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Abstract

We study multiclass classification methods,
whereby the problem is reduced to a single
binary classifier (SBC). Such SBC reductions
are obtained by embedding the original prob-
lem in a higher dimensional space consist-
ing of the original features, as well as sev-
eral other dimensions determined by a set
of (error correcting) codewords. The out-
standing features of these methods are their
operational simplicity and competitive clas-
sification performance. We examine several
known and new SBC reductions and provide
a comprehensive study of their empirical per-
formance. We also consider a subsampling
heuristic that can decrease the computational
cost of SBC methods, without significantly
reducing classification accuracy. We conclude
that SBC approaches are an attractive al-
ternative to standard multiclass decomposi-
tions.

1. Introduction

There are many ways in which supervised learning
can be employed for classification of data into mul-
tiple classes. Our work involves the reduction of mul-
ticlass classification problems to binary ones so as to
enable the use of binary classifiers for multiclass prob-
lems. The widespread practice of employing support
vector machines (SVMs) in applications is the main
incentive for the ongoing study of this basic problem.
However, despite numerous attempts to resolve the is-
sue of how SVMs can be applied to multiclass classifi-
cation, the understanding of this problem appears to
be rather limited, both theoretically and empirically.
The confusion surrounding this problem has increased
with the availability of increasingly clever and sophis-

ticated solutions, whose authors indicate that there is
much to gain by using their approaches. Practitioners
who need to solve multiclass problems and choose to
use SVMs must face this reduction issue and select one
of the available methods, without conclusive literature
support for one of the available methods.

Currently, the simplest multiclass decomposition
method is ‘one-vs-all’ (a.k.a. ‘one-vs-rest’). Other
well known decompositions are the ‘all-pairs’ ap-
proach (a.k.a. ‘one-vs-one’, Friedman, 1996) and the
‘error-correcting output coding (ECOC) framework
(Sejnowski & Rosenberg, 1987; Dietterich & Bakiri,
1995). We elaborate on some of these methods and
other ideas in the sequel.

A related difficulty that only recently started to gain
sufficient recognition, and was overlooked in previous
studies is the problem of hyper-parameter tuning. This
issue is of crucial importance when aiming at high per-
formance classification. For example, when using SVM
with the RBF kernel, the hyper-parameters are C and
γ (σ2), which must be appropriately selected based
on the data to achieve the best possible out-of-sample
performance.

A recent paper by Rifkin and Klautau (2004) is among
the first to emphasize multiclass reductions in conjunc-
tion with hyper-parameter selection. This prominent
paper presents an in-depth critical assessment of many
previous multiclass papers; its main message is that
the simple-minded one-vs-all (OVA) approach is not
inferior to many of the other fancier methods, provided
that adequate efforts are devoted to hyper-parameter
tuning. The compelling case made in this paper for
OVA is accomplished through extensive evaluations.
We therefore chose to use this paper as a contextual
anchor point for our work.

In this paper we study multiclass methods that reduce
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the problem to a Single Binary Classifier (SBC ). From
our point of view, any multiclass method that relies on
only one application of a standard binary (soft) clas-
sifier is an SBC method. SBC reductions are obtained
by embedding the original problem in a higher dimen-
sional space consisting of the original features as well
as several other dimensions determined by a fixed set
of r feature vectors (codewords) of some length `. This
embedding is implemented by replicating the training
set points so that each original point is concatenated
with each of the r feature vectors. The binary labels
of the replicated points are set so as to maintain a
particular structure in the extended space. The result
of this construction is a binary training set given to
the learning algorithm that outputs a single soft bi-
nary classifier. To classify a new point, the point is
replicated r times, once with each of the fixed feature
vectors; these r extended points are fed to the soft bi-
nary classifier that generates r “signals” and the class
is determined as a function of these signals.

