
H-0254 (H0612-005) December 13, 2006
Computer Science

IBM Research Report

Policy Verification for System Automation with Model
Checking: A Case Study

Emmanuel Zarpas, Cindy Eisner, Sivan Tal
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Policy Verification for System Automation with Model Checking: A Case
Study

Emmanuel Zarpas, Cindy Eisner, and Sivan Tal
IBM Haifa Research Lab.

{zarpas, eisner, sivant}@il.ibm.com

Abstract

System automation through policy-based
management allows IT administrators to define high-
level policies for various management tasks, such as
networked systems and applications for business
environments, network planning, problem detection,
and quality of service provisions. Policies can be
understood as specifications; therefore they can be
translated more or less easily into formal languages
and then be verified by formal techniques such as
model checking. In this paper, we focus on formal
verification of real-life industrial policies of the Tivoli
System Automation for Multi-Platform (TSA). We use
PSL to model the system and describe the desired
behavior and the RuleBase PE model checker to verify
it.

1. Introduction

Every day, IT systems become more complex,
heterogeneous, and interconnected, and therefore pose
greater challenges to IT administrators. System
automation through policy-based management allows
IT administrators to define high-level policies for
various management tasks, such as networked systems
and applications for business environments, network
planning, problem detection, and quality of service
provisions. This approach (e.g., [1] and [15]) to system
management allows us to separate the rules that govern
behavioral choices of the system from the functionality
provided by that system. In a very general way,
policies are plans of an organization to achieve its
objectives. A policy can be understood as a high-level
specification of the system to be automated by TSA. It
is, therefore, natural to translate it to a formal language
and then to verify it.
In this paper, we focus on the formal verification of
policies with model checking [5], [6]. More precisely,
we present model checking verification through a case

study for IBM Tivoli System Automation for Multi-
Platform [18]. Our work follows a very concrete
approach. We translate real-life industrial policies into
PSL [21] and then verify the system with the RuleBase
PE model checker [22]. In this way, we can handle
properties that are difficult to check with testing and
simulation. While Sinz et al. [10], [11] used an
extension of Propositional Dynamic Logic [13] to
detect loops in the TSA rule-evaluation engine; our
approach focuses on verification of the higher level
policies using PSL.
The rest of the paper is organized as follows. In
Section 2 we define the PSL fragment we use in this
paper. Section 3 discusses our general methodology,
and Section 4 provides background information on
TSA policies. Section 5 then describes how we model
policies with the PSL modeling language and Section 6
covers the PSL properties we checked with RuleBase.
We then present a case study in Section 7 and conclude
with Section 8.

2. Preliminaries

We use the specification language PSL [4], recently
standardized as IEEE 1850™-2005 [21]. The temporal
layer of PSL contains the temporal logics LTL and
CTL, regular expressions and hardware-specific
features such as clocks and the abort operator. Due to
lack of space, we have chosen to provide the semantics
of only the fragment of PSL that we use in this paper,
corresponding to LTL [7] for the assumptions used to
model the policy and CTL [2] for the properties to be
verified.
Both CTL and LTL are subsets of the temporal logic
CTL* [3], which is defined as follows:

• Every atomic proposition is a formula.
• If f and g are formulas, then so are ¥ f and f ∧

g.
• If f is a formula, then E f is also a formula.

• If f and g are formulas, then f U g and X f are
also formulas.

Additional operators can be viewed as abbreviations of
the above, as follows:

• f ∨ g = ¥ (¥ f ∧ ¥ g)
• F g = true U g
• G f = ¥ (true U ¥ f)
• f V g = ¥ (¥ f U ¥ g)
• A f = ¥ E ¥ f

The semantics of a CTL* formula is defined with
respect to a model M. A model is a quadruple (S, S0, R,
L), where S is a finite set of states, S0 ⊆ S is a set of
initial states, R ⊆ S × S is the transition relation, and L
is the valuation, a function mapping each state with a
set of atomic propositions true in that state. We require
that there is at least one transition from every state.
A computation path π of a model M is an infinite
sequence of states π = (π0, π1, π2,…) such that R(πi
,πi+1) is true for every i. Given a computation pathπ,
we will denote by πi the computation path starting
from the i-th state in π. More formally:
πi = (πi, πi+1, π2i+2, …).
The semantics of CTL* is then as follows:
• (M, π) ~ p w p c L(π0), where p is an atomic

proposition.
• (M, π) ~ ¥ f w (M, π) U f.
• (M, π) ~ f1 ∧ f2 w (M, π) ~ f1 and (M, π) ~ f2.
• (M, π) ~ E f w for some computation path π' in

M, starting from π0, (M, π') ~ f.
• (M, π) ~ X f w (M, π1) ~ f.
• (M,) ~ f1 U f2 w ≥ n m 0 such that (M, πn) ~ f2,

and for all i such that 0 [i < n, we have (M, πi) ~
f1.

