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Abstract 
 

System automation through policy-based 
management allows IT administrators to define high-
level policies for various management tasks, such as 
networked systems and applications for business 
environments, network planning, problem detection, 
and quality of service provisions.   Policies can be 
understood as specifications; therefore they can be 
translated more or less easily into formal languages 
and then be verified by formal techniques such as 
model checking. In this paper, we focus on formal 
verification of real-life industrial policies of the Tivoli 
System Automation for Multi-Platform (TSA). We use 
PSL to model the system and describe the desired 
behavior and the RuleBase PE model checker to verify 
it. 
 
1. Introduction 
 

Every day, IT systems become more complex, 
heterogeneous, and interconnected, and therefore pose 
greater challenges to IT administrators. System 
automation through policy-based management allows 
IT administrators to define high-level policies for 
various management tasks, such as networked systems 
and applications for business environments, network 
planning, problem detection, and quality of service 
provisions. This approach (e.g., [1] and [15]) to system 
management allows us to separate the rules that govern 
behavioral choices of the system from the functionality 
provided by that system. In a very general way, 
policies are plans of an organization to achieve its 
objectives. A policy can be understood as a high-level 
specification of the system to be automated by TSA. It 
is, therefore, natural to translate it to a formal language 
and then to verify it. 
In this paper, we focus on the formal verification of 
policies with model checking [5], [6]. More precisely, 
we present model checking verification through a case 

study for IBM Tivoli System Automation for Multi-
Platform [18]. Our work follows a very concrete 
approach. We translate real-life industrial policies into 
PSL [21] and then verify the system with the RuleBase 
PE model checker [22]. In this way, we can handle 
properties that are difficult to check with testing and 
simulation.  While Sinz et al. [10], [11] used an 
extension of Propositional Dynamic Logic [13] to 
detect loops in the TSA rule-evaluation engine; our 
approach focuses on verification of the higher level 
policies using PSL. 
The rest of the paper is organized as follows. In 
Section 2 we define the PSL fragment we use in this 
paper. Section 3 discusses our general methodology, 
and Section 4 provides background information on 
TSA policies. Section 5 then describes how we model 
policies with the PSL modeling language and Section 6 
covers the PSL properties we checked with RuleBase. 
We then present a case study in Section 7 and conclude 
with Section 8. 

 
 
2. Preliminaries 
 
We use the specification language PSL [4], recently 
standardized as IEEE 1850™-2005 [21].  The temporal 
layer of PSL contains the temporal logics LTL and 
CTL, regular expressions and hardware-specific 
features such as clocks and the abort operator.  Due to 
lack of space, we have chosen to provide the semantics 
of only the fragment of PSL that we use in this paper, 
corresponding to LTL [7] for the assumptions used to 
model the policy and CTL [2] for the properties to be 
verified.  
Both CTL and LTL are subsets of the temporal logic 
CTL* [3], which is defined as follows: 

• Every atomic proposition is a formula. 
• If f and g are formulas, then so are ¥ f and f ∧ 

g. 
• If f is a formula, then E f is also a formula. 



• If f and g are formulas, then f U g and X f are 
also formulas. 

 
Additional operators can be viewed as abbreviations of 
the above, as follows: 

• f ∨ g = ¥ (¥ f ∧ ¥ g) 
• F g = true  U g  
• G f = ¥ (true U ¥ f) 
• f V g = ¥ (¥ f U ¥ g) 
• A f = ¥ E ¥ f 

