistent interpretation ofV , assigning
to each variableu ∈ V a values[u] in its domain. We denote byΣV the set of all
states, and byBV the set of all boolean expressions over the state-variables inV
(whenV is understood from the context we write simplyΣ andB, respectively).

– Θ: The initial condition. This is an assertion characterizing all the initial states of
theDTS.

– ρ: The transition relation. This is an assertionρ(V, V ′) relating a states ∈ ΣV
to its D-successors′ ∈ ΣV by referring to both unprimed and primed versions
of the state-variables. The transition relationρ(V, V ′) identifies states′ as aD-
successor of states if 〈s, s′〉 ρ(V, V ′), where〈s, s′〉 is the joint interpretation
which interpretsu ∈ V ass[u] andu′ ass′[u].

– A: Theaccepting conditionfor finite words. This is an assertion characterizing all
the accepting states for runs of theDTS satisfying finite words.

2

3

– J = {J1, . . . , Jk}: Thejustice (B̈uchi) accepting conditionfor infinite words. This
is a set of assertions characterizing the sets of accepting states for runs of theDTS

satisfying infinite words. The justice requirementJ ∈ J stipulates that every infi-
nite computation contains infinitely many states satisfyingJ .

LetD be aDTS for which the above components have been identified. We define a
run of D to be a finite or infinite non-empty sequence of statesσ : s0s1s2 . . . satisfying
the requirements ofinitiality i.e. thats0 Θ; and ofconsecutioni.e. that for eachj =
0, 1, . . . , the statesj+1 is aD-successor of statesj . A run satisfying the requirement
of maximalityi.e. that it is either infinite, or terminates at a statesk which has noD-
successors is termed amaximal run. Let U ⊆ V be a subset of the state-variables. A
run σ : s0s1s2 . . . sn . . . is said to besatisfying a finite wordw = b0b1 . . . bn over
BU iff for every i, 0 ≤ i ≤ n, si bi. A run σ : s0s1s2 . . . sn+1 . . . satisfying a finite
word w = b0b1 . . . bn is said to beacceptingw iff sn+1 satisfiesA. An infinite run
σ : s0s1s2 . . . is said to besatisfying an infinite wordw = b0b1 . . . overBU iff for every
i ≥ 0, si bi. An infinite runσ satisfying an infinite wordw is said to beacceptingw
iff for eachJ ∈ J , the runσ contains infinitely many states satisfyingJ .

For a states, we denote bys|U the restriction ofs to the state-variables inU , i.e.
the states|U agrees withs on the interpretation of the state-variables inU , and does not
provide an interpretation for variables inV \U . For a runσ = s0s1s2 . . . we denote by
σ|U the runs0|U s1|U s2|U

Discrete transition systems can be composed in parallel. LetDi = 〈Vi, Θi, ρi,Ai,Ji〉,
i ∈ {1, 2}, be two discrete transition systems. We denote thesynchronous parallel com-
positionofD1 andD2 byD1 ||| D2 and define it to beD1 ||| D2 = 〈V1∪V2, Θ1∧Θ2, ρ1∧
ρ2, A1 ∧ A2,J1 ∪ J2〉. We can view the execution ofD as thejoint execution ofD1

andD2.

From Finite Automata to DTS

Given a non-deterministic finite automata on finite words (NFA) [12] whose alphabet
is a set of boolean expressions over a given set of variablesV , it is straightforward
to construct the discrete transition system corresponding to it. The same holds for a
generalized B̈uchi automaton on infinite words (GBA) [17].