The idea of SBC reductions through dimensionality
expansion and replication has existed in several rudi-
mentary forms for quite a while. As far as we know,
the first documented SBC reduction is the so called
Kesler Construction (see Duda & Hart, 1973, Sec.
5.12.1). A different type of SBC reduction is the single
call method presented by Allwein et al. (2000), where
the embedding is determined via an error correcting
matrix as in error correcting output coding (ECOC).
Here we propose a general SBC reduction that is a nat-
ural generalization of a recent SBC reduction studied
in Anguita et al. (2004). The new SBC reduction also
relies on a coding matrix.

Our goal in this work is to examine the various SBC
reductions (including ours) and compare them to stan-
dard approaches. Overall, we considered five different
reductions and compared them to OVA and ECOC.
We present extensive empirical evaluations identifying
the better SBC methods and show that performance-
wise, the best SBC methods are not inferior to both
OVA and ECOC. Relying on the paper of Rifkin and
Klautau (2004), which compares OVA against other
methods, we deduce that SBC is not inferior to stan-
dard multiclass methods but is considerably simpler.
In particular, SBC methods truly use the underlying
binary classifier (e.g., SVM) as a black box, including
the optimization of hyper-parameters. This combina-
tion of high performance and operational simplicity
makes the SBC approach an attractive alternative to
standard multiclass methods.

2. Definitions and Related Work

Let S = {(xi, yi)}
m
i=1 be a training set of m examples,

where xi are points in some d-dimensional space X
and each yi is a label in Y = {1, . . . , k}. A multiclass
classifier h is any function h : X → Y. Our goal in
multiclass classification is to generate a good multi-
class classifier, based on the training set. We measure
performance via the standard 0/1-loss function and
are interested in average low error over out-of-sample
examples.

The ‘one-vs-all’ (OVA) is one of the simplest meth-
ods for multiclass decomposition. It uses the original
data relabeled in a binary form to train k soft clas-
sifiers. Each classifier is trained to distinguish one of
the classes from the rest. The multiclass label of a
new data point is predicted by first having each of the
binary classifiers classify the point. The index of the
classifier with the maximal response is chosen as the
predicted label. It is hard to trace the exact origin
of OVA, but early references date back to Duda and
Hart (1973).

In the basic error-correcting output coding (ECOC)
framework each of the k given classes is assigned a
unique binary vector (called a codeword) over {±1}
of length `. This collection of k codewords forms a
k × ` coding matrix M , whose ` columns define ` bi-
nary partitions of the k classes. Given a training set
S = {(xi, yi)}, ` binary classifiers are trained. The
jth classifier fj is assigned a unique binary partition
defined by the jth column of M and is trained using a
training set {(xi,M(i, j))}. After the learning process
is complete, whenever an unseen point x is given, it
is classified by all binary classifiers. This results in a
vector f(x) = (f1(x), . . . , f`(x)) with fj(x) being the
output of the jth classifier. The point x is assigned
to the class whose matrix row is closest to f(x). This
class assignment mechanism is called decoding. In the
basic ECOC scheme, a Hamming-based decoding is
used where the distance between f(x) and the rows of
the matrix is computed using the Hamming distance.
This general technique was pioneered by Sejnowski and
Rosenberg (1987; 1995) and further developed by All-
wein et al. (2000).

Single Binary Classifier (SBC) reductions have been
discussed already by Duda and Hart (1973), where the
Kesler construction is presented. This construction is
defined only for linear discriminant rules and training
sets that are realizable in the OVA sense. The Kesler
construction is formally equivalent to learning k inde-
pendent classifiers simultaneously. Hence, it does not
decrease the number of unknown parameters. The con-
struction replicates each d-dimensional training point
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to (k− 1) new points, each of dimension kd. Section 3
is devoted for presenting other known and one new
SBC reductions.

Single-machine SVM constructions that were intro-
duced by Vapnik (1998) are related to SBC reductions,
but unlike the SBC approach these constructions typi-
cally modify the standard SVM optimization problem
to include k soft classifiers simultaneously, one for each
class. Each example is labeled according to the clas-
sifier giving maximal soft classification. In this sense,
such constructions can be viewed as a single-machine
implementation of OVA and the extended multiclass
SVM classifier essentially consists of a number of bi-
nary classifiers. See Section 3.1 in (Rifkin & Klautau,
2004) for a more detailed survey.

