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ABSTRACT 
The verification of modern microprocessor-based systems 
requires stressing the cache hierarchy and effectively 
covering its huge state space. Cache hierarchy initialization 
(or preloading) is a technique that enables simulation to 
start from a rich, complex system-level setup, thereby 
simplifying the task of dynamically driving the hierarchy 
into the required corner cases.  
 
In this paper we introduce CacheLoader, a new, design-
independent cache-preloading technology. The tool's 
architecture follows the principles of ontology-based 
software to achieve complete separation between the cache-
preloading engine and design dependent knowledge. 
Constraint satisfaction techniques are used to generate 
valid, interesting system initialization, and to satisfy explicit 
user directives. CacheLoader is currently being used by 
verification teams of several large scale designs in IBM. 
Results show that this technique provides superior coverage 
and user controllability, speeds up the construction of 
mature verification environments, simplifies maintenance, 
encourages encapsulation of domain knowledge, and 
enables reuse across verification environments and cache 
hierarchy designs.  

1. INTRODUCTION 
Modern microprocessor systems use caches to improve 
access time for the core’s memory operations. Typically, a 
multi-processor system employs a snoop-based broadcast 
protocol to maintain memory sub-system cache coherency 
and data consistency ��[12]. A MESI cache coherency 
protocol with only four different states is the basic 
coherency protocol. Many derivatives of MESI exist, often 
requiring considerably more states. The POWER6TM 
scheme ��[21] for example has thirteen different states that 
provide an increased level of information to help coherency 
participants determine how to use or share their copy of the 
cache line. This added complexity introduces many new 
scenarios that need to be verified. Consider, for example, 
the following POWER6 case: A node is a physical partition 

of the system comprising several processor cores and a 
memory controller managing a chunk of the system's 
globally shared memory. When a cache-line is held in a 
valid state in a cache on node A, while its memory space is 
managed by node B, the cache protocol requires that either 
the memory controller on node B holds an indication that a 
valid copy of this line is held on a remote node, or that a 
copy of this line is held in a cache on node B and tagged 
with a unique invalid state (Ig). It is important for 
verification to cover scenarios starting from the extreme 
system state where no indication is held by the home 
memory controller, and where only a single Ig copy, held 
by a cache on node B, protects system-level coherency for 
this line.   

A common method to verify a cache hierarchy is to 
construct a random biased testbench and send random—yet 
legal—read, write, and synchronization transaction requests 
to the cache and memory subsystem to exercise both 
realistic and unrealistic workload patterns. This approach is 
insufficient, especially in systems with complex coherency 
protocols. Stressing the system requires very long test 
programs to gradually build the required conditions in the 
system’s cache hierarchy. It is extremely difficult to 
construct programs that reach the intended system’s state in 
a predictable way. Moreover, reaching such a state would 
consume many simulation cycles.  

A known method to overcome these difficulties is to 
preload the system with a coherent and interesting initial 
state before simulation starts. A special cache-preloading 
module is usually built to achieve this goal.  This module 
should be able to satisfy complex coherency rules, e.g., an 
address can be tagged as ‘modified’ in at most one cache 
entry in the system. In addition, the pre-loading module 
should provide biasing options to direct the initialization 
towards interesting and potentially rare corner cases. The 
verification engineer should be provided with control 
parameters to enable the creation of various initialization 
profiles. A good example of the necessity of this capability 
is a bias that tunes the distribution of the caches’ states. 



This bias is associated with parameters that provide 
distribution weights for each state. 

In this paper we describe CacheLoader—a new, design–
independent, cache-preloading technology. The tool's 
architecture follows principles of ontology-based software 
to achieve complete separation between the cache-
preloading engine and design-dependent knowledge. 
Supported designs can vary in cache structure, cache 
behavior, and coherent initialization rules, as well as in 
topology and connectivity. Constraint satisfaction 
techniques are used to process these structural and 
relational rules as well as encapsulated knowledge of 
verification experts and explicit user directives to generate 
a huge variety of valid and interesting initializations for the 
cache hierarchy. 

Experience shows that this technique provides superior 
coverage and user controllability, speeds up the 
construction of mature verification environments, simplifies 
maintenance, encourages encapsulation of domain 
knowledge, and enables reuse across verification 
environments and cache hierarchy designs.  

