
H-0258 (H0506-002) June 8, 2005
Computer Science

IBM Research Report

Automata Construction for On-the-Fly Model Checking
PSL Safety Simple Subset

Sitvanit Ruah1, Dana Fisman1,2, Shoham Ben-David3*

1IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

2Weizmann Institute of Science

3University of Waterloo

*Work done while at IBM Haifa Research Lab

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Automata construction for on-the-fly Model
Checking PSL Safety Simple Subset?

Sitvanit Ruah1 Dana Fisman1,2 Shoham Ben-David3??

1 IBM Haifa Research Lab
2 Weizmann Institute of Science

3 University of Waterloo

April 23, 2005

1 Introduction

Symbolic model checking has been found extremely efficient in the verification
of hardware designs, and has been widely adopted in industry in recent years.
While traditional model checkers ([McM93]) used the temporal logics ctl or ltl
as their specification language, contemporary industrial languages, have sought
ways to make the specification language easier to learn and use. The temporal
language psl [Acc04], which has been standardized by the Accellera standards
organization, augments ltl with new language constructs, including Regular
Expressions.

In order to be model-checked, a psl formula needs to be translated into a
verifiable form, usually an automaton. In this paper we present the translation
into automata of a subset of psl called SafetyPSLdet. This subset, as can be
understood by its name, consists of safety properties. Such properties are of spe-
cial interest, because they can be model checked efficiently, as will be explained
in the sequel.

A property is considered to be safe if its violation can be detected by a
finite path. Formally, consider a language L of finite and infinite words over an
alphabet Σ. A finite word u over Σ is a bad prefix for L iff ∀v ∈ Σ∗ ∪ Σω,
uv 6∈ L. A language L is a safety language if every word not in L has a finite
bad prefix.

Model checking of a general linear property ϕ involves the construction of
a Büchi automaton B¬ϕ, of size exponential in ϕ, that accepts exactly all the
infinite computations violating the property ϕ. Model checking ϕ is done by
checking the emptiness of the product of the model M and B¬ϕ [VW86]. For
safety properties, however, we can many times do better. Since computations
violating a safety formula are all finite, a finite automaton A can detect them.
Model checking can then be reduced to invariant checking, with the invariant
being “A is not in an accepting state”. Invariant checking is typically easier to

? This work was supported in part by the European Commission (FP6 STREP
PROSYD contract no. 507219)

?? The work of this author was done while working at IBM Haifa Research Lab

perform, as it can be done “on-the-fly” [BBL98], while searching the reachable
state-space. A bug, if exists, can be found before computing the whole reachable
state-space. The reduction to invariant checking is important also because simu-
lation tools as well as many model-checking engines such as SAT-based engines
perform better (if not only) on invariant checking.

This paper presents an automata construction for SafetyPSLdet, thus reduc-
ing the verification of formulas in this subset into invariant checking. The subset
SafetyPSLdet of psl formally defined in section 3.3, is an extension of both the
safety simple subset of psl [Acc04], and the safety common fragment of ltl and
actl [Mai00]. We give a direct translation from SafetyPSLdet into a co-universal
automaton, that does not involve an intermediate representation. In the next sec-
tion we compare our work to related results. Section 3 gives some preliminaries.
Section 4.2 is the main section of the paper, where the construction is given.
The correctness of the construction is given in Section 5

2 Related Work

In this section we discuss related work on the subject. First we describe other
results and then compare to ours.

Kupferman and Vardi [KV99] have shown that in the worst case, the size of
an automaton on finite words accepting the set of bad prefixes of a safety ltl
formula is doubly-exponential in the size of the formula. Since ltl is a subset of
psl this lower bound holds for psl safety formulas as well.

Most optimizations used in the literature for automata for ltl formulas use
an automata construction that works for a general ltl formula and then perform
reductions on the resulting automaton. Such an approach is taken by Bloem et
al [BRS99]. They classify Büchi automata into three classes according to the
number of fixed-points that have to be computed for each class. When the Büchi
automaton is terminal it can be composed with the model and used for on-the-fly
model checking. Given an ltl formula they construct a Büchi automaton and
then check in polynomial time whether it is terminal.

Another approach is based on known characteristics of the formula. Beer et
al [BBL98] address rctl formulas with a restricted syntax, and use the informa-
tion on the syntax to construct efficient automata. They show how to transform
a safety rctl formula f into a regular expression accepting all bad prefixes of
f . Thus producing a linear finite automaton that detects violation of the given
property. This automaton can run in parallel to the system and detect states in
which the property is violated. The verification is done on-the-fly during com-
putation of the reachable states of the system.

Kupferman and Vardi [KV99] address ltl properties that are known to be
safety properties and show how to construct automata for on-the-fly model check-
ing for such formulas. For formulas that are syntactically safe, that is formulas
in positive normal form constructed with the temporal connectives X and V,
they construct an alternating automaton detecting bad prefixes, that is linear in
the size of the formula. The automaton is then translated into a nondetermin-

istic automaton on finite words which is of size exponential in the length of the
formula.

Comparison to our work
Our algorithm

– constructs an optimized linear co-universal automata for a subset of syntac-
tically safe ltl properties

– adds support for sere formulas, which makes the size of the finite automata
exponential in the length of the formula.

– constructs the automata without going through an alternating automata.
– is symbolic in the following sense: the alphabet of our automata are boolean

expression over the given set of atomic propositions, rather than interpreta-
tion of the truth value of the given set of atomic propositions.

We take the approach of [BBL98] and extend it. Our approach is different
than [BRS99] and [KV99] in the following aspects:

– We first checks the syntax of the formula falls in the subset we are interested
in and then construct the most efficient automaton for it.

– It constructs a co-universal automaton on finite words without going through
a Büchi automaton.

– For the ltl subset supported the automaton on finite words we construct
is linear in the length of the formula while the automaton of [KV99] and
[BRS99] is exponential in the length of the formula.

– In [BRS99,KV99] the alphabet is 2P while in our automaton the alphabet
is the set of boolean expressions over P . This “symbolic” nature makes our
automaton more succinct.

– We support sere formulas that are not addressed in [BRS99,KV99].

Our results extend the results of [BBL98] in several ways:

– Support for ltl instead of actl by using the definition of the common
fragment of ltl and actl [Mai00].

– Support a larger subset of formulas, i.e. the closure of the union of the safety
simple subset of psl and the common fragment of ltl and actl.

– [BBL98] go through a regular expression before constructing the automaton.
We construct the automaton directly and therefore enjoy the more relative
strength advantage of an automaton over a regular expression.

