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Abstract 
Data mining is a very computationally intensive task. It is not the same as data query problems where 
information from a data repository is queried. Data mining involves exhaustive computation to uncover 
information hidden in the data—information that represents patterns in this data [1]. Therefore, the task is, 
to a great extent, unlimited. Using statistical analysis methods, data mining tools analyze the data and 
compute the relationships among the attributes (also called "features") of the data, seeking strong 
correlations that may be evidence of new and important information [2, 3].  
We present methods for using domain knowledge, particularly in the medical domain, to reduce the dataset 
size for further data mining analysis. 
 

Background 
The "raw material" for data mining is instances of data, each represented as a record of an individual (i.e., a 
person) in a certain population (e.g., patients in a given geographic area). Sometimes such record instances 
represent "events" for such individuals. Each record is composed of fields representing values of the 
attributes and features recorded in each record. A common organization of this data is as a table that can be 
viewed in a spreadsheet program (e.g., MS Excel ©) or a relational database (e.g., IBM DB2 ©). However, 
data records can also be generalized as objects and stored in other forms such as XML or other non-tabular, 
but rather hierarchic or other formats. The data may contain errors or missing values and may be comprised 
of text in which 'fields' and 'attributes' are embedded, and may include nominal or numerical types. Data 
may be either sparse or very dense. 
When data mining tools search for hidden patterns, the problem may very quickly explode in its 
computational complexity, because all possible combinations among the selected data attributes must be 
analyzed. When different attributes behave in a similar or totally dissimilar way in the data, this is valuable 
information, which may be evidence of a newly discovered pattern. Statistically, one can combine similar 
attributes into a single (synthesized) attribute and thus reduce the data size until all synthesized attributes 
expose independent behaviors. This reduction helps with further analysis of the data, such as for 
classification problems, but in our context, this is considered a side-effect.  
The high computational complexity of data mining stems from two sources: the number of features and 
attributes, all of whose combinations must be analyzed, and the number of records in the data instances. We 
propose methods to reduce this complexity by using domain knowledge to find more dependencies in the 
data. In particularly, we seek such methods in the medical domain. 
Current data mining methods use the technique of reducing the number of records to reduce problem 
complexity. Such methods use clustering [4], which groups records into classes based on statistical 
similarity. They then use a representative record of each class further in the analysis, instead of the original 
records. Assuming the number of classes is smaller than the number of original records, the problem size 
decreases. Clustering is mostly used for ‘machine learning’, is tuned to a small, predetermined number of 
clusters, and is usually computationally intensive. An efficient implementation of clustering has been 
patented [5]. This implementation produces clusters of an initially unknown number, based on a set of 
parameters that indirectly control that number. 
Another method of reducing data size is by random selection of a subset of the records, assuming that the 
statistical information in the original collection is preserved in the reduced set of this random selection. 
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This method is quite efficient because there is no expensive processing of data as in cluster analysis. 
However, this method ignores information in the data and thus is inferior to clustering and to our specific 
solution. 
Our solution involves methods for using domain knowledge to reduce the dataset size for further data 
mining analysis. We focus particularly on the medical domain, because medical health records have a very 
large dimension (i.e., a large number of features and attributes as data record fields). 

Description 
Data mining algorithms, such as that described in [2] above, involve selecting groups of attributes and 
advancing from small groups to larger groups whose values are analyzed to discover correlations. Domain 
knowledge can be applied to the attributes (i.e., the names of the columns in the table), along the top row of 
the table where column names are specified, and with relation to their contents, along the columns of the 
table.  
We suggest using domain knowledge as follows: 

1. Organize the combinations of attributes for the analysis phase, so that data is analyzed according 
to prior knowledge of the value of each combination. Domain knowledge will suggest that 
analyzing a column of the exam date and age of the patient is less important than the patient's age 
combined with the level of blood sugar and smoking habits. This is an application of domain 
knowledge along the attributes.    

2. For each column to be analyzed, reduce the variability of column data, based on knowledge of its 
behavior. For example, based on the normal level range of a certain attribute, one can combine all 
these values to a new abstract value called "normal". This preprocessing of the data and reduction 
of the range of values in that field also reduces the histogram for that attribute over the entire 
collection of instances. A more elaborate preprocessing can apply fuzzy linguistics to the data, so 
that, for example, age can be considered as one of {YOUNG, ADULT, OLD}. Fuzzy methods 
here simply use fuzzy membership functions to define the proper ranges of values. An example of 
using this method for query and visualization purposes is described in [5]. Reducing the number of 
distinct values in each attribute helps to execute the next step, changing a numeric field to 
nominal, which requires less computation from the statistical analysis algorithms. 