 
The semantics of a CTL* formula is defined with 
respect to a model M. A model is a quadruple (S, S0, R, 
L), where S is a finite set of states, S0 ⊆ S is a set of 
initial states, R ⊆ S × S is the transition relation, and L 
is the valuation, a function mapping each state with a 
set of atomic propositions true in that state. We require 
that there is at least one transition from every state.  
A computation path π of a model M is an infinite 
sequence of states π = (π0, π1, π2,…) such that R(πi 
,πi+1) is true for every i. Given a computation pathπ, 
we will denote by πi the computation path starting 
from the i-th state in π. More formally:  
πi = (πi, πi+1, π2i+2, …). 
The semantics of CTL* is then as follows: 
• (M, π) ~ p w p c L(π0), where p is an atomic 

proposition. 
• (M, π) ~ ¥ f w (M, π) U f. 
• (M, π) ~ f1 ∧ f2 w (M, π) ~ f1  and (M, π) ~ f2. 
• (M, π) ~ E f w for some computation path π' in 

M, starting from π0, (M, π') ~ f. 
• (M, π) ~ X f w (M, π1) ~ f. 
• (M, ) ~ f1 U f2 w ≥ n m 0 such that (M, πn) ~ f2, 

and for all i such that 0 [ i < n, we have (M, πi ) ~ 
f1. 

We say that M ~ f iff for every computation path  in 
M, such that π0 c S0, we have (M, ) ~ f. 
CTL is a subset of CTL* in which each temporal 
operator (F, G, U, V, and X) must be immediately 
preceded by a path quantifier (A or E).  
LTL is a subset of CTL* in which there are no path 
quantifiers.  

 
3. Method 
 
Policies can be understood as rules that must be 
followed in the pursuit of a set of objectives.  While 
the policy changes per system, the objectives for each 
system are the same.  For instance, the policy might 
specify that node A must always be shut down before 
node B is shut down, while an objective might be that 

some desired state (e.g. all nodes are online) is 
reachable.   
Our goal is to show whether, for a given policy, there 
exists a program that obeys it while achieving its 
objectives.  We assume that the automated system does 
not interact with the policy.  For instance, if a system 
tells node A to shut down, we assume that node A does 
not have the ability to object, and we also assume that 
node B does not have the ability to prevent the 
shutdown of node A.  Thus, our system is closed [8], 
[14] and it is sufficient to show that there exists a 
model obeying the policy that achieves the objectives 
(one of the objectives will be that the model is non-
empty).  Formally, let P be the policy, represented as a 
set of temporal logic formulas, and let F be a set of 
temporal logic formulas representing the objectives. 
Then it is sufficient to show that there exists model M 
such that M ~ P and M ~ F. We use the RuleBase 
model checker [22] which implements the PSL 
directives assume and assert in the following manner: 
assume:  Given a model M and a linear formula φ, 
assume φ creates a model Mφ  such that Mφ ~ φ by 
removing states, transitions, and computation paths 
from M.    The set of assumptions Φ = {assume φ1, 
assume φ2,…, assume φn} creates MΦ and is equivalent 
to assume φ1 ∧ φ2 ∧…∧ φn. 
assert:  Given a model M, a set of assumptions Φ, and 
a linear or branching formula ψ, assert ψ  checks 
whether MΦ ~ ψ.   

We run the model checker using the model M as 
described in Section 5.  Now, we assume our policy P 
and assert our objectives F.  If all of the objectives 
hold, we have shown that there exists M' such that M' 
|= P and M' |= F, as needed. 
 
4. TSA Policy Description 
 
TSA is an application designed to provide a single 
point of control for a full range of system management 
functions. It manages the availability of applications 
running on Linux systems or clusters. Although TSA 
has several features, this paper focuses on its policy-
based automation. TSA allows users to configure high 
availability systems through the use of policies that 
define relationships among the various components. 
Once the relationships are established, TSA assumes 
responsibility for managing the applications on the 
specified nodes as configured. This reduces 
implementation time and the need for complex coding 
of applications. In this paper, we do not describe the 
verification of TSA software or of any particular 
implementation of a TSA policy.  Rather, we verify the 