3 Preliminaries

Notations

We denote a letter from Σ by s (possibly with subscripts) and a word from Σ by
u, v, or w. The concatenation of u and v is denoted by uv. If u is infinite, then
uv = u. The empty word is denoted by ε, so that wε = εw = w. If w = uv we say

that u is a prefix of w, denoted u ¹ w, that v is a suffix of w, and that w is an
extension of u, denoted w º u. Let L1 and L2 be sets of words. The concatenation
of L1 and L2, denoted L1L2 is the set {w | ∃w1 ∈ L1, ∃w2 ∈ L2 and w = w1w2}.
Define L0 = {ε} and Li = LLi−1 for i ≥ 1. The Kleene closure of L denoted L∗

is the set
⋃

i<ω Li.1 The infinite concatenation of L to itself is denoted Lω.
We denote the length of a word w by |w|. The empty word w = ε has length

0, a finite non-empty word w = (s0s1s2 · · · sn) has length n + 1, and an infinite
word has length ∞. We use i, j, and k to denote non-negative integers. For
i < |w|, we use wi to denote the (i + 1)th letter of w (since counting of letters
starts at zero).

Given a set V of typed state variable over finite domains. We define by ΣV

the set of type-consistent interpretations of V (assigning to each variable p ∈ V

a value in its domain). We use Σ̂V to denote the set ΣV ∪ {>,⊥}. We use w to
denote the dual of a word w which is the word obtained from w by replacing >
with ⊥ and vice versa. We denote by BoolV the set of boolean expression over
V , which we identify with 2ΣV . For a boolean expression b ∈ BoolV and a letter
` ∈ Σ̂V we define the boolean satisfaction relation as follows. For ` ∈ ΣV , we
define ` b ⇐⇒ ` ∈ b. We define > b and ⊥ / b.

3.1 A co-universal automaton on finite/infinite words (cua)

The finite automata for finite words we work with are co-universal automata.
That is non-deterministic automata where acceptance is determined by the fact
that all possible runs do not visit the set of bad states. These automata de-
tect all bad prefixes of safety formulas in the subset we consider. Thus for
a property f model checking can be done by verifying the invariant property
AG¬“the automaton for f is in a bad state”

Definition 1 A co-universal automaton automaton on finite/infinite words (cua)
C is a tuple C = 〈V, , Q,Q0, δ, B〉 consisting of the following components:

– V = {p1, . . . , pn}: A finite set of typed state-variables.
– Q: A finite set of automata locations.
– Q0 ⊆ Q - A set of initial locations.
– δ ⊆ Q×BoolV ×Q - A transition relation. This is a set of triples (q1, b, q2)

relating location q1 ∈ Q to one of its successor locations q2 ∈ Q under an
input letter ` ∈ Σ̂V satisfying b ∈ BoolV (i.e., ` b).

– B ⊆ Q - A set of bad locations.

Let C be an cua for which the above components have been defined. The
input to C is a finite/infinite word w = w0w1 . . . ∈ (Σ̂∗

V ∪ Σ̂ω
V). We define a run

of C over a word w = w0w1 . . . to be a finite or infinite non-empty sequence
σ : q0q1 . . . of locations in Q satisfying the requirements of initiality i.e. that
q0 ∈ Q0; and of consecution i.e. that for each j = 0, 1, . . . , there exists b ∈
BoolV such that (qj , b, qj+1) ∈ δ and wj b. A run satisfying the requirement

1 Here ω denotes the first transfinite ordinal number.

of maximality i.e. that it is either infinite, or terminates at a location qk which
has no successors is termed a maximal run. A word w is accepted by an cua iff
a run of cua over w never reaches a state in B. A run σ : q0q1q2 . . . qn+1 . . . of
C over a word w is said to be accepting w iff qi 6∈ B, 0 ≤ i < |w|. The cua C
accepts a word w iff every run σ = q0, q1 . . . of C over w is accepting. The cua C
is deterministic iff ∀b ∈ BoolV and ∀q, q1, q2 ∈ Q such that q1 6= q2: (q, b, q1) ∈ δ
implies (q, b, q2) /∈ δ (i.e., for each state q and each label b there is at most one
transition labeled by letter b exiting the state q).

3.2 Regular Expressions

Regular expressions (res) over a given alphabet Γ are defined as follows. For
our purpose the alphabet will be BoolV , the definition below, however is for a
general alphabet Γ .

Definition 2 (Regular expressions (res) over alphabet B).

– The empty set ∅ and the empty regular expression λ are res.
– Every b ∈ Γ is an re.
– If r, r1, and r2 are res, then the following are also res:

1. r1 ∪ r2 (union) 2. r1 · r2 (concatenation) 3. r∗ (Kleene closure)

The language defined by a regular expression is defined as follows [HU79].

Definition 3 (The Language of res) Let Γ be a an alphabet. Let b be a let-
ter in Γ and r, r1, and r2 res over Γ . The set L(r), defined below, denotes the
set of words over Γ satisfying r according to the traditional semantics of regular
expressions.

• L(∅) = ∅ • L(r1∪ r2) = L(r1) ∪ L(r2)
• L(λ) = {ε} • L(r1· r2) = L(r1)L(r2)
• L(b) = {b} • L(r∗) = L(r)∗

The semantics given by psl to res relates res over BoolV with words over Σ̂V

rather than words over BoolV as done in the traditional semantics (Definition 3).

Definition 4 (Semantics of res over boolean expressions) Let V be a set
of state variables. Let r, r1, r2 be regular expressions over the alphabet BoolV .
The semantics relates regular expressions over BoolV with finite words over the
alphabet Σ̂V . The notation v |≡ r, where r is an re and v a finite word means that
v models tightly r. The semantics of res are defined as follows, where b denotes
a boolean expression in BoolV , and r, r1, and r2 denote res over BoolV .

– v |≡ b ⇐⇒ |v| = 1 and v0 b

– v |≡ r1 · r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1, and v2 |≡ r2

– v |≡ r1 ∪ r2 ⇐⇒ v |≡ r1 or v |≡ r2

– v |≡ r∗ ⇐⇒ either v = ε or ∃v1, v2 s.t. v1 6= ε, v = v1v2, v1 |≡ r and v2 |≡ r∗

We use S(r) to denote the set {w ∈ Σ̂∗
V | w |≡ r}

PSL extends regular expression with operations such as fusion (◦) and inter-
section (∩) that do not add expressive power but add succinctness. The extended
expressions are referred to as seres. It is well known that res (and seres) are
as expressive as automata on finite words, and in particular non-deterministic
automata on finite words (nfas). Moreover, for any re r one can construct an
nfa Nr linear in the size of r accepting the same language [HU79,BFR04a].
Transformation of seres into equivalent nfa appear in [BFR04b]. In the follow-
ing we do not distinguish between res and seres, and refer to both simply as
regular expressions or res.

