
H-0272 (I0911-015) November 21, 2009
Computer Science

IBM Research Report

An Ontology and Constraint Based Approach to
Cache Preloading

Rajiv Bhatia
IBM Systems and Technology Group

Austin, TX USA

Eyal Bin, Eitan Marcus, Gil Shurek
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Ontology and Constraint Based Approach to Cache
Preloading

Rajiv Bhatia
IBM Systems and
Technology Group

Austin, Texas

rajiv.bhatia@gmail
.com

Eyal Bin
IBM Research labs in

Haifa, Israel

bin@il.ibm.com

Eitan Marcus
IBM Research labs in

Haifa, Israel

marcus@il.ibm.com�

Gil Shurek
IBM Research labs in

Haifa, Israel

shurek@il.ibm.com

ABSTRACT
The verification of modern microprocessor-based systems
requires stressing the cache hierarchy and effectively
covering its huge state space. Cache hierarchy initialization
(or preloading) is a technique that enables simulation to
start from a rich, complex system-level setup, thereby
simplifying the task of dynamically driving the hierarchy
into the required corner cases.

In this paper we introduce CacheLoader, a new, design-
independent cache-preloading technology. The tool's
architecture follows the principles of ontology-based
software to achieve complete separation between the cache-
preloading engine and design dependent knowledge.
Constraint satisfaction techniques are used to generate
valid, interesting system initialization, and to satisfy explicit
user directives. CacheLoader is currently being used by
verification teams of several large scale designs in IBM.
Results show that this technique provides superior coverage
and user controllability, speeds up the construction of
mature verification environments, simplifies maintenance,
encourages encapsulation of domain knowledge, and
enables reuse across verification environments and cache
hierarchy designs.

1. INTRODUCTION
Modern microprocessor systems use caches to improve
access time for the core’s memory operations. Typically, a
multi-processor system employs a snoop-based broadcast
protocol to maintain memory sub-system cache coherency
and data consistency ��[12]. A MESI cache coherency
protocol with only four different states is the basic
coherency protocol. Many derivatives of MESI exist, often
requiring considerably more states. The POWER6TM
scheme ��[21] for example has thirteen different states that
provide an increased level of information to help coherency
participants determine how to use or share their copy of the
cache line. This added complexity introduces many new
scenarios that need to be verified. Consider, for example,
the following POWER6 case: A node is a physical partition

of the system comprising several processor cores and a
memory controller managing a chunk of the system's
globally shared memory. When a cache-line is held in a
valid state in a cache on node A, while its memory space is
managed by node B, the cache protocol requires that either
the memory controller on node B holds an indication that a
valid copy of this line is held on a remote node, or that a
copy of this line is held in a cache on node B and tagged
with a unique invalid state (Ig). It is important for
verification to cover scenarios starting from the extreme
system state where no indication is held by the home
memory controller, and where only a single Ig copy, held
by a cache on node B, protects system-level coherency for
this line.

A common method to verify a cache hierarchy is to
construct a random biased testbench and send random—yet
legal—read, write, and synchronization transaction requests
to the cache and memory subsystem to exercise both
realistic and unrealistic workload patterns. This approach is
insufficient, especially in systems with complex coherency
protocols. Stressing the system requires very long test
programs to gradually build the required conditions in the
system’s cache hierarchy. It is extremely difficult to
construct programs that reach the intended system’s state in
a predictable way. Moreover, reaching such a state would
consume many simulation cycles.

A known method to overcome these difficulties is to
preload the system with a coherent and interesting initial
state before simulation starts. A special cache-preloading
module is usually built to achieve this goal. This module
should be able to satisfy complex coherency rules, e.g., an
address can be tagged as ‘modified’ in at most one cache
entry in the system. In addition, the pre-loading module
should provide biasing options to direct the initialization
towards interesting and potentially rare corner cases. The
verification engineer should be provided with control
parameters to enable the creation of various initialization
profiles. A good example of the necessity of this capability
is a bias that tunes the distribution of the caches’ states.

This bias is associated with parameters that provide
distribution weights for each state.

In this paper we describe CacheLoader—a new, design–
independent, cache-preloading technology. The tool's
architecture follows principles of ontology-based software
to achieve complete separation between the cache-
preloading engine and design-dependent knowledge.
Supported designs can vary in cache structure, cache
behavior, and coherent initialization rules, as well as in
topology and connectivity. Constraint satisfaction
techniques are used to process these structural and
relational rules as well as encapsulated knowledge of
verification experts and explicit user directives to generate
a huge variety of valid and interesting initializations for the
cache hierarchy.