3. Use clustering on the preprocessed data from Step 2, for the collection of attributes produced in 
Step 1, so that a classification of similar records creates a much smaller group of records than in 
the original collection. The smaller the range in each attribute, the larger the identified classes and 
the smaller the number of such classes. Each of these classes is represented in the analysis stage by 
a single record and a weight. The weight represents an a-priory probability of the representative 
record for the entire class within this population. If the size of class C is c, and the entire 
population size is n, than the a-priory probability of C is c/n . The collection of representative 
records of classes is much smaller than the original population, but also includes the a-priory 
probability information. The reduced size helps the execution of the combinatorial-complex 
analysis phase. The a-priory probability factor attached to each representative record is naturally 
combined into the computation algorithms. If the collection of records displays very poor 
dependency among the records, so that the number of classes is very large, the clustering process 
may result in almost no reduction in data size and thus no saving at all in the next phase. If, 
however, the data displays a strong dependency among the records, the number of classes is small, 
resulting in a strong data reduction and significant saving in the next phase. Note that the 
clustering algorithm can be applied off-line before the data mining starts, so it won’t add an extra 
overhead to the data mining algorithm. 
We propose a very simple classification algorithm whose association criterion is exact equivalence 
among records classified to be in the same class. This can be simply done via sorting and 
collecting similar records, via insertion into a tree (similarly to what is done in [4], which thus can 
be considered a generalization of our approach), or via a hash function that counts similar records. 
While all methods have a worst case complexity of n Log(n), the hashing method has the 
complexity of n and is thus superior. We tested these methods on a large collection of records with 
large number of fields and obtained very good results showing a strong reduction in the data set 
size, and a very effective and fast algorithm. 
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4. Analyze the reduced group of instances of the selected subset of attributes preprocessed in Steps 
1,to 3, taking into account that each record now carries a weight to account for the size of the 
cluster it represents, which is also considered the a-priory probability of the related cluster as 
described in [4]. This analysis finds which of these attribute collections possesses or belongs to 
some pattern.  
Once attributes are found to be similar by having a high correlation, they can be eliminated from 
the collection and replaced with a representative column with a new computed range of values 
identifying the collection of classes found in the clustering step. This new column can be used for 
further analysis, but its history of being synthesized from other columns must be kept and used 
when reporting its relationship to other columns (attributes) in the data. Clearly, applying methods 
described in Step 2 on synthesized columns is not possible because the domain data will usually 
not be applicable to them in any of the ways described above. 

Note that Steps 2 and 3 can be combined so that for each record, we apply the domain knowledge and then 
classify it to the appropriate cluster before processing the next record. This combination is the essence of 
our algorithm, as can be seen in the following diagrams.  

 

A B 

Data point 

Cluster center 
 

Figure 1 

Diagram A in Figure 1 illustrates the analysis of a distribution of data points, resulting in three clusters that 
are marked with dash-line circles. Each cluster has a centroid point, which is calculated as the average of 
all members of the cluster (a-al the k-mean clustering algorithm—see the overview in [4]). The centroid 
points are new points in the problem space and represent the entire cluster of points. The cluster is tagged 
with a weight that is calculated as the ratio between the cluster size (the number of original points falling 
into it) and the entire data set size. This process is iterative and slow.  
Our approach is demonstrated in diagram B, where only one of the groups of data points (from diagram A) 
is shown. By applying domain knowledge, we reduce the range of values in each feature, so that the 
numeric values can become nominal with few different values. We, in fact, map each point from the 
original numeric domain to a new space of much reduced resolution. Therefore, all the points in this 
particular cluster map into the same point in the new space of reduced resolution. It is possible that the 
original points will map into several points in the new space. In the latter case, this clustering process 
results in more clusters than the statistical process alluded to in diagram A. We now consider each of the 
points in the new space as representatives of all points mapped into them by this application of domain 
knowledge—making them representative data points of ‘clusters’. The number of original points mapped 
into this cluster divided by the total number of points provides a weight factor to the cluster, or its a-priori 
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probability, which will be used in the follow up data mining steps. The problem of identifying the clusters 
is now a problem of distinguishing all different points in the new space. There are very efficient solutions 
to this problem as will be seen later on.  