Let V be a set of state-variables and letB be the corresponding set of boolean
expressions. LetN = 〈B,Q,Q0, δ, A〉 be anNFA. Let state be a new variable (not
in V) whose domain isQ ∪ {qsink}. Then,N can be represented as theDTS DN =
〈VN , ΘN , ρN ,AN ,JN 〉 where

VN = V ∪ {state}; ΘN =
∨

q0∈Q0

state = q0; AN =
∨
q∈A
state = q; JN = ∅;

ρN =
∨

(q1,σ,q2)∈δ
(state = q1 ∧ σ ∧ state′ = q2)

∨
(state = q1 ∧ ¬σ ∧ state′ = qsink)

Similarly, we can construct theDTS corresponding to a B̈uchi automaton. LetG =
〈B,Q,Q0, δ,F〉 be aGBA with F = {F1, . . . , Fk}. Then,G can be represented as the
discrete transition systemDG = 〈VG, ΘG, ρG,AG,JG〉 where:

3

4

VG = V ∪ {state}; ΘG =
∨
q0∈Q0

state = q0; AG = ∅;
JG = {J1, . . . , Jk} where for each1 ≤ i ≤ k : Ji =

∨
q∈Fi state = q;

ρG =
∨

(q1,σ,q2)∈δ

(state = q1 ∧ σ ∧ state′ = q2)
∨

(state = q1 ∧ ¬σ ∧ state′ = qsink)
∨

(state = qsink ∧ state′ = qsink)

In this paper, given anNFA N = 〈B,Q,Q0, δ, A〉 we first construct a terminal
Büchi automaton [8] by adding a self loop on all accepting states ofN and defining
the B̈uchi accepting sets to be the singleton set of accepting states (i.e.{A}). This
Büchi automaton accepts all words which have a finite prefix accepted byN . Then we
construct aDTS for the resulting terminal B̈uchi automaton. We denote the resulting
DTS DN . Let σ = σ0s1 . . . be a run ofDN . We say that the “step”(si, si+1) of DN
corresponds to the transition(qj1 , σ, qj2) ∈ δ of N iff (si, si+1) |= (state = q1 ∧ σ ∧
state′ = q2).

2.2 The logic

The logic considered in this paper is the fragment of the industry-standard temporal
logic PSL/Sugar [1] that consists of onlynot r! formulas wherer is a regular expression
(RE). Its formal definition is given below. The definition assumes a set of state variables
V , the corresponding setΣ of interpretations of the state-variables inV and the setB
of boolean expressions overV . We assume two designated boolean expressionstrue
andfalse belong toB, such that for everys ∈ Σ, s true ands / false.

Definition 1 (REs).

– The empty set∅ and the empty regular expressionλ are REs.
– Every boolean expressionb ∈ B is anRE.
– If r, r1, andr2 are REs, then the following are alsoREs:

1. {r} (encapsulation) 2. r1 ∪ r2 (union)
3. r1 · r2 (concatenation) 4. r∗ (Kleene closure)

Notations

We denote a letter fromΣ by s (possibly with subscripts) and a word fromΣ by u, v,
orw. Theconcatenationof u andv is denoted byuv. If u is infinite, thenuv = u. The
empty word is denoted byε, so thatwε = εw = w. Let L1 andL2 be sets of words.
The concatenationof L1 andL2, denotedL1L2 is the set{w | ∃w1 ∈ L1, ∃w2 ∈
L2 andw = w1w2}. DefineL0 = {ε} andLi = LLi−1 for i ≥ 1. TheKleene closure
of L denotedL∗ is the set

⋃
i<ω L

i.1

We denote the length of a wordw by |w|. An empty wordw = ε has length 0,
and a finite wordw = (s0s1s2 · · · sn) has lengthn + 1. We usei, j, andk to denote
non-negative integers. Fori < |w|, we usewi to denote the(i+ 1)th letter ofw (since
counting of letters starts at zero). For a subsetU ⊆ V of state-variables, we denote by
1 Whereω denotes the cardinality of the non-negative integers.

4

5

s|U the restriction of the letters to the state-variables inU . For a wordw = s0s1s2 . . .
we denote byw|U the restriction of every letter inw to the state-variables inU (i.e,
w|U = s0|U s1|U s2|U . . .).

Definition 2. The semantics ofRE s are defined using the relation|≡ betweenREs

overB and (possibly empty) finite words overΣ. Whenw |≡ r we say thatw tightly
satisfiesr. The semantics ofRE s are defined as follows, wherew is a finite (possibly
empty) word overΣ, b denotes a boolean expression inB, andr, r1, andr2 denoteREs
overB.