Experience shows that this technique provides superior
coverage and user controllability, speeds up the
construction of mature verification environments, simplifies
maintenance, encourages encapsulation of domain
knowledge, and enables reuse across verification
environments and cache hierarchy designs.

The paper is organized as follows. In Section �2 we discuss
the underlying technologies, ontologies, and constraint
satisfaction, and their application to the cache-preloading
domain. Section �3 describes CacheLoader’s architecture.
Section �4 presents the selected approach for modeling a
cache subsystem. Section �5 describes the CSP solution
scheme and Section �6 provides our experimental results and
concludes with a discussion.

2. ONTOLOGY-BASED, CSP-POWERED
The CacheLoader tool is designed as an ontology-based
application �[1]�[9]�[16], that couples a cache-preloading
engine, which is oblivious to the architecture and design
details of the specific System-Under-Test (SUT), with a
structured, declarative model of system-dependent
information.

A key ingredient driving an ontology-based application is a
domain specific—in this case cache-preloading specific—
modeling language. The language provides the terminology
and the basic constructs required to build an SUT-specific
ontology. The SUT-specific knowledge is then interpreted
by the cache-preloading engine, which in turn uses it to
provide the required SUT-specific services.

The ontology does not provide a comprehensive description
of the SUT. It only covers aspects of the SUT and its
verification environment that are necessary to generate
valid, high quality cache initializations, and to interact
correctly with the verification environment. The model
provides a structural description of the caches in the system
such as the size and dimensions of every type of cache, the
structure of cache entries, legal states, and legal values of

the various directory fields. In addition, the model specifies
rules and relations, like coherent initialization rules and
hashing functions that associate addresses with the
respective congruence classes. A second component of the
ontology holds system-specific expert guidance, generally
referred to as Testing Knowledge (TK) �[1]. TK indicates
effective methods to accomplish the application's task (e.g.,
bug-prone areas and setups to guide or bias cache
initializations). This component also includes any per-SUT
tuning of the tool's operating principles.

 ������� ���	�	
�� �
������ �	� �	���

������� � ���	
 � �
���� ��� �	�	�	� �	�����	� ���
��	�

 ��	
 !	�"��� �	� �	�	�	� ����#����	� �	�

 ����$����� ���	�
���	���

% �	���	� �	�	�	�
& �	� � �
��	� � �	�
#��	�	� ���	�	�

���	� '�� �	�	� �	��� ()��	���	� � ���	�	�
 �	�

�����+*$��,$-"�	�	�	� � �	�

-"�	�	�	���		� !	�������

���	��� � ����,����	.�� �	�	�	�

Figure 1. Ontology-based, CSP-powered Cache Loader

The model specifies a very large number of relations
between cache entries and fields in the system, reflecting
architectural rules and biasing rules that originate from the
TK. These relations are naturally modeled as constraints.
The use of constraints to specify stimuli generation tasks—
representing such tasks as Constraint Satisfaction Problems
(CSP)—is not new ��[6]. It has been shown that CSP solvers
could efficiently serve as generation engines by randomly
sampling the solution space.

The cache-preloading engine interprets the SUT-specific
model according to the terminology and basic constructs
provided by the modeling language. A CSP (or a set of
CSPs) is then constructed, and handed to a CSP solver to
create a valid, biased-random initialization of the system's
cache hierarchy.

Figure 1 illustrates an adaptation of the ontology-based
scheme to the domain of cache preloading. The verification
engineer is not only the end user but also the knowledge
expert who develops the ontology and adapts it to design
changes. The tool developer supports and enhances the
generic engine as well as the basic terminology required for
modeling.

In addition to the cache preloading application described in
this paper, the ontology-based approach has been
successfully adopted by several hardware verification tools
including unit, processor, and system-level test generators
and post-silicon exercisers �[1]�[2]�[3].

In summary, the ontology-based approach drives the
generalization of domain-wide expert-knowledge and its
encapsulation in a reusable engine. It also forces modularity
between domain-wide knowledge and application-specific
details. It requires the formulization of a standard, domain-
specific modeling language that captures the fundamental
domain concepts and terminology and encourages the use
of declarative modeling techniques for knowledge
representation.