Process 
Our process includes several steps, some of which are detailed and some of which are left open to show 
that many different implementations can be used to perform them. We describe our exact-match clustering 
method in detail and present the results from a real collection of data records in the medical domain.  
The entire process is described in Figure 2: 
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Figure 2: The process 

Objects marked with numerals are data sets being processed in the pipeline, starting with a database source 
(1) through several intermediate formats to a final clustered records format (5). The database source can, 
for instance, be a relational database management system (RDBMS) such as the IBM DB2 ©. As 
mentioned in the Background section, this source can also be a hierarchical organization of XML objects 
from which collections of attributes are acquired. Yet, for the sake of simplicity and without lack of 
generality, we can think of a tabular representation of the data. So, the acquisition process (A) may be an 
automatic or manual process that performs a query into a database and extracts the data from it into a table 
format, such as, for example, CSV (Comma Separated Values). The following is an example of such a data 
format: 
 
Alive_or_dead,Age_at_diagnosis,Congestive_heart_failure,Cardiac_arrhyth
mias,Valvular_disease,Pulmonary_circulation_disorder,Peripheral_vascula
r_disorder 
1 , 6,-1, 1,-1, 1,-1 
-1,72,-1, 1,-1,-1,-1 
1 , 9,-1, 1,-1, 1,-1 
1 , 9,-1, 1,-1, 1,-1 
1 ,19,-1,-1,-1,-1,-1 
1 ,48,-1,-1,-1,-1,-1 



Page 5 / 11 

1 ,20,-1,-1,-1,-1,-1 
1 ,37,-1,-1,-1,-1,-1 
1 ,28,-1,-1,-1,-1,-1 
1 ,66, 1, 1, 1, 1, 1 
-1,58, 1, 1, 1,-1,-1 
1 ,22,-1,-1,-1,-1,-1 
-1,21, 1,-1,-1,-1,-1 
1 , 6, 1,-1, 1,-1,-1 
1 ,33,-1,-1,-1,-1,-1 
1 , 6,-1, 1,-1,-1,-1 
1 ,43,-1,-1,-1,-1,-1 
1 ,66,-1,-1,-1,-1,-1 
-1,34, 1,-1, 1,-1,-1 
 

While the first line represents meta-information or names of columns, successive lines represent data 
corresponding to the columns' titles. In this case, data for the first column "Alive_or_dead" is binary: 1 
or -1. Data for the second column, "Age_at_diagnosis", is numeric and multi-valued. The other 
columns are binary like the first one. This format can also be viewed in a spreadsheet program such as MS 
Excel©, as shown in Figure 3: 
 

 
Figure 3: Data records  

 
The extracted raw data records (2) resulting from the acquisition process (A) is input to the cleansing 
process (B), which produces cleansed data records (3). In the cleansed data records, all data entries are 
worked out to a unified standard representation, such as in the above example, and all missing entries 
receive a proper unified value. The cleansing process is not discussed in this report, but is a necessary 
preprocessing phase before any data mining can occur. This process can be unified with the next process, 
applying domain knowledge (C), which produces the reduced domain data records (4), because the domain 
knowledge can also be used to perform the data cleansing. Domain knowledge is applied to data fields in 
order to reduce data variability, which is not necessary for the data mining stage. For instance, blood 
pressure and other medical measurements can be divided into several value ranges and classified as "Low", 
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"Normal", and "High", or in numerical values: -1, 0, and 1. More divisions can also apply but the end result 
is a field with far fewer values than measured accurately by the laboratory in the original raw data record. 
We do not discuss the method of applying this domain knowledge, which can be done automatically or 
manually. The automatic application of domain knowledge is very sensitive and relies on a program that 
can clearly parse and apply the proper semantics to the data fields, tying them to ontologies [5], for 
example, those in which relations among different terms of the domain are defined. The reduced domain 
data records (4) are input to the clustering process (D), which produces the clustered records (5). The 
clustered records consist of subsets of the original fields in the input to process (C); those that are relevant 
to data mining and also based on the domain knowledge. For example, the result of clustering the fields c-
d-e-f-g in the spread sheet example above (i.e., the fields "Congestive_heart_failure" to  
"Peripheral_vascular_disorder"), which are "normalized" to "CONGESTTIVE" and 
"PERIPHERAL" respectively, would appear as in Figure 4 (displayed via a spreadsheet program): 
 

 
Figure 4: Reduced domain data records 

  
The result is a new set of records, representing only seven unique value combinations out of the original 
nineteen records. This provides a 19:7 = 2.7 reduction in problem size, but adds the "P" field for the a-
priori probability of each record, which is computed as the ratio between the number of instances in the 
respective class and the total number of original instances. The respective class consists of all records with 
same field values. A data mining program analyzing this collection of records will work faster than on the 
original one. 
An important feature of this process is that it is a one-pass process and thus "pipeline-ready". This means 
that records can be pushed through a pipeline of the A-B-C-D processing units described above without the 
need to accumulate a file of the entire set of records at the end of each step. Such pipeline architecture also 
contributes to unifying the cleansing (B) and space reduction through domain knowledge (C) processes, as 
well as combining the domain knowledge (C) and clustering processes (D). 