The paper is organized as follows. In Section �2 we discuss 
the underlying technologies, ontologies, and constraint 
satisfaction, and their application to the cache-preloading 
domain. Section �3 describes CacheLoader’s architecture. 
Section �4 presents the selected approach for modeling a 
cache subsystem. Section �5 describes the CSP solution 
scheme and Section �6 provides our experimental results and 
concludes with a discussion. 

2. ONTOLOGY-BASED, CSP-POWERED 
The CacheLoader tool is designed as an ontology-based 
application �[1]�[9]�[16], that couples a cache-preloading 
engine, which is oblivious to the architecture and design 
details of the specific System-Under-Test (SUT), with a 
structured, declarative model of system-dependent 
information. 

A key ingredient driving an ontology-based application is a 
domain specific—in this case cache-preloading specific—
modeling language. The language provides the terminology 
and the basic constructs required to build an SUT-specific 
ontology. The SUT-specific knowledge is then interpreted 
by the cache-preloading engine, which in turn uses it to 
provide the required SUT-specific services. 

The ontology does not provide a comprehensive description 
of the SUT. It only covers aspects of the SUT and its 
verification environment that are necessary to generate 
valid, high quality cache initializations, and to interact 
correctly with the verification environment. The model 
provides a structural description of the caches in the system 
such as the size and dimensions of every type of cache, the 
structure of cache entries, legal states, and legal values of 

the various directory fields. In addition, the model specifies 
rules and relations, like coherent initialization rules and 
hashing functions that associate addresses with the 
respective congruence classes. A second component of the 
ontology holds system-specific expert guidance, generally 
referred to as Testing Knowledge (TK) �[1]. TK indicates 
effective methods to accomplish the application's task (e.g., 
bug-prone areas and setups to guide or bias cache 
initializations). This component also includes any per-SUT 
tuning of the tool's operating principles.  
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Figure 1. Ontology-based, CSP-powered Cache Loader 

The model specifies a very large number of relations 
between cache entries and fields in the system, reflecting 
architectural rules and biasing rules that originate from the 
TK. These relations are naturally modeled as constraints. 
The use of constraints to specify stimuli generation tasks—
representing such tasks as Constraint Satisfaction Problems 
(CSP)—is not new ��[6]. It has been shown that CSP solvers 
could efficiently serve as generation engines by randomly 
sampling the solution space. 

The cache-preloading engine interprets the SUT-specific 
model according to the terminology and basic constructs 
provided by the modeling language. A CSP (or a set of 
CSPs) is then constructed, and handed to a CSP solver to 
create a valid, biased-random initialization of the system's 
cache hierarchy. 

Figure 1 illustrates an adaptation of the ontology-based 
scheme to the domain of cache preloading. The verification 
engineer is not only the end user but also the knowledge 
expert who develops the ontology and adapts it to design 
changes. The tool developer supports and enhances the 
generic engine as well as the basic terminology required for 
modeling. 

In addition to the cache preloading application described in 
this paper, the ontology-based approach has been 
successfully adopted by several hardware verification tools 
including unit, processor, and system-level test generators 
and post-silicon exercisers �[1]�[2]�[3]. 



In summary, the ontology-based approach drives the 
generalization of domain-wide expert-knowledge and its 
encapsulation in a reusable engine. It also forces modularity 
between domain-wide knowledge and application-specific 
details. It requires the formulization of a standard, domain-
specific modeling language that captures the fundamental 
domain concepts and terminology and encourages the use 
of declarative modeling techniques for knowledge 
representation. 

Ontology-based tools replicate the impact of a domain 
expert across different SUTs, assist in accumulating 
domain-knowledge from one SUT to another, simplify 
maintenance, and boost standardization and reuse, including 
reuse of ontology modules. 

The alternative to an ontology-based approach, and one that 
is commonly deployed in the industry, is the testbench 
development process which uses specialized languages and 
follows strict methodologies �[11]. Development 
environments supporting these languages and 
methodologies are available from leading design 
automation tool vendors �[10]�[19]. Testbench modules are 
typically built for a specific architecture, protocol or SUT, 
and have deep knowledge about the SUT embedded in their 
code. Most testbench components do not provide good (or 
even any) separation of the application-specific knowledge 
from the core service engine. Also, testbench platforms do 
not provide the user with effective mechanisms to deeply 
parameterize the model and enforce the described layering 
of domain knowledge. As a result, it is almost impossible, 
in the context of a traditional testbench, to achieve the level 
of portability and reuse between different designs enabled 
by the ontology-based scheme. 

