
H-0233 (H0505-003) May 2, 2005
Computer Science

IBM Research Report

Building a Distributed Database with Device-Served Leases

Ohad Rodeh
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Building a Distributed Database with Device-Served Leases

Ohad Rodeh
orodeh@il.ibm.com

Abstract

This paper describes a method for constructing a distributed database from a set of compute-nodes,
a local area network, and a set of object-disks. We assume object-disks do not fail; nodes can fail or go
to sleep for long periods. In order for a node to access an object inside an object-disk a valid lease is
required.

There are two issues that need resolving (1) how to build a database on top of control-units that
require leases (2) handling compute-node failures.

This work extends the ARIES logging scheme to these settings.

1 Introduction

Distributed shared-disk databases [1, 2, 10] have existed for a long time. This paper describes a method for
building such databases that has very good scalability and does not use clustering services [7, 18, 12]. We
use device-served leases as a building block to replace group-services.

Traditional shared-disk databases are built by connecting a set of disks and a set of compute nodes
together with a Storage Area Network (SAN). Group-services are run on the compute-nodes; they decide
which nodes are alive and which are considered disconnected. Disconnected nodes arefenced outusing the
SAN-switch; this means that they will be inhibited from accessing the shared on-disk tables because all their
requests sent through the SAN will be discarded by the switch. This is done to prevent disconnected nodes
from damaging shared data. This also enforces the set of locks granted to connected nodes.

Figure 1: A traditional shared-disk database. There are compute-nodes and disks connected through a SAN.
Hosts connect to the compute-nodes and receive services.

1

This scheme has several problems (1) it requires a switch that is able to fence out nodes (2) it relies on
group-services (GCS) which are complex and have scalability limitations (3) group-services, SAN-switch,
and database code need to be sown together correctly to form a complete system.

This paper suggests a novel construction which does not require group-services. The scalability limi-
tations are overcome, and the code replacing group-services is fairly simple, connecting it to the database
code is relatively strait-forward.

The scalability limitations of group-services have been dealt with in [8]. The algorithms used in GCSs
are limited by the slowest node in the group; they are also sensitive to network loss rates and congestion.
Furthermore, the algorithms are at leastO(n) wheren is the number of members in the group. This means
that as group size grows the GCS mechanisms work harder and harder to maintain connectivity, consistency,
and reliable communication.

The system components are (1) a set of compute-nodes (2) a local area network (3) a set of object-
disks [3]. An Object-Disk (OSD) is essentially a node that exports a flat file-system through a standard
network protocol. A file on the OSD is called an object. We assume OSDs do not fail, handling such
failures is out of the scope of this paper. We assume that the network is timed-asynchronous and compute-
nodes can experience crash faults, or go to sleep for extended periods. An OSD is assumed to have some
amount of non-volatile memory to speed up write commands.

Our approach should apply to most Write-Ahead-Logging (WAL) schemes. However, there is a wide
variety of logging and locking schemes. We limited ourselves here to show how a specific ARIES [15]
flavour can be extended to our distributed settings.

Our algorithm is aimed at low-sharing workloads; those where compute nodes access different parts of
the database most of the time. It will not have good performance on high-sharing scenarios.

A database is composed of tables. We map a table to a single object on an OSD. It is possible to stripe a
single table on several objects thus increasing IO throughput. We chose the simple mapping for simplicity
of presentation.

We assume that we have a working single-node version of the database,DBs. DBs uses a specific
ARIES flavour explained in section 4.1. We assume thatDBs works with object-disks and that its tables are
mapped to objects. Our goal in what follows is to extendDBs to scale to a set of compute-nodes, we shall
call the multi-node databaseDBm. We name our algorithmdARIES. A multi-user environment is assumed,
each user chooses a single compute-node to work with. A user can perform the usual set of operations
as withDBs: queries and transactions. The generated workload is assumed to exhibit reasonable locality;
record-sharing between nodes is relatively infrequent.

There are complexities in moving from a single-node to multiple-node database. Management and
operations like bootstrap/shutdown become much more complex. This work does not address these issues;
the focus is on the locking and logging schemes.

Several assumptions are made about the algorithms and behavior ofDBs. These assumptions naturally
limit the generality of this work. The author believes that the variety of databases that can benefit from this
work is still fairly wide. It remains for future work to lift the restrictions.