3. Single Binary Classifier (SBC)
Reductions

We propose the following SBC reduction, which is a
straightforward generalization of the method studied
by Anguita et al. (2004). Let M be a k × ` coding
matrix. We mainly focus on methods where the matrix
entries M(i, j) are in {0, 1}. Denote by Mi the ith
row of M . We consider SBC reductions that work as
follows. Given as input the set of training examples,
a coding matrix M , and a learning algorithm A for
soft binary classifiers, the SBC method consists of two
stages: preprocessing and binary learning.

In the preprocessing stage, we construct k different
“copies” of each training example xi, where the rth
copy of xi is zi,r = xi ◦ Mr, the concatenation of the
row vector xi with the row vector Mr. The resulting
set of new instances {zi,r}, i = 1, . . . ,m, r = 1, . . . , k,
are assigned binary labels as follows: for each i and
r the instance zi,r is labeled by yi,r = +1 iff yi = r
(i.e., the original label yi of xi is r). Otherwise, zi,r

is labeled by yi,r = −1. The resulting binary labeled
set S′ = {(zi,r, yi,r)} is of size km and each instance
(excluding the label) has d + ` dimensions.

In the second stage of binary learning, we train the
learning algorithm A with the training set S′ and the
outcome is a soft binary classifier h2. To determine a
label (in Y) of a new instance x, we generate k copies
of x, where the rth copy is zr = x ◦ Mr. The label we
predict is argmaxr h2(zr).

For example, suppose that Y = {1, 2, 3} and the train-
ing set consists of the following three labeled examples:

{(x1, 1), (x2, 2), (x3, 3)}. Then, if the coding matrix is

M =





1 0 1 1
1 1 0 0
0 1 1 0



 ,

the resulting labeled training set for the binary prob-
lem is

z1,1 = x1 ◦ (1, 0, 1, 1) y1,1 = +1
z1,2 = x2 ◦ (1, 1, 0, 0) y1,2 = −1
z1,3 = x3 ◦ (0, 1, 1, 0) y1,3 = −1
z2,1 = x1 ◦ (1, 0, 1, 1) y2,1 = −1
z2,2 = x2 ◦ (1, 1, 0, 0) y2,2 = +1

z2,3 = x3 ◦ (0, 1, 1, 0) y2,3 = −1
z3,1 = x1 ◦ (1, 0, 1, 1) y3,1 = −1
z3,2 = x2 ◦ (1, 1, 0, 0) y3,2 = −1
z3,3 = x3 ◦ (0, 1, 1, 0) y3,3 = +1.

A special case of our method is the SBC reduction
proposed by Anguita et al. (2004). In this reduction,
the matrix M is taken to be the k×k identity matrix.
We therefore refer to this reduction as SBC-Identity.
We consider several other coding matrices. In SBC-

Hamming we take k rows of a Hamming coding matrix
and in SBC-BCH we take k codewords of the BCH
(Bose, Ray-Chaudhuri, Hocquenghem) code (see Sec-
tion 4.2 for details). Note that there are many other
possibilities for error-correcting coding matrices. For
a treatment of Hamming, BCH and other codes see
(Roman, 1992). We have not experimented with other
codes.

Another method we consider is SBC-Single. It is
obtained by taking the column (1, 2, . . . , k)T as the
coding matrix. In other words, a single feature is con-
catenated to the data such that the rth “replication”
of xi, is zi,r = xi ◦ r. Binary labels are assigned to
this data exactly as described above. SBC-Single is
thus another special case of our approach. However,
it is also a special case of the general ‘single-call’ SBC
reduction of Allwein et al. (2000), which we now de-
scribe.

