
H-0267 (H0901-016) January 19, 2009
Electrical Engineering

IBM Research Report

A Generic Form Processing Approach for 
Large Variant Templates

Yaakov Navon, Ella Barkan, Boaz Ophir
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



A Generic Form Processing Approach for Large Variant Templates 
 
 

Yaakov Navon, Ella Barkan, Boaz Ophir 
IBM Haifa Research Lab 

Mount Carmel 
Haifa 31905, ISRAEL  

{navony, ella, boazo}@il.ibm.com 
 
 

Abstract 
 

In today’s world, form processing systems must be 
able to recognize mutant forms that appear to be 
based on differing templates but are actually only a 
variation of the original. A single definition of a 
representative template actually covers large 
varieties of the same logical templates. We developed 
a method and system, similar to the human visual 
system, which differentiates between templates via 
features such as logos, dominant words, and 
geometrical shapes, while ignoring minor details and 
variations. When the system finds an appropriate 
template, it then decodes the content of the form. Our 
approach has been applied in several scenarios with 
encouraging results.  
 
 

1. Introduction 
 

With the prevalence and ease-of-use of today’s 
printers, templates for filled-in forms can be printed 
anywhere, to the extent that there is no longer a need 
for "printing centers," where template replicas are 
normally of exact size, identical character fonts and 
types, matching topologies, and so on. This reality, 
alongside the existing complexities of identifying 
scanning artifacts, renders the template matching 
process even more difficult in today’s systems. 

The Internet facilitates downloading templates to 
be filled in (thereby becoming a form), enabling 
people to print them on any nearby printer [1]. 
Companies generally print their forms in-house. All 
these printed forms are subject to printer settings, user 
preferences, and other parameters. The result is that 
form processing systems must handle a rich set of 
forms based upon the one original logical template. 

Template recognition processes based on local or 
global image matching methods are not sufficiently 

tolerant to handle the differences between the 
templates. For example, when comparing a form to its 
original template, where part of the text is printed 
using a different typeface (e.g., template text in 
regular type and form text in italic), we expect very 
poor matching results. However, when image 
matching is feasible, the use of drop out methods [2] 
is applicable. Template parts are eliminated from the 
filled form image making the readout of form fields 
robust. Moreover, it is sufficient to store only the 
filled in parts of the form; the form can be restored 
when necessary by mounting the filled in area on the 
appropriate template. 

This paper presents a form handling approach that 
has a high tolerance for differences in template 
layouts. We recognize templates in a similar manner 
to the human visual system, where recognition is 
based on the content of dominant features while 
ignoring small differences of the same logical form. 
The recognition is based on logo similarity, text 
content, and geometrical shapes such as lines and 
boxes. The combination of different features 
eliminates the need for precise matching at the pixel 
level, while maintaining a high template recognition 
rate. Figure 1 depicts two forms both used for a health 
insurance claim. The templates may look the same to 
the human eye (at the global level), but actually differ 
greatly in the details (locally); thus, they cannot be 
handled at the image pixel level. 

Various methods for locating information fields on 
forms have been proposed. Some of them are based 
on horizontal and vertical lines [3, 4]. Others are 
based on the location of the field with respect to 
instruction fields (keywords) [5]. Methods based on 
lexical information only, such as in [6], first require 
performing optical character recognition (OCR) on 
the entire image (the runtime issue) and expect to 
receive fixed templates. The open question is how 
generic and robust are those methods when handling 
forms of large variant templates?  



In our approach, we syntactically define the 
template content such as text content and features, 
boxes, and fields. Some of the geometrical features 
are derived automatically from a representative 
template image. Our approach has been implemented 
successfully in several applications. The settings of 
the system required the definition of only a minimal 
number of representative templates; even though the 
templates had many printing variants. 

 
2. Template variants form processing  
 
In our approach, we use most of the logical features 
in a typical template (e.g., logo, keywords, instruction 
fields, geometrical shapes etc.) to match the right 
template to the form. The feature information is used 
to register and locate the data fields to be read. The 
registration is done with no modification to the input 
form image, since modifications such as scaling, 
translation, and rotation could degrade image quality, 
which would be reflected in the recognition results. 