The paper is structured as follows: section 2 describes related work. Section 3 provides the reason for
basing this work on object-disks rather than filers or standard disks. Section 4 describes the locking and
logging algorithms used inDBs. Section 5 describes the locking scheme forDBm. Section 6 describes
operation forDBm during normal runs. Section 7 talks about the various failure and recovery scenarios.
Section 8 discusses applications than can use dARIES. Section 9 summarizes.

2

2 Related Work

zFS [16] is a research file-system that uses OSDs. Directories and files are mapped to objects. Locking is
based upon OSD-served leases. Cooperative caching is implemented. The major difference between zFS
and this work is the coherency and atomicity guaranties; file-systems do not provide the ACID properties
required for a database.

The Sistina file-system (GFS [4]) attempted to use disk-based locking, however, the SCSI reserve/unreserve
commands that provide disk-locking were not sufficient and the attempt was abandoned.

The Palladio system [17] attempts to provide a highly scalable block-storage abstraction. The system is
built out of a distributed collection of networked smart-disks and servers. As part of Palladio a comparison
of different device-based locking schemes was made. For Palladio, the best scheme turned out to be a type
of optimistic time-stamping. As Palladio is a block-storage system it is very different from a database and
our conclusions are likely to be different.

3 Why object-disks and leases

This work could have been based on standard disks, or filers [5, 6], as long as they provide leases. The
reason OSDs where chosen is that (1) the author is working on OSDs and so is aware of the possibilities
of using them (2) there is ongoing work to standardize the OSD protocol, and so, there is a possibility of
adding leases to it.

The reason leases are a good match for this database clustering problem is that, should a disk fail, the
database cannot continue until the disk comes back up. Therefore, storing the locks on the disk separately
does not improve database availability. Put another way, the disk-data and disk-locks can be thought of as a
single failure domain.

4 DBs

This section describes the locking and logging schemes for the centralized databaseDBs. The descriptions
are fairly brief in order to keep the presentation to reasonable bounds. For a more detailed understanding of
databases the interested reader is referred to [13].

4.1 ARIES

This section describes the specific ARIES variant used forDBs. There are many variations and optimizations
to ARIES, here, a relatively simple scheme is used.

DBs uses a log-object, referred to simply asthe log, located on one of the object-disks, and many tables
which are also OSD objects. Apage-managercomponent provides locking and IO services for table pages.
A typical page size, in today’s databases, is 8K. It is possible to pin a page in memory; this is useful in
enforcing awrite-ahead-logging(WAL) discipline.

WAL requires writing to the log undo records for page-modifications prior to writing a page to disk,
and redo entries prior to committing a transaction. This allows aborting a transaction in case of crash, and
redoing it after commit. Pages need to be pinned in memory until their undo and redo logs have been written.

There is a wide variety of different logging schemes. ForDBs we assume that a log-entry refers to a
single page. For example, in order to add a key-value pair to a B-tree page, assuming no splits are needed, a
single log-record can be used.

In order to enforce the WAL disciplineLog Sequence Numbers(LSN) are used. Every log entry is
stamped with sequence number (LSN) provided by the log. The LSN is monotonically increasing. Each

3

page is stamped with the largest LSN that modified it. The journal keeps track of the largest LSN that has
reached the disk, themin-LSN, and the page-manager needs to make sure that pages with page-LSN larger
than the min-LSN are not written to disk.

ARIES is a WAL variant where the user adds redo/undo log entries for each page modification. Accord-
ing to the WAL discipline the page is pinned until the log-entry is written to the log. For a specific transaction
log-entries are backward chained. For example, in figure 2(a) we can see a transaction with four entries:
A,B, C, andD. A transaction also hasstart andendentries. These help the log-manager component to
determine upon recovery which transaction successfully committed and which need to be aborted.

(a)

(b)

(c)

Figure 2: Log entries and CLRs in a transaction. CLRs are colored light-gray and marked with tags.