We say that M ~ f iff for every computation path in
M, such that π0 c S0, we have (M,) ~ f.
CTL is a subset of CTL* in which each temporal
operator (F, G, U, V, and X) must be immediately
preceded by a path quantifier (A or E).
LTL is a subset of CTL* in which there are no path
quantifiers.

3. Method

Policies can be understood as rules that must be
followed in the pursuit of a set of objectives. While
the policy changes per system, the objectives for each
system are the same. For instance, the policy might
specify that node A must always be shut down before
node B is shut down, while an objective might be that

some desired state (e.g. all nodes are online) is
reachable.
Our goal is to show whether, for a given policy, there
exists a program that obeys it while achieving its
objectives. We assume that the automated system does
not interact with the policy. For instance, if a system
tells node A to shut down, we assume that node A does
not have the ability to object, and we also assume that
node B does not have the ability to prevent the
shutdown of node A. Thus, our system is closed [8],
[14] and it is sufficient to show that there exists a
model obeying the policy that achieves the objectives
(one of the objectives will be that the model is non-
empty). Formally, let P be the policy, represented as a
set of temporal logic formulas, and let F be a set of
temporal logic formulas representing the objectives.
Then it is sufficient to show that there exists model M
such that M ~ P and M ~ F. We use the RuleBase
model checker [22] which implements the PSL
directives assume and assert in the following manner:
assume: Given a model M and a linear formula φ,
assume φ creates a model Mφ such that Mφ ~ φ by
removing states, transitions, and computation paths
from M. The set of assumptions Φ = {assume φ1,
assume φ2,…, assume φn} creates MΦ and is equivalent
to assume φ1 ∧ φ2 ∧…∧ φn.
assert: Given a model M, a set of assumptions Φ, and
a linear or branching formula ψ, assert ψ checks
whether MΦ ~ ψ.

We run the model checker using the model M as
described in Section 5. Now, we assume our policy P
and assert our objectives F. If all of the objectives
hold, we have shown that there exists M' such that M'
|= P and M' |= F, as needed.

4. TSA Policy Description

TSA is an application designed to provide a single
point of control for a full range of system management
functions. It manages the availability of applications
running on Linux systems or clusters. Although TSA
has several features, this paper focuses on its policy-
based automation. TSA allows users to configure high
availability systems through the use of policies that
define relationships among the various components.
Once the relationships are established, TSA assumes
responsibility for managing the applications on the
specified nodes as configured. This reduces
implementation time and the need for complex coding
of applications. In this paper, we do not describe the
verification of TSA software or of any particular
implementation of a TSA policy. Rather, we verify the

policy itself by performing sanity checks such as
conflict, dead-lock and loop detection on TSA policies.
A TSA policy is, roughly speaking, a collection of
relationships that describes the automated behavior to
be enforced by TSA. TSA describes temporal
relationships (e.g., A should start after B) or
topological relationships (e.g., A is co-located with B)
between resources that should be enforced by the
system. The building blocks of TSA policies are
resources, which can be any piece of hardware or
software in the TSA management scope, located on
several nodes of the system. There are three types of
resources in the TSA policy language: fixed resources
(Resource), floating resources (MoveGroup), and
references to a resource outside the management scope
of TSA (ResourceReference). Resources can be
grouped using the constructs ResourceGroup or
Equivalency, so that they are easier to handle. TSA
policies are described with XML syntax. The
following section includes a brief summary of the TSA
policy description language; see [19] for a detailed
description. A resource is described using the keyword
Resource, and specifying the name, node, type and
parameters -- see Figure 1 for an example.

<Resource
name="XI_J2EE_LOP_achalm47_AS"
class="IBM.Application"
node="achalm47">
 <ClassAttributesReference>
 <IBM.ApplicationAttributes
name="IBM.Application.A1"/>
 </ClassAttributesReference>
 </Resource>

Figure 1 Resource example. This resource is an
application, whose parameters are described in
IBM.Application.A1.