– w |≡/ ∅
– w |≡ λ⇐⇒ w = ε
– w |≡ b⇐⇒ |w| = 1 andw0 b

– w |≡ r1∪ r2 ⇐⇒ w |≡ r1 or w |≡ r2

– w |≡ r1· r2 ⇐⇒ ∃w1, w2 s.t.w = w1w2, w1 |≡ r1, andw2 |≡ r2

– w |≡ r∗ ⇐⇒ w = ε or ∃w1, w2 s.t.w2 6= ε, w = w1w2, w1 |≡ r∗ andw2 |≡ r

We note that despite the surface similarities to traditional regular expressions (de-
fined below), there are some subtleties. In particular, the set of words satisfying a tra-
ditional regular expression is defined over the same alphabet as the regular expression
itself (while here the alphabet of the regular expression isB while the alphabet of the
words satisfying it isΣ). Moreover, the traditional semantics ofREs, assumesletters
(the finest elements, other thanλ and∅, appearing in anRE) of the alphabet are mu-
tually exclusive. This assumption does not hold here since theRE-letters are boolean
expressions which may hold simultaneously.

Definition 3 (The Language ofREs) Let Γ be a finite set of symbols (an alphabet).
Let b be a letter inΓ andr, r1, andr2 SEREs overΓ . The setLng(r), defined below,
denotes the set of words overΓ satisfyingr according to the traditional semantics of
regular expressions.
• Lng(∅) = ∅ • Lng(λ) = {ε} • Lng(b) = {b} • Lng(r∗) = Lng(r)∗

• Lng(r1∪ r2) = Lng(r1) ∪ Lng(r2) • Lng(r1· r2) = Lng(r1)Lng(r2)

Definition 4. LetD be a discrete transition system, andr an RE such thatε |≡/ r. We
say thatD satisfiesthe formulanot r!, denotedD |= not r!, iff for all finite runsσ ofD,

σ |≡/ r.

We use the syntaxnot r! to be compliant with PSL [1]. The semantics given here to
not r! is equivalent to the one given in PSL to negating a strongSERE, only that we give
it directly for the composed construct over the given model.

3 Automata Construction for Regular Expressions

Below we describe the construction of anNFA from an RE. Our construction adjusts
that of Glushkov [11] (which was popularized by Berry and Sethi [7]) to better suit
the task of verification. The construction works on linearREs, where anRE is said to

5

6

be linear iff no letter appears in it more than once. This construction is considered the
natural NFA of r [7], in the sense that every letter inr corresponds to a state inNr. In
the sequel, we elaborate on the differences between the original Glushkov construction
and the construction given here.

In order to linearize the givenRE, we add a subscript to each letter appearing in the
RE. The subscripting is done such that every letter inr gets a natural number subscript,
and the subscripts create an increasing tight sequence of natural numbers. For example,
the result of subscripting theRE {{a·b}} ∪ {b·c∗}·a} is {{a1·b2} ∪ {b3·c4∗}·a5}. We
denote bỹr the the result of subscripting theRE r. With this approach the subscripted
symbolsai andbj are calledpositionsand the set of positions iñr is denotedpos(r).
We usex, y, z as variables for positions.

We note that when we work with subscriptedREs we consider their traditional se-
mantics, i.e. the setLng(r̃) of words over the alphabet consisting of their positions.
Later, to connect to the semantics of anRE (as given in Definition 2) we strip away the
position and move from the alphabet of boolean expressions to the alphabet of interpre-
tation of state variables by considering theFDS representation of theNFA.

Before we apply the construction we remove all occurrences ofλ and∅. This can
be done by substituting each occurrence of∅ with false, and each occurrence ofλ with
false∗, due to the following claim.

Claim 5. Letw be a word overΣ. Then,

w |≡ ∅ ⇐⇒ w |≡ false and w |≡ λ ⇐⇒ w |≡ false∗

Proof.