Ontology-based tools replicate the impact of a domain
expert across different SUTs, assist in accumulating
domain-knowledge from one SUT to another, simplify
maintenance, and boost standardization and reuse, including
reuse of ontology modules.

The alternative to an ontology-based approach, and one that
is commonly deployed in the industry, is the testbench
development process which uses specialized languages and
follows strict methodologies �[11]. Development
environments supporting these languages and
methodologies are available from leading design
automation tool vendors �[10]�[19]. Testbench modules are
typically built for a specific architecture, protocol or SUT,
and have deep knowledge about the SUT embedded in their
code. Most testbench components do not provide good (or
even any) separation of the application-specific knowledge
from the core service engine. Also, testbench platforms do
not provide the user with effective mechanisms to deeply
parameterize the model and enforce the described layering
of domain knowledge. As a result, it is almost impossible,
in the context of a traditional testbench, to achieve the level
of portability and reuse between different designs enabled
by the ontology-based scheme.

2.1 Ontology Modeling Platform, Constraint-
Satisfaction Engine
The ontology-based, CSP-powered scheme and the induced
tool architecture call for a modeling platform to support the
construction of SUT-specific ontologies and for a powerful
constraint satisfaction engine. We use ClassMate, an in-
house modeling platform designed to support ontology-
based tools, and Generation-Core, an in-house CSP solver
designed to handle hardware-stimuli and hardware setup
problems.

ClassMate is a type-based, ontology modeling platform. As
such, it exhibits similarities to some frame-based systems
�[13], other ontology modeling platforms �[8]�[17], and layers
of UML2 �[18]. The target domain is modeled as a
taxonomy-hierarchy, using a powerful type definition
language. ClassMate has a number of features that make it
particularly attractive for creating (and maintaining)
hardware models for stimuli generation. These include
native support for constraints between objects and between
subcomponents of objects; a powerful type refinement

mechanism that goes well beyond classical inheritance;
packages that allow controlled redefinition of types for
follow-on designs; and a rich set of extended data types,
including collections, meta-types, and bit-vectors for
handling such things as arbitrarily sized addresses and data
values. ClassMate provides a graphical studio (see Figure 3)
for constructing, browsing, editing, and refactoring the
model.

The Generation-Core �[15] deploys a MAC-based �[4]�[7]
algorithm to manipulate and solve a network of constraints,
where each constraint is represented by a constraint-
propagator routine. Constraint networks may be
dynamically constructed and modified to enable, for
example, problem partitioning by abstraction. The solver is
designed to support hardware-stimuli and hardware setup
problems; it supports well distributed sampling of the
solution space, very large variable domains, bit-wise
operators, soft-constraint hierarchies, conditional problems,
and approximated propagators.

Alternative techniques for solving constraint problems were
rejected because of the lack of expressive power of their
modeling language. Non-boolean variables and non-linear
constraints that are needed by CacheLoader (See Figure 4
below) are difficult to express in SAT �[14] and ILP Error!
Reference source not found..

3. CACHELOADER’S ARCHITECTURE
Figure 2 is a schematic block diagram representing the
various components, inputs, and outputs of CacheLoader.
At the center, the tool's core is a design-independent engine
that reads the ontology, the system's topology, and user
initialization requests to produce biased-random
initialization for the systems' cache hierarchy.
CacheLoader's core encapsulates a CSP solver as its prime
generation engine. The tool's core connects to the
surrounding components and inputs through a design-
independent interface.

Figure 2. CacheLoader architecture

The ontology comprises an architectural description
component and a testing knowledge (TK) component. As
mentioned before, the architectural description component

CacheLoader

Engine

Testing

knowledge

Architectural

description

System

topology

Cache

initialization

 request

Cache

initialization

result

of the ontology holds structural and behavioral information
about the SUT, the structure of the various cache types and
memory controllers, hash functions, coherent initialization
rules, and more.