Keyword MoveGroup is used for floating resources.
A move group is defined by its name, type and
parameters and its constituent resources. The
constituent resources act as resources of the same type
and parameter as the move group, however only one of
them can be online at any given time.
Keyword ResourceGroup is used to group
resources together, so they can be handled in an easier
way. A resource group is defined first by its name,
type and its members, then by constraints on its
members (for instance, the members of a co-located
resource group have to run on the same node). In
addition the desired state of the resource group is
specified. See Figure 2 for an example of a resource
group.

<ResourceGroup name="SA-samba-rg"
class="IBM.ResourceGroup">
 <DesiredState>Online</DesiredState>
<Members>
<MoveGroup name="SA-samba-server"
class="IBM.Application"
selectFromPolicy="Ordered"
mandatory="true" />
<MoveGroup name="SA-samba-data-work"
class="IBM.Application"
selectFromPolicy="Ordered"
mandatory="true" />
<MoveGroup name="SA-samba-ip-1"
class="IBM.ServiceIP"
selectFromPolicy="Ordered"
mandatory="true" />
</Members>
<MemberLocation>Collocated</MemberLoc
ation>
<Priority>0</Priority>
<AllowedNode>ALL</AllowedNode>
</ResourceGroup>

Figure 2 Resource group example. This resource group
encompasses three move groups and is co-located (i.e. the
three move groups have to run on the same node) as
specified by keyword Collocated. The members of the
resource group can run on any node (as long as they all run
on the same one) as specified by keyword AllowedNode.
Keywords Priority and selectFromPolicy are used
by TSA to manage conflicts.

The keyword Equivalency is another way to group
resources. It is used to describe a collection of
resources, all providing the same functionality. An
equivalency consists of a set of fixed resources from
the same resource class. For example, network
adapters might be defined as equivalency resources. If
one adapter goes offline, another network adapter can
take over the processing from the offline adapter.
These resources are given explicitly or implicitly. An
equivalency is described by its name, type, its
members and the minimum number of members that
need to be online in order for the equivalency to be
online.
The keyword Relationship is used to describe the
relationships between resources in a cluster. The
source (a resource, a resource group or a move group)
and target (a resource, resource group, resource
reference, move group, or equivalency) are defined
either explicitly or implicitly. See Figure 3 for an
example of a relationship.

<Relationship name="SA-samba-server-
on-data-work">
<Source>
 <MoveGroup name="SA-samba-server"
class="IBM.Application"/>
</Source>

<Type>DependsOnAny</Type>
<Target>
 <MoveGroup name="SA-samba-data-
work" class="IBM.Application" />
</Target>
</Relationship>

Figure 3 Relationship example. Using the keyword
DependsOnAny, this relationship states that in order for
move group SA-samba server to run, SA-samba-data-work
should be running.

Additional types or conditions not yet shown can be
specified for some location relationships. The possible
types/conditions are: A StartAfter B, A
StopAfter B, A DependsOnAny B, A
DependsOn B, A ForcedDownBy B, A
Collocated B, A Anticollocated B, A
IsStartable B, A Collocated/IfOnline B,
A Collocated/IfNotOnline B, A
Collocated/IfOffline B, A
Collocated/IfNotOffline B, and
AntiCollocated/*. Details on the semantics are
given in Section 5.5.

5. Modeling

This section describes how we model TSA policies.
Fixed and floating resources are modeled as state
machines in the GDL flavor of the PSL modeling layer
[22] and the relationships are modeled as PSL
assumptions. Time in the systems we are modeling is
continuous, while PSL time is discrete. We deal with
this by allowing events to happen at a non-
deterministic time and by considering the atomic unit
of time to be the minimum possible time between two
events in the system.

5.1 Resources

The TSA description provides the name and node of a
resource. The attribute class and information specified
by the ClassAttributesReference keyword
appearing in Figure 1 are not relevant for the
properties that need to be checked. A resource can
have five states: Unknown, Online, Offline,
FailedOffline, and StuckOnline. A resource state is
Unknown when its state is not known by TSA for
some reason; a resource is Online when it is running
and Offline when it is not running. A resource is
FailedOffline when it is down with a fatal failure and
StuckOnline when it is running with a fatal failure.
Possible transitions (where a transition takes one
atomic unit of time) for the resource state are:

Unknown -> Unknown | Online | Offline |
FailedOffline | StuckOnline
Online -> Unknown | Online | Offline |
FailedOffline | StuckOnline
Offline -> Unknown | Online | Offline |
FailedOffline
FailedOffline -> FailedOffline
StuckOnline -> StuckOnline

The amount of time a resource stays in a specific
state is non-deterministic and independent of the
behavior of other resources. Resources, resource
groups, move groups and equivalencies are coded in
the PSL modeling language as an array. The first part
of the array codes the node and the second part codes
the state. For simplicity’s sake, in this paper we denote
the node and the state of a resource "r" by r.node and
r.state. Resource transitions are constrained by the
relationship (see Section 5.5). The type and parameters
specified by ClassAttributesReference are
related to the implementation of the resource and
therefore outside of the scope of this work -- they are
not needed to prove the Section 6 properties.
Constituent resources and resource references are
modeled as resources.