The distinction between the langauge of regular expression (as given in Def-
inition 3) and its semantics (as given in Definition 4) involves some subtleties.
The language of a regular expression is defined over a syntactic alphabet while
the semantics is defined over a semantic alphabet. In particular, the language of
the intersection of the letters a and b over the alphabet of boolean expressions
is given by L(a ∩ b) = L(a) ∩ L(b) = ∅ (because a syntactic letter can be either
a or b, but not both), the semantics of the intersection of a and b is given by
S(a ∩ b) = {w ∈ Σ̂∗

V | |w| = 1 and w a and w b} 6= ∅ (because a semantic
letter ` can satisfy both a and b at the same time).

3.3 The Logic

The logic SafetyPSLdet is the closure of the union of the safety common fragment
of ltl and actl [Mai00] and the safety simple subset of psl [Acc04]. It is
formally defined as follows.

Definition 5 (SafetyPSLdet formulas) If b is a boolean expression, r is an
re and f , f1 and f2 are SafetyPSLdet then the following are in SafetyPSLdet:

1. b!
2. r
3. f1 ∧ f2

4. X! f
5. (b ∧ f1) ∨ (¬b ∧ f2)
6. [(b ∧ f1) W (¬b ∧ f2)]
7. r → f

The safety common fragment of ltl and actl, denoted SafetyLTLdet is the
subset of formulas of SafetyPSLdet involving no regular expressions.

The safety part of the psl simple subset defined in the psl language reference
manual [Acc04] is a subset of SafetyPSLdet. This since the restrictions on the
operands of ∨ and W in [Acc04] are stronger then the restrictions in Definition 5.
Therefore the algorithm we give here applies to the psl safety simple subset.

Definition 6 (Semantics of SafetyPSLdet) Let w be a finite or infinite word,
b be a boolean expression, r, r1, r2 res, and f, f1, f2 SafetyPSLdet formulas. We

use |= to define the semantics of SafetyPSLdet formulas: If w |= f we say that
w models (or satisfies) f .2

1. w |= b! ⇐⇒ |w| > 0 and w0 b

2. w |= r ⇐⇒ ∀ finite non-empty v ¹ w, ∃ non-empty u ¹ v>ω s.t. u |≡ r.
3. w |= f1 ∧ f2 ⇐⇒ w |= f1 and w |= f2

4. w |= X! f ⇐⇒ |w| > 1 and w1.. |= f

5. w |= (b ∧ f1) ∨ (¬b ∧ f2) ⇐⇒
either (w0 b and w |= f1) or (w0 ¬b and w |= f2)

6. w |= [(b ∧ f1) W (¬b ∧ f2)] ⇐⇒
either (∃k < |w| s.t. wk ¬b, wk.. |= f2, and ∀j < k, wj b and wj.. |= f1)
or (∀j < |w|, wj b and wj.. |= f1)

7. w |= r → f ⇐⇒ ∀j < |w| s.t. w0..j |≡ r, wj.. |= f

We use [[ϕ]] to denote the set {w ∈ Σ̂∞ | w |= ϕ}

Note that the semantics of a weak re r is such that r may be assumed non-
empty. That is [[r]] = [[r′]] where r′ is such that L(r′) = L(r) \ {ε}. Similarly,
by the semantics of suffix implication [[r → f]] = [[r′ → f ′]] where r′ and f ′ are
such that L(r′) = L(r) \ {ε} and [[f ′]] = [[f]] \ {ε}. We therefore assume without
loss of generality that ε 6∈ L(r) and that ε 6∈ [[f]] for any sub-formula r or r → f .

4 Automata Construction for SafetyPSLdet Formulas

In this section we show how to construct a cua for any SafetyPSLdet formula.
This cua shall be used for checking whether it holds on a given model as follows.

In order to check that the model M (given as a discrete transition system
dts DM , see Section A.1) satisfies a SafetyPSLdet formula f we perform the
following:

1. Construct a cua for the formula f denoted cua(f) (as described in Sec-
tion 4.2 below).

2. Construct the dts corresponding to cua(f) denoted Df (as described in
Section A.2 of the appendix).

3. Verify that DM ||| Df |= AG ¬(at bad state of Df).

For most of the operators we build a non-deterministic cua. An exception is
the weak re operator r, where we need determinization. Intuitively, the reason
weak res need determinization is as follows. The semantics of a weak re r

2 The semantics given here is equivalent to the semantics given in psl [Acc04]. The
semantics given in psl are defined directly for a set of core operators, and by syn-
tactic sugaring for the other operators. Here, we gave a direct semantics to some
operators which are given as syntactic sugaring in psl. The proof of equivalence
appears in [HFE04].

stipulates that either there exists a prefix of the word that matches tightly r or
every prefix of the given word, can be extended with some number of >’s so that
the resulting word matches tightly r. That is, an automaton for r should accept
a word if there exists an accepting run on a prefix of a word, possibly extended
by some >’s. However, the construction works with co-universal automata that
accepts a word iff all runs are accepting. Applying determinization to the nfa
for r we obtain an automaton with a single run, thus treating it as a universal
automaton makes no difference.

First we describe the construction for a weak re, then we describe the con-
struction for the other SafetyPSLdet operators.

4.1 Constructing a deterministic cua accepting r

Our construction makes use of non-deterministic automata on finite words (nfa)
accepting traditional regular expression. That is, given a regular expression r we
assume Nr = 〈BoolV , Q, Q0, δ, F 〉 is an nfa accepting L(r) [HU79].3 We say
that Nr is a “syntactic nfa” since it accepts L(r) rather than S(r). That is the
alphabet of Nr is a subset of BoolV and Nr does not check the semantics of
letters in its input, but rather checks that they are syntactically the same as a
letter in δ. For example, let r = a · b ∗ ·c then the word w1 = abc ∈ L(r) and
therefore is accepted by N while w2 = (a ∧ b) · b ∗ ·c 6∈ L(r) and is not accepted
by N (though w2 ∈ S(r)).

