
H-0239 (H0603-002) March 5, 2006
Computer Science

IBM Research Report

Use Domain Knowledge to Improve Data Mining Performance
of Very Large Datasets via Clustering

Uri Shani, Simona Cohen
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Page 1 / 11

Use domain knowledge to improve data mining
performance of very large datasets via clustering

By
Uri Shani and Simona Cohen

IBM Haifa Research Lab

Abstract
Data mining is a very computationally intensive task. It is not the same as data query problems where
information from a data repository is queried. Data mining involves exhaustive computation to uncover
information hidden in the data—information that represents patterns in this data [1]. Therefore, the task is,
to a great extent, unlimited. Using statistical analysis methods, data mining tools analyze the data and
compute the relationships among the attributes (also called "features") of the data, seeking strong
correlations that may be evidence of new and important information [2, 3].
We present methods for using domain knowledge, particularly in the medical domain, to reduce the dataset
size for further data mining analysis.

Background
The "raw material" for data mining is instances of data, each represented as a record of an individual (i.e., a
person) in a certain population (e.g., patients in a given geographic area). Sometimes such record instances
represent "events" for such individuals. Each record is composed of fields representing values of the
attributes and features recorded in each record. A common organization of this data is as a table that can be
viewed in a spreadsheet program (e.g., MS Excel ©) or a relational database (e.g., IBM DB2 ©). However,
data records can also be generalized as objects and stored in other forms such as XML or other non-tabular,
but rather hierarchic or other formats. The data may contain errors or missing values and may be comprised
of text in which 'fields' and 'attributes' are embedded, and may include nominal or numerical types. Data
may be either sparse or very dense.
When data mining tools search for hidden patterns, the problem may very quickly explode in its
computational complexity, because all possible combinations among the selected data attributes must be
analyzed. When different attributes behave in a similar or totally dissimilar way in the data, this is valuable
information, which may be evidence of a newly discovered pattern. Statistically, one can combine similar
attributes into a single (synthesized) attribute and thus reduce the data size until all synthesized attributes
expose independent behaviors. This reduction helps with further analysis of the data, such as for
classification problems, but in our context, this is considered a side-effect.
The high computational complexity of data mining stems from two sources: the number of features and
attributes, all of whose combinations must be analyzed, and the number of records in the data instances. We
propose methods to reduce this complexity by using domain knowledge to find more dependencies in the
data. In particularly, we seek such methods in the medical domain.
Current data mining methods use the technique of reducing the number of records to reduce problem
complexity. Such methods use clustering [4], which groups records into classes based on statistical
similarity. They then use a representative record of each class further in the analysis, instead of the original
records. Assuming the number of classes is smaller than the number of original records, the problem size
decreases. Clustering is mostly used for ‘machine learning’, is tuned to a small, predetermined number of
clusters, and is usually computationally intensive. An efficient implementation of clustering has been
patented [5]. This implementation produces clusters of an initially unknown number, based on a set of
parameters that indirectly control that number.
Another method of reducing data size is by random selection of a subset of the records, assuming that the
statistical information in the original collection is preserved in the reduced set of this random selection.

Page 2 / 11

This method is quite efficient because there is no expensive processing of data as in cluster analysis.
However, this method ignores information in the data and thus is inferior to clustering and to our specific
solution.
Our solution involves methods for using domain knowledge to reduce the dataset size for further data
mining analysis. We focus particularly on the medical domain, because medical health records have a very
large dimension (i.e., a large number of features and attributes as data record fields).

Description
Data mining algorithms, such as that described in [2] above, involve selecting groups of attributes and
advancing from small groups to larger groups whose values are analyzed to discover correlations. Domain
knowledge can be applied to the attributes (i.e., the names of the columns in the table), along the top row of
the table where column names are specified, and with relation to their contents, along the columns of the
table.
We suggest using domain knowledge as follows:

1. Organize the combinations of attributes for the analysis phase, so that data is analyzed according
to prior knowledge of the value of each combination. Domain knowledge will suggest that
analyzing a column of the exam date and age of the patient is less important than the patient's age
combined with the level of blood sugar and smoking habits. This is an application of domain
knowledge along the attributes.