This section presents the main stages of our 
system: 
1. Template definition 
2. Template recognition 
3. Data fields readout 
4. Optimizing run of batch of forms 

 

 
��������	�
������������������ �������������

����������������������������������
  

2.1. Template definition 
 

The template definition is a logical description of 
template elements and of the fields to be read from 
the form. The description is based on human-like 
interpretation that enables us to handle templates with 
large variances. The definition includes logos, 
keywords, checkboxes, lines, and data fields. 

Normally, one would expect a single logo per 
template, located in a fixed position. Keywords are 

defined by location and content description. This 
content includes the syntax of the expected string, 
exact format (spaces, case, font types, etc.) and 
relation rules between keywords.  

Data fields are specified by the filled in area 
locations, expected syntax, and type of the field 
context, which may obey some rule constraints (e.g., 
dates) or items from dictionaries (e.g., names, 
addresses). It is possible to define geometrical and 
logical relations between all types of keywords and 
fields. The logical relations are, for example, "value 
of a field B exists if field A exists" or "field A is the 
sum of fields B and C". 

Checkboxes are defined by location and shape 
(box or circle). Figure 2 exemplifies a keyword (red) 
and data fields (green), and their syntax definitions. 
Note that a keyword need not be a descriptive name 
of a data field to be read, e.g., "Policy No." is not 
defined as a keyword in this example. 
 

      
��������	�����������������������������������

�������� ���!���������������� �����!��
 
2.2. Template recognition 

 
The processing of an input form starts by 

associating the form with a template. The template 
recognition process is based on the recognition and 
matching of dominant features printed on the input 
form image and the template image. Template 
recognition includes the following steps: 
1. Preprocessing of the form image 
2. Creation of a precedence templates list 
3. Recognition by logo 
4. Recognition by keywords 
5. Recognition by lines 

Due to the nature of variant templates it is not 
expected that each of the above items is found with a 
high accuracy. Thus, the final decision of template 
recognition is a weighted function of the recognized 
items’ accuracies. 



2.2.1 Preprocessing of form image The input form 
image can be a binary, gray scale, or color image 
format. Color images are converted into gray scale 
and then binarized. Since most of the interesting 
information is in the form of text and graphics, we use 
dedicated binarization methods [7,8] to create proper 
binary images. Figure 3 exemplifies our binarization 
with the advantages of emphasized text and removal 
of the noisy background. 

The entire form image is globally de-skewed only 
when large skew angles are encountered. In most 
cases there is no need to de-skew as forms are mostly 
rectified when they are scanned. For OCR purposes, 
local precise de-skewing is performed on field areas. 

 

 
�������"	�#��������$���������������%������

������ ���������������������&�����&���!�
 
2.2.2 Creation of a precedence templates list When 
we compare several templates to a form, the templates 
are first sorted according their rough distance from 
the form image. This distance can be the difference in 
the number of black runs between the form and the 
template or the difference in the number of lines. This 
helps ensure that the correct template is among the 
first to be checked. 
 
2.2.3 Recognition of template logo Logos are very 
predominant symbols in templates. Generally, they 
are large and located at the top of the template. If a 
logo exists in a template, its location is set in the 
template definition. At the logo recognition stage, our 
system searches for a logo in the form image in the 
vicinity of the expected location. 

The matching process takes into account different 
printing scales and the skew of the logo. To speed up 
the process, the selection of the search areas is in the 
proximity of large connected components. Since 
template recognition is not based only on logos, the 
matching precision does not have to be exact.  
 
2.2.4 Recognition of template keywords The idea 
behind the keyword recognition method is to search 
the form for keywords that were defined for the 
template. The challenge is to overcome differences 
between the keywords’ location and appearance in the 
template versus the form images. 

Our system includes the following stages: 
1. For the first keyword, set a large search window 

around the defined keyword location. For the 
next keywords, set precise search windows based 
on the locations of previously found keywords. 

2. In the search window, apply OCR and related  
technologies (de-skew, binarization, and layout 
analysis). 

3. On the OCR results, apply fuzzy matching and 
text alignment techniques [9] to locate the 
precise keyword location. 

Figures 4 – 6 exemplify the process. 
 