Given a k × ` coding matrix M , in the single call
method of Allwein et al. (2000) each training example
(xi, yi) is “replicated” ` times to create ` new training
examples of the form ((xi, s),M(yi, s)), where M(yi, s)
is a binary label. Using this training set we induce a
binary classifier denoted by h2. For classifying a new
point x we similarly replicate it ` times, zi = x ◦ i,
i = 1, . . . , `, and apply h2 on each of the ` instances.
As in ECOC, the resulting vector of (soft) classifi-
cations (h2(z1), . . . , h2(z`)) is matched to the closest
codeword (row) in M to determine the label. The
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Figure 1. Three coding matrices. Black squares represent
ones and spaces represent zeros.

Hamming (7 bit) BCH (4,7)

BCH (4,23)

matching can be done using a Euclidian norm (if h2

is a soft classifier) or a Hamming distance (if h2 is a
hard classifier). We term this SBC reduction SBC-

ECOC. Notice that SBC-Single is a special case of
SBC-ECOC applied with a matrix M that is the k×k
identity matrix.

In contrast to our reductions that also use a coding
matrix (e.g., SBC-BCH) and extend each example by
` additional binary features and replicate each example
k times, the SBC-ECOC construction adds a single
attribute to each example and replicates it ` times.

An immediate question after introducing the new SBC
reductions is what is the effect of the coding matrix
M . The following experiment over the 4-class UCI
car dataset (see Table 1) examines the performance of
six SBC applications: SBC-Single, SBC-Identity,
SBC-Hamming and three SBC-BCH instances cor-
responding to (4, 7), (4, 23), and (4, 55) BCH coding
matrices.1 The Hamming and two BCH coding ma-
trices are depicted in Figure 1. The 10xCV average
test errors of these methods are shown in Figure 2
(see Section 4 for a description of our experimental
protocol). With a 5.64% average error, the worst per-
former is SBC-Single. The best performers are the
SBC-BCH reductions with the longer codes. Their
error rate is 1.1%, which matches the error obtained
by OVA (see Table 2). These results indicate that
the choice of the coding matrix can make a significant
difference.

4. Experiments

4.1. Experimental Procedure

Since one of our goals was to use the empirical re-
sults of Rifkin and Klautau (2004) as a contextual

1The (4, 23) and (4, 55) matrices were generated from
(11, 31)- and (64, 127)-BCH codes, respectively, as de-
scribed in Section 4.2.

Figure 2. 10xCV average test error rates of several SBC
algorithms on the car dataset.

0 1 2 3 4 5 6

Single

Identity

Hamming 

BCH (4,7)

BCH (4,23)

BCH (4,55)

Error (%)

# Train # Test # Features # Classes

Glass 214 9 7
Soybean 307 376 35 19
Satimage 4435 2000 36 6
Abalone 3133 1044 8 29

Optdigits 3823 1797 64 10
Car 1728 6 4

Spectrometer 531 101 48
Yeast 1484 8 10

Page blocks 5473 10 5

Table 1. Datasets summary.

anchor point, we attempted to replicate their experi-
mental procedure. Our replication includes the choice
of datasets, the hyper-parameter selection method
(through cross-validation), and statistical tests to de-
rive statistical conclusions. This replication was ac-
complished in its entirety up to variations due to ran-
dom choices of cross validation folds and our exclusion
of one large dataset (see below). Thus, our results for
OVA are not identical but differences are on average
negligible. Here we present the results of our own runs.

The datasets we used, all from the UCI repository, are
summarized in Table 1. Note that Rifkin and Klautau
also experimented with the UCI letter dataset, but
we omitted it due to its overwhelming size that pre-
cluded obtaining results in time for the ICML dead-
line. It is interesting to note that over this collection of
datasets, Fürnkranz (2002) found a substantial differ-
ence between OVA and all-pairs when the underlying
classifier was Ripper. However, Rifkin and Klautau
found that with well-tuned SVMs, there is no differ-
ence in the performance of these decompositions.

For all sets that include a fixed train/test split (indi-
cated in Table 1 by a number in the ‘Test’ column)
we used the given split. Otherwise, ten-fold cross-
validation (10xCV) was used; namely, in each fold,
the union of nine out of ten equally sized subsets were
used for training, and the tenth for testing.