2.1 Ontology Modeling Platform, Constraint-
Satisfaction Engine 
The ontology-based, CSP-powered scheme and the induced 
tool architecture call for a modeling platform to support the 
construction of SUT-specific ontologies and for a powerful 
constraint satisfaction engine. We use ClassMate, an in-
house modeling platform designed to support ontology-
based tools, and Generation-Core, an in-house CSP solver 
designed to handle hardware-stimuli and hardware setup 
problems.  

ClassMate is a type-based, ontology modeling platform. As 
such, it exhibits similarities to some frame-based systems 
�[13], other ontology modeling platforms �[8]�[17], and layers 
of UML2 �[18]. The target domain is modeled as a 
taxonomy-hierarchy, using a powerful type definition 
language. ClassMate has a number of features that make it 
particularly attractive for creating (and maintaining) 
hardware models for stimuli generation. These include 
native support for constraints between objects and between 
subcomponents of objects; a powerful type refinement 

mechanism that goes well beyond classical inheritance; 
packages that allow controlled redefinition of types for 
follow-on designs; and a rich set of extended data types, 
including collections, meta-types, and bit-vectors for 
handling such things as arbitrarily sized addresses and data 
values. ClassMate provides a graphical studio (see Figure 3) 
for constructing, browsing, editing, and refactoring the 
model. 

The Generation-Core �[15] deploys a MAC-based �[4]�[7] 
algorithm to manipulate and solve a network of constraints, 
where each constraint is represented by a constraint-
propagator routine. Constraint networks may be 
dynamically constructed and modified to enable, for 
example, problem partitioning by abstraction. The solver is 
designed to support hardware-stimuli and hardware setup 
problems; it supports well distributed sampling of the 
solution space, very large variable domains, bit-wise 
operators, soft-constraint hierarchies, conditional problems, 
and approximated propagators. 

Alternative techniques for solving constraint problems were 
rejected because of the lack of expressive power of their 
modeling language. Non-boolean variables and non-linear 
constraints that are needed by CacheLoader (See Figure 4 
below) are difficult to express in SAT �[14] and ILP Error! 
Reference source not found..  

3. CACHELOADER’S ARCHITECTURE 
Figure 2 is a schematic block diagram representing the 
various components, inputs, and outputs of CacheLoader. 
At the center, the tool's core is a design-independent engine 
that reads the ontology, the system's topology, and user 
initialization requests to produce biased-random 
initialization for the systems' cache hierarchy. 
CacheLoader's core encapsulates a CSP solver as its prime 
generation engine. The tool's core connects to the 
surrounding components and inputs through a design-
independent interface. 

  

 

Figure 2.  CacheLoader architecture 
 

The ontology comprises an architectural description 
component and a testing knowledge (TK) component. As 
mentioned before, the architectural description component 
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of the ontology holds structural and behavioral information 
about the SUT, the structure of the various cache types and 
memory controllers, hash functions, coherent initialization 
rules, and more.  

Based on this description alone, CacheLoader would have 
produced random initializations that uniformly cover the 
legal state space. The role of the TK, the second component 
of the ontology, is to direct or bias the engine towards 
important corner cases that would otherwise have only a 
low chance of being hit. TK is therefore implemented as a 
collection of biasing options. Testing knowledge may be 
design-independent or design-specific. Design-specific TK 
may sometimes be shared by a family of similar designs. 
Examples of design-independent TK include distributing 
the number of initializations of each preloaded address 
across the cache hierarchy and filling a whole congruence-
class (set) with the same or with different addresses. 
Examples of design-dependent TK include cases such as the 
single Ig-state described in the introduction. These biasing 
options have parameters that control their activity and tune 
their behavior; for example, parameters specifying whether 
to avoid generating a specific case or intentionally generate 
it, or distribution weights for a biasing option controlling 
the distribution of cache states in the system.  Section �4 
provides additional insights about the ontology component, 
presenting our approach to ontology modeling. 

The verification engineer provides the cache initialization 
request. This input conveys the user's request to follow a 
specific initialization profile for the current simulation 
session. The user feeds CacheLoader a pool of addresses to 
initialize, and activates or tunes the available biasing 
options. Tuning is achieved by overriding the default 
parameter values specified by the TK component. The user 
may override parameter values for the whole SUT, or just 
for a specified scope. Scopes are designated using system 
partition names (e.g., node and processor IDs), by 
specifying cache types, or symbolically. Using symbols, 
CacheLoader may be guided to randomly choose the sub-
system to which a unique set of parameter values should 
apply. This feature allows the creation of design-
independent and configuration-independent requests.  