As noted in Section 3.2, there are some subtleties between the language of a
regular expression and its semantics. A thorough study of the precise nature of
these differences is beyond the scope of this paper. The differences spill over into
the theory of the relationship between regular expressions and finite automata
and the theory of finite automata themselves. For instance, consider the automa-
ton of Figure 1. In traditional automata theory (i.e. judging by its language) it is
deterministic. In our usage (i.e. judging by its semantics) it is non-deterministic,
and its deterministic version is given in Figure 2.

a

q1 q2

b

Fig. 1. A non-deterministic automaton accepting the language of a∗·b

3 We assume N has no ε transitions.

true

a ∧ ¬b

q0

a ∧ b

¬a ∧ b

¬a ∧ ¬b

a ∧ ¬b
¬a ∧ b

a ∧ b

q1 q1,2 q2

¬a ∧ ¬b

Fig. 2. Deterministic version of Figure 1, accepting the semantics of a∗·b

The determinization construction

Proposition 7. Let r be an re over the state variables V and let w be a word
over ΣV . There exists a deterministic co-automaton Cr of size 2O(r) such that

Cr accepts w iff w |= r.

Below we provide the construction, we give the proof in Section 5.
Let N = 〈Bool, Q,Q0, δ, F 〉 be a non-deterministic finite automata on finite

words. We build a deterministic co-automaton corresponding to N , dca(N) =
〈V, Qd, Qd

0, δ
d, Bd〉 using the subset construction procedure with some modifica-

tions to capture the “semantic” nature of the alphabet Bool.
Let V be the set of state variables over which Bool is defined. Let qsink be a

new state. States in Qd are subsets of Q∪{qsink}. The initial state of dca(N) is
Qd

0 = {q | q ∈ Q0}. Let S be a subset of Q∪{qsink}. To construct all the out going
edges from S in the deterministic co-automaton we need to enumerate the set
of mutually-disjoint conditions that can hold at state S. In case we fall of N we
add a corresponding transition to the sink state qsink. For example, if S = {1, 2}
and in N we have the edges (1, a, 2) and (2, b, 3) then in the dca we will have the
edges ({1, 2}, a ∧ b, {2, 3}), ({1, 2},¬a ∧ b, {qsink, 3}), ({1, 2}, a ∧ ¬b, {2, qsink}),
({1, 2},¬a ∧ ¬b, {qsink}).

Formally, a state S in the dca is expanded as follows. Denote the set of
outgoing transitions from states in S in N by

outgoing(S) = {(s1, `, s2) ∈ δ|s1 ∈ S}.

Denote by conditions(S) the set

{` ∈ Bool|(s1, `, s2) ∈ outgoing(S)}.

Every subset P of conditions in conditions(S) forms one edge in the dca. The
condition on this edge is

det edge cond(P) = (
∧

`∈P

`) ∧ (
∧

`∈conditions(S)\P
¬`).

Denote by succ(S, P) the dca state reached from S when det edge cond(P)
holds. That is

succ(S, P) =
{{s2 ∈ Q|(s1, `, s2) ∈ outgoing(S), ` ∈ P} if P = conditions(S)
{s2 ∈ Q|(s1, `, s2) ∈ outgoing(S), ` ∈ P} ∪ {qsink} otherwise

Define δd(S) =
⋃

P⊆conditions(S)
(S, det edge cond(P), succ(S, P)). Define

δ̂ =
⋃

S∈2Q∪{qsink}

δd(S)

The automaton given by the above set of state (2Q∪{qsink}), the above initial
state ({q|q ∈ Q0}), the transition relation δ̂ and the set of bad states {qsink} is a
deterministic co-automaton accepting the language of the given re. However, we
are interested in the minimal deterministic co-automaton. We thus build the set
of reachable states, and restrict the set of states as well as the other components
accordingly.

Denote by Reach(Q ∪ {qsink}) the set of states in 2Q∪{qsink} that are reach-
able from Qd

0. That is

Reach(Q ∪ {qsink}) = {S ∈ 2Q∪{qsink}|S = Qd
0 or

there exist S0, . . . , Sn−1 ∈ 2Q∪{qsink}, S0 = Qd
0

`0, . . . , `n−1 ∈ Bool, `i 6≡ false,

(Si, `i, Si+i) ∈ δ̂, 0 ≤ i < n− 1,

(Si, `n−1, S) ∈ δ̂}

dca(N) = 〈V, Qd, Qd
0, δ

d, Bd〉 where

– Qd = Reach(Q ∪ {qsink})
– Qd

0 = {q|q ∈ Q0}
– δd =

⋃
S∈Qd δd(S)

– Bd = {qsink}.

4.2 The full construction

Theorem 8. Let f be a SafetyPSLdet formula over the state variables V and
let w be a word over ΣV . Then there exists an cua Cf such that

w |= f ⇐⇒ Cf accepts w

and Cf is of size O(|f |) if f contains no sub-formulas of the form r (weak regular
expressions) and is of size 2O(|f |) otherwise.

F

F

nfa of r

q1 q3q2

b0

b0

b1

b1 qn

bnb2 q4

¬b1 ∧ ¬b2

¬b1 ∧ b2

b0q1

¬b0

qs

b1 ∧ b2

b1 ∧ ¬b2

q2,3 q2,3,4 q4,s q2,s

B

Fig. 3. A dca for r

Below we provide the construction, we give the proof in Section 5.
Let r be an re such that ε 6∈ L(r), b a boolean expression, f1, f2, f formulas in

SafetyPSLdet. For the induction hypothesis, let cua(f1) = 〈V 1, Q1, Q1
0, δ

1, B1〉
and cua(f2) = 〈V 2, Q2, Q2

0, δ
2, B2〉.

1. cua(b!) = 〈V C , {q0, q1, q2}, {q1}, δC , {q0}〉 where V C is the set of state vari-
ables in b and δC = {(q1, b, q2), (q1,¬b, q0)}.

2. r
The on-the-fly dts for r is constructed as follows:
(a) Construct an nfa N = 〈BoolV , Q, Q0, δ, F 〉 accepting L(r).
(b) cua(r) = dca(N) as constructed in Section 4.1.

3. f1 ∧ f2.
A run of cua(f1 ∧ f2) has a non-deterministic choice between a run of Q1

and a run of C2. In any choice it should not reach a state in either B1 or B2.
Formally,
cua(f1 ∧ f2) = 〈V C , QC , QC

0 , δC , BC〉, where
(a) V C = V 1 ∪ V 2.
(b) QC = Q1 ∪Q2.
(c) QC0 = Q1

0 ∪Q2
0.