2 Resource groups

A resource group is coded in the PSL modeling layer
as an array, similar to the method used for resources.
The node of a resource group is relevant only if the
resource group is co-located, in which case it is the
node of its members. If the resource group is co-
located, the relevant co-location constraints between its
members are added to the list of relationships (see
Section 5.5). AllowedNode and ExcludeNode are
coded in a straightforward fashion as a PSL constraint
on the node fields of the resource group members. The
priority related fields have no impact on the properties
to be verified (they only give information to the TSA
engine on the way to implement the policy). The state
of a resource group RG is defined from the states of its
members, as follows:

RG.state := case
 all members are Online :
Online ;
 all members are Offline :
Offline ;
 one member is StuckOnline :
StuckOnline ;
 one member is FailedOffline :
FailedOffline;

 else :
Unknown ;
esac ;
5.3 Move groups
Only one of the move group members (constituent
resources) can be Online or StuckOnline at a given
time. Therefore if CR1,…,CRn, represent the
constituent resources of a move group, we add the
following PSL layer verification directive (the
assume statement enables us to specify an invariant):
assume always ((CR1.state in
{Online, StuckOnline} or…or
CRn.state in {Online, StuckOnline})
-> (CR1.state in {Online,
StuckOnline} xor … xor CRn.state in
{Online, StuckOnline})) ;

The state of a move group MG is defined from the
states of its members, as follows:

MG.state := case
 one of the members is online :
Online ;
 all members are StuckOnline :
StuckOnline ;
 all members are FailedOffline :
FailedOffline;
 else :
Offline ;
esac ;

If a move group is online, its node is the node of its
online constituent. Otherwise, its node is not relevant.
As for fixed resources, type and
ClassAttributesReference are not modeled.
5.4 Equivalencies
The state of an equivalency E is defined from the states
of its members, as follows: An equivalency is Online if
n of its members are Online (n being equal to the value
of the field MinimumNecessary).
E.state := case
 n members are Online :
Online ;
 all members is StuckOnline :
StuckOnline ;
 all members is FailedOffline :
FailedOffline;
 else :
Offline ;
esac ;

5.5 Relationships

Relationships are modeled as constraints using the PSL
verification layer directive assume (as in Section 5.3
assume statement allows us to specify an invariant).
This allows us to provide a formal description of TSA

policy relationships that are only informally described
in [18] and [19].

A StartAfter B means that A must start after B starts.
More precisely, when A starts, B should already be
online. This is translated to the following PSL
verification directive:
assume always(rose(A.state=Online)
-> (B.state=Online &
!rose(B.state=Online))) ;

This means the following property should be an
invariant of the model: when A goes online, B should
be online but did not go online at the same moment A
did (always p is PSL syntax for the LTL G p). This is
more complex than expected. Translation to PSL
allows a clearer and non-ambiguous description of the
relationships.
A StopAfter B means that A must stop after B does, i.e.,
when A stops, B is already offline:
assume always (fell(A.state=Online)
-> (B.state in {Offline,
FailedOffline} & !rose(B.state in
{Offline, FailedOffline}))) ;

A DependsOnAny B means that A cannot be online if B
is not online:
assume always (A.state=Online ->
B.state=Online) ;

The difference between A DependsOnAny B and A
StartAfter B is that with the former A and B can go
online at the same time, and B should stay online as
long as A is online.
A DependsOn B means that A DependsOnAny B and
A collocated B:
assume always (A.state=Online ->
(B.state=Online & A.node=B.node)) ;

A ForcedDownBy B means that when B is down, it
forces A to be down:
assume always(rose(B.state in
{Offline, FailedOffline}) -> next
(A.state in {Offline,
FailedOffline})) ;

We assume that A is forced down in one atomic unit of
time after B (next p is PSL syntax for LTL X p). This
restriction reduces the complexity but is very limiting
because there is no guarantee that TSA can bring down
A in only one atomic unit of time. However, this
relationship can also be modeled in a more general
way for a given k:
assume always(rose(B.state in
{Offline, FailedOffline}) ->

next_e[1..k](A.state in {Offline,
FailedOffline})) ;