Based on this description alone, CacheLoader would have
produced random initializations that uniformly cover the
legal state space. The role of the TK, the second component
of the ontology, is to direct or bias the engine towards
important corner cases that would otherwise have only a
low chance of being hit. TK is therefore implemented as a
collection of biasing options. Testing knowledge may be
design-independent or design-specific. Design-specific TK
may sometimes be shared by a family of similar designs.
Examples of design-independent TK include distributing
the number of initializations of each preloaded address
across the cache hierarchy and filling a whole congruence-
class (set) with the same or with different addresses.
Examples of design-dependent TK include cases such as the
single Ig-state described in the introduction. These biasing
options have parameters that control their activity and tune
their behavior; for example, parameters specifying whether
to avoid generating a specific case or intentionally generate
it, or distribution weights for a biasing option controlling
the distribution of cache states in the system. Section �4
provides additional insights about the ontology component,
presenting our approach to ontology modeling.

The verification engineer provides the cache initialization
request. This input conveys the user's request to follow a
specific initialization profile for the current simulation
session. The user feeds CacheLoader a pool of addresses to
initialize, and activates or tunes the available biasing
options. Tuning is achieved by overriding the default
parameter values specified by the TK component. The user
may override parameter values for the whole SUT, or just
for a specified scope. Scopes are designated using system
partition names (e.g., node and processor IDs), by
specifying cache types, or symbolically. Using symbols,
CacheLoader may be guided to randomly choose the sub-
system to which a unique set of parameter values should
apply. This feature allows the creation of design-
independent and configuration-independent requests.

The system topology describes the configuration of a
specific model of the SUT for which initialization is now
required. It specifies the number and types of caches in the
system and their connectivity.

The output of CacheLoader—the cache initialization
result—is a list of cache entries and cache lines that should
be loaded by the verification environment to various caches
and memory locations in the simulation model, to reflect the
new initialization.

CacheLoader is an essential component of the unit, core,
and system verification flow. A test program generator such
as IBM’s Genesys-Pro �[1] generates memory initializations
for both instructions and data. These initializations are
transferred to CacheLoader to initialize the cache hierarchy.
CacheLoader is implemented as a building block that has
been integrated into various verification tools.

4. ONTOLOGY MODELING
The ontology that drives CacheLoader holds a description
of the SUT (both the architecture and the relevant design
details) and a testing-knowledge component. This is not a
comprehensive description; it only holds details that are
required to generate valid, high-quality, cache
initializations.

A specialized hierarchy of modeling building-blocks has
been created for CacheLoader, establishing a modeling
terminology designed to serve the cache-initialization
problem. A system-specific ontology is then constructed by
refining these pre-defined building blocks. In addition, a
hierarchy of model packages is supported by ClassMate to
enable sharing and reuse between similar or derivative
designs.

We list here some of the basic terms used for modeling a
system, giving special attention to constraints and biasing
options. The various types and constraints are depicted in
ClassMate's visual studio as shown in Figure 3. The
HierarchyPartition base-type specifies the system’s
structure, while StorageEntity specifies memories and
caches. The internal structure of a cache is described using
the terms CongruenceClass, CacheEntry, and Field.

Constraints specify architectural rules and implement
biasing options. They may be attached to any type and to
entities within a type. Constraints may restrict domain
values for primitive entities (e.g., the address space
managed by a memory controller), or define relations
between entities (e.g., coherency rules over congruence-
classes).

Figure 3. ClassMate’s type editor listing CacheLoader base
types

There are three types of constraints: (1)
RulesAndRestrictions constraints that implement
architectural rules (e.g., congruence-hash and coherent-
initialization), and simulation-environment restrictions, (2)
Biasing constraints that bias cache initializations towards
'interesting', bug prone setups, and (3) ToolInfrastructure
constraints that are part of the infrastructure of
CacheLoader. In general, the constraints needed to capture
the various relations between objects in CacheLoader's
model can be very complicated. It is not uncommon for a
constraint to include arithmetic, set and field operations,
that are logically connected and existentially and
universally quantified.

Figure 4. A parameterized definition of a biasing option

Directives are the mechanism used to model the biasing
options provided to the user. Each directive type declares
a new biasing option. A directive includes a list of
DirectiveParameters, specifying the user-parameters
provided for this biasing option. A DirectiveParameter
can either take a fixed value or an expression that
represents a distribution of values. Each parameter has a
default value that the user can override using the cache
initialization request. The actual semantics of a directive
is specified through biasing constraint. The constraint
expression provides a declarative, parameterized
specification of the biasing goal by relating directive
parameters to other entities of the model.