policy itself by performing sanity checks such as 
conflict, dead-lock and loop detection on TSA policies.   
A TSA policy is, roughly speaking, a collection of 
relationships that describes the automated behavior to 
be enforced by TSA. TSA describes temporal 
relationships (e.g., A should start after B) or 
topological relationships (e.g., A is co-located with B) 
between resources that should be enforced by the 
system.  The building blocks of TSA policies are 
resources, which can be any piece of hardware or 
software in the TSA management scope, located on 
several nodes of the system. There are three types of 
resources in the TSA policy language: fixed resources 
(Resource), floating resources (MoveGroup), and 
references to a resource outside the management scope 
of TSA (ResourceReference).  Resources can be 
grouped using the constructs ResourceGroup or 
Equivalency, so that they are easier to handle. TSA 
policies are described with XML syntax. The 
following section includes a brief summary of the TSA 
policy description language; see [19] for a detailed 
description. A resource is described using the keyword 
Resource, and specifying the name, node, type and 
parameters -- see Figure 1  for an example.    
 
<Resource 
name="XI_J2EE_LOP_achalm47_AS" 
class="IBM.Application" 
node="achalm47">
  <ClassAttributesReference>
   <IBM.ApplicationAttributes 
name="IBM.Application.A1"/>  
  </ClassAttributesReference>
 </Resource>

Figure 1 Resource example.  This resource is an 
application, whose parameters are described in 
IBM.Application.A1. 

Keyword MoveGroup is used for floating resources. 
A move group is defined by its name, type and 
parameters and its constituent resources. The 
constituent resources act as resources of the same type 
and parameter as the move group, however only one of 
them can be online at any given time. 
Keyword ResourceGroup is used to group 
resources together, so they can be handled in an easier 
way. A resource group is defined first by its name, 
type and its members, then by constraints on its 
members (for instance, the members of a co-located 
resource group have to run on the same node).   In 
addition the desired state of the resource group is 
specified.  See Figure 2 for an example of a resource 
group. 
 

<ResourceGroup name="SA-samba-rg" 
class="IBM.ResourceGroup">
  <DesiredState>Online</DesiredState>  
<Members>
<MoveGroup name="SA-samba-server" 
class="IBM.Application" 
selectFromPolicy="Ordered" 
mandatory="true" />  
<MoveGroup name="SA-samba-data-work" 
class="IBM.Application" 
selectFromPolicy="Ordered" 
mandatory="true" />  
<MoveGroup name="SA-samba-ip-1" 
class="IBM.ServiceIP" 
selectFromPolicy="Ordered" 
mandatory="true" />  
</Members>
<MemberLocation>Collocated</MemberLoc
ation>  
<Priority>0</Priority>  
<AllowedNode>ALL</AllowedNode>  
</ResourceGroup>

Figure 2 Resource group example. This resource group 
encompasses three move groups and is co-located (i.e. the 
three move groups have to run on the same node) as 
specified by keyword Collocated. The members of the 
resource group can run on any node (as long as they all run 
on the same one) as specified by keyword AllowedNode. 
Keywords Priority and selectFromPolicy are used 
by TSA to manage conflicts.

The keyword Equivalency is another way to group 
resources.  It is used to describe a collection of 
resources, all providing the same functionality. An 
equivalency consists of a set of fixed resources from 
the same resource class. For example, network 
adapters might be defined as equivalency resources. If 
one adapter goes offline, another network adapter can 
take over the processing from the offline adapter. 
These resources are given explicitly or implicitly. An 
equivalency is described by its name, type, its 
members and the minimum number of members that 
need to be online in order for the equivalency to be 
online.  
The keyword Relationship is used to describe the 
relationships between resources in a cluster. The 
source (a resource, a resource group or a move group) 
and target (a resource, resource group, resource 
reference, move group, or equivalency) are defined 
either explicitly or implicitly. See Figure 3 for an 
example of a relationship. 
 
<Relationship name="SA-samba-server-
on-data-work">
<Source>
  <MoveGroup name="SA-samba-server" 
class="IBM.Application"/>  
</Source>



<Type>DependsOnAny</Type>  
<Target>
  <MoveGroup name="SA-samba-data-
work" class="IBM.Application" />  
</Target>
</Relationship>

Figure 3 Relationship example. Using the keyword 
DependsOnAny, this relationship states that in order for 
move group SA-samba server to run, SA-samba-data-work 
should be running.  