In other words, when B goes into the Offline or
FailedOffline state, then A should go Offline or
FailedOffline with 1 to k atomic units of time
(next_e[1..k] p is PSL syntax for Xp | XXp | … |
XX…X p i.e., between 1 and k X operators). Generally
and without reference to any “clock”, the relationship
can be modeled as follows:
assume always(rose(B.state in
{Offline, FailedOffline}) ->
eventually! (A.state in {Offline,
FailedOffline})) ;

That is, if B goes into the Offline or FailedOffline
state, then A should eventually go Offline or
FailedOffline (eventually! p is PSL syntax for LTL F
p).
A Collocated B means that if A is online, A and B are
on the same node:
assume always ((A.state=Online) ->
A.node=B.node) ;

A Anti Collocated B means that if A is online, A and B
are not on the same node:
assume always ((A.state=Online) ->
A.node!=B.node) ;

A IsStartable B means that A can only run on a node
that B will be able to run on in the future (i.e., B is not
FailedOffline on this node):
assume always((A.state=online) ->
!(B.state=FailedOffline &
A.node=B.node));

A Collocated/IfOnline B means that if A is online and
B is online or StuckOnline, then A and B are on the
same node:
assume always ((A.state=online) ->
(B.state in {Online, StuckOnline} -
> A.node=B.node)) ;

AntiCollocated/IfOnline, Collocated/IfNotOnline,
AntiCollocated/IfNotOnline, Collocated/IfOffline,
AntiCollocated/IfOffline, Collocated/IfNotOffline and
AntiCollocated/IfNotOffline are defined in a similar
way.
5.6 Parameters and Initial State
Parameters (IBM.ApplicationAttributes,
IBM.ServiceIPAttributes, IBM.TestAttributes, and
IBM.TieBreaker) are not included in our model. They
describe the characteristics of the resources needed for
the automation. These characteristics are totally
independent of the relationships; therefore, we don’t

need to model them to prove properties on the
relationships.

TSA policies don’t specify the system’s initial state.
It is possible to either leave the initial state free (i.e.,
assign a non-deterministic value to each resource) or to
assign a fixed value such as Offline or Unknown. The
first option implies that every state is reachable, which
may be too general. Therefore the second option is a
safer choice.

6. Verification

Once the model is built, we can check PSL properties
against it in order to perform:

• Conflict detection and see if it is possible to
enforce all relationships,

• Validation of the policy specified to ensure it
is consistent with the capabilities of the
system

• Deadlock detection
• Loop detection.

We don't check how the system managed by TSA
behaves; rather, we check properties on the policy
controlling its behavior. For example, we check that
the policy is not over-constrained in ways that prevent
the system from running satisfactorily, we check that
the system can reach the desired state, and we identify
whether there exists a single point of failure with
regard to these properties. The following PSL
properties should hold for every policy:

1. assert EF nominal_state ;
2. assert AG EX true ;
3. assert AG (desired_state1 -> EF

desired_state2) ;
4. assert AG (desired_state1 -> EX

desired_state1) ;

where nominal_state is true when all resource
groups are in the desired states specified in the policy,
and desired_state1 and desired_state2
are chosen non-deterministically from all the desired
states of the system. A desired state of the system is a
state in which each resource group is in a known state,
and not failed or stuck. Thus there are two "good"
values per resource group – Online and Offline, and 2n
possible values of desired_state1 and
desired_state2.
Property 1 means the system can reach the nominal
state specified by the policy. Property 2 means the
system can always follow the policy; i.e., there is no
truncated path. Property 3 means that while running
and in a desired state, the system can reach any other
desired state (for instance, if resource group X is

offline, all other resource groups are online, and it is
desired to bring resource group X online and take
groups Y and Z offline, that can be done). Property 4
means that once the system reaches a desirable state, it
can stay there forever (this can be seen as some sort of
termination property; it ensures, for instance, that no
loop will prevent the system to stay as long as needed
in the desired state). RuleBase will automatically check
that the model is not empty. These properties are rather
different to the properties commonly used in hardware
verification like for example in [16]. The most
commonly used properties used for hardware
verification are safety properties and non-LTL
properties are rather uncommon.
In addition, we can look for a single point of failure by
checking the previous properties with any resources in
a terminal state that fails offline. For instance, for
Property 1, we can check that the nominal state can be
reached if resource r fails:
assert AG(r.state=FailedOffline ->
EF nominal_state) ;

