
H-0290 (H1008-010) August 16, 2010
Computer Science

IBM Research Report

Program Sliding

Ran Ettinger
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Program Sliding

Ran Ettinger
IBM Research – Haifa
rane@il.ibm.com

ABSTRACT
As program slicing is a technique for computing a subpro-
gram that preserves a subset of the original program’s func-
tionality, program sliding is a new technique for computing
two such subprograms, a slice and its complement, the co-
slice. A composition of the slice and co-slice in a sequence
is expected to preserve the full functionality of the original
code.

To avoid excessive code duplication, the co-slice generated
by a sliding algorithm is designed to reuse the slice’s results,
correctly, in contrast to the re-computation performed by
the complementary code generated by the best previous ap-
proach, called tucking.

A program sliding algorithm is presented along with its
application in building refactoring tools. The ongoing con-
struction of sliding-based refactoring tools for Java in the
open-source project WALA, leveraging its Java slicer and
integration into Eclipse, is reported.

Keywords
Slicing, refactoring tools, reuse, software maintenance

1. INTRODUCTION
Program slicing, the study of meaningful subprograms

that capture a subset of an existing program’s behavior, can
assist in building automatic tools for refactoring [6]. Slice ex-
traction is the art of collecting a slice’s set of not-necessarily
contiguous program statements into a single code fragment,
and reusing that fragment in the original code. With the
goal of assisting programmers in maintaining high quality
code, a solution to the problem of slice extraction along
with its contribution to refactoring research are explored.
The best previous solution, called tucking [13], suffers from
low applicability, mainly due to high levels of code duplica-
tion. Such duplication results from the fact that some code
is relevant not only for the extracted code but also for the
remaining computation.

IBM Technical Report H-0290 August 2010, Haifa, Israel.
IBM Research – Haifa.

An advanced technique for the automation of slice extrac-
tion is introduced, through a family of highly non-trivial
code motion transformations called program sliding. A slid-
ing algorithm generates two subprograms, a slice and its
complement, the co-slice, whose composition in a sequence
preserves the original program’s functionality.

For example, the code fragment on Figure 1(a), for read-
ing some input numbers and printing their sum and product,
can be replaced by a sequence of the two fragments on parts
(b) and (c) of that figure. The slice, in part (b), is dedicated
for the computation of the sum of the input numbers; while
computing this sum, the slice has the side effect of populat-
ing the array of integers with elements read from the input
stream; it also changes the value of a loop variable. The
complementary code in part (c), in turn, correctly reuses
the values in the array when computing their product; oth-
erwise, it makes no further update to the input stream, and
ignores the side effect on the loop index. As will be dis-
cussed in Section 8, the presented sliding algorithm is the
first slice-extraction solution that supports correct isolation
and reuse of the slice in such cases.

A high level description of a sliding algorithm is presented
in Section 4. The details of how to compute the slice and
co-slice are given in Section 6. The slicing and co-slicing
algorithms are expressed in terms of a new program decom-
position into non-contiguous entities called slides, formally
introduced in Section 5.

To demonstrate the value of this new approach to the
extraction of slices, Section 7 describes the application of
sliding to previously documented yet unimplemented refac-
torings: Split Loop, Replace Temp with Query (RTwQ) and
Separate Query from Modifier (SQfM). Sliding is also ex-
pected to facilitate the extraction of non-contiguous code in
a general flavor of the well-known Extract Method refactor-
ing. Such automation is crucial for enabling iterative and
incremental software development [6]. It is also expected
to impact on potential automation of bigger refactorings,
as ambitious as Fowler and Beck’s Separate Domain from
Presentation or Convert Procedural Design to Objects [8].

The slicing, co-slicing, and sliding algorithms of this pa-
per have all been proved correct for a simple imperative and
sequential programming language; the language includes as-
signments, sequential composition of statements, condition-
als, and loops. An ongoing attempt to adapt these algo-
rithms to the real case of Java is hosted in the open-source
T. J. Watson Libraries for Analysis project (WALA)1, and
benefits from the Java slicer in WALA and the integration to

1http://wala.sourceforge.net/.