Transactions are aborted by user directive, or when a crash occurs. In such casesCompensation-Log-
Records(CLRs) are used. A transaction is aborted by performing its set of log-entries in undo-mode. For
each log-entry that is undone a new compensation entry is added to the end of the log. The new entry has
a fresh LSN and the page that is modified is marked with this new LSN; the page can be written to disk
only after the CLR has reached the disk. In figure 2(b) we can see two CLRs that have been added to
compensate for entriesD andC. The CLR points to the record previous to the one it is undoing. This helps
in cases where recovery was interrupted by a crash; recovery will need to be performed again. Assuming
that recovery has stopped after adding CLRs forD andC then the second iteration will be able to see that
C ′ points to recordB and continue undoingB andA. This is shown in figure 2(c).

Crash-recovery is performed by a redo-pass followed by an undo-pass. During the redo-pass the log is
read from beginning to end and all entries are re-done. This brings the database back to the exact point when
it crashed. The undo-pass then works back from the end of the log and undoes all entries for transactions that
have not committed. At the end of it the database is functional again, all effects of uncommitted transactions
and partially performed transactions have been completely removed.

4.2 Locking

In order to isolate transactions from each other all transactions lock read/modified records and release them
after commit. This is also called atransaction-durationlocking discipline. A deadlock detection service
identifies cycles in the lock graph and breaks cycles by choosing victim transactions and rolling them back.
It is up to the application to restart aborted transactions. This may seem odd to the reader who is unfamiliar

4

with databases; it is legal for a user to start transactions that will deadlock each other. The database is
then expected to abort one/some of the transactions and the user is expected to work things out perhaps by
restarting aborted transactions.

The sections ahead discuss how to extend the algorithms fromDBs to a distributed setting.

4.3 Partial page writes

The ARIES technique we had described can get into difficulties in the presence ofpartial page writes. This
is a situation where the database writes an 8K page to disk but due to a power failure only part of the page
actually reaches the disk. Since disks provide atomicity on the basis of sectors (512bytes) some of the
sectors may have been written while others have not. The issue is that the journal may not be able to recover
from such an error.

For example, consider an 8K pageP that includes 16 sectors numbered 0 through 15. There is an integer
counter situated in the second sector of the page and there are log entries for incrementing and decrementing
the counter. The following scenario occurs:

• A log entryE, ELSN = 4, for incrementing the counter is written to the log.

• PageP is modified in memory

• PageP is written to disk but due to a power failure only the first sector successfully reaches the disk.

Since the LSN is in the page header it is successfully modified on disk andPLSN = 4. However, the
counter is not incremented. The ARIES recovery algorithm will not detect that log-entryE need not be
executed onP and we get an inconsistency.

In order to detect partial page writes databases use checksums or some approximation of a checksum
on a per-page basis. Once a partial page write is detected a rather radical action is taken: revert to an old
consistent checkpoint of the database and apply all logs since.

With OSDs it might be that the object-disk will support atomic page writes. Another possibility is that
OSDs will support snapshots which will allow the use of consistent checkpoints.

5 Distributed locking in DBm

5.1 Lease support on the OSD

As a basis for locking each OSD supports a single exclusive lease that can be delegated, amajor-lease. For
OSDD, only the holder of a valid major-lease can accessD. The lease is time-limited, a duration of 30
seconds is reasonable for our settings.D also records who is the lease owner. Operations allowed on the
major-lease are: (1) take (2) release (3) renew. If nodeN1 takes the major-lease; the OSD will not give it to
other nodes. If nodeN2 asks for the major-leaseD will inform it that N1 is the current owner and provide
it with N1’s network address. This provides a simple lookup mechanism for lease-owners.

Leases can be delegated. IfN1 wishes to allow nodeN2 access to an object inD then it can handN2

a lease forD. The protocol allowsN2 to perform an operation as long as a timely lease is attached to the
request. For example ifleaseD is bounded betweent andt + 30 thenN2 will be able to perform operations
onD as long as the local time at the target when the request is received is in the range{t...t + 30}.

The major-lease is implemented as a 64bit number; it is the local time on the OSD at the time it is
given. For example, if a major-lease is requested at time3003 on the OSD then the major-lease is going
to be 3003. Each request is verified for timeliness of the major-lease (mj) attached to it by checking the

5

difference betweenmj and the current-time. For example, if the current time is 3003 then a request with
lease 2990 will be accepted; a request with lease 2950 will be rejected.