(d) δC = δ1 ∪ δ2.
(e) BC = B1 ∪B2

The resulting cua is described in Figure 4.

cua(f2)

B2Q2
0

Q1
0 B1

cua(f1)

Fig. 4. An cua for f1 ∧ f2

4. X!f .
Let cua(f) = 〈V,Q, Q0, δ, B〉.
cua(X!f) = 〈V, Q ∪ {s0}, {s0}, δC , B〉 where s0 is a new state and
δC = δ ∪⋃

q∈Q0
(s0, true, q) The resulting cua is described in Figure 5

cua(f)

s0 BQ0

Fig. 5. An cua for X!f

5. (b ∧ f1) ∨ (¬b ∧ f2).
A run of cua(b∧ f1 ∨¬b∧ f2) starts in a new state s0, if b holds it continues
on C1 otherwise it continues on C2.
cua(b ∧ f1 ∨ ¬b ∧ f2) = 〈V C , QC , QC0 , δC , BC〉, where
(a) V C = V 1 ∪ V 2.
(b) QC = {s0} ∪Q1 ∪Q2.
(c) QC0 = {s0}.
(d)

δC = δ1 ∪ δ2∪⋃
q1∈Q1

0

⋃
(q1,`,q2)∈δ1(s0, b ∧ `, q2)⋃

q1∈Q2
0

⋃
(q1,`,q2)∈δ2(s0,¬b ∧ `, q2)

(e) BC = B1 ∪B2

The resulting cua is described in Figure 6.

Q1
0

cua(f1)

B1

q2

q1
c1

c2

¬b ∧ d1

b ∧ c1

b ∧ c2

d2

B2

cua(f2)

d1 q3

q4

Q2
0

s0

¬b ∧ d2

Fig. 6. An cua for (b ∧ f1) ∨ (¬b ∧ f2)

6. (p ∧ f1)W(¬p ∧ f2).
(a) V C = V 1 ∪ V 2.
(b) QC = {s0} ∪Q1 ∪Q2.
(c) QC0 = {s0}.
(d)

δC = (s0, p, s0) ∪ δ1 ∪ δ2∪⋃
q1∈Q1

0

⋃
(q1,`,q2)∈δ1(s0, b ∧ `, q2)⋃

q1∈Q2
0

⋃
(q1,`,q2)∈δ2(s0,¬b ∧ `, q2)

(e) BC = B1 ∪B2

The resulting cua is described in Figure 7.
7. r → f

Let N = 〈BoolV Q,Q0, δ, F 〉 accepting L(r). Let C1 = 〈V 1, Q1, Q1
0, δ

1, B1〉
be defined as follows:
– V 1 is the set of state variables in r
– Q1 = Q ∪ {qsink}
– Q1

0 = Q0

– δ1 =
⋃

(q1,`,q2)∈δ{(q1, `, q2), (q1,¬`, qsink)}
– B1 = F .

The resulting cua is described in Figure 8, as standalone it accepts [[r → false]].
Let C2 = cua(f) = 〈V 2, Q2, Q2

0, δ
2, B2〉 be the cua, as constructed by in-

duction for f .
Then cua(r → f) = 〈V C , QC , QC

0 , δC , BC〉 is constructed by concatenation
of C1 and C2 as follows:
(a) V C = V 1 ∪ V 2.
(b) QC = Q1 ∪Q2 ∪ {qbad}, where qbad is a new state.
(c) QC0 = Q1

0.

Q1
0

cua(f1)

B1

q2

q1
c1

c2b

b ∧ c1

b ∧ c2

d2

B2

cua(f2)

d1 q3

q4

Q2
0

s0

¬b ∧ d2

¬b ∧ d1

Fig. 7. An cua for (b ∧ f1) W (¬b ∧ f2)

¬b1

q0

QO
0

q1

qsink

q2 q3 F

BO

nfa of r

qn

¬b0

b0 b1

b1

¬bn

bn

Fig. 8. An cua for r 7→ false

(d) δC =
δ1 ∪ δ2 ∪ {(q1, `1 ∧ ¬`2, qbad) | q2 ∈ B1, (q1, `1, q2) ∈ δ1}∪
{(q1, `1 ∧ `2, q4) | q2 ∈ B1, q3 ∈ Q2

0, (q1, `1, q2) ∈ δ1, (q3, `2, q4) ∈ δ2} .

(e) BC = B2 ∪ {qbad}
The resulting cua is described in Figure 9.

5 Correctness of the Construction

The proofs make use of the following Lemma [BFR04a, Lemma 10].

Lemma 9. Let V be a set of state variables, w a word over ΣV and r an re

over BoolV . Then w |≡ r iff either ε ∈ L(r) and w = ε or there exists a word
β = b0 . . . bn ∈ L(r) such that wi bi for every 0 ≤ i ≤ n.

B2

q2
2

q2
1

q2
1 q2

2

c2

Q2
0

B1

Q1
0 B2

bn−1 ∧ c2

bn−1 ∧ c1

bn ∧ c2

cua({r} 7→ false)

cua(f1)

Q1
0

q1
n

q1
n−1

bn−1

bn ∧ ¬c1 ∧ ¬c2

bn

bn ∧ c1

bn ∧ ¬c1 ∧ ¬c2

q1
n

q1
n−1

qbad

c1

Fig. 9. An cua for r 7→ f1

Proposition 7. Let r be an re over the state variables V and let w be a word
over ΣV . There exists a deterministic co-automaton Cr of size 2O(r) such that

Cr accepts w iff w |= r.

Proof. Let N = 〈Bool,Q, Q0, δ, F 〉 be an nfa accepting L(r). Let Cr = dca(N) =
〈V, Qd, Qd

0, δ
d, Bd〉 be the deterministic co-autoamton as described in Section 4.2

If.
w 6|= r
⇐⇒ there exists a minimal j < |w| such that w0..j>ω 6|= r!.
=⇒ w0..j−1>ω |= r!
⇐⇒ ∃u ¹ w0..j−1>ω such that u |≡ r
Let S0 . . . Sj+1 be a run of dca(N) over w0..j . By the construction, and the
definition of a run of an cua, for every 0 ≤ i < j, There exist si ∈ Si, si+1 ∈
Si+1, v

i ∈ Bool such that (si, v
i, si+1) ∈ δ, and wi |= vi.

wj 6|= vj for every vj ∈ Bool such that ∃s′ ∈ Sj , s
′′ ∈ Q such that (s′, vj , s′′) ∈

δ. Assume otherwise, that is, ∃vj ∈ Bool, ∃s′ ∈ Sj , s
′′ ∈ Q such that

(s′, vj , s′′) ∈ δ and wj |= vj .
=⇒ Si 6∈ B for 0 ≤ i < j. Since N is reduced (every run can be extended to
an accepting run), s0s1 . . . sj can be extended to a run accepting w0..j>k for

some k. Therefore w0..j>k |≡ r contradicting the assumption on w. Therefore
wj 6|= vj for every vj ∈ Bool such that ∃s′ ∈ Sj , s

′′ ∈ Q and (s′, vj , s′′) ∈ δ.
By the construction of dca(r), Sj+1 = {qsink}
=⇒ dca(N) does not accept w.