Results 
Figures 5 and 6 present the results of clustering a collection of 228,157 records, performing clustering 
repeatedly, each time over a larger set of fields, all of which are cleansed and preprocessed to have a binary 
range of values 1 and -1 as in the example above. In Figure 5, we plot the number of clustered classes 
logarithmically (base 2) versus the number of fields considered in the clustering process. The line 
represents a theoretical number for the possible classes, which is simply obtained by multiplying the range 
size of all considered fields, which in our case is a power of 2. This results in a straight line in the 
logarithmic scale. However, in reality, the number of classes is bound by the number of instances, which in 
our case is 228,157, where Log2(228,157)= 17.8—the  line in the chart (for data size). Moreover, not 
all combinations of field values are present, so the number of classes is only a fraction of the total number 
of instances even for a large number of fields. This is plotted in the  line.  



Page 7 / 11 

 
Figure 5 

 
Figure 6 plots the gain in reducing the problem complexity. This is, in fact, the inverse of the graph above, 
because the problem reduction factor is the size of the original records collection divided by the size of the 
clustered records collection (computed above). This factor is also plotted in a logarithmic scale (base 2), 
showing that with few fields (up to 6-7 fields in our large dataset) the reduction is still big: 2

6
 - 2

7
, and even 

for a very large number of fields, where theory provides no gain, the actual number of classes gives a factor 
of 8-10, going down to a factor of 5 for 45 fields—still a useful reduction. 
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Figure 6 

The entire test result plotted above in Figures 5 and 6 is presented in Figure 7 as a spreadsheet table in 
which we also show the runtime (in milliseconds), when processing on a 1600 MHz Intel Pentium 
processor PC laptop computer. 
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Figure 7 Execution results 

 
As can be seen in column G (Act factor), the actual factor is still meaningful (5) even for a large number of 
fields where the theoretical factor is negligent. For 17-18 fields, which is practically significant for a data 
mining search, the theoretical factor is about 1 (which is useless), however the actual factors we achieve are 
43 - 34, which is more than one order of magnitude better. 
The last column "I" presents the run-time statistics, which increase linearly with the number of fields used 
for clustering. This is a result of the need to compare longer lists of values for our exact clustering 
algorithm. However, these are all below one second of elapsed time for processing more than 228 thousand 
records. Current data mining activity works in the order of minutes and hours of elapsed time, so this single 
second preprocessing, which can provide an order of magnitude of data reduction, is worth its time many, 
many times over. 
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Implementation 
In the initial sections, we discussed two possible algorithms, but the results described above were achieved 
by the hashing approach, implemented with the Java [7] Hashtable class. All input records are processed 
and normalized into a comma-separated string without spaces, of all field values in each record. When 
inserted into the hash-table, all exactly identical strings are hashed to the same value, so that their number 
can be computed and associated with their hashing value. When all records have been processed, all hashed 
strings are retrieved from the hash-table, each representing a class, taking their count as a "weight" of that 
class, used to compute the a-priory probability of that class by dividing that number by the total number of 
records. 
More pseudo-formally: 
 
# create a hash-table 
let hashTable be a hash_table; 
 
# classify all records after normalizing them using hashTable 
let total := 0; 
for each record in input do 
 set total := total + 1; 
 let N be a normalized representation of this record; 
 store N in the hashTable; 
 if (N is not already in the hadhTable) do 
  associate N with the value 1 in hashTable; 
 else do 
  retrieve cnt as the associated number with N in hashTable; 
  set cnt := cnt +1; 
  associate N with cnt in hashTable; 
 end-if 
end-for 
 
# Now retrieve all classes and assign them with a-priory probabilities 
let keys be the list of keys in hashTable; 
for each key in keys do: 
 let cnt be the number associate with key in hashTable; 
 let float p := cnt / total; 
 report p and key as a record in output; 
end-for 
 
 

We do not describe the implementation of the hash-table because this is well known in the literature. The 
sorting alternative described above is equivalent to a hierarchical insertion of records into a binary search 
tree and was found inferior to this method. Note that sorting algorithms may be much less efficient in 
general and in extreme cases, compared with the hashing method we used. For instance, the Java 
Sort.quickSort() method works for hundreds of seconds to “sort” a trivial list of 60,000 identical elements. 
It also takes a lot of time when sorting a list of many identical elements, such as in a collection consisting 
of only a few classes, which represent the most useful situations for our purpose. Contrary to that, hashing 
works equally efficiently in general for all situations. The patent in [6] uses a hierarchical structure to 
collect records into clusters and runs in the order of minutes for the same size of collection of records as in 
our example. 
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