It is assumed that compute-nodes are non-malicious; a malicious node can invent lease times and cir-
cumvent the major-lease protection mechanism. Major-leases replace the fencing mechanisms used by
traditional databases.

5.2 Locking for records, pages, and tables

A table is composed of records, and a database needs to provide record-level read/write locking. Several
records can fit into a single page, which is the smallest IO unit. If two nodes lock and modify two records on
the same page, conflicts will arise. Therefore, in this work we provide distributed locking on the granularity
of pages and tables, not records. Note, however, that once a node locks a page it can internally provide
record-locks to its transactions. To avoid confusing the reader we shall ignore the distinction between
records-locks and page-locks. We shall say that in order for a transactionT on nodeA to modify recordR
which is located on pageP it needs to lock pageP . In reality this will translate into nodeA taking a page
lock onP and providing a finer-grained record-lock forR to transactionT .

In order to perform locking we take an approach similar to zFS [16]. For each OSD we run a lock-
manager (LKM). The manager provides a page-level and object-level lock-service to all database compo-
nents. The lock-manager for OSDD, denoted byDLKM , can run on any compute-node.DLKM operates
by taking the major-lease forD and continuously renewing it.

Compute-nodeN1 that wishes to take a lock on a page/object onD locatesDLKM by queryingD for
its lock-manager.N1 then creates a connection toDLKM . The connection can be implemented by a TCP
network connection over which protocol messages can be reliably passed. As long as the connection is
alive there is no need for further lookup requests fromN1 to D. Through the connectionN1 can take and
release read/write locks on objects and pages. The protocol includes messages for the client to (1) take a
lease on the server (2) renew it (3) release it. This lease is different than the OSD major-lease; it protects the
client-server protocol between lock-taker and lock-manager. Upon connecting toDLKM nodeN1 takes a
lease and henceforth renews it periodically. As long asN1’s lease is valid all ofN1’s locks will be respected.
When the lease is brokenDLKM assumes thatN1 has failed. It will wait until the lease expires and then
notify nodes that wish to take locks on areas previously locked byN1 that recovery needs to be performed.

DLKM provides a valid major-lease for OSDD to all of its clients as part of the connection protocol.
This allows connected clients to accessD directly. Clients that get disconnected, due to a network problem,
from the lock-manager will be able to access the OSD until their major-lease expires. We assume clients are
not malicious and that they access only pages they had previously locked; the major-lease mechanism will
not protect the OSD from malicious accesses.

A lock server needs to guarantee that even if it fails, locks it has granted will be respected. This can be
done either by making the lock-manager highly available or by recording on disk all granted locks (hard-
ening). For this exposition we chose the second method. ServerDLKM creates an objectDlocks on D.
This object contains the list of all currently given locks.Dlocks is updated whenever locks are granted or
released. Access toDlocks is possible only to the currentDLKM because only it holds a valid lease toD.
ShouldDLKM fail another compute-node will take its place after the OSD lease expires; the new server will
recover the locks fromDlocks. Hardening the locks is not very expensive because the OSD has a battery
backed write-cache which makes writes fairly quick.

5.3 Deadlocks

Providing page, and table locking is good but not sufficient. Deadlocks can happen because two nodesN1,
andN2 request write-locks on pagesP1 andP2 in reverse order;N1 ends up withP1 requestingP2 andN2

6

holds on toP2 while requestingP1. Longer cycles can occur as well. The problem is that there is no global
lock manager with knowledge of the set of taken and requested locks.

If DBs follows strict two-phase locking, or takes locks in lexicographic order then deadlock avoidance
can be implemented locally. However, this is not a valid assumption as most databases use much more
relaxed locking schemes.

The problem, in essence, is that the deadlock handling algorithm fromDBs needs to be ported toDBm.
On each compute node we run the standardDBs deadlock-handling module to resolve local problems. A
simplistic solution to global deadlock detection can be:

1. Each compute-nodeN , once in a while, queries the set of compute-nodes for their set of on-going
transactions. The set of compute-nodes known toN can be approximate; as long as all live nodes will
eventually get into this set.