Only if.
Assume dca(N) does not accept w.
=⇒ the run S0S1 . . . of dca(N) over w satisfies that there exists a minimal
j such that Sj+1 = {qsink}. Let σ : s0s1 . . . sj be such that si ∈ Si, 0 ≤ i < j
and there exist v0 . . . vj−1 such that (si, v

i, si+1) ∈ δ and wi |= vi, 0 ≤ i < j.
Then for every extension of σ to an accepting run

s0
v0

−→ s1
v1

−→ s2 · · · sj
vj

−→ sj+1 · · · sk

of N , it holds that wj 6|= vj .
=⇒ ∀v = v0 . . . vk ∈ L(r) such that wi |= vi, 0 ≤ i < j it holds that wj 6|= vj

=⇒ (by Lemma 9) w0..j>k |≡/ r for every k
=⇒ w 6|= r.

ut
Lemma 1. Let f be an SafetyPSLdet formula and let cua(f) = 〈V C , QC , QC

0 , δC , BC〉
be as constructed in Section 4.2. Then QC0 ∩BC = ∅.
Proof. By induction on the structure of f .

– f = b! where b ∈ Bool.
QC0 = {q1}, BC = {q0} =⇒ QC

0 ∩BC = ∅.
– f = r.

QC0 = {Q0}, BC = {qsink}
=⇒ QC

0 ∩BC = ∅
Assume the Lemma holds for f1 and f2.
Let cua(f1) = 〈V 1, Q1, Q1

0, δ
1, B1〉 and cua(f2) = 〈V 2, Q2, Q2

0, δ
2, B2〉.

– f = f1 ∧ f2.
QC0 ∩BC = (Q1

0 ∪Q2
0) ∩ (B1 ∪B2).

(By the induction hypothesis and since Q1 ∩Q2 = ∅) QC0 ∩BC = ∅.
– f = X!f1

QC0 = {s0} s0 /∈ BC .
– f = (b ∧ f1) ∨ (¬b ∧ f2)

QC0 = {s0}, s0 6∈ B1 ∪B2 = BC .
– f = (b ∧ f1)W(¬b ∧ f2)

QC0 = {s0}, s0 6∈ B1 ∪B2 = BC .
– f = r → f1

QC0 ∩BC = Q1
0 ∩ (B2 ∪ {qbad}) = ∅.

Lemma 2. Let w be a word over Bool,r an re and j minimal such that w0..j>ω 6|=
r!. For every v = v0 . . . vk ∈ L(r) (∀i < j : wi |= vi)→wj 6|= vj

Proof. Let w such that w0..j>ω 6|= r!, and let v = v0 . . . vk ∈ L(r) such that
∀i < j : wi |= vi. Assume towards contradiction that wj |= vj . But then ∃k :
w0..j>k |≡ r. Therefore w0..j>ω |= r! contradiction.

Theorem 8. Let f be a SafetyPSLdet formula over the state variables V and
let w be a word over ΣV . Then there exists an cua Cf such that

w |= f ⇐⇒ Cf accepts w

and Cf is of size O(|f |) if f contains no sub-formulas of the form r (weak regular
expressions) and is of size 2O(|f |) otherwise.

Proof. Let Cf be cua(f) as described in Section 4.2. The proof is by induction
on the structure of f .

– f = b where b ∈ Bool.
Let w be such that w |= b and let s0, s1, s2, . . . be a run of cua(b) over w.
By initiality s0 = q1. By consecution, there exists ` such that (s0, `, s1) ∈ δ

and and w0 `. By the transition relation there are two option for `: either b
or ¬b. Since w |= b the first option holds. Thus ` = b and s2 = q2, for i ≥ 1.
Since both q1, q2 6∈ B, any state of the run does not visit B therefore cua(b)
accepts w.
Assume cua(b) accepts w and let s0, s1, s2, . . . be an accepting run of cua(b)
on w. By initiality s0 = q1. Since the run is accepting, ∀i > 0, si /∈ B = {q0}.
By the transition relation, the only possibility is that si = q2 for every i > 0.
Thus w0 b. Therefore w |= b.

– f = r.
Follows from Proposition 7 since cua(r) = dca(N).

Assume the theorem holds for f1, f2 ∈ SafetyPSLdet and every word w over
Bool.

– f = f1 ∧ f2

w |= f1∧f2 iff w |= f1 and w |= f2 iff (by the induction hypothesis) cua(f1)
accepts w and cua(f2) accepts w iff for every run q1

0 . . . q1
|w| of cua(f1) over

w q1
i 6∈ B1 for 0 ≤ i ≤ |w| and for every run q2

0 . . . q2
|w| of cua(f2) over w

q2
i 6∈ B2 for 0 ≤ i ≤ |w| iff for every run q0 . . . q|w| of cua(f1 ∧ f2) over w

qi 6∈ B for 0 ≤ i ≤ |w| (since every run of cua(f1 ∧ f2) over w is either a run
of cua(f1) or a run of cua(f2) over w. iff
cua(f1 ∧ f2) accepts w.

– f = X!f1

Denote w = w0w1
w |= X!f1 iff w1.. |= f1 iff (by the induction hypothesis) cua(f1) accpets w1...
Let s0q0q1 . . . be a run of cua(X!f1) over w. By the construction q0q1 . . . is
a run of cua(f1) on w1... Therefore qi 6∈ B1 for i ≥ 0. By Lemma 1, s0 6 inB
therefore cua(X!f1) accepts w.
Assume cua(X!f) accpets w. Let s0q0q1 . . . be a run of cua(X!f1) over w.

qi 6 inB = B1, i ≥ 0. By the construction q0q1 . . . is a run of cua(f1) over
w1... Therefore cua(f1) accepts w1... By the induction hypothesis w1.. |= f1.
Therefore w |= X!f1.

