
H-0230 (H0408-003) August 29, 2004
Computer Science

IBM Research Report

Putting Knowledge to Work -
A Visual Basic Migration Case Study

Avi Yaeli, Neta Aizenbud-Reshef, Jonathan Bnayahu,
Nurit Dor, Sara Porat, Asaf Yaffe

IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Putting Knowledge to Work -

A Visual Basic Migration Case Study

Avi Yaeli Neta Aizenbud-Reshef Jonathan Bnayahu
Nurit Dor Sara Porat Asaf Yaffe

IBM Haifa Research Lab

{aviy, neta, bnayahu, nurit, porat, yaffe }@il.ibm.com

Abstract This position paper addresses the challenges in

designing tooling to support assessing and planning
the effort in migrating large VB applications to
J2EE. More specifically we look at the complexity
of migrating enterprise VB rich-client applications
to thin, server-centric J2EE applications with SOA
concepts in mind.

Migration of legacy applications is a challenging
task, even more when the target is a service oriented
open platform such as J2EE, requiring reasoning
about the legacy applications and understand the
challenges and opportunities for a migration. This
position paper presents the challenges in a VB to
J2EE migration and suggests knowledge-base
driven analyses to aid in the process. 1.1. Motivation

VB is a rich language supporting many
programming styles. One can find in a VB
application both script-based programming patterns
such as usage without declaration of variables,
through limited object oriented design such as
encapsulation and late binding method invocation.
In addition, VB allows programmers to easily use
Microsoft Windows system facilities, common
applications such as Microsoft Office and third-
party libraries.

1. Introduction
Over the last decade, Microsoft Visual Basic 6.0
(VB) applications have expanded beyond small-
medium applications into larger projects, mostly as
front-ends to legacy applications and middleware.
The easy to use IDE and the large set of reusable
ActiveX components (also from third parties) have
turned VB into a popular platform for building
distributed applications that involve graphical user
interface, business logic, database access,
networking, messaging, and more.

Assessment and planning of migration projects is a
cumbersome, complex and risky task, even more
when there is a need to move between significantly
different platforms, programming styles and
architectures [2]. For large scale programs, the
migration process focuses on a new manageable
well structured application by re-architecting the
existing applications. In order to do that, the manual
process would require deep structural
understanding, identifying components in the code,
exploring dependencies between components and
on external resources, abstracting dynamic behavior
and interaction between components etc. Tools
should therefore follow this level of understanding.

With the upcoming end of service for VB [1], the
market is increasingly concerned in moving the
existing VB legacy applications to state-of-the-art
programming models such as .NET and J2EE. Also,
the emerging trend to endorse Service Oriented
Architecture (SOA) implies increasing needs for
transforming legacy portfolio, including VB-based
applications. Companies are now getting more and
more forced or motivated to optimize and simplify
existing IT infrastructure, to reduce TCO, platform-
related costs through server consolidation. It's
becoming then clear that enterprise software
systems are often required to undergo
transformations, and that tooling support to make
these transformations more effective and accurate is
an emerging business.

The main idea this paper introduces is the challenge
in having a knowledge-base where patterns are
formally described. An assessment and planning

 1

mailto:aviy, neta, bnayahu, nurit, porat, yaffe }@il.ibm.com

tool will analyze the applications to-be ported,
detect those patterns and plan according to these
findings. The challenge is to define the best and
appropriate patterns. This idea lies as a base for a
tool under development in IBM Haifa Research
Labs.

1.2. Existing Tools
Application mining tools, e.g., CAST [3], support
understanding of existing VB applications. These
tools are oriented towards lower level program
understanding such as determining dependencies,
and change impact analysis. None of these tools
provides higher-level program understanding such
as layering and componentization of VB
applications. In addition, they lack in their ability to
provide migration issue detection and suggestions.
Similar comments go to Rational Rose [4], a reverse
engineering tool, generates a syntactic-driven model
of the legacy application. Unfortunately, this model
does not aid much in designing the target J2EE
model.

Source-to-source transformation tools for VB are
available. Some generate Java code, e.g, VB-
Converter[2]. Unfortunately, many of them generate
unmanageable code by providing wrappers to VB
functionality. Microsoft .NET built-in converter
for VB [5] generates an OS-dependent .NET
application. Since the methodology is basically a
line-to-line transformation and not re-architecting,
the generated code is left with bad design practices
such as on-error statements and wrappers to Active-
X controls instead of usage of the equivalent .NET
controls.

Current tools do not provide the two major
requirements for a VB to J2EE migrations:
1. re-architecting and re-use capabilities
2. target-specific migration issues detection and

recommendation
Our project aims at knowledge-based driven light
static analyses that provide both requirements.

2. Leveraging a Knowledge Base
Even with the continue growth of automation and
tooling for legacy transformation, a migration
project is still inherently complex. The case of
converting a typical VB application, OS-dependent
rich client application, into a J2EE web service open
platform application is even more complex. We
believe that a rich knowledge base can aid and

simplify the re-architecting and re-use of the legacy
application.

The assessment phase, the first phase of a migration
process, is to analyze and understand the legacy
application. The goal is to detect the opportunities
and obstacles of transforming this application by
answering question such as:
• How is the code tied into the operating system?

What are the possible J2EE replacements?
• Are the client tier, business logic and data

access intertwined? What are the components of
the application?

• Are there acute code quality issues, such as
complexity, bad designs or J2EE unsupported
features?

• Which parts of the code is worthwhile to
transform?