– w |≡ false
⇐⇒ |w| = 1 andw0 |= false
⇐⇒ FALSE
⇐⇒ w |≡ ∅

– w |≡ false∗

⇐⇒ eitherw = ε or ∃w1, w2 s.t.w2 6= ε, w = w1w2, w1 |≡ false∗ andw2 |≡ false
⇐⇒ eitherw = ε or ∃w1, w2 s.t.w2 6= ε, w = w1w2, w1 |≡ false∗ and [by the item

above] FALSE
⇐⇒ w = ε
⇐⇒ w |≡ λ

ut

After the substitution we get anRE whose finest components are boolean expres-
sions.

Definition 6 (Position Functions). We use the following function to capture the notion

of positions in anRE, whereLng(r) denotes the set{w | w |≡ r}.

– F(r) - the set of positions that match thefirst letter of some word inLng(r̃).
Formally,F(r) = {x ∈ pos(r) | ∃v ∈ pos(r)∗ s.t.xv ∈ Lng(r̃)}.

– L(r) - the set of positions that match thelast letter of some word inLng(r̃).
Formally,L(r) = {x ∈ pos(r) | ∃v ∈ pos(r)∗ s.t.vx ∈ Lng(r̃)}.

6

7

– N (r, x) - the set of positions that canfollow positionx in a path through̃r.
Formally,N (r, x) = {y ∈ pos(r) | ∃u, v ∈ pos(r)∗ s.t.uxyv ∈ Lng(r̃)}.

– P(r, x) - the set of positions that canprecedepositionx in a path through̃r.
Formally,P(r, x) = {y ∈ pos(r) | ∃u, v ∈ pos(r)∗ s.t.uyxv ∈ Lng(r̃)}.

Below we give an inductive definition of these functions. The definitions are based

on a predicateS(r) that returnstrue if ε |≡ r, andfalse otherwise. This predicate can be
defined inductively as follows:S(∅) = false; S(λ) = true; S(b) = false; S(r1 · r2) =
S(r1) ∧ S(r2); S(r1 ∪ r2) = S(r1) ∨ S(r2); andS(r∗) = true. We user, r1, r2 to
denoteREs, s1, s2 starredREs (REs such thatS(s1) = S(s2) = true) andn1, n2 non-
starredREs:2

- F(∅) = ∅
- F(λ) = ∅
- F(x) = {x}
- F(r1∪r2) = F(r1) ∪ F(r2)
- F(n1·r2) = F(n1)
- F(s1·r2) = F(s1) ∪ F(r2)
- F(r∗) = F(r)

-N (x, x) = ∅

-N (r1∪r2, x) =

{
N (r1, x) if x ∈ pos(r1)
N (r2, x) if x ∈ pos(r2)

-N (r1·r2, x) =

N (r1, x) if x ∈ pos(r1) \ L(r1)
N (r1, x) ∪ F(r2) if x ∈ L(r1)
N (r2, x) if x ∈ pos(r2)

-N (r∗, x) =

{
N (r, x) if x ∈ pos(r) \ L(r)
N (r, x) ∪ F(r) if x ∈ L(r)

- L(∅) = ∅
- L(λ) = ∅
- L(x) = {x}
- L(r1∪r2) = L(r1) ∪ L(r2)
- L(r1·n2) = L(n2)
- L(r1·s2) = L(s2) ∪ L(r1)
- L(r∗) = L(r)

- P(x, x) = ∅

- P(r1∪r2, x) =

{
P(r1, x) if x ∈ pos(r1)
P(r2, x) if x ∈ pos(r2)

- P(r1·r2, x) =

P(r2, x) if x ∈ pos(r2) \ F(r2)
P(r2, x) ∪ L(r1) if x ∈ F(r2)
P(r1, x) if x ∈ pos(r1)

- P(r∗, x) =

{
P(r, x) if x ∈ pos(r) \ F(r)
P(r, x) ∪ L(r) if x ∈ F(r)

Based on these functions we can build anNFA N that recognizes the set of words
tightly satisfyingr. DenoteS = F(r), E = L(r), N = {xy |x /∈ P(r, y)}, and
Br = {b | b ∈ pos(r)} ∪ {¬b | b ∈ pos(r)}. DefineD to be theNFA 〈Br, Q,Q0, δ, A〉
whereQ = {qσ |σ ∈ pos(r)} ∪ {q∞, qsink}; Q0 = {qσ |σ ∈ S} if S(r) = false and
Q0 = {qσ |σ ∈ S} ∪ {q∞} otherwise;A = {q∞}; and