2. NodeN constructs a graph and checks for cycles

3. In case a cycle is detectedN chooses a victim transactionT and sends a message to the node running
it abortT

This solution can sometimes make mistakes and abort transactions unnecessarily; this is considered
tolerable because the user needs to handle aborted transactions anyway. There are much better algorithms
than this one, however, this topic is out of the scope of this paper.

5.4 Examples

Before going into the next sections a few examples can help clarify the use of leases. Assume that there is
one OSD:D and two compute-nodes:{N1, N2}. Initially, the major-lease for the disk is not taken.

Scenario where nodeN1 reads pageP1 from diskD:

1. N1 needs to lock pageP1 on diskD.

(a) N1 takes the major-lease forD and creates a local lock-manager forD.

(b) N1 gets a read-lock forP1 from DLKM .

(c) N1 sends a read request for pageP1 to D; the major-lease is attached.

(d) D sends the page toN1.

2. Every 20 secondsDLKM renews its major-lease fromD.

Continued scenario where nodeN2 reads pageP1 from diskD:

1. N2 contactsD and requests the major-lease,D informsN2 that nodeN1 holds the major-lease.

2. N2 creates a connection to the lock-manager onN1, N1 sends back a timely major-lease forD. From
now on, every timeDLKM renews the major-lease it sends it to bothN1 andN2.

3. N2 gets a read-lock onP1 from DLKM .

4. N2 sends a read request for pageP1 to D; the current major-lease is attached.

5. D sends the page toN2.

7

NodeN1 disconnects for more than 30 seconds:

1. N2 cannot renew its lease on its connection toDLKM

2. After 30 secondsN2 loses the ability to read/write fromD because it no longer has a valid lease.

3. N2 takes the major-lease on diskD and creates a local lock-manager for it.

The time-asynchronous model assumes that clock drifts between nodes in the cluster are bounded. So,
while nodes may not agree on the current time, they drift apart at a bounded rate.

The timed-asynchronous assumption is used for coordinating the leases. A lock-manager for diskD
assumes that a compute-nodeN1 that has been disconnected for more than 30 seconds will not be able to
accessD. Disk D will presumably reject requests fromN1 because they come with an old lease. However,
if the clock on the lock-manager moves much quicker than the clock on the disk thenN1 will still be able to
read/write fromD while its locks are revoked and handed to other nodes.

6 Normal runs for DBm

In DBs the compute-node has a log. Similarly, forDBm each node creates a log-object for itself on one
of the OSDs and takes an exclusive lock on it. The log-object is used to store the write-ahead-log for the
compute node. Each node accesses only its own log-object, for nodeN1 the log object is denoted bylogN1 .
In caseN1 dies another compute node will be called to recoverlogN1 . Access to the log is protected with
an exclusive lock.

Each compute node runs a set of transactions requested by hosts connected to it. Each transaction
is executed by exactly one node; transactions are never sliced into pieces where different nodes perform
different parts. This also means that for each transaction there is exactly one log object where all of its
entries are located.

As part of the lock-manager connection protocol the client node declares where its log is located. When
the manager notices that a client lease has expired without being properly released it assumes the client
has crashed. This means that all client locks cannot be granted to another compute-node until recovery is
performed on locked-areas.

To perform a transaction inDBs the (only) compute-node needs to:

1. Take locks on the pages.

2. Write an open-transaction entry to the log.

3. Add log-entries to the log and modify the records in-memory.

4. Write a close-transaction entry to the log.

5. Release the page locks.

We use, in essence, the same algorithm inDBm. Assume compute-nodeN1 is performing a transaction
T , the pages in the transaction are on OSDsD1 andD2.

1. Connect to the lock-managers forD1 andD2, request locks on the pages.

2. Write an open-transaction entry intologN1 .

8

3. Add log-entries tologN1 for each record modification.

4. Write a close-transaction entry intologN1 .

5. Release the page locks.N1 may choose to hang on to the page locks as long as other nodes do not
request them. This allows write-back caching. WhenN1 does decide to release a page lock it first
needs to write the page to disk.

There are techniques that allow nodes to pass modified pages and records between them. We chose not
to attempt that here. In our settings the lock-manager maintains one log-pointer per page. A compute-
node that will attempt to take a page-lock, modify a page, and release the lock without writing it to
disk first can cause a consistency problem. For example, take the following scenario:

(a) NodeN1 takes locks for pagesP1 andP2.