Accompanied by information, even incomplete,
obtained form the assessment phase, the next
phases, planning and transformation, can be
simplified up to the level of some automatic
translation.

A Knowledge Base (KB) is the mean to capture
domain expert knowledge. Many academics and
commercial work tackle program understanding
tasks by relaying on knowledge base. Migration
tools, e.g., code-advisor [6], spot migration
obstacles depending on a knowledge base. We
present further ideas on how other assessment tasks
can benefit from the KB. An example is available as
appendix.

2.1. Migration Mining
The core of the VB language is rather small and
simple, consisting of a few dozen statements and
built-in control. However, VB's richness comes
from the easy-of use of the thousands of system
APIs and third-party Active-X controls [7]. The KB
contains information about the language intrinsic
and external features: its functionality, migration
obstacle and severity, and the possible migration
options. We envision a KB that grows as more VB-
to-J2EE migrations are conducted as more features
and Active-X controls are revealed.

Our tool applies a static analysis based algorithm
that marks the program points as migration issues
according to the KB. Due to VB's late-binding, a
type analysis performed prior to the analysis

 2

provides information about the possible activation
and dependencies. Understanding external
dependencies provide a pick into the applications'
architectural patters revealing infrastructure used by
the application such as which database access,
messaging protocols and more.

2.2. Classification
We propose a classification process that attaches
properties to code fragments based on the KB. A
basic and useful classification is layering. In the KB
approach, the KB indicates for each language
feature and for each external function to which
layers may it belong. With this information the
classification is rather straightforward, indicating if
an expression belongs to a specific layer, such as
presentation, business-rule or database access.

2.3. Data-Model Extraction
Date model extraction is a challenging task,
requiring sophisticated data-flow and
dependencies analyses. A heuristic KB-
dependent light approach combines variables into
"logical" classes. The idea is to state which program
statement (functions) are likely to indicate a logical
connection among the argument (parameters). For
example, in a print statement, all arguments are
marked as a data model. Another example, are text
boxes members of a frame.

2.4. Componentization
Componentization, the process of partitioning a
big legacy application, is another very
challenging task. One option for
componentization is according to the layering
classification. Another option is according to
the extracted data-model where the analysis
attempts to detect all accesses to a given data-
model.

2.5. Past Experience
Historical data from previous and similar migration
projects is of significant value. It aids in the
migration process as well as planning and
organizing the tasks. Among the information
obtained concerning features of the language,
additional information regarding complexity and
cost of the previous project can aid in planning of
the current migration task. For example, a KB can

contain historical cost models according to the
transformed code size or complexity.

3. Conclusion
Based on our preliminary experience obtained by
assessing a 100,000 lines of VB application, we
believe that techniques presented in this paper can
be of significant value. We have seen that the
migration issues detection and classification are
rather precise. Further work is undergoing to add
additional KB-based analyses. Our current design is
of a simple KB that contains basic elements such as
statements and external libraries. We assume that a
rule-based KB can enhance the analyses by
allowing one to express more sophisticated patterns.

Bibliography

1. Microsoft, Product Lifecycle Dates,

http://support.microsoft.com/default.aspx?scid=fh;%
5Bln%5D;LifeDevToolFam

2. Declan Good, , Legacy Transformation, copyright
Club De Investigacion Technologica 2002

3. CAST, Application Mining Suite,
http://www.castsoftware.com

4. IBM, Rational Rose Enterprise Edition,
http://www.ibm.com/software/rational/

5. DiamondEdge, VB Converter,
http://www.diamondedge.com/products/Convert-
VB-to-Java.html

6. Microsoft, Visual Basic 6.0 Code Advisor ,
http://msdn.microsoft.com/vbasic/downloads/codead
visor/default.aspx

7. ComponentSource,
http://www.componentsource.com

8. IBM, Migration Services for Microsoft Windows
Applications Services, http://www-
106.ibm.com/developerworks/websphere/services/se
rvices.html

 3

http://support.microsoft.com/default.aspx?scid=fh;%5Bln%5D;LifeDevToolFam
http://support.microsoft.com/default.aspx?scid=fh;%5Bln%5D;LifeDevToolFam
http://www.castsoftware.com/

Appendix

…
Global gMyConn As New MYSQL_CONNECTION VB.TextBox txtPassword

 …

… VB.TextBox txtUserName
 …
 (a) (b)

Private Sub cmdSave_Click()
 Dim rsUsers As MYSQL_RS

Set rsUsers = gMyConn.Execute("Select Username From Users WHERE Username =
txtUsername.text)

If rsUsers.RecordCount > 0 Then
MsgBox "Username & Me.txtUsername.text & already taken"
txtUsername.SetFocus
rsUsers.CloseRecordset
Exit Sub

End If

 Set rsUsers = gMyConn.Execute("INSERT INTO Users (Username,Password)

VALUES (txtUsername.text "," txtPassword.text)
 rsUsers.CloseRecordset

 MsgBox "User Created Successfully"

 frmAdmin.Fill_Tree
 frmAdmin.SetFocus
 Unload Me
End Sub
 (c)

 (d) (e)

String txtUsername
String txtPassword

Database Access
Business Logic
User Interface

4

Fiqure 1: An example fo VB code contining: global declarations (a), local declaration (b) a event driven procedure (c).
The classfication analysis shows threee intertwined layers (d) and an extracted data model as result of the second execute
command (e).

	Putting Knowledge to Work -
	A Visual Basic Migration Case Study
	Abstract
	Introduction
	Motivation
	Existing Tools
	Migration Mining
	Classification
	Componentization
	Past Experience

	Bibliography
	Appendix