δ =
{(qσ1 , σ1, qσ2) | σ1σ2 /∈ N} ∪ {(qσ,¬σ, qsink) | σ ∈ pos(r)} ∪
{(qσ, σ, q∞) | σ ∈ E} ∪ {(qsink, σ, qsink) | σ ∈ Br}

The Satellite’s Characteristics We call theNFA which results from our construction
a satellite, since it runs in parallel to the model, looks at its state-variables, but does
not interfere with the run. We note that our satellite has the special nature, thatoutgoing
edges from a given state are labeled by a single Boolean expression− the corresponding
position in theRE, or its negation (when the transition is to the sink state). This is
different than a regular Glushkov automata where allincomingedges to a given state
are labeled by the corresponding position.
2 Sinceλ and∅ have no positions,N () andP() are not defined forr = ∅ or r = λ.

7

8

One may claim that this difference results in more non-determinism. For instance,
that the satellite for theRE {a·b∗·c} will be non-deterministic (since the stateqa corre-
sponding to positiona has two outgoing edges with the same labela, one that enters
the stateqb corresponding tob and one that enters the stateqc corresponding toc) while
the Glushkov automata will be deterministic (since by definition every edge entering a
stateqx corresponding to positionx is labeledx, thus, when theSEREis linear, it cannot
be that there are two outgoing edges from the same states with the same label reaching
two distinct states). However, since (as noted in subsection 2.2) theREs alphabet is not
mutual exclusive, the original Glushkov automata will not be deterministic either, since
the fact that two outgoing edges has different labels, does not mean they cannot both be
taken.

Another difference between our construction and Glushkov’s is that our satellite
has a sink state, while Glushkov’s automaton does not. This characteristic is useful for
model checkingweakregular expressions [10]. The sink state can be used to distinguish
between runs that havefailed (no extension of them will satisfy the givenRE), and thus
do not satisfy the weakRE and runs on words not satisfyingr (whose extension may
eventually satisfy the givenRE) and so may satisfy the weakRE.

For anRE r we denote byDr the discrete transition system representing the satellite
of r. The following proposition states thatDr recognizes words that tightly satisfyr.

Proposition 7. Let r be anRE overB andw a word over someΣ′ ⊇ Σ. Then

w |≡ r iff there exists a finite accepting run ofDr satisfyingw.

The proof of Proposition 7 makes use of the following three lemmas.

Lemma 8. LetS,E ⊆ Σ,N ⊆ Σ2 andL = (SΣ∗ ∩Σ∗E) \Σ∗NΣ∗. LetD be the
automaton〈B,Q,Q0, δ, A〉 where:

– B = {σ | σ ∈ Σ} ∪ {σ | σ ∈ Σ}
– Q = {qσ | σ ∈ Σ} ∪ {q∞, qsink}
– Q0 = {qσ | σ ∈ S}

– δ =
{(qσ1 , σ1, qσ2) | σ1σ2 /∈ N} ∪ {(qσ, σ, qsink) | σ ∈ Σ} ∪
{(qσ, σ, q∞) | σ ∈ E} ∪ {(qsink, σ, qsink) | σ ∈ B}

– A = {q∞}

Thenw ∈ L iff there exists a run ofD onw that terminates in a states ∈ A

Proof. Note thatε /∈ L.
Let r = s1, . . . , sn+1 be a run ofD on w = σ1σ2 . . . σn s.t. sn+1 ∈ A. Then

sincesn+1 ∈ A we getsn+1 = q∞. Therefore, by the transition relation, we get that
sn = qσn . Therefore by the transition relation, we get thatsn−1 = qσn−1 and so on.
Thus the runr of D onw looks as follows:

qσ1

σ1−→ qσ2

σ2−→ qσ3 · · · qσn
σn−→ q∞

Sinceqσ1 is an initial state we get thatσ1 ∈ S and fromq∞ being the accepting state we
getσn ∈ E. Also, for everyi, 1 ≤ i < n the transitionqσi

σi−→ qσi+1 impliesσiσi+1 /∈
N . Thusσ1σ2 . . . σn ∈ (SΣ∗ ∩Σ∗E) \Σ∗NΣ∗. That isw ∈ L.