Figure 4 shows a declarative, parameterized definition of
a biasing option that supports the ‘single Ig-state protects
coherency' case described in the introduction. The first
parameter (line 2) determines whether the biasing option
should take effect, while the second (line 4) determines
whether the scenario should be created or prevented. Note
that the scenario takes effect if and only if exactly one of
the L2 cache entries in the local domain holds the address
(lines 6-7), it is in the Ig state (lines 8-10), and at least one
cache which is not in the local domain holds the address in
a valid state (lines 11-13).

5. SOLUTION SCHEME
As stated in Section �2, CacheLoader uses CSP formulation
to capture the cache initialization problem and then
utilizes a CSP solver to generate a valid, biased-random
initialization for the system's cache hierarchy. This section
provides additional details on this process.

To solve the cache-preloading problem, CacheLoader
engine first partitions the problem into several
independent sub-problems. This is a performance
optimization phase, enabling the solver to handle smaller
CSPs, one at a time. The partition is done based on the
addresses that need to be initialized and the congruence-
class hashing functions of the caches in the system. Each
cache specifies a hashing function that defines the
mapping between an address and a congruence class in
this cache that hosts its respective cache line. Two
addresses are dependent if and only if they may be hosted
in the same congruence class of at least one cache in the
system. An independent CSP is constructed and solved per
each transitive closure of dependent addresses.

After partitioning, a CSP is created for each sub-problem.
This CSP has variables that represent the physical and
logical fields of the caches such as the address of each
cache-entry, its state (MESI or its derivatives), the tag,
and other design-dependent fields. The CSP is populated
with all the constraints (hard and soft) coming from the
architectural description, from the testing knowledge, and
from the specific cache initialization request provided by
the verification engineer.

Each CSP is then handed to the CSP solver and the
solutions are held in CacheLoader’s repository. When all
the sub-problems are resolved, the merged result is
forwarded to the verification environment for
initialization.

6. EXPERIMENTAL RESULTS AND
DISCUSSION
In this section, we compare the ontology-based, CSP-
powered CacheLoader to a traditional implementation,
developed as a module of a C++ testbench. The
description of this reference cache-preloading application
is followed by a quantitative comparison of the two
applications, using coverage tasks and runtime
performance as our metrics. The evaluation was done as
part of �[5]. We conclude with a qualitative discussion
analyzing other characteristics of these solutions,
demonstrating strengths and weaknesses of each.

6.1 A Reference Cache-Preloading
Application
The reference application is a module of a C++ testbench.
It implements an exhaustive search algorithm, working on
an address-by-address basis. A given pool of addresses is
considered in a random order to ensure no ordering biases
are introduced. For each address, the solver makes a
random number of attempts to initialize that address to a
different cache location. For each initialization, the solver
picks valid cache and cache state combinations from a
prepared list. The candidate initialization is then checked

against the current committed list of initializations for
compatibility. An initialization is deemed incompatible if
it violates a mandatory legality rule, such as a coherent
initialization rule, the obvious 'congruence-class-full', or
any limitation of the verification environment. These
legality rules are hard-coded as predicates, and are mostly
design-dependent. If the candidate initialization is
compatible, it is added to the committed list. If not, it is
rejected and will not be tried again for the current address.
The process halts when all addresses in the pool have been
visited and evaluated.

The engine is controlled by parameters. For example,
probabilities can be assigned to each initialization
combination and the number of initializations per address
is also controllable. These parameterized policies—or
biasing options—are supported by dedicated code. Hence,
it requires tool developer expertise and recompilation to
enhance the tool with new biasing options.

6.2 Quantitative Results
To evaluate the coverage potential of the two approaches
and the controllability of the tools, we defined new
coverage tasks that were not previously targeted or
measured by the tools. We tested a relatively large 32
cache system; addresses were mapped to 10 different
congruence classes with 64 addresses per congruence
class. To obtain results for the reference tool, we ran many
experiments to find a “best case” result for each task. For
the CSP-powered CacheLoader, we demonstrated the
capability of adding new biasing options. For both tools,
we did not change the tools’ code. Later in this section we
discuss the option of providing ad hoc code-level support
for these tasks in the reference tool.

A verification engineer specified the first three coverage
tasks to close specific verification gaps. The first task
involves the single Ig-state described in the introduction
and in Section �4. The second task entails a similar
scenario, where a single bit in the memory controller
replaces the single Ig state. The third coverage task targets
preloading configurations, where two parts of the
POWER6 coherency protocol disagree. In all these cases,
the newly created biasing option was set to target three
specific values for the coverage goal: 0%, 50%, and 100%
of the addresses. The results are displayed in Figure 5.