Additional types or conditions not yet shown can be 
specified for some location relationships. The possible 
types/conditions are: A StartAfter B, A 
StopAfter B, A DependsOnAny B, A 
DependsOn B, A ForcedDownBy B, A 
Collocated B, A Anticollocated B, A 
IsStartable B, A Collocated/IfOnline B, 
A Collocated/IfNotOnline B, A  
Collocated/IfOffline B, A  
Collocated/IfNotOffline B, and 
AntiCollocated/*.  Details on the semantics are 
given in Section 5.5. 
 
5. Modeling 
 

This section describes how we model TSA policies. 
Fixed and floating resources are modeled as state 
machines in the GDL flavor of the PSL modeling layer 
[22] and the relationships are modeled as PSL 
assumptions. Time in the systems we are modeling is 
continuous, while PSL time is discrete.  We deal with 
this by allowing events to happen at a non-
deterministic time and by considering the atomic unit 
of time to be the minimum possible time between two 
events in the system. 

5.1 Resources 

The TSA description provides the name and node of a 
resource. The attribute class and information specified 
by the ClassAttributesReference keyword 
appearing in Figure 1 are not relevant for the 
properties that need to be checked. A resource can 
have five states: Unknown, Online, Offline, 
FailedOffline, and StuckOnline. A resource state is 
Unknown when its state is not known by TSA for 
some reason; a resource is Online when it is running 
and Offline when it is not running. A resource is 
FailedOffline when it is down with a fatal failure and 
StuckOnline when it is running with a fatal failure. 
Possible transitions (where a transition takes one 
atomic unit of time) for the resource state are: 
 

Unknown -> Unknown | Online | Offline | 
FailedOffline | StuckOnline 
Online  -> Unknown | Online | Offline | 
FailedOffline | StuckOnline 
Offline  -> Unknown | Online | Offline | 
FailedOffline  
FailedOffline -> FailedOffline 
StuckOnline -> StuckOnline 
 

The amount of time a resource stays in a specific 
state is non-deterministic and independent of the 
behavior of other resources. Resources, resource 
groups, move groups and equivalencies are coded in 
the PSL modeling language as an array. The first part 
of the array codes the node and the second part codes 
the state. For simplicity’s sake, in this paper we denote 
the node and the state of a resource "r" by r.node and 
r.state. Resource transitions are constrained by the 
relationship (see Section 5.5). The type and parameters 
specified by ClassAttributesReference are 
related to the implementation of the resource and 
therefore outside of the scope of this work -- they are 
not needed to prove the Section 6 properties. 
Constituent resources and resource references are 
modeled as resources. 

2 Resource groups 

A resource group is coded in the PSL modeling layer 
as an array, similar to the method used for resources. 
The node of a resource group is relevant only if the 
resource group is co-located, in which case it is the 
node of its members. If the resource group is co-
located, the relevant co-location constraints between its 
members are added to the list of relationships (see 
Section 5.5). AllowedNode and ExcludeNode are 
coded in a straightforward fashion as a PSL constraint 
on the node fields of the resource group members. The 
priority related fields have no impact on the properties 
to be verified (they only give information to the TSA 
engine on the way to implement the policy). The state 
of a resource group RG is defined from the states of its 
members, as follows: 
 
RG.state := case 
  all members are Online   : 
Online ; 
  all members are Offline  : 
Offline ; 
  one member is StuckOnline   : 
StuckOnline ; 
  one member is FailedOffline  : 
FailedOffline; 



  else     : 
Unknown ; 
esac ;  
5.3 Move groups 
Only one of the move group members (constituent 
resources) can be Online or StuckOnline at a given 
time. Therefore if CR1,…,CRn, represent the 
constituent resources of a move group, we add the 
following PSL layer verification directive (the 
assume statement enables us to specify an invariant):   
assume always ((CR1.state in 
{Online, StuckOnline} or…or 
CRn.state in {Online, StuckOnline}) 
-> (CR1.state in {Online, 
StuckOnline} xor … xor CRn.state in 
{Online, StuckOnline})) ;  