8

9

Conversely, ifw = σ1σ2 . . . σn ∈ L, it follows,σ1 ∈ S, σn ∈ E and for1 ≤ i < n,
σiσi+1 /∈ N . Thereforeqσ1

σ1−→ qσ2

σ2−→ qσ3 · · · qσn
σn−→ q∞ is a run ofD

terminating in a state inA.
ut

Lemma 9. Let S,E ⊆ Σ, N ⊆ Σ2 andL = (SΣ∗ ∩ Σ∗E) \ Σ∗NΣ∗, and let
L′ = {ε} ∪ L. LetD′ be the automaton〈B,Q,Q′0, δ, A〉 where:

– B = {σ | σ ∈ Σ} ∪ {σ | σ ∈ Σ}
– Q = {qσ | σ ∈ Σ} ∪ {q∞, qsink}
– Q0 = {qσ | σ ∈ S} ∪ {q∞}

– δ =
{(qσ1 , σ1, qσ2) | σ1σ2 /∈ N} ∪ {(qσ, σ, qsink) | σ ∈ Σ} ∪
{(qσ, σ, q∞) | σ ∈ E} ∪ {(qsink, σ, qsink) | σ ∈ B}

– A = {q∞}
Thenw ∈ L′ iff there exists a run ofD′ onw that terminates in a states ∈ A

Proof. Note thatD′ is equivalent toD in all components but the initial states, which
include alsoq∞. Thus clearlyD′ recognizes a wordw iff w is recognized byD or
w = ε. Thus, by lemma 8,w ∈ L′ iff there exists a run ofD′ onw that terminates in a
states ∈ A. ut

Lemma 10. Letw be a word overΣ, r anRE overB. Thenw |≡ r iff eitherε ∈ Lng(r)
andw = ε or there exists a wordβ = b0 . . . bn ∈ Lng(r) such thatwi |= bi for
0 ≤ i ≤ n.

Proof. By induction on the structure ofr.

1. r = ∅
w |≡ ∅ iff False iff there exists a wordβ ∈ Lng(r) such thatwi |= bi for 0 ≤ i ≤
n.

2. r = λ
=⇒ ε ∈ Lng(r) =⇒ w |≡ λ iff w = ε.

Assume the claim holds for theRE’s r1, r2

1. r = r1 ∪ r2

w |≡ r1 ∪ r2 iff w |≡ r1 or w |≡ r2 iff by the induction hypothesis eitherε ∈
Lng(r1) andw = ε or ∃β = b0 . . . bn ∈ Lng(r1) such thatwi |= bi for 0 ≤ i ≤ n
or ε ∈ Lng(r2) andw = ε or ∃β = b0 . . . bn ∈ Lng(r2) such thatwi |= bi for
0 ≤ i ≤ n iff either ε ∈ Lng(r1)∪Lng(r2) andw = ε or∃β ∈ Lng(r1)∪Lng(r2)
such thatwi |= bi for 0 ≤ i ≤ n iff either ε ∈ Lng(r1∪r2) andw = ε or
∃β ∈ Lng(r1∪r2) such thatwi |= bi for 0 ≤ i ≤ n.

2. r = r1·r2

w |≡ r1·r2 iff ∃u1, u2 such thatw = u1u2, u1 |≡ r1 andu2 |≡ r2. By the induction
hypothesis iff∃u, v, b1 = b10 . . . b

1
n1
∈ Lng(r1), b2 = b20 . . . b

2
n2
∈ Lng(r2) such

thatw = uv and eitheru = ε andε ∈ Lng(r1) or ui |= b1i for 0 ≤ i ≤ n1 and
eitherv = ε andε ∈ Lng(r2) or ui |= b2i for 0 ≤ i ≤ n2. iff ∃u, v, β = b1b2
whereb1 ∈ Lng(r1), b2 ∈ Lng(r2) such thatw = uv and eitherw = ε andε ∈
Lng(r1·r2) or wi |= bi for 0 ≤ i ≤ n1 + n2 iff eitherw = ε andε ∈ Lng(r1·r2)
or ∃β ∈ Lng(r1·r2) such thatwi |= bi for 0 ≤ i ≤ n1 + n2 .