For these three tasks, the best results of the reference tool
are 9%, 17% and 9% of the addresses, respectively. In
addition, we observed that cache initializations generated
by the reference tool did not deviate significantly from
these results (+/- 5%). The CSP-powered CacheLoader hit
0%, 0% and 8% for the different tasks when it was set to
0%. It generated 33%, 44% and 46% when targeting 50%
and finally 84%, 90% and 99% for the 100% goal.

0

20

40

60

80

100

120

Reference tool
(best case)

CacheLoader,
target 0%

CacheLoader,
target 50%

CacheLoader,
target 100%

%
 a

dd
re

ss
es task 1

task 2

task 3

Figure 5. Hitting coverage tasks

The developer of the reference tool investigated how easy
it would be to augment the reference tool to include
controls that can assist in targeting these coverage tasks.
The developer found that it was unclear how to best
combine the need for off-node initializations and a
specific type of local-node initialization using the current
scheme. A satisfying solution does not seem to exist.

0

1

2

3

4

5

6

7

8

9

Reference tool (average
case)

CacheLoader, target 1 CacheLoader, target 8

D
iff

er
en

t a
d

dr
es

se
s

pe
r

cg
c

Figure 6. Targeting the number of unique addresses per
congruence class

The fourth task aimed to achieve a good distribution of the
number of different addresses initialized per congruence
class. For the reference tool, we found that the average
result was 1.55 addresses per congruence class on the
experimental setup. For the CSP-powered CacheLoader, a
dedicated biasing option repeatedly achieved exactly 1
address per congruence class when this was the targeted
task and 7.97 on the average when the goal was to fill up
congruence classes (8 entries for the L2 cache of Power6)
with 8 different addresses (Figure 6)

To compare runtime performance, we built two system
models and used various address pool sizes. Runtime
values were gathered for each test setup on an Intel Xeon
3.06 GHz processor running Linux. Both 32-cache and
64-cache models were run with address pools mapped to
10 and to 50 congruence classes, with variants of 8, 16,
32, and 64 addresses per congruence class. We found that
the reference tool runs five times faster on average than
the CSP-powered CacheLoader. Since cache-preloading
consumes about 1% of the total simulation runtime, this
reduction in runtime was found to be acceptable.

6.3 Qualitative Discussion
Like other CSP-based applications, CacheLoader
decouples the description of the problem from the solving
engine. CacheLoader's domain specific modeling language
facilitates this decoupling by enabling a verification
engineer—who is not a CSP expert—to model the
required knowledge. The derivation of a CSP formulation
of the cache initialization problem is fully automated by
the tool's core. In contrast, the reference tool interweaves
a structural model of the system, the associated coherency
rules, design specific biasing options, and a solving
procedure into a single software module. Moreover, the
algorithm implemented by the reference tool is tied into
the details of the specific SUT. This leads to high
development and maintenance costs, and low reusability.

A cache-preloading module is a verification IP �[11]
providing a well-defined service capable of supporting
verification environments at various levels of integration
(e.g., unit, subsystem, system). As a verification IP,
CacheLoader provides a higher level of portability than
the original reference tool. Field experience shows that
absorbing on-going design changes and even adapting to
completely new designs is a straightforward, efficient task.
The addition of new cache fields, modification of
coherency rules, insertion of a new cache-hierarchy level,
and the introduction of new types of caches, can all be
carried out in minutes and require no recompilation.

CacheLoader's powerful user request language provides
verification engineers with the flexibility and
controllability required to support a verification plan,
especially when compared to the limited set of generation
parameters supported by the original module. The
simplicity in which new biasing options may be added
further enhances the user's ability to target unique
coverage goals. In contrast, enhancing the original
reference tool to support a new biasing option requires
careful consideration by the tool developer. Without the
extra caution, the new function could lead to generation
failures or loss of balance between existing options.
Furthermore, the algorithm used by the reference tool is

not well-suited for cases that require the consideration of
system-wide constraints.

7. CONCLUSIONS
This paper presents an ontology-based, CSP-powered
cache-preloading technology. The tool's architecture
follows principles of ontology based software to achieve
complete separation between the cache loading engine and
design dependent knowledge. Constraint satisfaction
techniques are used to generate system initializations,
satisfying the declarative modeling of design dependant
rules, expert knowledge, and explicit user directives.