This would check that nominal state can be reached
even if some resourced r failed.
The properties we have shown so far should hold for
every policy, and thus checking them can be
completely automated. In addition, it is possible to
perform policy-specific checks using RuleBase.
Although it allows thorough verification, these kinds
of properties must be manually coded and thus require
that the user have some knowledge of PSL. However,
if the user is willing to write PSL properties, the
verification is no more difficult than push-button
conflict detection. For instance, the following is a
hand-coded property for the policy described in
Section 7:
assert (!(XI_ABAP_LOP_node1=Online
| XI_ABAP_LOP_node2=Online) until
!(XJ_JEE_LOP_node1=Online |
XJ_JEE_LOP_node2=Online)) ;

i.e. if the ABAP stack did not start yet on either of the
two nodes, then the JEE stack cannot have started
either on either of the nodes.
We built an ad hoc translator that semi-automatically
translates the XML TSA policy into a model
(described in the previous section) and extracts
definitions needed for the automated properties. Then,
we checked these properties with the RuleBase PE
model checker. We verified several real-life TSA
policies, one of which is described in the next section.

7. Case Study

In this section, we describe the verification of a
TSA policy for SAP and the experiments we used to
check the scalability of our approach.

7.1 SAP System

Our work describes a TSA policy for a highly
available SAP system with a J2EE application server.
For more details, see [12]. SAP is widely acclaimed
ERP software from SAP AG. We consider a minimum
hardware setup as consisting of a two-node TSA
domain. The two nodes are either physical machines or
dynamic logical partitions (LPAR) with each LPAR
running on a different physical machine. The machines
must be connected via a network, for example, Gigabit
Ethernet. Also, each machine needs access to a shared
database and SAP data, for example, as provided by a
Storage Area Network (SAN) attached disk subsystem,
which is attached to each node via a fiber channel.
As required in a two-node TSA domain, we dedicated
a third, very small, FAStT-disk as the TSA quorum
disk. This disk is not shown in the following figure and
is exclusively used as a quorum disk, functioning as a
tie-breaker in the tested two-node domain.
Each machine/LPAR must be capable of running the
basic SAP program resources that TSA for Multi-
Platform make highly available via ‘switch-over’
groups. These program resources include the NFS
server, the database server, and at least one application
server instance (e.g., the Advanced Business
Application Programming (ABAP) SAP Central
Service (ASCS), and/or the SAP Central Service (SCS)
instance).
A SAP system needs utility programs. If the SAP
Router or SAP Web Dispatcher program is used, it
must also be highly available. In addition, TSA MP
should automate the SAP Operating System COLlector
(SAPOSCOL) program.
Figure 4 illustrates a sample two-node TSA domain. It
shows all basic program resources and their
corresponding switch-over groups for a SAP system
running an ‘add-in’ application server (such as SAP
XI). The utility programs are not shown. Each add-in
application server consists of a J2EE Central/Dialog
Instance and an ABAP Dialog Instance; therefore, we
also need the ASCS and the SCS instances in parallel.

The Highly Available sample policy for SAP version
4.0 is required to automate the setup. This version
enhances ABAP-only SAP systems to J2EE-only SAP
systems and extends to the most complicated SAP

systems that cover both ABAP and J2EE stacks. From
the TSA MP viewpoint, J2EE-only SAP systems are
very similar to ABAP-only SAP systems. This is
different from SAP systems that support ABAP and
J2EE stacks simultaneously, such as SAP XI. An add-
in system runs two SAP Central Service instances, an
ASCS and a J2EE SCS in parallel, and the add-in
application server. An add-in application server is
physically one instance (running both ABAP and J2EE
stacks) with two logical parts: the ABAP application
server instance and the J2EE application server
instance. In other words, within a TSA domain, one
add-in application server instance is automated as two
logical application server instances. However, there is
a tight relationship between the two logical application
servers, in that the J2EE instance always starts after the
ABAP instance. This StartAfter relationship
guarantees that starting the J2EE instance immediately
triggers the start of the ABAP instance. On the other
hand, stopping the J2EE application server does not
stop any of the add-in server processes; it only stops
the monitoring ‘java GetWebPage’ Java program,
which does a primitive health check of the J2EE
application server.
The High Availability SAP policy has two nodes,
where each node has three resources (XI_J2EE_LOP,
SAP_SYS_SAPOSCOL_EXE, and XI_ABAP_LOP),
forty-four constituent resources, and two referenced
resources (network interfaces). These resources are
grouped into fourteen resource groups, twenty-two
move groups, and six equivalencies. There are forty
explicit relationships (not including the co-located
relationships from the resource groups).