2. For each column to be analyzed, reduce the variability of column data, based on knowledge of its
behavior. For example, based on the normal level range of a certain attribute, one can combine all
these values to a new abstract value called "normal". This preprocessing of the data and reduction
of the range of values in that field also reduces the histogram for that attribute over the entire
collection of instances. A more elaborate preprocessing can apply fuzzy linguistics to the data, so
that, for example, age can be considered as one of {YOUNG, ADULT, OLD}. Fuzzy methods
here simply use fuzzy membership functions to define the proper ranges of values. An example of
using this method for query and visualization purposes is described in [5]. Reducing the number of
distinct values in each attribute helps to execute the next step, changing a numeric field to
nominal, which requires less computation from the statistical analysis algorithms.

3. Use clustering on the preprocessed data from Step 2, for the collection of attributes produced in
Step 1, so that a classification of similar records creates a much smaller group of records than in
the original collection. The smaller the range in each attribute, the larger the identified classes and
the smaller the number of such classes. Each of these classes is represented in the analysis stage by
a single record and a weight. The weight represents an a-priory probability of the representative
record for the entire class within this population. If the size of class C is c, and the entire
population size is n, than the a-priory probability of C is c/n . The collection of representative
records of classes is much smaller than the original population, but also includes the a-priory
probability information. The reduced size helps the execution of the combinatorial-complex
analysis phase. The a-priory probability factor attached to each representative record is naturally
combined into the computation algorithms. If the collection of records displays very poor
dependency among the records, so that the number of classes is very large, the clustering process
may result in almost no reduction in data size and thus no saving at all in the next phase. If,
however, the data displays a strong dependency among the records, the number of classes is small,
resulting in a strong data reduction and significant saving in the next phase. Note that the
clustering algorithm can be applied off-line before the data mining starts, so it won’t add an extra
overhead to the data mining algorithm.
We propose a very simple classification algorithm whose association criterion is exact equivalence
among records classified to be in the same class. This can be simply done via sorting and
collecting similar records, via insertion into a tree (similarly to what is done in [4], which thus can
be considered a generalization of our approach), or via a hash function that counts similar records.
While all methods have a worst case complexity of n Log(n), the hashing method has the
complexity of n and is thus superior. We tested these methods on a large collection of records with
large number of fields and obtained very good results showing a strong reduction in the data set
size, and a very effective and fast algorithm.

Page 3 / 11

4. Analyze the reduced group of instances of the selected subset of attributes preprocessed in Steps
1,to 3, taking into account that each record now carries a weight to account for the size of the
cluster it represents, which is also considered the a-priory probability of the related cluster as
described in [4]. This analysis finds which of these attribute collections possesses or belongs to
some pattern.
Once attributes are found to be similar by having a high correlation, they can be eliminated from
the collection and replaced with a representative column with a new computed range of values
identifying the collection of classes found in the clustering step. This new column can be used for
further analysis, but its history of being synthesized from other columns must be kept and used
when reporting its relationship to other columns (attributes) in the data. Clearly, applying methods
described in Step 2 on synthesized columns is not possible because the domain data will usually
not be applicable to them in any of the ways described above.

Note that Steps 2 and 3 can be combined so that for each record, we apply the domain knowledge and then
classify it to the appropriate cluster before processing the next record. This combination is the essence of
our algorithm, as can be seen in the following diagrams.