The state of a move group MG is defined from the 
states of its members, as follows: 
 
MG.state := case 
  one of the members is online  : 
Online ; 
  all members are StuckOnline  : 
StuckOnline ; 
  all members are FailedOffline : 
FailedOffline; 
  else     : 
Offline ; 
esac ;  
 
If a move group is online, its node is the node of its 
online constituent. Otherwise, its node is not relevant. 
As for fixed resources, type and 
ClassAttributesReference are not modeled. 
5.4 Equivalencies 
The state of an equivalency E is defined from the states 
of its members, as follows: An equivalency is Online if 
n of its members are Online (n being equal to the value 
of the field MinimumNecessary).  
E.state := case 
  n members are Online    : 
Online ; 
  all members is StuckOnline   : 
StuckOnline ; 
  all members is FailedOffline : 
FailedOffline; 
  else     : 
Offline ; 
esac ;  

5.5 Relationships 

Relationships are modeled as constraints using the PSL 
verification layer directive assume (as in Section 5.3 
assume statement allows us to specify an invariant). 
This allows us to provide a formal description of TSA 

policy relationships that are only informally described 
in [18] and [19]. 
 
A StartAfter B means that A must start after B starts. 
More precisely, when A starts, B should already be 
online. This is translated to the following PSL 
verification directive: 
assume always(rose(A.state=Online) 
-> (B.state=Online & 
!rose(B.state=Online))) ; 

This means the following property should be an 
invariant of the model: when A goes online, B should 
be online but did not go online at the same moment A 
did (always p is PSL syntax for the LTL G p). This is 
more complex than expected. Translation to PSL 
allows a clearer and non-ambiguous description of the 
relationships.  
A StopAfter B means that A must stop after B does, i.e., 
when A stops, B is already offline: 
assume always (fell(A.state=Online) 
-> (B.state in {Offline, 
FailedOffline} & !rose(B.state in 
{Offline, FailedOffline}))) ; 

A DependsOnAny B means that A cannot be online if B 
is not online: 
assume always (A.state=Online -> 
B.state=Online) ; 

The difference between A DependsOnAny B and A 
StartAfter B is that with the former A and B can go 
online at the same time, and B should stay online as 
long as A is online. 
A DependsOn B means that A DependsOnAny B and 
A collocated B: 
assume always (A.state=Online -> 
(B.state=Online & A.node=B.node)) ; 

A ForcedDownBy B means that when B is down, it 
forces A to be down: 
assume always(rose(B.state in 
{Offline, FailedOffline}) -> next 
(A.state in {Offline, 
FailedOffline})) ; 

We assume that A is forced down in one atomic unit of 
time after B (next p is PSL syntax for LTL X p). This 
restriction reduces the complexity but is very limiting 
because there is no guarantee that TSA can bring down 
A in only one atomic unit of time. However, this 
relationship can also be modeled in a more general 
way for a given k: 
assume always(rose(B.state in 
{Offline, FailedOffline}) -> 



next_e[1..k](A.state in {Offline, 
FailedOffline})) ; 

In other words, when B goes into the Offline or 
FailedOffline state, then A should go Offline or 
FailedOffline with 1 to k atomic units of time 
(next_e[1..k] p is PSL syntax for Xp | XXp | … | 
XX…X p i.e., between 1 and k X operators). Generally 
and without reference to any “clock”, the relationship 
can be modeled as follows: 
assume always(rose(B.state in 
{Offline, FailedOffline}) -> 
eventually! (A.state in {Offline, 
FailedOffline})) ; 

That is, if B goes into the Offline or FailedOffline 
state, then A should eventually go Offline or 
FailedOffline (eventually! p is PSL syntax for LTL F 
p).  
A Collocated B means that if A is online, A and B are 
on the same node: 
assume always ((A.state=Online) -> 
A.node=B.node) ;   