1
2
3
4
5
6
7
8
9
10
11
12

a = readData(in);
if (a != null) {
sum = 0;
prod = 1;
i = 0;
while (i < a.length) {
sum += a[i];
prod *= a[i];
i++;

}
print(out,a,sum,prod);

}

= {

1
2
3
4
5
6
7
8
9
10
11
12

a = readData(in);
if (a != null) {
sum = 0;

i = 0;
while (i < a.length) {
sum += a[i];

i++;
}

}

1
2
3
4
5
6
7
8
9
10
11
12

if (a != null) {

prod = 1;
i = 0;
while (i < a.length) {

prod *= a[i];
i++;

}
print(out,a,sum,prod);

}

}

(a) original program (b) slice of {sum,a,in} (c) co-slice of {sum,a,in}

Figure 1: A sliding example: the composition of the slice and its complement in a sequence yields a program
functionally equivalent to the original; note the importance of (b) being before (c), for successful reuse of the
extracted results.

Eclipse. The prototype sliding implementation, along with
prototype refactoring tools for RTwQ and SQfM, both re-
ported in Section 7, are available to be downloaded from the
WALA repository2.

2. A SLIDING EXAMPLE
The key feature of sliding is its effective reuse, in the co-

slice, of an extracted slice’s results. In the example of Fig-
ure 1, the slice of variable sum is extracted, along with the
array a and input stream in; the code of this extracted slice
can be seen in part (b) of the figure. The extracted results
act as input to the co-slice, as can be seen on lines 2,6,8 and
11 of part(c) of the figure. This way, there is no need to re-
peat the code for computing the extracted results, on lines
1,3 and 7. On the other hand, the other extracted state-
ments, on lines 2,5,6 and 9, are duplicated as they are still
needed in the co-slice.

Leaving the details of how this co-slice is computed for
later in the paper (Section 6.2), note that had we managed
to reuse the computation of sum but not that of a, in this ex-
ample, we would have ended up recomputing a by repeating
line 1 in the co-slice. And depending on the implementation
of readData(), which is not included here, it is likely that a
second invocation, in the co-slice, would have not returned
the same result.

One way to avoid getting different results from such dupli-
cation is to make a backup of the initial value of some vari-
ables (in this case the input stream in) ahead of the slice,
and restoring it ahead of the co-slice. The version of sliding
presented in this paper, however, refrains from taking such
measures. Instead, in cases where simple deletion of state-
ments cannot be guaranteed to preserve the functionality
of the original code, our sliding algorithm would announce
failure, and a corresponding sliding tool would identify this
situation and reject the transformation request. While a tool
built on such a version of sliding is not the strongest possi-
ble, the refactoring algorithms of Section 7 show that this
approach is powerful enough to assist in building advanced
refactoring tools.

The two reasons for duplication, when composing a slice
and its complement in a sequence, are control and data flow:
some code such as the predicates in conditional and loop

2See incubator project com.ibm.wala.refactoring in the
developer information section of the WALA site.

statements provide the control structure that may be rele-
vant in both subprograms; and some code contributes to the
computation of values that are relevant for the results of the
two subprograms.

Sliding admits upfront the need to duplicate the mutual
control structure, and focuses on keeping the need for re-
computation low by reusing the results of the extracted slice
in the co-slice. To that end, a new program decomposition
is presented, of program slides, one that encapsulates the
control structure required by each statement in a single en-
tity. Figure 2 depicts the slides of all statements of the code
fragment from Figure 1(a). With a given program being
represented as the union of all its slides, the problem of slice
extraction is reduced to the need to find a set of slides whose
union is the required slice for extraction, and another set of
slides whose union will yield a correct co-slice. In the exam-
ple, the slice in Figure 1(b) is a union of the set of slides of
lines {1, 3, 5, 7, 9} while the co-slice of Figure 1(c) comprises
the union of the set {4, 5, 8, 9, 11}.

3. PRELIMINARIES
The following background on program representation and

several definitions regarding the scope of the program des-
ignated for extraction and its relevant state, in terms of the
values of all its variables, will be needed for the precise de-
scription of a sliding algorithm.

3.1 Control Flow Graph
The control flow graph (CFG) of a code fragment is a

labeled directed graph representing the order of execution
of the individual statements of the program. The CFG of
the code fragment in Figure 1(a) is shown on Figure 3.

A CFG has nodes N , typically with a single node n ∈ N
for representing each program statement and with two addi-
tional nodes, one for the entry the other for the exit ; it has
directed edges E where each edge (n1, n2) ∈ E represents
the direct flow of control from its source n1 to its target n2;
each node is the source of at most two edges: the exit node
has no successors, normal nodes have one successor with no
label on the connecting edge, and a predicate node corre-
sponding to a conditional or a loop statement’s condition
has two successors, and each of the edges is labeled T or F ;
however, those labels are irrelevant for slicing and will be
insignificant in sliding too.