 
�������'	�(���������������������)��������

 %��!���������� ����!������������� �����!��
 
Our system must recognize a minimal number of 

keywords; otherwise, the process stops and we 
proceed to the next template in the list. 

The locations of the found keywords serve as a 
coarse registration between the form and template. 
This registration is used in the first phase of the line 
matching process, as described in the next step. 
 
2.2.5 Recognition by lines Any approach to 
matching lines between the template and the form 
images needs to be sufficiently robust to handle both 
global differences in scale and location and local 
variations, such as excess/missing lines or scale. The 
variations can arise from the print and scan history of 
the image and from form mutations. As input, our 
system takes initial estimates of the global scale and 
shift from previous stages. These estimates, as well as 
local scale variations, are continuously estimated and 
compensated for throughout the matching process. 

Our solution is based on the linear programming 
approach. It sorts the horizontal lines according to 
their vertical position and attempts to find a first pair 
to match. A pair of template-form lines is a possible 
match if they have a large overlap in the tangential 
direction and are close in the normal direction. For 
the initial pair, the tolerances for matching are quite 
large, allowing many potential matches. Using this 
first pair as a reference point, we try to match another 



pair at positions relative to the first pair, and so on, 
such that every matching pair found serves as a 
reference for the next pair. If a line is not matched, it 
is skipped. Thus, our approach does a vertical pass on 
the images, grading the complete matching by the 
sum of the lengths of the template lines matched. This 
grading puts an emphasis on correctly matched long 
lines. Out of several passes with different initial 
matches, our approach selects the one with the highest 
grade and compares its grade to the total line length 
in the template to determine whether the template 
matches the image. 

The vertical lines are matched in a similar manner, 
reversing the roles of the coordinates. 

 

 
�������*	�(����������%��+�������������	�

��������������� %��!���������� ����!������

������� �����!��
 

 
�������,	���--��������������.�/�����������

��������������������������������������������
 

2.3. Read of data fields 
 

The objective of a form processing system is to 
read data fields in a form. The location of the fields 
must be very precise since the actual reading is done 
by OCR, which is very sensitive to noise. For 
example, when a snippet image of a field includes 
parts of a frame, the system recognizes vertical bars 
as "1/l/I". 
 
2.3.1 Data fields location Our approach combines 
keywords and geometric information to find 
approximate locations for fields and then uses layout 
techniques to refine the locations. 

The calculation of a field location by keywords 
uses the relative distances of a field from the closest 
keyword. The approach derives the relative distances 
from the template definition and corrects them using 
the scale factors calculated at the registration stage. 
The refined location is found by layout analysis of the 

rough location area. Figure 7 depicts the rough 
location (red) and the finer location (blue) of the 
"Policy No." field. 

 

 
�������0	��������������%����������������������

��������
 

The results of the template recognition at the lines 
stage is a list of pairs of lines; a line in the form and a 
line in its corresponding template. The intersection of 
a horizontal line with a vertical line is a corner. 
Similar to the line pairs, the system creates a list of 
corner pairs; a corner in the form has its pair in the 
template. We define four corner orientations as 
depicted in bold in Figure 8 and three types of line 
intersections on the right. 

 

 
�������1	�����������������������������

��������������������
 

A regular box is composed of four different 
corners. To locate a field in the form, the system first 
finds the corners in the template that are closest to its 
box, as defined in the definition of the field. The 
relevant pair corners in the form are derived from the 
corner pairs list. Our algorithm tries to build a valid 
box from those corners, according to their 
orientations, their relative locations, and the field box 
size. For example, a box cannot be composed of two 
corners of the same orientation. On the other hand, it 
can be composed, for example, from two opposite 
diagonal corners. Figure 9 depicts the location of 
some fields from corners. The exact field snippet to 
send to OCR (orange box in Figure 9) is found by 
layout analysis on the rough field location. 
 
2.3.2 Data fields decoding The system does field 
decoding by applying OCR to an image snippet of 
only the field area. The OCR parameters are set 
according to the field specifications; i.e., 
numeral/alphabet, font type and size, syntax, etc. The 
OCR results are enhanced by post OCR logic process, 



where results are checked against relevant rules which 
field results must obey, similar to the process for 
keywords, above.  