– (b ∧ f1) ∨ (¬b ∧ f2)
w |= (b ∧ ϕ1) ∨ (¬b ∧ ϕ2) iff
w |= b and w |= f1 or w |= ¬b and w |= f2 iff (by the induction hypothesis)
w |= b and cua(f1) accepts w or w |= ¬b and cua(f2) accepts w.
Let s0q1q2 . . . be a run of cua((b ∧ ϕ1) ∨ (¬b ∧ ϕ2)) over w.
If w |= b then cua(f1) accepts w and ∃q0 ∈ Q1

0 such that q0q1q2 . . . is a run
of cua(f1) over w. Therefore qi 6∈ B1 and therefore qi 6∈ B for i ≥ 0. In
addition by Lemma 1 s0 6∈ B. It follows that cua((b ∧ ϕ1) ∨ (¬b ∧ ϕ2))
accepts w in the case that w |= b. In a similar way cua((b∧ϕ1) ∨ (¬b∧ϕ2))
accepts w in the case w |= ¬b.
For the other direction, assume cua((b ∧ ϕ1) ∨ (¬b ∧ ϕ2)) accepts w. Let
s0q1q2 . . . be a run of cua((b ∧ ϕ1) ∨ (¬b ∧ ϕ2)) over w.
If w |= b then ∃q0 ∈ Q1

0 such that q0q1q2 . . . is a run of cua(f1) on w. qi 6∈ B1

for i ≥ 1 since s0q1q2 . . . is an accepting run over w and q0 6 inB1 by Lemma
1. Therefore q0q1q2 . . . is an accepting run of cua(f1) over w. Since the choice
of the run q0q1q2 . . . of cua(f1) on w was arbitrary it follows that cua(f1)
accepts w. By the induction hypothesis w |= f1. In a similar way if w |= ¬b
then w |= f2. Therefore w |= (b ∧ ϕ1) ∨ (¬b ∧ ϕ2).

– f = [(b ∧ ϕ1) W (¬b ∧ ϕ2)]
w |= [(b ∧ ϕ1) W (¬b ∧ ϕ2)] iff
∃k < |w| such that wk.. |= ¬b ∧ f2 and ∀j < k,wj.. |= b ∧ f1, or
wm.. |= b ∧ f1 for m ≥ 0.

• If ∃k < |w| such that wk.. |= ¬b ∧ f2 and ∀j < k,wj.. |= b ∧ f1

then a run of cua(f) on w is in one of the following forms:
1. sj

0q1q2 . . . where 0 ≤ j < k and ∀0 ≤ j < k there exists q0 ∈ Q1
0 such

that q0q1q2 . . . is a run of cua(f1) on wj...
2. sk

0q1q2 . . . and there exists q0 ∈ Q2
0 such that q0q1q2 . . . is a run of

cua(f2) on wk...
For a run of type 1. ∀0 ≤ j < k, wj.. |= b ∧ f1, so ∀0 ≤ j < k,wj.. |= f1.
By the induction hypothesis ∀0 ≤ j < k,cua(f1) accepts wj... Therefore
q1q2 . . . 6∈ B1 implying q1, q2, . . . 6∈ B. By lemma 1 s0 6∈ B so the run is
accepting.
For a run of type 2. wk.. |= ¬b ∧ f2 so wk.. |= f2. By the induc-
tion hypothesis cua(f2) accepts wk... Therefore q1q2 . . . 6∈ B2 implying
q1, q2, . . . 6∈ B. s0 6∈ B so the run is accepting.

• Otherwise wm.. |= b ∧ f1 for m ≥ 0, and all the runs of cua(f) on w
are of the form sm

0 q1q2 . . . where m ≥ 0 and there exist q0 ∈ Q1
0 such

that q0q1q2 . . . is a run of cua(f1) on wm... wm.. |= f1, by the induc-
tion hypothesis cua(f1) accepts wm.. therefore q1, q2, . . . 6∈ B1 implying
q1, q2, . . . 6∈ B. s0 6∈ B therefore cua(f) accpets w. Therefore all runs of
cua(f) on w are accepting.

Other direction: Assume cua(f) accepts w.

• If there exists k such that wk |= ¬b and wj |= b for 0 ≤ j < k then there
exist:
1. a run of cua(f) on w of the form sk

0q1q2 . . . where there exists q0 ∈ Q2
0

such that q0q1q2 . . . is a run of cua(f2) on wk...
2. runs of cua(f) on w of the form sj

0q1q2 . . . where 0 ≤ j < k and
there exists q0 ∈ Q1

0 such that q0q1q2 . . . is a run of cua(f1) on wj...
Since all runs of cua(f) on w are accepting, from 1 it follows there
exists k such that wj |= b for 0 ≤ j < k, wk |= ¬b, and cua(f2)
accepts wk... By the induction hypothesis wj |= b for 0 ≤ j < k and
wk.. |= ¬b ∧ f2. If k > 0, from 2 it follows cua(f1) accepts wj.. for
0 ≤ j < k. By the induction hypothesis wj.. |= f1 for 0 ≤ j < k. It
follows that w |= (b ∧ f1)U(¬b ∧ f2).

• If there does not exist a k as above, that is wj |= b for every b ≥ 0 then
all runs of cua(f) on w are of the form sj

0q1q2 . . . where 0 ≤ j < k and
there exists q0 ∈ Q1

0 such that q0q1q2 . . . is a run of cua(f1) on wj...
Similarly to 2 we get that w |= G(b ∧ f1) in this case.

So w |= ((b ∧ f1)U(¬b ∧ f2)) ∨ G(b ∧ f1)
– f = r → f1

Let N = 〈BoolV Q,Q0, δ, F 〉 be an nfa accepting L(r). Let C1, C2 and C be
as defined in Section 4.2. First we show that C1 accepts w iff w |= r → false,
then we show that C accepts w iff w |= r → f .

w |= r → false iff ∀j < |w|, w0..j |≡/ r iff ∀j < |w| all runs of N on w0..j

are not accepting iff (by the construction of C1) C1 accepts w.

Now we prove the construction for r → f1:
w |= r → f1 iff
∀j such that w0..j |≡ r it holds that wj.. |= f1 iff
∀j such that w0..j 6|= r → false, wj.. |= f1 iff
(by the above claim and by the induction hypothesis) ∀j such that there
exists a run q0q1 . . . qj+1 of C1 on w0..j such that qj+1 ∈ B1, C2 = cua(f1)
accepts wj.. iff
∀j such that there exists a run q0q1 . . . qj+1 of C1 on w0..j where qj+1 ∈ B1,
for every run s0s1 . . . of C2 on wj.., si 6∈ B2 = B for i ≥ 0.
Every run of C1 over w is in one of the following forms:
1. q0q1 . . . qj+1s1s2 . . . where q0q1 . . . qj+1 is a run of C1, over w0..j such that

qj+1 ∈ B1 and s1s2 . . . is a run of cua(f1) on wj...
2. q0q1 . . . where ∀i ≥ 0, qi ∈ Q1 \B1.