(b) N1 modifies pagesP1 andP2.

(c) N1 writesP1 (but notP2) and releases the locks.

(d) NodeB takes the lock forP2.

(e) NodeN1 fails.

No one will know that there is a log-entry to replay forP2 andN1’s updates will have been lost. As
P2 was part of a transaction where some of the effected pages were written to disk and some were not,
the database is now in an inconsistent state.

6.1 A single-LSN per-page

In DBs each page is stamped with an LSN where LSNs are chosen by the log component. The LSN syn-
chronizes between the database cache and the log. InDBm each compute-node has its own log-component
that issues independent LSNs. There needs to be some way to synchronize between these logs so that a
single coherent LSN will be attached to each page. For example, there is a requirement that the LSN on a
page will grow monotonically.

Lets examine what can happen in the absence of LSN synchronization.

1. NodeN1 takes a write-lock for pageP .

2. NodeN1 modifiesP and marks it with LSN10.

3. NodeN1 writesP to disk and then releases the lock.

4. NodeN2 takes the write-lock forP .

5. NodeN2 modifiesP and marks it with LSN6.

6. NodeN2 writesP to disk and then releases the lock.

Clearly, if N1 ever takes the lock forP again, and then fails and recovers it will redo the modification
for LSN 10. This is because the LSN is now 6. Redoing the log is an error because ARIES log-entries are
not idempotent, replaying an entry twice is erroneous.

Our solution is similar to the one presented in [11]; it is also reminiscent of Lamport time-stamps [14].
NodeN1, when it reads a pageP , sets its local LSN to the maximum between the current LSN andP ’s
LSN. This way, whenP is modified it will contain an LSN that is strictly larger than before. This is legal

9

because for ARIES to work a compute-node’s LSN needs to grow monotonically, gaps in the LSN sequence
can be tolerated.

Caution is needed here because some databases use the LSN as more than a simple counter. The LSN
value is used to mark where the log-entry is located in the log-file. A possible solution is to enlarge the LSN
for DBm and include more information. This has the disadvantage of modifying the page-format.

6.2 Rollback

DBs supports rollback. There are at least two cases in which rollback is needed (1) the user wants to abort
a transaction (2) a deadlock was detected and one of the transactions needs to be rolled back.

To support rollback inDBm we emulate theDBs solution. Assume nodeN1 is performing a transaction
T . Initially N1 holds (1) a set of locks protecting the set of modified pages (2) a lock onlogN1 . To rollback
N1 will:

1. Perform the set of log-entries forT in undo mode and add a CLR tologN1 for each modification.

2. For each modified pageN1 will:

• If the page isn’t in cache then read the page from disk.

• Modify the page.

• Write the page to disk.

3. Releases all page locks.

SinceN1 holds all page-locks initially then no deadlocks can happen during rollback.

7 Recovery

There are several failure scenarios to consider. We first discuss how simple lease expires are handled. The
simplest and most common problem is when a client loses its lease on a lock-manager. This might mean
that pages it has locked on a disk will be given over to another node. Lets assume that the lease-manager is
for OSDD. The protocol to handle such cases has two types of players (1) the original owner nodeN1 (2)
Another nodeN2 that takes a page-lock on a pageP previously owned byN1.

OnceN1 loses its lease it checks whether it still has the lease onLogA. If so, it will re-acquire a lease
onD from DLKM , and continue as usual. IfN1 has lost its lease onLogA then full recovery is needed;N1

breaks all its lock-manager leases and leaves all of its transactions in mid-flight. Full recovery is needed.
WhenN2 takes a page-lock onP it gets a notification that recovery is needed forP and the log is located

at LogA. N2 attempts to take the lease onLogA. If successful, it needs to recoverN1-s log, see the next
subsection. Otherwise,N1 is still alive and holding the lock for its log;N2 releases the page-lock onP
becauseN1 will shortly recover, renew its lease onD, and continue processing.N2 needs to wait untilN1

correctly releases its page-lock onP .

7.1 Recovery from a compute-node failure

If nodeN1 fails and recovers it needs to replaylogN1 . Log recovery is performed by taking the exclusive
lock onlogN1 and performing a redo and then an undo pass. A log-entryE that applies to recordR in page
P is replayed by the following sequence: (1) take the lockP (2) check ifPLSN is lower thanELSN (3) If
so then apply the update toP and updatePLSN . CLRs are added tologN1 according to ARIES.