A B

Data point

Cluster center

Figure 1

Diagram A in Figure 1 illustrates the analysis of a distribution of data points, resulting in three clusters that
are marked with dash-line circles. Each cluster has a centroid point, which is calculated as the average of
all members of the cluster (a-al the k-mean clustering algorithm—see the overview in [4]). The centroid
points are new points in the problem space and represent the entire cluster of points. The cluster is tagged
with a weight that is calculated as the ratio between the cluster size (the number of original points falling
into it) and the entire data set size. This process is iterative and slow.
Our approach is demonstrated in diagram B, where only one of the groups of data points (from diagram A)
is shown. By applying domain knowledge, we reduce the range of values in each feature, so that the
numeric values can become nominal with few different values. We, in fact, map each point from the
original numeric domain to a new space of much reduced resolution. Therefore, all the points in this
particular cluster map into the same point in the new space of reduced resolution. It is possible that the
original points will map into several points in the new space. In the latter case, this clustering process
results in more clusters than the statistical process alluded to in diagram A. We now consider each of the
points in the new space as representatives of all points mapped into them by this application of domain
knowledge—making them representative data points of ‘clusters’. The number of original points mapped
into this cluster divided by the total number of points provides a weight factor to the cluster, or its a-priori

Page 4 / 11

probability, which will be used in the follow up data mining steps. The problem of identifying the clusters
is now a problem of distinguishing all different points in the new space. There are very efficient solutions
to this problem as will be seen later on.

Process
Our process includes several steps, some of which are detailed and some of which are left open to show
that many different implementations can be used to perform them. We describe our exact-match clustering
method in detail and present the results from a real collection of data records in the medical domain.
The entire process is described in Figure 2:

AcquisitionData repository
(i.e., RDBMS)

Extracted
raw-data
records

Cleansed
data records Cleansing

Apply domain
knowledge

Reduced
domain

data records

Cluster Clustered
records

1 2

3

4 5

A

B C

D

AcquisitionData repository
(i.e., RDBMS)

Extracted
raw-data
records

Cleansed
data records Cleansing

Apply domain
knowledge

Reduced
domain

data records

Cluster Clustered
records

1 2

3

4 5

A

B C

D

Figure 2: The process

Objects marked with numerals are data sets being processed in the pipeline, starting with a database source
(1) through several intermediate formats to a final clustered records format (5). The database source can,
for instance, be a relational database management system (RDBMS) such as the IBM DB2 ©. As
mentioned in the Background section, this source can also be a hierarchical organization of XML objects
from which collections of attributes are acquired. Yet, for the sake of simplicity and without lack of
generality, we can think of a tabular representation of the data. So, the acquisition process (A) may be an
automatic or manual process that performs a query into a database and extracts the data from it into a table
format, such as, for example, CSV (Comma Separated Values). The following is an example of such a data
format:

Alive_or_dead,Age_at_diagnosis,Congestive_heart_failure,Cardiac_arrhyth
mias,Valvular_disease,Pulmonary_circulation_disorder,Peripheral_vascula
r_disorder
1 , 6,-1, 1,-1, 1,-1
-1,72,-1, 1,-1,-1,-1
1 , 9,-1, 1,-1, 1,-1
1 , 9,-1, 1,-1, 1,-1
1 ,19,-1,-1,-1,-1,-1
1 ,48,-1,-1,-1,-1,-1

Page 5 / 11

1 ,20,-1,-1,-1,-1,-1
1 ,37,-1,-1,-1,-1,-1
1 ,28,-1,-1,-1,-1,-1
1 ,66, 1, 1, 1, 1, 1
-1,58, 1, 1, 1,-1,-1
1 ,22,-1,-1,-1,-1,-1
-1,21, 1,-1,-1,-1,-1
1 , 6, 1,-1, 1,-1,-1
1 ,33,-1,-1,-1,-1,-1
1 , 6,-1, 1,-1,-1,-1
1 ,43,-1,-1,-1,-1,-1
1 ,66,-1,-1,-1,-1,-1
-1,34, 1,-1, 1,-1,-1

While the first line represents meta-information or names of columns, successive lines represent data
corresponding to the columns' titles. In this case, data for the first column "Alive_or_dead" is binary: 1
or -1. Data for the second column, "Age_at_diagnosis", is numeric and multi-valued. The other
columns are binary like the first one. This format can also be viewed in a spreadsheet program such as MS
Excel©, as shown in Figure 3:

Figure 3: Data records

The extracted raw data records (2) resulting from the acquisition process (A) is input to the cleansing
process (B), which produces cleansed data records (3). In the cleansed data records, all data entries are
worked out to a unified standard representation, such as in the above example, and all missing entries
receive a proper unified value. The cleansing process is not discussed in this report, but is a necessary
preprocessing phase before any data mining can occur. This process can be unified with the next process,
applying domain knowledge (C), which produces the reduced domain data records (4), because the domain
knowledge can also be used to perform the data cleansing. Domain knowledge is applied to data fields in
order to reduce data variability, which is not necessary for the data mining stage. For instance, blood
pressure and other medical measurements can be divided into several value ranges and classified as "Low",

Page 6 / 11

"Normal", and "High", or in numerical values: -1, 0, and 1. More divisions can also apply but the end result
is a field with far fewer values than measured accurately by the laboratory in the original raw data record.
We do not discuss the method of applying this domain knowledge, which can be done automatically or
manually. The automatic application of domain knowledge is very sensitive and relies on a program that
can clearly parse and apply the proper semantics to the data fields, tying them to ontologies [5], for
example, those in which relations among different terms of the domain are defined. The reduced domain
data records (4) are input to the clustering process (D), which produces the clustered records (5). The
clustered records consist of subsets of the original fields in the input to process (C); those that are relevant
to data mining and also based on the domain knowledge. For example, the result of clustering the fields c-
d-e-f-g in the spread sheet example above (i.e., the fields "Congestive_heart_failure" to
"Peripheral_vascular_disorder"), which are "normalized" to "CONGESTTIVE" and
"PERIPHERAL" respectively, would appear as in Figure 4 (displayed via a spreadsheet program):

Figure 4: Reduced domain data records

The result is a new set of records, representing only seven unique value combinations out of the original
nineteen records. This provides a 19:7 = 2.7 reduction in problem size, but adds the "P" field for the a-
priori probability of each record, which is computed as the ratio between the number of instances in the
respective class and the total number of original instances. The respective class consists of all records with
same field values. A data mining program analyzing this collection of records will work faster than on the
original one.
An important feature of this process is that it is a one-pass process and thus "pipeline-ready". This means
that records can be pushed through a pipeline of the A-B-C-D processing units described above without the
need to accumulate a file of the entire set of records at the end of each step. Such pipeline architecture also
contributes to unifying the cleansing (B) and space reduction through domain knowledge (C) processes, as
well as combining the domain knowledge (C) and clustering processes (D).

Results
Figures 5 and 6 present the results of clustering a collection of 228,157 records, performing clustering
repeatedly, each time over a larger set of fields, all of which are cleansed and preprocessed to have a binary
range of values 1 and -1 as in the example above. In Figure 5, we plot the number of clustered classes
logarithmically (base 2) versus the number of fields considered in the clustering process. The line
represents a theoretical number for the possible classes, which is simply obtained by multiplying the range
size of all considered fields, which in our case is a power of 2. This results in a straight line in the
logarithmic scale. However, in reality, the number of classes is bound by the number of instances, which in
our case is 228,157, where Log2(228,157)= 17.8—the line in the chart (for data size). Moreover, not
all combinations of field values are present, so the number of classes is only a fraction of the total number
of instances even for a large number of fields. This is plotted in the line.

Page 7 / 11

Figure 5

Figure 6 plots the gain in reducing the problem complexity. This is, in fact, the inverse of the graph above,
because the problem reduction factor is the size of the original records collection divided by the size of the
clustered records collection (computed above). This factor is also plotted in a logarithmic scale (base 2),
showing that with few fields (up to 6-7 fields in our large dataset) the reduction is still big: 2

6
 - 2

7
, and even

for a very large number of fields, where theory provides no gain, the actual number of classes gives a factor
of 8-10, going down to a factor of 5 for 45 fields—still a useful reduction.

Page 8 / 11

Figure 6

The entire test result plotted above in Figures 5 and 6 is presented in Figure 7 as a spreadsheet table in
which we also show the runtime (in milliseconds), when processing on a 1600 MHz Intel Pentium
processor PC laptop computer.