In some applications it is enough to know whether 
the field was filled or not. This is done by checking 
whether a significant portion of its area contains text.  
 

 
�������2	�(�������������������� ��������� ���!3�

#4������������ ������!�������%��������

��������
 
2.3.3 Checkbox decoding Checkboxes are an 
important feature in many forms but it is tricky to 
determine whether a box is ticked. Checkboxes are 
defined according to their location, size, and shape. 
Our algorithm needs to be able to locate the box even 
under extremely noisy conditions, typically caused by 
the tick itself. Our system employs a two-phased 
approach for square checkboxes. In the first pass, 
morphological operators detect the box corners. 
Equivalence classes are constructed from connected 
corners that are correctly aligned and distanced. If the 
first pass fails, a second pass employing the Hough 
transform (for squares) is applied. A box is deemed as 
ticked if a significant percentage of its interior is 
black. For circular checkboxes, only the Hough 
transform (for circles) method is used. 
 
3. Experimental results 
 

Two applications currently use the technology 
described above. The first is an automated form 
recognition and routing system used by a backoffice 
services company in the insurance industry. Forms are 
routed according to type, and—for some forms—the 
fields filled in by customers. The system is configured 
to handle several dozen different insurance and health 
forms. Many of the forms have between two and five 
recognized mutations, with one insurance form 
having as many as 50 mutations (one for every state 
in the U.S.). Recognition by keyword is between 95 
to 97% accurate and by line is 93% accurate. Failures 
are mostly caused by severely degraded images, such 
as forms that have been faxed several times or printed 
at half their original size; this makes OCR and line 

extraction very difficult. Correct recognition of 
filled/empty fields is around 98%, with misses 
typically caused by severe degradation of checkbox 
images and (rarely) by misregistration of text fields. 

The second application for this technology is a 
system for extracting information from scanned 
European identification cards (used in hotels 
counters). In this application, the challenge is to 
recognize and register forms based only on keywords 
and to read all the card fields correctly. The results 
were very good: based on an extended benchmark of 
173 cards, the system reached a recognition rate of 
98.5 % for correctly read fields.  Most of the errors 
were in street addresses that could easily be fixed by 
verifying them against a database of local addresses. 

 
4. Conclusions 

 
The approach proposed in this paper properly 

handles a large variety of forms, as exemplified in the 
results section. Using a combination of many features 
to recognize the template and the comprehensive path 
to locate fields precisely makes our method robust. 
The ability to use a single definition to handle a 
template and its many variants encourages the use of 
our approach.  
 
References 
 
[1] AnyForm, http://www.smartform.com/e/. 
[2] Bin Yu and Anil K. Jain, "A Generic System for Form 
Dropout", IEEE Trans. on Pattern Analysis and Machine 
Intelligence, Vol. 18, No. 11, Nov. 1996, pp. 1127-1134. 
[3] Y. Belaid, et al., “Item Searching in Forms: Application 
to French Tax Form”, Int. Conf. on Document Analysis and 
Recognition, Aug. 1995, pp. 744-747. 
[4] C.D. Yan, Y.Y. Tang and C.Y. Suen, “Form 
Understanding System Based on Form Description 
Language”, Int. Conf. on Document Analysis and 
Recognition, Oct. 1991, pp. 283-293. 
[5] H. Fujisawa, Y. Nakano and K. Kurino, “Segmentation 
Methods for Character Recognition: From Segmentation to 
Document Structure Analysis”, Proc. of the IEEE, Vol. 80, 
No. 7, 1992, pp. 1079-1092. 
[6] R.A. Lorie, “A System for Exploiting Syntactic and 
Semantic Knowledge in Automatic Recognition”, IAPR 
Workshop on Document Analysis Systems, 1994, pp. 277-
294. 
[7] Y. Navon, A. Heilper and E. Walach. “Method for OCR 
Oriented Image Binarization”, European Patent No. 
98480038.3-2201, Nov. 1998. 
[8] Y. Navon, "Layer-based Binarization for Textual 
Images", Int. Conf. on Pattern Recognition, Dec. 
2008. 
[9] C. Charras and T. Lecroq, "Sequence Comparison", 
www-igm.univ-mlv.fr/~lecroq/seqcomp/index.html, 1998. 