The translation into the PSL modeling language and
RuleBase backend processing provides us with a final
model of about 250 variables. RuleBase solves any
properties defined in the previous section in less than
one minute with a BDD-based engine. Previously, the
SAP policy was thoroughly tuned and tested; therefore
we did not find bugs. However, we found the bugs we
artificially inserted without difficulty. In addition, we
were able to identify single points of failure of this
policy.

7.2 Scalability

To test the scalability of our approach, we combined
two large policies for TSA for Multi-Platform (SAP
and STK policies) to create a very large policy. We
made each of the SAP resource group dependents of
the “goal” of the STK policy using the relevant
relationships. An average TSA for Multi-Platform

policy has about half the size of either SAP or STK
policies, so the combined policies is roughly speaking
four times the size of the average policy. The result
was a policy whose translation into the PSL modeling
layer and RuleBase backend processing provides us
with a final model of about 460 variables. RuleBase
was able to verify any of the previously defined
properties in less than one minute with classical
backward BDD-based model-checking. Therefore, we
are confident that our approach can tackle most of the
TSA for Multi-Platform policies, as SAP and STK
policies are large by TSA standards.
For huge policies that would take too much time to
process we can use abstractions in order to get a more
manageable model. For instance, there are five
different resource states; therefore, the state of every
resource has to be coded on three bits (i.e., three state
variables). In order to be able to code resource state on
2 bits, we can omit the FailedOffline and StuckOnline
terminal states for checking most properties. For
example, for the property EF nominal_state, if
the desired states specified in the policy are non-
terminal states (which is likely, since the terminal
states are failure states), then if the property holds for
the model with terminal states, it holds against the
model without terminal states. This simple abstraction,
allows for example to shrink the final model for the
composition of SAP and STK policies by more than
20%.

8. First-order headings

We presented a model checking approach for policy
verification using the specific case study of TSA. TSA
relationships are translated in a straightforward manner
into PSL properties and then checked with RuleBase.
We conducted experiments on real-life industrial
policies to validate our approach.
We plan to develop a fully automated verification
solution for TSA for Multi-Platform. This will allow
faster tuning and complete verification of TSA
policies, and foster an increase in productivity. In
addition, we are working on the modeling and formal
verification of TSA for z/OS policies [20]. Contrary to
expectations, this is not straightforward. TSA for z/OS
has different syntax and more importantly, semantics,
from the TSA for Multi-Platform, and typical TSA
policies for z/OS encompass a number of variables that
are one to two orders of magnitude larger than typical
TSA MP policies. That said, the complexity of z/OS
policies makes their verification even more critical.

Acknowledgments. The authors wish to thank Oliver
Andersen, Enrico Joedecke, Markus Mueller, and
Thomas Lumpp for their help and explanations about
TSA for Multi-Platform, and Dana Fisman, Sharon
Keidar-Barner, Avigail Orni and Sitvanit Ruah for
helpful discussions.

9. References

1. Dakshi Agrawal, Seraphin Calo, James Giles, Kang-

won Lee, and Dinesh Verma. Policy Management of
Networked Systems and Applications. In Proc. of Ninth
IFIP/IEEE International Symposium on Integrated
Network Management (IM 2005), IFIP/IEEE 2005.

2. E.M. Clarke and E.A. Emerson, "Design and synthesis
of synchronization skeletons using Branching Time
Temporal Logic". In Proc. of Workshop on Logics of
Programs, LNCS 131, Springer, 1981.

3. E.A. Emerson and J.Y. Halpern, "'Sometimes' and 'Not
Never' Revisited: On Branching versus Linear Time
Temporal Logic", Journal of the Association for
Computing Machinery, Vol. 33, No. 1, January 1986.

4. Cindy Eisner, Dana Fisman. A Practical Introduction to
PSL. Springer, August 2005.

5. Sandeep K. Shukla and Rajesh K. Gupta. A Model
Checking Approach to Evaluating System Level
Dynamic Power Management Policies for Embedded
Systems. Sixth IEEE International High-Level Design
Validation and Test Workshop (HLDVT'01), IEEE
Computer Society Press, 2001.

6. S. Jha and T. Reps. Analysis of SPKI/SDSI certificates
using model checking. In Computer Security
Foundations Workshop (CSFW), June 2002.

7. A. Pnueli. A Temporal Logic of Concurrent Programs.
In Theoretical Computer Science, Vol 13, 1981.

8. A. Pnueli and R. Rosner. On the synthesis of a reactive
module. POPL '89: Proc. of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages. ACM Press, 1989.