10

After N1 completely recovers it erases theneed recoverymark from its pages. In the event of partial
recovery, the marks will not be removed. This sounds counter-intuitive because it locks pages for longer
than needed in the need-recovery state. However, it ensures that all dirty-pages belonging to a node that has
crashed will remain marked on disk until full recovery is acheived. This also ensures that there will be no
deadlocks during recovery.

The lock-manager will grant locks to nodes for pages that have previously been locked by a failed node
only after the failed-node’s lease expires. It will notify the requester that it needs to recover the page and
provide the failed-node’s log object name.

If a node fails and does not recover then other nodes will be stuck waiting for its transactions to complete.
This is a serious problem in a distributed environment because nodes can become disconnected, slow, or
suffer from slow network connections. To solve this, nodeN1 can replay the log for nodeN2 if nodeN2

loses the lock forlogN2 . Recovery by nodeN1 of logN2 is similar to recovery by the owner node;N1

performs recovery while holdinglogN2 ’s exclusive lock so it cannot be interrupted.
Once a transaction’s commit record is written to disk a transaction is ensured of success. Even if the

initiating node fails all modified records are still locked. Any node that stumbles upon any of these records
will be told to perform recovery on behalf of the failed node. It will then replay the transaction from the
initiator’s log.

7.2 Recovery from a lock-manager failure

Compute nodes can fail taking down with them all lock-managers located on them. If the lock-manager for
OSDD fails it cannot be replaced until the OSD lease it took expires. Connections to failed lock-managers
are torn down and lock holders know that lock-manager recovery will take place.

After the major-lease forD expires another compute-node will take the major-lease forD and create a
local lock-manager (DLKM). DLKM recovers the set of granted locks from objectDlocks. It pessimistically
assumes that all lock-holders have also crashed and notifies all lock-requesters for previously locked areas
that recovery may be required.

7.3 Recovery from multiple failures

There are several cases here:

Several compute-nodes fail: Since dependent transactions are disallowed failure of several compute-nodes
simply requires recovering their logs separately. Our scheme requires a page to be written to disk
before changing compute nodes. Therefore, there can be at most one log object with unapplied entries
for a page.

Several lock-managers fail: There are no inter-dependencies between lock-managers, so recovery is just to
recover each lock-manager separately.

Several compute-nodes and several lock-managers fail: As compute-nodes depend on the services of the
lock-managers then lock-managers need to be recovered first.

7.4 High availability

DBm can be categorized as a system that supports lazy recovery. Any compute-node can fail taking down
with it not only the set of transactions it is currently executing but also the lock servers running on it. Such a
failure can go on undetected for a long time; the next node to access data last touched by the failed node will

11

bear the burden of recovery. Recovery will include replaying the log as well as reviving any lock-servers
required.

It is possible to convert this lazy approach to recovery into a more active one. This can be done by
actively replicating the lock-servers and by having each node search for failed nodes once in a while. When
failed nodes are found their logs will be replayed on their behalf.

8 Applications

dARIES will probably not be competitive with a large SMP machine that runs a database because high-
sharing workloads will simply run a lot slower. However, there are important cases of low-sharing. Databases
that are used mostly for searching are good candidates.

Modern file-systems use a database structure to store their meta-data: file-metadata and directory struc-
ture. For example, the StorageTank [9] file system splits the file-system hierarchy into a set of sub-trees. A
server-node is in charge of all modifications/queries to this sub-tree.

There are three types of nodes in the systems: hosts, servers, and network disks; see figure 3. All are
connected to a fast network. The servers are also known asMeta Data Serversor MDSs.

Figure 3: A simplified picture of storage tank.

Hosts get meta-data from servers and perform IO to disks. To read a file a host get an extent list from
the MDS responsible for the file and then reads the file directly from disk. To modify a directory the host
requests the MDS to perform the directory operation on its behalf. Group services are used to keep track
of the set of live servers. If a server fails another server takes its place by taking over the database used for
the directory sub-tree. Hosts need to keep in touch with their MDS cluster, otherwise they are assumed to
be dead and their locks are revoked. To prevent such hosts from accessing the disks and creating havoc the
MDSs fence them out by telling the network fabric to ignore all disk-IO requests from “dead” hosts.