A Anti Collocated B means that if A is online, A and B 
are not on the same node: 
assume always ((A.state=Online) -> 
A.node!=B.node) ;   

A IsStartable B means that A can only run on a node 
that B will be able to run on in the future (i.e., B is not 
FailedOffline on this node):  
assume always((A.state=online) -> 
!(B.state=FailedOffline & 
A.node=B.node)); 

A Collocated/IfOnline B means that if A is online and 
B is online or StuckOnline, then A and B are on the 
same node: 
assume always ((A.state=online) -> 
(B.state in {Online, StuckOnline} -
> A.node=B.node)) ; 

 
AntiCollocated/IfOnline, Collocated/IfNotOnline, 
AntiCollocated/IfNotOnline, Collocated/IfOffline, 
AntiCollocated/IfOffline, Collocated/IfNotOffline and 
AntiCollocated/IfNotOffline are defined in a similar 
way. 
5.6 Parameters and Initial State
Parameters (IBM.ApplicationAttributes, 
IBM.ServiceIPAttributes, IBM.TestAttributes, and 
IBM.TieBreaker) are not included in our model. They 
describe the characteristics of the resources needed for 
the automation. These characteristics are totally 
independent of the relationships; therefore, we don’t 

need to model them to prove properties on the 
relationships. 

TSA policies don’t specify the system’s initial state. 
It is possible to either leave the initial state free (i.e., 
assign a non-deterministic value to each resource) or to 
assign a fixed value such as Offline or Unknown. The 
first option implies that every state is reachable, which 
may be too general. Therefore the second option is a 
safer choice. 
 
6. Verification 
 
Once the model is built, we can check PSL properties 
against it in order to perform: 

• Conflict detection and see if it is possible to 
enforce all relationships,  

• Validation of the policy specified to ensure it 
is consistent with the capabilities of the 
system 

• Deadlock detection 
• Loop detection. 

We don't check how the system managed by TSA 
behaves; rather, we check properties on the policy 
controlling its behavior.  For example, we check that 
the policy is not over-constrained in ways that prevent 
the system from running satisfactorily, we check that 
the system can reach the desired state, and we identify 
whether there exists a single point of failure with 
regard to these properties. The following PSL 
properties should hold for every policy:  
 

1. assert EF nominal_state ; 
2. assert AG EX true  ; 
3. assert AG (desired_state1 -> EF 

desired_state2) ; 
4. assert AG (desired_state1 -> EX 

desired_state1) ; 
 
where nominal_state is true when all resource 
groups are in the desired states specified in the policy, 
and desired_state1 and desired_state2 
are chosen non-deterministically from all the desired 
states of the system.  A desired state of the system is a 
state in which each resource group is in a known state, 
and not failed or stuck.  Thus there are two "good" 
values per resource group – Online and Offline, and 2n 
possible values of desired_state1 and 
desired_state2.   
Property 1 means the system can reach the nominal 
state specified by the policy.  Property 2 means the 
system can always follow the policy; i.e., there is no 
truncated path. Property 3 means that while running 
and in a desired state, the system can reach any other 
desired state (for instance, if resource group X is 



offline, all other resource groups are online, and it is 
desired to bring resource group X online and take 
groups Y and Z offline, that can be done). Property 4 
means that once the system reaches a desirable state, it 
can stay there forever (this can be seen as some sort of 
termination property; it ensures, for instance, that no 
loop will prevent the system to stay as long as needed 
in the desired state). RuleBase will automatically check 
that the model is not empty. These properties are rather 
different to the properties commonly used in hardware 
verification like for example in [16]. The most 
commonly used properties used for hardware 
verification are safety properties and non-LTL 
properties are rather uncommon.  
In addition, we can look for a single point of failure by 
checking the previous properties with any resources in 
a terminal state that fails offline. For instance, for 
Property 1, we can check that the nominal state can be 
reached if resource r fails:  
assert AG(r.state=FailedOffline -> 
EF nominal_state)  ; 