9

10

3. r = r1
∗.

By induction on the length ofw. Forw = ε, w |≡ r sinceε ∈ Lng(r). Assume
|w| > 0 and the claim holds foru such that|u| < |w| andr = r1

∗. Forw 6= ε,

w |≡ r1
∗ iff ∃u1, u2 such thatu2 6= ε, w = u1u2, u1 |≡ r1

∗ andu2 |≡ r1 ⇐⇒
(By the induction hypothesis on|w|) ∃u1, u2 such thatu2 6= ε, w = u1u2, either
u1 = ε or there exists a wordb1 ∈ Lng(r) such that∀0 ≤ i ≤ |u1| : ui1 |= bi1 and

u2 |≡ r1.⇐⇒ (By the induction hypothesis on the structure ofr) iff ∃u1, u2 such
thatu2 6= ε, w = u1u2, eitheru1 = ε or there exists a wordb1 ∈ Lng(r1

∗) such
thatui1 |= bi1 for 0 ≤ i < |u1| and there existsb2 ∈ Lng(r1) such thatui2 |= bi2
for 0 ≤ i < |u2| ⇐⇒ there exists a wordβ = b1b2 such thatb1 ∈ Lng(r1

∗),
b2 ∈ Lng(r1) andwi |= bi for 0 ≤ i < |β| ⇐⇒ there exists a wordβ ∈ Lng(r)
such thatwi |= bi for ∀0 ≤ i < |β|.

Proof of Proposition 7

Proof. Let Vr be the set of variables over whichpos(r) ranges. LetΣr be the set of
states providing interpretations toVr and letBr be the set of boolean expressions over
Vr. DenoteS = F(r), E = L(r), N = {xy | x /∈ P(y, r)} andL = (SB∗r ∩ B∗rE) \
B∗rNB

∗
r . LetL′ = L if S(r) = false andL′ = L ∪ {ε}, otherwise. LetD be theNFA

constructed forr as in subsection 2.1. ThenD is theNFA constructed in Lemma 8 or
Lemma 9 (depending ifS(r) = false or not) modulo the use of¬σ instead ofσ. Thus
by Lemma 8 or Lemma 9, a wordβ overBr belongs toL′ iff there exists an accepting

run ofD onβ. Letw = s0s1 . . . sn be a word overΣr. Then, by Lemma 10,w |≡ r iff
eitherε ∈ L′ andw = ε or there exists a wordβ = b0 . . . bn ∈ L′ such thatsi |= bi for

0 ≤ i ≤ n. Thusw |≡ r iff there exists an accepting run ofDr satisfyingw. And this is
true for anyΣ andB defined over someV ⊇ Vr. ut

To verify anot r! formula, we can runDr in parallel to the given model, and check
that the joint run does not reach a finite accepting state ofDr, i.e. a state satisfyingAr.

Proposition 11. LetDM be aDTS, r an RE, andDr theDTS of r constructed as above.
Then, DM |= not r! ⇐⇒ DM ||| Dr |= AG ¬Ar

Proof.

– If direction.
DM |= not r!

=⇒ ∀σ a finite run ofDM , σ |≡/ r [by Proposition 7]
=⇒ ∀σ a finite run ofDM , every runσr ofDr satisfyingσ|Vr does not reach a state

satisfyingAr
=⇒ ∀ finite runσ′ of DM ||| Dr, does not reach a state satisfyingAr
=⇒ DM ||| Dr |= AG ¬Ar.

– Only if direction.
DM ||| Dr |= AG ¬Ar.