9. Andreas Schaad, Volkmar Lotz, and Karsten Sohr. A
model-checking approach to analysing organisational
controls in a loan origination process. Proc. of the
Eleventh ACM Symposium on Access Control Models
and Technologies, 2006.

10. Carsten Sinz, Thomas Lumpp, Jürgen M. Schneider,
and Wolfgang Küchlin. Detection of dynamic execution
errors in IBM system automation's rule-based expert
system. Information & Software Technology 44(14),
2002.

11. Carsten Sinz, Wolfgang Küchlin, and Thomas Lumpp:
Towards a Verification of the Rule-Based Expert
System of the IBM SA for OS/390 Automation
Manager. Asia-Pacific Conference on Quality Software,
APAQS IEEE Computer Society 2001.

12. Volker Schölles. Setup and Policy to make a SAP
system with J2EE Application server (like XI or EP)
highly available with TSA MP, 2006.

13. R. S. Street. Propositional Dynamic Logic of Looping
and Converse is Elementary Decidable. Information and
control, 54(1/2), 1982.

14. Moshe Y. Vardi. An Automata-Theoretic Approach to
Fair Realizability and Synthesis. In Proc. Of Computer
Aided Verification, 7th International Conference (CAV),
LNCS 939, Springer, 1995.

15. S. Wright, R. Chadha, and G. Lapiotis, (eds): Special
issue on Policy based Networking, IEEE Networking 16,
2002.

16. Emmanuel Zarpas. A Case Study: Formal Verification
of Processor Critical Properties, Correct Hardware
Design and Verification Methods: CHARME 2005,
LNCS 3725, Springer 2005.

17. Nan Zhang, Mark D. Ryan and Dimitar Guelev,
Evaluating Access Control Policies Through Model
Checking. Eighth Information Security Conference
(ISC'05). LNCS 3650, Springer, 2005.

18. IBM Tivoli System Automation for Multi-platforms,
Guide and Reference, version 1.2, IBM, 2004.

19. IBM Tivoli System Automation for Multi-platforms,
Base Component Reference, version 2.1.1, 2006.

20. Tivoli System Automation for z/OS, Defining
Automation Policy, July 2006.

21. IEEE Standard for Property Specification Language
(PSL) IEEE Std. 1850-2005, 2005.

22. RuleBase User Parallel Edition, User Manual, June
2006.

http://www.ibm.com/research/people/a/agrawal
http://www.ibm.com/research/people/g/gilesjam
http://www.ibm.com/research/people/k/kangwon
http://www.ibm.com/research/people/k/kangwon
http://www.ibm.com/research/people/d/dverma
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Sandeep%20K.%20Shukla
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Rajesh%20K.%20Gupta
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/hldvt/&toc=comp/proceedings/hldvt/2001/1411/00/1411toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/hldvt/&toc=comp/proceedings/hldvt/2001/1411/00/1411toc.xml
http://portal.acm.org/results.cfm?query=author%3AP314690&querydisp=author%3AAndreas%20Schaad&coll=ACM&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/results.cfm?query=author%3AP292291&querydisp=author%3AVolkmar%20Lotz&coll=ACM&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/results.cfm?query=author%3AP471894&querydisp=author%3AKarsten%20Sohr&coll=ACM&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sinz:Carsten.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lumpp:Thomas.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Schneider:J=uuml=rgen_M=.html
http://www.informatik.uni-trier.de/~ley/db/journals/infsof/infsof44.html#SinzLSK02
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sinz:Carsten.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Lumpp:Thomas.html
http://www.informatik.uni-trier.de/~ley/db/conf/apaqs/apaqs2001.html#SinzKL01
http://domino.research.ibm.com/comm/research_people.nsf/pages/zarpas.pubs.html/$FILE/charme05.pdf
http://domino.research.ibm.com/comm/research_people.nsf/pages/zarpas.pubs.html/$FILE/charme05.pdf
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/05-isc.pdf
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/05-isc.pdf

LPAR 2 (machine 2) LPAR 1 (machine 1)

J2EE Scheme

ABAP Scheme

DB2

NFS
shared

ASCS

Database

SCS

J2EE CI
ABAP DI

J2EE DI
ABAP DI

ERS

NFS

ERS
switch-over group SCS

switch-over group ASCS

switch-over group NFS

switch-over group DB

Figure 4 Two node domain setup for SAP system

	1. Introduction
	2. Preliminaries
	3. Method
	4. TSA Policy Description
	5. Modeling
	5.3 Move groups
	5.4 Equivalencies

	6. Verification
	7. Case Study
	8. First-order headings
	9. References