The system topology describes the configuration of a 
specific model of the SUT for which initialization is now 
required. It specifies the number and types of caches in the 
system and their connectivity. 

The output of CacheLoader—the cache initialization 
result—is a list of cache entries and cache lines that should 
be loaded by the verification environment to various caches 
and memory locations in the simulation model, to reflect the 
new initialization. 

CacheLoader is an essential component of the unit, core, 
and system verification flow. A test program generator such 
as IBM’s Genesys-Pro �[1] generates memory initializations 
for both instructions and data. These initializations are 
transferred to CacheLoader to initialize the cache hierarchy. 
CacheLoader is implemented as a building block that has 
been integrated into various verification tools. 

4. ONTOLOGY MODELING 
The ontology that drives CacheLoader holds a description 
of the SUT (both the architecture and the relevant design 
details) and a testing-knowledge component. This is not a 
comprehensive description; it only holds details that are 
required to generate valid, high-quality, cache 
initializations. 

A specialized hierarchy of modeling building-blocks has 
been created for CacheLoader, establishing a modeling 
terminology designed to serve the cache-initialization 
problem. A system-specific ontology is then constructed by 
refining these pre-defined building blocks. In addition, a 
hierarchy of model packages is supported by ClassMate to 
enable sharing and reuse between similar or derivative 
designs. 

We list here some of the basic terms used for modeling a 
system, giving special attention to constraints and biasing 
options. The various types and constraints are depicted in 
ClassMate's visual studio as shown in Figure 3. The 
HierarchyPartition base-type specifies the system’s 
structure, while StorageEntity specifies memories and 
caches. The internal structure of a cache is described using 
the terms CongruenceClass, CacheEntry, and Field. 

Constraints specify architectural rules and implement 
biasing options. They may be attached to any type and to 
entities within a type. Constraints may restrict domain 
values for primitive entities (e.g., the address space 
managed by a memory controller), or define relations 
between entities (e.g., coherency rules over congruence-
classes).  



Figure 3. ClassMate’s type editor listing CacheLoader base 
types 

 

There are three types of constraints: (1) 
RulesAndRestrictions constraints that implement 
architectural rules (e.g., congruence-hash and coherent-
initialization), and simulation-environment restrictions, (2) 
Biasing constraints that bias cache initializations towards 
'interesting', bug prone setups, and (3) ToolInfrastructure 
constraints that are part of the infrastructure of 
CacheLoader. In general, the constraints needed to capture 
the various relations between objects in CacheLoader's 
model can be very complicated. It is not uncommon for a 
constraint to include arithmetic, set and field operations, 
that are logically connected and existentially and 
universally quantified. 

 

Figure 4. A parameterized definition of a biasing option 
 

Directives are the mechanism used to model the biasing 
options provided to the user. Each directive type declares 
a new biasing option. A directive includes a list of 
DirectiveParameters, specifying the user-parameters 
provided for this biasing option. A DirectiveParameter 
can either take a fixed value or an expression that 
represents a distribution of values. Each parameter has a 
default value that the user can override using the cache 
initialization request. The actual semantics of a directive 
is specified through biasing constraint. The constraint 
expression provides a declarative, parameterized 
specification of the biasing goal by relating directive 
parameters to other entities of the model. 

Figure 4 shows a declarative, parameterized definition of 
a biasing option that supports the ‘single Ig-state protects 
coherency' case described in the introduction. The first 
parameter (line 2) determines whether the biasing option 
should take effect, while the second (line 4) determines 
whether the scenario should be created or prevented. Note 
that the scenario takes effect if and only if exactly one of 
the L2 cache entries in the local domain holds the address 
(lines 6-7), it is in the Ig state (lines 8-10), and at least one 
cache which is not in the local domain holds the address in 
a valid state (lines 11-13).  

5. SOLUTION SCHEME 
As stated in Section �2, CacheLoader uses CSP formulation 
to capture the cache initialization problem and then 
utilizes a CSP solver to generate a valid, biased-random 
initialization for the system's cache hierarchy. This section 
provides additional details on this process. 