Storage-Tank is a SAN file-system and the nice property it has is allowing hosts to perform IO directly
to disk while keeping the meta-data servers out of the data path. The interesting point here is that the MDS
database system can be made to use dARIES. One can locate the sub-trees on separate OSDs, and use a
compute-node for each MDS. The workload is almost always local because most transactions occur within
a sub-tree.

9 Summary

dARIES is expected to work well if there is limited sharing between nodes. If there is a lot of locality
between nodes and OSDs then pages and locks can be cached for extended periods by compute-nodes.
Behavior should approximate ARIES on a single-system with a local disk.

12

The major assumption made here is the use of novel storage-devices, OSDs, that support a particular
form of locking. We expect object-disks to become prevalent in the future and therefore trying to utilize
them is important.

The upshot of using OSD-served leases is that group-services are no longer required. This leads to a
system design that has horizontal scalability. As more OSDs are added, more tables can be added leading
to a distribution of IO across more backend disks. As more compute-nodes are added users can be more
widely spread around to reduce CPU load on compute-nodes. Assuming good locality, lock-managers will
serve the subset of the users that access a specific OSD so their load will not be high.

The constrains assumed aboutDBs are that (1) it uses page-based ARIES and log-sequence numbers
(2) deadlock detection instead of deadlock avoidance. It remains for future work to attempt lifting these
limitations.

It is the author’s opinion that this technique can lead to interesting new distributed database designs.

10 Acknowledgments

The author would like to thank: Gary Valentin who helped a lot with ARIES and databases in general, and
Avi Teperman who did related file-system research on zFS. Thanks is also due to Itai Segall and Effi Ofer
who helped review the initial drafts.

I would also like to thank other people with which I’ve had discussions about the above ideas: Mark
Hayden, Roy Friedman, C. Mohan, Dalia Malkhi, Inderpal Narang, Robbert Van Renesse, and Paula Ta-
Shma.

References

[1] www-306.ibm.com/software/data/db2 .

[2] www.oracle.com .

[3] www.snia.org/tech activities/workgroups/osd .

[4] www.redhat.com/software/rha/gfs .

[5] www.netapp.com .

[6] www.emc.com .

[7] Group Services Programming Guide and Reference, RS/6000 Cluster Technology. IBM, International
Technical Support Organization, 2000.

[8] Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y. Bimodal multicast.
ACM Transactions on Computer Systems, 17(2):41–88, May 1999.

[9] R. C. Burns.Data Management in a Distributed File System for Storage Area Networks. PhD thesis,
University of California, Santa Cruz, March 2000. http://www.almaden.ibm.com/cs/storagesystems-
/stortank/rbdissert.pdf.

[10] C., Mohan and Inderpal, Narang. Recovery and coherency-control protocols for fast intersystem
page transfer and fine-granularity locking in a shared disks transaction environment. InVery Large
Databases (VLDB), 1991.

13

[11] C. Mohan and Inderpal, Narang. Data base recovery in shared disks and client-server architectures. In
ICDCS, pages 310–317, 1992.

[12] Hayden, M. The Ensemble system. Phd Thesis TR98-1662, Cornell University, Computer Science,
1998.

[13] Jim Gray and Andreas Reuter.Transaction Processing: concepts and techniques. Morgan Kaufmann
Publishers, Inc., 1993.

[14] L. Lamport. Time, clocks, and the ordering of events in a distributed system. 21:558–565, July 1978.

[15] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P. Aries: A transaction recovery
method supporting fine-granularity locking and partial rollbacks using write-ahead logging. 17(1),
March 1992.

[16] O. Rodeh and A. Teperman. zFS – a scalable distributed file-system using object-disks. InGoddard
Conference on Mass Storage Systems and Technologies, April 2003.

[17] Richard Golding and Garth Gibson. Highly concurrent shared storage.

[18] Stanton, J. and Amir, Y. The Spread wide area group communication system. TR CNDS-98-4, Center
for Networking and Distributed Systems, Computer Science Department, Johns Hopkins University,
1998.

14