Page 9 / 11

Figure 7 Execution results

As can be seen in column G (Act factor), the actual factor is still meaningful (5) even for a large number of
fields where the theoretical factor is negligent. For 17-18 fields, which is practically significant for a data
mining search, the theoretical factor is about 1 (which is useless), however the actual factors we achieve are
43 - 34, which is more than one order of magnitude better.
The last column "I" presents the run-time statistics, which increase linearly with the number of fields used
for clustering. This is a result of the need to compare longer lists of values for our exact clustering
algorithm. However, these are all below one second of elapsed time for processing more than 228 thousand
records. Current data mining activity works in the order of minutes and hours of elapsed time, so this single
second preprocessing, which can provide an order of magnitude of data reduction, is worth its time many,
many times over.

Page 10 / 11

Implementation
In the initial sections, we discussed two possible algorithms, but the results described above were achieved
by the hashing approach, implemented with the Java [7] Hashtable class. All input records are processed
and normalized into a comma-separated string without spaces, of all field values in each record. When
inserted into the hash-table, all exactly identical strings are hashed to the same value, so that their number
can be computed and associated with their hashing value. When all records have been processed, all hashed
strings are retrieved from the hash-table, each representing a class, taking their count as a "weight" of that
class, used to compute the a-priory probability of that class by dividing that number by the total number of
records.
More pseudo-formally:

create a hash-table
let hashTable be a hash_table;

classify all records after normalizing them using hashTable
let total := 0;
for each record in input do
 set total := total + 1;
 let N be a normalized representation of this record;
 store N in the hashTable;
 if (N is not already in the hadhTable) do
 associate N with the value 1 in hashTable;
 else do
 retrieve cnt as the associated number with N in hashTable;
 set cnt := cnt +1;
 associate N with cnt in hashTable;
 end-if
end-for

Now retrieve all classes and assign them with a-priory probabilities
let keys be the list of keys in hashTable;
for each key in keys do:
 let cnt be the number associate with key in hashTable;
 let float p := cnt / total;
 report p and key as a record in output;
end-for

We do not describe the implementation of the hash-table because this is well known in the literature. The
sorting alternative described above is equivalent to a hierarchical insertion of records into a binary search
tree and was found inferior to this method. Note that sorting algorithms may be much less efficient in
general and in extreme cases, compared with the hashing method we used. For instance, the Java
Sort.quickSort() method works for hundreds of seconds to “sort” a trivial list of 60,000 identical elements.
It also takes a lot of time when sorting a list of many identical elements, such as in a collection consisting
of only a few classes, which represent the most useful situations for our purpose. Contrary to that, hashing
works equally efficiently in general for all situations. The patent in [6] uses a hierarchical structure to
collect records into clusters and runs in the order of minutes for the same size of collection of records as in
our example.

Page 11 / 11

References
1. Watanabe defines pattern as "... the opposite of chaos; it is an entity, vaguely defined, that could

be given a name." in W. Watanabe, "Pattern recognition: Human and mechanical," Wiley 1985.
2. B. Robson, "Clinical and pharmacogenomic data mining: 1. The generalization theory of expected

information and application to the development of tools," J. of Proteome Res., 203, pp.283-301.
3. B. Robson, "Clinical and pharmacogenomic data mining: 2. A simple method for the combination

of information from associations and multivariances to facilitate analysis, decision and design in
clinical research and practice," J. of Proteome Res., 203, pp.283-301.

4. Hartigan, J. A., "Clustering algorithms," John Wiley, New York, 1975.
5. B. Chandrasekaram, John R. Josephson, and V. Richard Benjamins, "What are ontologies, and

why do we need them?", IEEE Intelligent Systems, Jan.-Feb. 1999, pp.20-26.
6. Tian Zhang, Raghu Ramakrishnan., Miron Livny, Wisconsin Alumni Research Foundation,

Madison, Wis., ‘Method and system for data clustering for very large databases,’ US Patent
5,832,182, Nov 3, 1998.

7. David Flanagan, “Java in a Nutshell,” O’Reilley, 2002 (4th edition).