To solve the cache-preloading problem, CacheLoader 
engine first partitions the problem into several 
independent sub-problems. This is a performance 
optimization phase, enabling the solver to handle smaller 
CSPs, one at a time. The partition is done based on the 
addresses that need to be initialized and the congruence-
class hashing functions of the caches in the system. Each 
cache specifies a hashing function that defines the 
mapping between an address and a congruence class in 
this cache that hosts its respective cache line. Two 
addresses are dependent if and only if they may be hosted 
in the same congruence class of at least one cache in the 
system. An independent CSP is constructed and solved per 
each transitive closure of dependent addresses.  

After partitioning, a CSP is created for each sub-problem. 
This CSP has variables that represent the physical and 
logical fields of the caches such as the address of each 
cache-entry, its state (MESI or its derivatives), the tag, 
and other design-dependent fields. The CSP is populated 
with all the constraints (hard and soft) coming from the 
architectural description, from the testing knowledge, and 
from the specific cache initialization request provided by 
the verification engineer. 

Each CSP is then handed to the CSP solver and the 
solutions are held in CacheLoader’s repository. When all 
the sub-problems are resolved, the merged result is 
forwarded to the verification environment for 
initialization. 

6. EXPERIMENTAL RESULTS AND 
DISCUSSION 
In this section, we compare the ontology-based, CSP-
powered CacheLoader to a traditional implementation, 
developed as a module of a C++ testbench. The 
description of this reference cache-preloading application 
is followed by a quantitative comparison of the two 
applications, using coverage tasks and runtime 
performance as our metrics. The evaluation was done as 
part of �[5]. We conclude with a qualitative discussion 
analyzing other characteristics of these solutions, 
demonstrating strengths and weaknesses of each. 

6.1 A Reference Cache-Preloading 
Application 
The reference application is a module of a C++ testbench. 
It implements an exhaustive search algorithm, working on 
an address-by-address basis. A given pool of addresses is 
considered in a random order to ensure no ordering biases 
are introduced. For each address, the solver makes a 
random number of attempts to initialize that address to a 
different cache location. For each initialization, the solver 
picks valid cache and cache state combinations from a 
prepared list. The candidate initialization is then checked 

against the current committed list of initializations for 
compatibility. An initialization is deemed incompatible if 
it violates a mandatory legality rule, such as a coherent 
initialization rule, the obvious 'congruence-class-full', or 
any limitation of the verification environment. These 
legality rules are hard-coded as predicates, and are mostly 
design-dependent. If the candidate initialization is 
compatible, it is added to the committed list. If not, it is 
rejected and will not be tried again for the current address. 
The process halts when all addresses in the pool have been 
visited and evaluated.  

The engine is controlled by parameters. For example, 
probabilities can be assigned to each initialization 
combination and the number of initializations per address 
is also controllable. These parameterized policies—or 
biasing options—are supported by dedicated code. Hence, 
it requires tool developer expertise and recompilation to 
enhance the tool with new biasing options.  

6.2 Quantitative Results 
To evaluate the coverage potential of the two approaches 
and the controllability of the tools, we defined new 
coverage tasks that were not previously targeted or 
measured by the tools. We tested a relatively large 32 
cache system; addresses were mapped to 10 different 
congruence classes with 64 addresses per congruence 
class. To obtain results for the reference tool, we ran many 
experiments to find a “best case” result for each task. For 
the CSP-powered CacheLoader, we demonstrated the 
capability of adding new biasing options. For both tools, 
we did not change the tools’ code. Later in this section we 
discuss the option of providing ad hoc code-level support 
for these tasks in the reference tool. 

A verification engineer specified the first three coverage 
tasks to close specific verification gaps. The first task 
involves the single Ig-state described in the introduction 
and in Section �4. The second task entails a similar 
scenario, where a single bit in the memory controller 
replaces the single Ig state. The third coverage task targets 
preloading configurations, where two parts of the 
POWER6 coherency protocol disagree. In all these cases, 
the newly created biasing option was set to target three 
specific values for the coverage goal: 0%, 50%, and 100% 
of the addresses. The results are displayed in Figure 5. 