Nominal attributes with n possible values were sub-
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Multiple call classifiers Single-call classifiers
OVA ECOC SBC-Single SBC-Identity SBC-ECOC SBC-Hamming SBC-BCH

Glass 32.38 32.38 36.67 32.38 49.52 30.95 30.95

Soybean 6.91 7.18 25.00 7.18 88.56 7.18 6.91

Satimage 8.60 8.75 12.05 8.75 8.80 8.70 8.75
Abalone 79.89 78.16 79.89 79.60 76.82 79.60 79.60

Optdigits 2.56 2.84 5.29 2.89 99.61 2.84 2.84
Car 1.10 4.36 5.64 4.36 3.90 3.72 1.92

Spectrometer 53.02 53.07 89.43 53.58 53.02 53.02 52.83

Yeast 39.53 40.47 40.07 40.07 40.88 40.07 40.54
Page blocks 3.33 3.20 3.51 3.18 3.42 3.16 3.13

Average rank 2.67 4.06 6.17 4.28 5.33 2.83 2.67

Table 2. 10xCV average test errors rates (%) of seven algorithms on nine datasets. Best results for the dataset appear in
boldface. Average ranks of the algorithms appear in last row.

stituted by n binary features, where the ith binary
feature was set to 1 iff the corresponding nominal at-
tribute took the ith possible value. For each feature
its average and standard deviation over the training
set was computed, and these were used for normaliz-
ing the data (training and testing) by subtracting the
average and dividing by the standard deviation.

In all our experiments, we used the SVMTorch imple-
mentation of a binary SVM inducer (Collobert & Ben-
gio, 2001) and applied it with a radial-basis function
(RBF) kernel. Following Rifkin and Klautau (2004),
the hyper-parameters σ and C of this kernel were op-
timized using a simple greedy search via 10xCV on
the training set as follows. Initial values of σ and C
were set to 1. The value of σ was then increased or
decreased by a factor of 2 until no improvements were
seen for three consecutive attempts. Then, σ was held
fixed at the best value found, and an identical opti-
mization was performed over C.2

4.2. Methods for comparison

We compared five SBC reductions: SBC-Single,
SBC-Identity, SBC-ECOC, SBC-Hamming, and
SBC-BCH (discussed in Section 3). These SBC re-
ductions were compared to OVA and ECOC. For each
dataset, all algorithms which use a BCH coding ma-
trix (SBC-BCH, ECOC, and SBC-ECOC) were ap-
plied with the same BCH coding matrix as described
below. Overall, including OVA, we tested seven al-
gorithms. Our initial experiments with SBC-ECOC

showed catastrophic errors. We therefore applied this
reduction while treating the single added feature as
nominal. This change somewhat improved its results.

The BCH coding matrices were generated as follows.

2One can consider various ways to improve the opti-
mization routine suggested by Rifkin and Klautau. For
example, it is potentially better to jointly optimize over C
and σ, but computationally, this would be rather expen-
sive.

First we encoded the columns of an identity matrix
of size k using a BCH polynomial of length n.3 Since
a BCH polynomial over the binary field GF (2) has
length n = 2r − 1 (bits), we used the shortest code
with a length larger than or equal to the number of
classes, concatenating zeros to the codewords to at-
tain the necessary length for the encoded vector. We
dropped any locations in the resulting code words that
were identical across all code words. We used a similar
procedure for Hamming codes.

4.3. Results

Table 2 shows the errors (%) obtained for each of the
seven methods. The best results (lowest errors) in each
row appear in boldface. The average ranks of the vari-
ous algorithms appear in the last row of the table. Fol-
lowing Dems̆ar (2006), these ranks were computed as
averages of row ranks.4 The best performers, in terms
of ranks, are jointly OVA and SBC-BCH, and the
runner-up is SBC-Hamming. The worst performer
is SBC-Single. Interestingly, SBC-ECOC is a best
performer on one dataset (abalone), but achieves ter-
rible results on others (e.g., optdigits). We note that
our error rates for OVA are very close to those re-
ported in Rifkin and Klautau (2004). Specifically, the
average error difference over the nine datasets is about
0.2% (and the maximal difference of 1.9% is obtained
on the glass dataset).