This would check that nominal state can be reached 
even if some resourced r failed. 
The properties we have shown so far should hold for 
every policy, and thus checking them can be 
completely automated.  In addition, it is possible to 
perform policy-specific checks using RuleBase.  
Although it allows thorough verification, these kinds 
of properties must be manually coded and thus require 
that the user have some knowledge of PSL.  However, 
if the user is willing to write PSL properties, the 
verification is no more difficult than push-button 
conflict detection.  For instance, the following is a 
hand-coded property for the policy described in 
Section 7: 
assert (!(XI_ABAP_LOP_node1=Online 
| XI_ABAP_LOP_node2=Online) until 
!(XJ_JEE_LOP_node1=Online | 
XJ_JEE_LOP_node2=Online)) ; 

i.e. if the ABAP stack did not start yet on either of the 
two nodes, then the JEE stack cannot have started 
either on either of the nodes. 
We built an ad hoc translator that semi-automatically 
translates the XML TSA policy into a model 
(described in the previous section) and extracts 
definitions needed for the automated properties.  Then, 
we checked these properties with the RuleBase PE 
model checker.  We verified several real-life TSA 
policies, one of which is described in the next section. 

 
 

7. Case Study 
 

In this section, we describe the verification of a 
TSA policy for SAP and the experiments we used to 
check the scalability of our approach. 

7.1 SAP System 

Our work describes a TSA policy for a highly 
available SAP system with a J2EE application server. 
For more details, see [12].  SAP is widely acclaimed 
ERP software from SAP AG. We consider a minimum 
hardware setup as consisting of a two-node TSA 
domain. The two nodes are either physical machines or 
dynamic logical partitions (LPAR) with each LPAR 
running on a different physical machine. The machines 
must be connected via a network, for example, Gigabit 
Ethernet. Also, each machine needs access to a shared 
database and SAP data, for example, as provided by a 
Storage Area Network (SAN) attached disk subsystem, 
which is attached to each node via a fiber channel. 
As required in a two-node TSA domain, we dedicated 
a third, very small, FAStT-disk as the TSA quorum 
disk. This disk is not shown in the following figure and 
is exclusively used as a quorum disk, functioning as a 
tie-breaker in the tested two-node domain. 
Each machine/LPAR must be capable of running the 
basic SAP program resources that TSA for Multi-
Platform make highly available via ‘switch-over’ 
groups. These program resources include the NFS 
server, the database server, and at least one application 
server instance (e.g., the Advanced Business 
Application Programming (ABAP) SAP Central 
Service (ASCS), and/or the SAP Central Service (SCS) 
instance).  
A SAP system needs utility programs. If the SAP 
Router or SAP Web Dispatcher program is used, it 
must also be highly available. In addition, TSA MP 
should automate the SAP Operating System COLlector 
(SAPOSCOL) program. 
Figure 4 illustrates a sample two-node TSA domain. It 
shows all basic program resources and their 
corresponding switch-over groups for a SAP system 
running an ‘add-in’ application server (such as SAP 
XI). The utility programs are not shown. Each add-in 
application server consists of a J2EE Central/Dialog 
Instance and an ABAP Dialog Instance; therefore, we 
also need the ASCS and the SCS instances in parallel. 
 