=⇒ Any finite runσ of DM ||| Dr does not reach a state satisfyingAr

10

11

=⇒ Any finite runσr of Dr satisfying a wordσM |Vr which is a finite run ofDM
does not reach a state satisfyingAr [by Proposition 7]

=⇒ For any finite runσM of DM , σM |≡/ r
=⇒ DM |= not r!

ut

This proposition confirms with the observation that theDTS of r corresponds to a
terminal B̈uchi automaton (see subsection 2.1) and the fact that emptiness of a terminal
Büchi automaton reduces to checking theCTL property¬EFA (see [8]).

4 Conclusions

Verification of not RE! formula over a given model can be reduced to verification of
an invariant formula over an extended model, consisting of a parallel composition of
the given model with a non-deterministic finite automata (NFA). In this paper we have
shown how to generate anNFA and an invariant formula from a givennot RE! formula.

The importance of this reduction stems from the fact that (1) verification of invariant
properties is extremely efficient compared to other properties and (2) a large subset of
temporal logic properties can be transformed intonot SERE! properties ([5, 14]) and
thus enjoy this reduction.

The reduction presented here is the main translation path in the IBM model checking
tool-set Rulebase [4].

Industrial temporal logics such as PSL/Sugar ([1]) contain extended regular expres-
sions (EREs or SEREs) which augments the traditional regular expressions with addi-
tional operators. Translatingnot SERE! properties can be done by first transforming a
SERE to anRE(this is possible sinceSEREs are expressible asREs) and then using the
procedure given here. We are currently working on more efficient algorithms for trans-
lating generalSEREs to automata.

Acknowledgment

We would like to thank Cindy Eisner, Orna Lichtenstein and Avigail Orni for their
helpful comments on an early draft of this paper.

References

1. Accellera. Accellera property language reference manual. In
http://www.eda.org/vfv/docs/PSL-v1.1.pdf, pages 109–117, June 2004. Appendix B.

2. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The forspec temporal logic: A new
temporal property-specification language. InTACAS, pages 296–211, 2002.

3. S. Barner and Y.Rodeh. Searching for counter-examples adaptively. InThe Sixth Interna-
tional Workshop in Formal Methods (IWFM’03), July 2003.

11

12

4. I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver, P. Paanah,
Y. Rodeh, G. Ronin, and Y. Wolfsthal. RuleBase: Model checking at IBM. InProc. 9th

International Conference on Computer Aided Verification (CAV), LNCS 1254, pages 480–
483. Springer-Verlag, 1997.

5. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In
Proc.10th International Conference on Computer Aided Verification (CAV’98), LNCS 1427,
pages 184–194. Springer-Verlag, 1998.

6. S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking at ibm.Formal Methods
in System Design, 22(2):101–108, 2003.

7. G. Berry and R. Sethi. From regular expression to deterministic automata.Theoretical
Computer Science, 48:117–126, 1986.

8. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model checking of
linear time logic properties. InComputer Aided Verification, pages 222–235, 1999.

9. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y. Vardi. Benefits
of bounded model checking at an industrial setting. InCAV’01, july 2001.

10. D. Fisman, C. Eisner, and J. Havlicek. Weak regular expression. to appear.
11. V. M. Glushkov. The abstract theory of automata.Russian Mathematical Surveys, 16:1–53,

1953.
12. J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley Series in Computer Science. Addison-Wesley, 1979.
13. Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic specifi-

cations. In K. Larsen, S. Skyum, and G. Winskel, editors,Proc. 25th Int. Colloq. Aut. Lang.
Prog., volume 1443 ofLect. Notes in Comp. Sci., pages 1–16. Springer-Verlag, 1998.

14. M. Maidl. The common fragment of CTL and LTL. InIEEE Symposium on Foundations of
Computer Science, pages 643–652, 2000.

15. K. McMillan. Symbolic model checking, 1993.
16. R. Tzoref, M. Matusevich, E. Berger, and I. Beer. An optimized symbolic bounded model

checking engine. InCHARME, 2003.
17. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and

G. Birtwistle, editors,Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer-Verlag, Berlin, 1996.

12