Since it was tempting to use the average ranks as over-
all rating of the algorithms, we conducted a statisti-
cal test to assess the significance of these ranks. We
used the comparison methodology for multiple algo-

3The Matlab command (communication tool-
box) for generating such (k, n)-BCH encoding is
bchenc(gf(eye(k)),n,k).

4For each row, if the errors of all algorithms are dis-
tinct they are assigned the ranks in {1, . . . , 7}. When al-
gorithms share exactly the same error they are all assigned
the same average rank. For example the rank vector for
Glass dataset is (4, 4, 6, 4, 7, 1.5, 1.5).
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SBC-BCH vs. SBC-Identity SBC-BCH vs. OVA

Glass ← [−9.52, 4.76] ← [−4.23, 1.59]
Soybean ← [−0.80, 0.00] [−1.60, 1.60]
Satimage [0.00, 0.00] [−0.05, 0.35]
Abalone [−0.26, 0.26] ← [−1.02, 0.41]

Optdigits [−0.13, 0.00] [0.00, 1.11] →
Car ← [−4.65,−0.58] [0.00, 2.33] →

Spectrometer ← [−3.77, 1.89] [−5.66, 5.66]
Yeast [−2.03, 3.38] → [−2.03, 4.05] →

Page blocks [−0.37, 0.18] [−0.91, 0.55]

Table 3. 90% bootstrap confidence intervals for the difference in performance between SBC-BCH and SBC-Identity

(left column), and SBC-BCH and OVA (right column).

rithms described in Dems̆ar (2006). Specifically, we
computed the FF statistics of Iman and Davenport
(1980) (see Dems̆ar, 2006) with a confidence level of
90% to determine if all compared algorithms exhib-
ited the same performance. According to this test,
the error rates of the algorithms (with respect to the
entire collection of datasets) were statistically differ-
ent with a confidence level of 90%. We then applied
Holm’s procedure (Holm, 1979; see Dems̆ar, 2006)
with a confidence level of 90% and found that the per-
formances of SBC-Single and SBC-ECOC are the
worst among the algorithms. Finally, we compared the
performance of OVA, SBC-Identity, ECOC, SBC-

Hamming and SBC-BCH using the FF statistics and
found that with a confidence level of 90% the differ-
ences between these five methods are statistically in-
significant.

Clearly, this result is highly dependent on the com-
position of datasets in our collection. Certain subsets
of this collection show more pronounced (and statis-
tically significant, according to some tests) differences
between various methods. For example, with respect
to the car dataset alone we do observed interesting
differences, as shown in Figure 2.

To systematically identify potentially interesting dif-
ferences between the methods, with respect to individ-
ual datasets, we followed Rifkin and Klautau (2004)
and calculated a 90% bootstrap confidence interval
for the differences in performance between pairs of
algorithms with respect to individual datasets. For a
dataset with a given train/test partition and two given
classifiers c1 and c2 (induced on the train set), we drew
10,000 bootstrap samples from the test set. When a
train/test partition was unavailable, each bootstrap
sample consisted of 10% of the points in the dataset,
drawn with equal probability from each of the ten
folds. For each sample we calculated the performance
difference of the two classifiers. This difference is a
number in [−1, 1], where a negative difference reflects
an advantage of c1 and a positive difference an advan-

tage of c2. Zero means that the classifiers performed
identically over the test set. For a desired confidence
level δ (e.g., 90%) we output the confidence interval
[a, b] where a is the ( 1−δ