CacheLoader was tested with several IBM designs
exhibiting different structures, coherency rules, and
behavior. The tool demonstrated significant advantages
over the traditional ad-hoc implementation, with a slight
penalty of longer generation run-time. Adaptation to a
new design is faster and is almost plug-and-play. The
reusability level is higher, and domain knowledge is
accumulated and shared between projects. This sharing of
knowledge replicates the impact of experts in this unique
area. The powerful user request language, and the
simplicity of adding new fine grained biasing options,
provides the flexibility and the control required to
implement a verification plan and target unique coverage
goals.

We foresee that other verification services will be built
using similar principles, boosting the productivity of
verification engineers and speeding up the construction of
mature verification environments.

REFERENCES
[1] Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon,

M., Vinov, M. and Ziv, A. Genesys-Pro: Innovations
in Test Program Generation for Functional Processor
Verification. IEEE Design Test of Computers, Mar-
Apr. 2004, 84-93

[2] Adir, A., Emek, R., Katz, Y., Koyfman, A.:
DeepTrans - A Model-Based Approach to Functional
Verification of Address Translation Mechanisms,
MTV 2003

[3] Aloni, G. et al.: X-Gen: A Random Test-Case
Generator for Systems and Socs, HLDVT 2002

[4] Barták, R., “Theory and Practice of Constraint
Propagation”, CPDC2001, June 2001

[5] Bhatia, R. R., “Design and Evaluation of a Constraint
Satisfaction Problem Solver-Based Cache Preloader”
M.S.E.. Thesis, University of Texas at Austin, August
2008

[6] Bin, E. et al., “Using a Constraint Satisfaction
Formulation and Solution Techniques for Random
test Program Generation,” IBM Systems Journal, vol.
41, No. 3, 2002

[7] Dechter R., “Constraint Processing”. A book by
Elsevier Science (USA) 2003

[8] Duineveld, A.; Stoter, R.; Weiden, M. R.; Kenepa,
B.; and Benjamins,V. R.: "Wonder Tools? A
Comparative Study of Ontological Engineering
Tools", KAW 1999

[9] Ganzha, M. et al.: "Utilizing Semantic Web and
Software Agents in a Travel Support System". In: A.
F. Salam and Jason Stevens (eds.), Semantic Web
Technologies and eBusiness, 2006, pp.325–359.

[10] Haque, F., Michelson, J. and Khan, K. The Art of
Verification with Vera, Verification Central, 2001

[11] Iman, S., Step-by-Step Functional Verification with
SystemVerilog and OVM., 2008. Hansen Brown

[12] Le H. Q., Starke W. J., Fields J. S., O'Connel F. P.,
Nguyen D. Q., Ronchetti B. J., Sauer W. M., Schwarz
E. M., Vaden M. T. 2007: IBM POWER6TM
Microarchitecture. IBM Journal of Research and
Development, Vol.51, No. 6, Nov. 2007

[13] Minsky M.: “A Framework for Representing
Knowledge”, MIT-AI Lab Memo 306, June, 1974

[14] Moskewicz, M. W., Madigan, C F.,Zhao, Y., Zhang,
L., Malik, S., “Chaff: engineering an efficient SAT
solver”, DAC 2001

[15] Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov,
M., Marcus, E., and Shurek, G., "Constraint-Based
Random Stimuli Generation for Hardware
Verification", AI magazine, Vol. 28, pp. 13-30 2007

[16] Norton B., Cabral L., Nitzsche J.: ”Ontology-Based
Translation of Business Process Models”. ICIW2009,
pp.481-486

[17] Noy, N. F., Fergerson, R. W. and Musen, M. A.: "The
Knowledge Model of Protege-2000: Combining
Interoperability and Flexibility". EKAW 2000

[18] OMG, UML 2.0 Specification,
http://www.omg.org/spec/UML/2.0, 2005

[19] Palnitkar, S., Design Verification with e, Prentice
Hall, 2003

[20] Schrijver, A. Theory of Linear and Integer
Programming. John Wiley & sons, 1998

[21] Stuecheli, J., “System Performance Scaling of IBM
POWER6™ Based Servers” HotChips 19, Aug 2007