For a run of type 1, it holds that qi 6∈ B, 0 ≤ i ≤ j + 1 and si 6∈ B, i ≥ 1, so
the run is accepting. For a run of type 2, it holds that ∀i ≥ 0, qi ∈ Q1 \B1,
Q1 ∩ B = ∅ therefore the run is accepting. It follows that cua(r → f1) ac-
cepts w.
Other direction: Assume C1 accepts w.
If w0..j |≡ r, then w0..j 6|= r → false. By the claim above, there exists a run
q0q1 . . . qj+1 of C1 over w0..j such that qj+1 ∈ B1.
By the construction, for every run s0s1 . . . of C2 = cua(f1) over wj.., q0q1 . . . qj+1s1s2 . . .

is a run of C over w, therefore si 6∈ B = B2 for i ≥ 1. By Lemma 1, s0 6∈ B2

so s0s1 . . . is an accepting run of cua(f1) over wj...
Since this holds for every run of cua(f1) over wj.., it follows cua(f1) accepts
wj... By the induction hypothesis, wj.. |= f1.
By definition w |= r → f1.

6 Acknowledgments

We would like to thank Cindy Eisner for interesting discussion about syntactic
vs. semantic alphabets. We would like to thank Avigail Orni for her helpful
comments on an early draft of this paper.

References

[Acc04] Accellera. Accellera property language reference manual. In
http://www.eda.org/vfv/docs/PSL-v1.1.pdf, June 2004.

[BBL98] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL
formulas. In Proc. 10th International Conference on Computer Aided Veri-
fication (CAV’98), LNCS 1427, pages 184–194. Springer-Verlag, 1998.

[BFR04a] S. Ben-David, D. Fisman, and S. Ruah. Automata construction for regular
expressions in model checking, June 2004. IBM research report H-0229.
http://reswats1.watson.ibm.com/library/cyberdig.nsf/papers/A14E9FE3829B557785256EE6005006A5/File/H-
0229.pdf.

[BFR04b] S. Ben-David, D. Fisman, and S. Ruah. Embedding finite automata within
regular expressions. In Proceeding of the 1st Symposium on Leveraging Ap-
plications of Formal Methods, pages 173–180, 2004.

[BRS99] Roderick Bloem, Kavita Ravi, and Fabio Somenzi. Efficient decision proce-
dures for model checking of linear time logic properties. In 11th International
Conference on Computer Aided Verification (CAV’99), LNCS 1633, pages
222–235, 1999.

[HFE04] John Havlicek, Dana Fisman, and Cindy Eisner. Basic results on the seman-
tics of accellera psl 1.1. Technical Report 2004.02, Accellera, May 2004.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Series in Computer Science.
Addison-Wesley, 1979.

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear tempo-
ral logic specifications. In K.G. Larsen, S. Skyum, and G. Winskel, editors,
Proc. 25th Int. Colloq. Aut. Lang. Prog., volume 1443 of Lect. Notes in Comp.
Sci., pages 1–16. Springer-Verlag, 1998.

[KV99] O. Kupferman and M. Y. Vardi. Model checking of safety properties. In 11th
International Conference on Computer Aided Verification (CAV’99), LNCS
1633, pages 172–183, 1999.

[Mai00] Monika Maidl. The common fragment of CTL and LTL. In IEEE Symposium
on Foundations of Computer Science, pages 643–652, 2000.

[McM93] K. McMillan. Symbolic model checking, 1993.
[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to

automatic program verification (preliminary report). In LICS, pages 332–
344. IEEE Computer Society, 1986.

A

A.1 The computational Model - dts

We represent a finite state program by a discrete transition system. A discrete
transition system (dts) is a symbolic representation of a finite automaton on
finite or infinite words. The definition of a dts is derived from the definition
of a fair discrete system (fds) [KPR98]. A dts D : 〈V, Θ, ρ,A〉consists of the
following components:

– V = {u1, . . . , un}: A finite set of typed state-variables over possibly infinite
domains. We define a state s to be a type-consistent interpretation of V ,
assigning to each variable u ∈ V a value s[u] in its domain. We denote by
ΣV the set of all states, and by BoolV the set of all boolean expressions over
the state-variables in V (when V is understood from the context we write
simply Σ and Bool, respectively).

– Θ: The initial condition. This is an assertion characterizing all the initial
states of the dts.

– ρ: The transition relation. This is an assertion ρ(V, V ′) relating a state
s ∈ ΣV to its D-successor s′ ∈ ΣV by referring to both unprimed and primed
versions of the state-variables. The transition relation ρ(V, V ′) identifies state
s′ as a D-successor of state s if 〈s, s′〉 ρ(V, V ′), where 〈s, s′〉 is the joint in-
terpretation which interprets u ∈ V as s[u] and u′ as s′[u].

– A: The accepting condition for finite words. This is an assertion character-
izing all the accepting states for runs of the dts satisfying finite words.

Let D be a dts for which the above components have been identified. We de-
fine a run of D to be a finite or infinite non-empty sequence of states σ : s0s1s2 . . .
satisfying the requirements of initiality i.e. that s0 Θ; and of consecution i.e.
that for each j = 0, 1, . . . , the state sj+1 is a D-successor of state sj . A run sat-
isfying the requirement of maximality i.e. that it is either infinite, or terminates
at a state sk which has no D-successors is termed a maximal run. Let U ⊆ V be
a subset of the state-variables. A run σ : s0s1s2 . . . sn . . . is said to be satisfying
a finite word w = b0b1 . . . bn over BoolU iff for every i, 0 ≤ i ≤ n, si bi. A run
σ : s0s1s2 . . . sn+1 . . . satisfying a finite word w = b0b1 . . . bn is said to be accept-
ing w iff sn+1 satisfies A. An infinite run σ : s0s1s2 . . . is said to be satisfying
an infinite word w = b0b1 . . . over BoolU iff for every i ≥ 0, si bi.

Discrete transition systems can be composed in parallel. LetDi = 〈Vi, Θi, ρi,Ai〉,
i ∈ {1, 2}, be two discrete transition systems. We denote the synchronous par-
allel composition of D1 and D2 by D1 ||| D2 and define it to be D1 ||| D2 =
〈V1 ∪ V2, Θ1 ∧ Θ2, ρ1 ∧ ρ2, A1 ∧ A2〉. We can view the execution of D as
the joint execution of D1 and D2.

A.2 Constructing a dts from an cua

This section describes step 2 in the outline of the method. Given cua(f) =
〈V, BoolV , Q,Q0, δ, B〉 accepting a formula f we construct dts(f) = 〈VD, Θ, ρ,A〉

accepting bad prefixes of f , denoted dts(f). That is cua(f) accepts a word w
iff dts(f) does not accept w.

Let state be a new variable (not in V) whose domain is Q. Then

VD = V ∪ {state}; Θ =
∨

q0∈Q0

state = q0; A =
∨

q∈B

state = q;

ρ =
∨

(q1,`,q2)∈δ (state = q1 ∧ ` ∧ state′ = q2)

Proposition 1. cua(f) accepts w iff 6 ∃j < |w| such that dts(f) accepts w0..j.