2 )-quantile of the 10,000 differ-

ences and b is the ( 1+δ
2 )-quantile of these differences.5

Table 3 shows confidence intervals corresponding to
δ = 90% for two pairwise comparisons: SBC-BCH

vs. SBC-Identity and SBC-BCH vs. OVA. An
entry where both a and b are negative reflects a sta-
tistically significant advantage to the first algorithm
(which is SBC-BCH in both columns of the table).
Specifically, such an entry indicates a probability of
over 95% that the first algorithm is better (note that
b is a 95%-quantile). Entries of the form [b, 0], where b
is negative, suggest a probability of less than 5% that
the second algorithm is better. The symmetrically re-
versed statements (for entries of the form [0, a]) hold
as well. If 0 is properly included in the interval, then
no algorithm is significantly better than the other but
the magnitudes of a and b can indicate which algorithm
has an advantage . Note that this statistical procedure
does not account for the Bonferroni correction for mul-
tiple testing. Nevertheless, the presented statistics are
based on the actual classifications of individual test
points, and therefore provide another useful perspec-
tive. Note that the previous (FF ) test we used is only
based on the relative ranks of the algorithms.

We interpret the results of Table 3 as follows. We
consider a confidence interval [a, b] as ‘interesting’ if
∣

∣|a| − |b|
∣

∣ > 0.5 (i.e., the skew in the advantage of one
algorithm is greater than 0.5%); or (ii) a < b < 0; or
(iii) 0 < a < b. Other cases are considered ‘not in-
teresting’. We mark with ‘←’ interesting cases where
SBC-BCH is significantly better than the other algo-
rithm (SBC-Identity or OVA). Entries marked with
‘→’ indicate cases where the other algorithm is better.

5This test was proposed in Rifkin and Klautau (2004) as
an alternative to McNemar’s statistical test that accounts
for the size of the differences between the algorithms’ errors
(which is ignored by McNemar’s test).
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Unmarked entries do not exhibit a statistically signif-
icant interesting event. We see that in four datasets
SBC-BCH is better than SBC-Identity, which per-
forms better over one dataset. On the four remain-
ing sets, there are no interesting differences between
the algorithms (where they are identical specifically on
satimage). A less pronounced difference is observed
between SBC-BCH and OVA.

Based on these observations our goal now is to find
a large subset of the nine datasets that “separates”
the SBC algorithms with high significance. It turns
out that the exclusion of Abalone, Yeast and Page

blocks leaves a collection of six datasets on which
we have the following result using the Dems̆ar (2006)
routine for testing the difference between the algo-
rithms: With confidence 90% OVA, SBC-BCH and
SBC-Hamming were significantly better than SBC-

ECOC, SBC-Single, SBC-Identity and ECOC.
While this result can be accused of “data snooping”
it may still indicate that there are quite a few datasets
that will be better handled by OVA, SBC-BCH or
SBC-Hamming (rather than by the other SBC ap-
proaches or ECOC).

Finally, we considered the question of whether there
were any differences in the computational efforts re-
quired to optimize the SVM hyper-parameters for the
different methods. To this end, we counted the total
number of optimization search steps needed to reach
the best set of parameters (according to our optimiza-
tion routine). We compared the average number of
steps required by the algorithms using the FF statis-
tics of Iman and Davenport (1980) (see Dems̆ar, 2006)
with a confidence level of 90%. The result is that there
is no significant difference in the number of optimiza-
tion steps needed among algorithms.6

5. Reducing the Computational Load

When considering SBC as an alternative to standard
methods such as OVA, one should be aware of the
overall time complexity of SBC methods, which de-
pend on a number of factors. As discussed in Section 4,
the number of optimization steps required to tune the
hyper-parameters is not larger than OVA or ECOC.
The main penalty we pay when using SBC is caused by
the blow up in the number of training examples due
to replication. The original multiclass problem had
m examples, and SBC constructs one binary classifier
based on km examples. Note that OVA also replicates
the problem and solves k binary problems each of size

6Note, however, that each of these search steps required
different efforts from the binary SVMs (see discussion in
Section 5).
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Figure 3. Relative errors of SBC-BCH with subsampling
compared to SBC-BCH trained on the full dataset, as a
function of the fraction of training data sampled.