The Highly Available sample policy for SAP version 
4.0 is required to automate the setup. This version 
enhances ABAP-only SAP systems to J2EE-only SAP 
systems and extends to the most complicated SAP 



systems that cover both ABAP and J2EE stacks. From 
the TSA MP viewpoint, J2EE-only SAP systems are 
very similar to ABAP-only SAP systems. This is 
different from SAP systems that support ABAP and 
J2EE stacks simultaneously, such as SAP XI. An add-
in system runs two SAP Central Service instances, an 
ASCS and a J2EE SCS in parallel, and the add-in 
application server. An add-in application server is 
physically one instance (running both ABAP and J2EE 
stacks) with two logical parts: the ABAP application 
server instance and the J2EE application server 
instance. In other words, within a TSA domain, one 
add-in application server instance is automated as two 
logical application server instances. However, there is 
a tight relationship between the two logical application 
servers, in that the J2EE instance always starts after the 
ABAP instance. This StartAfter relationship 
guarantees that starting the J2EE instance immediately 
triggers the start of the ABAP instance. On the other 
hand, stopping the J2EE application server does not 
stop any of the add-in server processes; it only stops 
the monitoring ‘java GetWebPage’ Java program, 
which does a primitive health check of the J2EE 
application server.  
The High Availability SAP policy has two nodes, 
where each node has three resources (XI_J2EE_LOP, 
SAP_SYS_SAPOSCOL_EXE, and XI_ABAP_LOP), 
forty-four constituent resources, and two referenced 
resources (network interfaces). These resources are 
grouped into fourteen resource groups, twenty-two 
move groups, and six equivalencies. There are forty 
explicit relationships (not including the co-located 
relationships from the resource groups).
 
The translation into the PSL modeling language and 
RuleBase backend processing provides us with a final 
model of about 250 variables. RuleBase solves any 
properties defined in the previous section in less than 
one minute with a BDD-based engine. Previously, the 
SAP policy was thoroughly tuned and tested; therefore 
we did not find bugs. However, we found the bugs we 
artificially inserted without difficulty. In addition, we 
were able to identify single points of failure of this 
policy. 

7.2 Scalability 

To test the scalability of our approach, we combined 
two large policies for TSA for Multi-Platform (SAP 
and STK policies) to create a very large policy. We 
made each of the SAP resource group dependents of 
the “goal” of the STK policy using the relevant 
relationships. An average TSA for Multi-Platform 

policy has about half the size of either SAP or STK 
policies, so the combined policies is roughly speaking 
four times the size of the average policy. The result 
was a policy whose translation into the PSL modeling 
layer and RuleBase backend processing provides us 
with a final model of about 460 variables. RuleBase 
was able to verify any of the previously defined 
properties in less than one minute with classical 
backward BDD-based model-checking. Therefore, we 
are confident that our approach can tackle most of the 
TSA for Multi-Platform policies, as SAP and STK 
policies are large by TSA standards. 
For huge policies that would take too much time to 
process we can use abstractions in order to get a more 
manageable model. For instance, there are five 
different resource states; therefore, the state of every 
resource has to be coded on three bits (i.e., three state 
variables). In order to be able to code resource state on 
2 bits, we can omit the FailedOffline and StuckOnline 
terminal states for checking most properties. For 
example, for the property EF nominal_state, if 
the desired states specified in the policy are non-
terminal states (which is likely, since the terminal 
states are failure states), then if the property holds for 
the model with terminal states, it holds against the 
model without terminal states. This simple abstraction, 
allows for example to shrink the final model for the 
composition of SAP and STK policies by more than 
20%. 
 
8. First-order headings 
 

We presented a model checking approach for policy 
verification using the specific case study of TSA. TSA 
relationships are translated in a straightforward manner 
into PSL properties and then checked with RuleBase. 
We conducted experiments on real-life industrial 
policies to validate our approach.  
We plan to develop a fully automated verification 
solution for TSA for Multi-Platform. This will allow 
faster tuning and complete verification of TSA 
policies, and foster an increase in productivity. In 
addition, we are working on the modeling and formal 
verification of TSA for z/OS policies [20]. Contrary to 
expectations, this is not straightforward. TSA for z/OS 
has different syntax and more importantly, semantics, 
from the TSA for Multi-Platform, and typical TSA 
policies for z/OS encompass a number of variables that 
are one to two orders of magnitude larger than typical 
TSA MP policies. That said, the complexity of z/OS 
policies makes their verification even more critical. 
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Figure 4 Two node domain setup for SAP system
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