For these three tasks, the best results of the reference tool 
are 9%, 17% and 9% of the addresses, respectively. In 
addition, we observed that cache initializations generated 
by the reference tool did not deviate significantly from 
these results (+/- 5%). The CSP-powered CacheLoader hit 
0%, 0% and 8% for the different tasks when it was set to 
0%. It generated 33%, 44% and 46% when targeting 50% 
and finally 84%, 90% and 99% for the 100% goal. 
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Figure 5. Hitting coverage tasks 
 

The developer of the reference tool investigated how easy 
it would be to augment the reference tool to include 
controls that can assist in targeting these coverage tasks. 
The developer found that it was unclear how to best 
combine the need for off-node initializations and a 
specific type of local-node initialization using the current 
scheme. A satisfying solution does not seem to exist. 
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Figure 6.  Targeting the number of unique addresses per 
congruence class 
 

The fourth task aimed to achieve a good distribution of the 
number of different addresses initialized per congruence 
class. For the reference tool, we found that the average 
result was 1.55 addresses per congruence class on the 
experimental setup. For the CSP-powered CacheLoader, a 
dedicated biasing option repeatedly achieved exactly 1 
address per congruence class when this was the targeted 
task and 7.97 on the average when the goal was to fill up 
congruence classes (8 entries for the L2 cache of Power6) 
with 8 different addresses (Figure 6) 

To compare runtime performance, we built two system 
models and used various address pool sizes. Runtime 
values were gathered for each test setup on an Intel Xeon 
3.06 GHz processor running Linux. Both 32-cache and 
64-cache models were run with address pools mapped to 
10 and to 50 congruence classes, with variants of 8, 16, 
32, and 64 addresses per congruence class. We found that 
the reference tool runs five times faster on average than 
the CSP-powered CacheLoader. Since cache-preloading 
consumes about 1% of the total simulation runtime, this 
reduction in runtime was found to be acceptable. 

6.3 Qualitative Discussion 
Like other CSP-based applications, CacheLoader 
decouples the description of the problem from the solving 
engine. CacheLoader's domain specific modeling language 
facilitates this decoupling by enabling a verification 
engineer—who is not a CSP expert—to model the 
required knowledge. The derivation of a CSP formulation 
of the cache initialization problem is fully automated by 
the tool's core. In contrast, the reference tool interweaves 
a structural model of the system, the associated coherency 
rules, design specific biasing options, and a solving 
procedure into a single software module. Moreover, the 
algorithm implemented by the reference tool is tied into 
the details of the specific SUT. This leads to high 
development and maintenance costs, and low reusability. 

A cache-preloading module is a verification IP �[11] 
providing a well-defined service capable of supporting 
verification environments at various levels of integration 
(e.g., unit, subsystem, system). As a verification IP, 
CacheLoader provides a higher level of portability than 
the original reference tool. Field experience shows that 
absorbing on-going design changes and even adapting to 
completely new designs is a straightforward, efficient task. 
The addition of new cache fields, modification of 
coherency rules, insertion of a new cache-hierarchy level, 
and the introduction of new types of caches, can all be 
carried out in minutes and require no recompilation. 

CacheLoader's powerful user request language provides 
verification engineers with the flexibility and 
controllability required to support a verification plan, 
especially when compared to the limited set of generation 
parameters supported by the original module. The 
simplicity in which new biasing options may be added 
further enhances the user's ability to target unique 
coverage goals. In contrast, enhancing the original 
reference tool to support a new biasing option requires 
careful consideration by the tool developer. Without the 
extra caution, the new function could lead to generation 
failures or loss of balance between existing options. 
Furthermore, the algorithm used by the reference tool is 



not well-suited for cases that require the consideration of 
system-wide constraints. 

7. CONCLUSIONS 
This paper presents an ontology-based, CSP-powered 
cache-preloading technology. The tool's architecture 
follows principles of ontology based software to achieve 
complete separation between the cache loading engine and 
design dependent knowledge. Constraint satisfaction 
techniques are used to generate system initializations, 
satisfying the declarative modeling of design dependant 
rules, expert knowledge, and explicit user directives. 

CacheLoader was tested with several IBM designs 
exhibiting different structures, coherency rules, and 
behavior. The tool demonstrated significant advantages 
over the traditional ad-hoc implementation, with a slight 
penalty of longer generation run-time. Adaptation to a 
new design is faster and is almost plug-and-play. The 
reusability level is higher, and domain knowledge is 
accumulated and shared between projects. This sharing of 
knowledge replicates the impact of experts in this unique 
area. The powerful user request language, and the 
simplicity of adding new fine grained biasing options, 
provides the flexibility and the control required to 
implement a verification plan and target unique coverage 
goals. 

We foresee that other verification services will be built 
using similar principles, boosting the productivity of 
verification engineers and speeding up the construction of 
mature verification environments. 
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