m. However, because standard SVM inducers do not
scale linearly with the training set size, the replication
performed by SBC methods can raise a computational
burden when the original problem is large.7

However, in many cases it may not be necessary to
replicate the data k times in order to generate a suc-
cessful SBC classifier. Following Allwein et al. (2000)
we examined possibilities for subsampling the repli-
cated training data and tested the effect of this sam-
pling on the classifier performance. Specifically, after
replicating each point k times, as in the original SBC
reduction, the data was sampled so that for each data
point the replica with the correct class label was kept,
in addition to s < k other replications that were chosen
uniformly at random without replacement. All other
steps of the training and testing remained as in the
original setting.

Figure 3 shows the effect of subsampling on each of
the nine datasets for varying values of s when using
the SBC-BCH algorithm. In each of the nine graphs,
the x-axis is the ratio (s+1)/k for 1 ≤ s ≤ k−1. The y-
axis is the ratio of test error with s-subsampling to test
error without subsampling. Interestingly, for three of
the datasets subsampling can actually improve perfor-
mance. In the car dataset, performance significantly
deteriorates. For all other datasets, the relative error
is increased by no more than 25%, even for very small
values of s.

Thus, it is plausible that one could train a classifier
that is almost as accurate as that trained on the whole
dataset using much smaller resources. Consider tak-
ing always s = min(4, k− 1) (so that the data is never

7There are approximations to SVM that do scale lin-
early (Tsang et al., 2005).
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replicated more than five times). The values of s se-
lected by this heuristic (and the resulting relative error
increase) are indicated by (green) dots in the graphs
of Figure 3. This subsampling leads to an error dete-
rioration of 1% ± 2%, averaged over the datasets.

This idea of diluting the training set in multiclass re-
ductions was proposed by Allwein et al. (2000), where
the standard ECOC coding matrix was extended to
ternary codes (i.e., each entry ∈ {−1, 0, 1}). For a
given matrix M , the SBC-ECOC discussed above
(and termed the ‘single call’ scheme by Allwein et al.)
ignores the (replicated) example ((xi, s),M(yi, s)) if
its label M(yi, s) = 0. Allwein et al. showed that
with roughly half of the replicated examples it is still
possible to sustain the same error level.

6. Concluding Remarks

This paper presents an extensive study of SBC multi-
class reductions and proposes a new reduction scheme
based on coding matrices. A benchmark of nine UCI
problems (that was assembled by other papers) showed
that the best SBC methods achieve a classification per-
formance that is competitive with standard OVA and
with ECOC (applied with BCH codes). The main ad-
vantage of SBC is its operational simplicity, which al-
lows practitioners to use standard, off-the-shelf, binary
SVM packages and utilize them in a black box fashion,
including the optimization of hyper-parameters. Other
multiclass reductions do not offer this convenience.

A major new application of SBC reductions is in the
context of active learning with SVMs (see, for exam-
ple, Tong and Koller (2001)). So far, most (if not all)
studies of such methods were restricted to binary prob-
lems. In active learning, the inherent difficulty when
attempting to utilize a multiclass reduction to multi-
ple binary problems is that the active queries should
arrive from an ensemble of binary learners. How to
aggregate these queries into one in each active learn-
ing trial is an open question. See one attempt to solve
this problem by Tong, 2001. In contrast, when using
SBC reductions, the single binary problem automat-
ically determines the relative importance of its “sub-
problems”. Our initial experiments with this approach
for multiclass active learning were very successful.

Many questions remain open. The main issue that de-
serves careful study is: What makes a coding matrix
effective in SBC reductions? This question is related
to but different from the parallel question in ECOC

decompositions (and the understanding of this issue
in ECOC appears to be limited). Also, it would be
desirable to find a subsampling method that can inten-

tionally (rather than randomly) eliminate unnecessary
data replications whenever they can be identified.

While the understanding of SBC reductions is incom-
plete, our unequivocal conclusion is that when the
dataset contains small to moderate training samples
and number of classes, SBC reductions can conve-
niently replace standard SVM multiclass methods.
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