1: a = readData(in);

2: if (a != null) {

}

2

3:

if (a != null) {

sum = 0;

}

2

4:

if (a != null) {

prod = 1;

}

2

5:

if (a != null) {

i = 0;

}

2

6:

if (a != null) {

while (i < a.length) {

}

}

2

6

7:

if (a != null) {

while (i < a.length) {

sum += a[i];

}

}

2

6

8:

if (a != null) {

while (i < a.length) {

prod *= a[i];

}

}

2

6

9:

if (a != null) {

while (i < a.length) {

i++;

}

}

2

11:

if (a != null) {

print(out,a,sum,prod);

}

Figure 2: The slides of the example code from Figure 1. Each slide represents a single statement (its line
number is followed by a colon).

3.2 Program Scope
Slice extraction, in this paper, is defined to work in the

scope of a given fragment of code, say S, within the body
of a program’s procedure, say P . A solution to this slice-
extraction problem will compute the slice of some given set
of variables, say V , with respect to S. A transformed P ,
resulting from the replacement of S with the sequence of
the slice of S on V and its complement, should preserve the
functionality of P .

For this transformation to be possible, it is common to
expect the subgraph of the CFG of P corresponding to S
to have a single entry node and a single exit node [13, 20].
This way, we can consider S as represented by its own CFG,
and forget about the enclosing code in P .

The fragment of lines 7-9 of Figure 1(a), represented by
nodes 7-9 on the CFG of Figure 3, is an extractable frag-
ment; so is the fragment of lines 3-5 and that of lines 3-10,
with node 6 being its single exit. But the fragments of lines
3-8 or 7-11, where only a part of the loop’s body is included,
are not extractable; similarly, no fragment starting on line
1 or 2 is extractable unless it includes the full conditional,
ending on line 12.

Considering syntax, or program structure, as slicing typ-
ically generates a subprogram of the original program by
deleting irrelevant statements, let’s refer by the term sub-
fragment to the result of deleting some internal statements
from a given code fragment.

Considering semantics, a slice is typically expected to pre-
serve a subset of the original program’s behavior. It is not,
however, expected to preserve non-termination. That is,
on input for which the original program does not terminate
successfully, the slice is free to terminate [21]. Otherwise,
slices would grow unnecessarily large, as any loop that does
not modify any relevant variable will have to be included in
the slice unless we can prove it definitely terminates. This
does not mean that sliding will not be applicable for inher-
ently non-terminating programs such as in reactive systems.
Whenever the selected code fragment does not include the
program’s endless loop, but rather a portion of the loop’s
body, or a procedure called by that body, the slice extrac-
tion performed by sliding will be as relevant and applicable
as in other imperative and sequential programs.

Entry

1 2

3 4 5 6 11

8 97

Exit

Use: in

Def: a,in

Use: a

Use: a,i
Use: out,a,
sum,prod

Def: sum Def: prod Def: i Def: out

Def: sum Def: prod Def: i

Use: 
sum,a,i

Use: 
prod,a,i Use: i

T F

T

F

F

T

Figure 3: A control flow graph (CFG) of the exam-
ple code fragment of Figure 1(a). Final-use (Defini-
tion 12) and final-def (Definition 10) variable refer-
ences are underlined.

3.3 Program State and Termination
As stated above, we expect a solution to the problem of

slice extraction to preserve the full functionality of the orig-
inal code. In preserving functionality, we focus on the initial
and final states of S, as represented by the value of all pro-
gram variables. For this to work, any externally observable
resource such as input and output devices should be repre-
sented internally as variables; accordingly, notice how the
statement of node 1 in Figure 3 both uses the initial value
and defines (i.e. assigns a new value to) the input stream
variable, in; similarly, node 11 both uses and defines out.
For simplicity, we assume no local variables are declared in-
side our fragments.

As shown on Figure 3, we refer to the set of variables
each CFG node n may modify as Def(n) and to the set of



variables it refers to as Use(n). Similarly, when considering
the relation between the initial and final states of a code
fragment S, we refer to the set of variables whose value on
exit from S might be different from their initial value as
Mod(S), and the set of variables whose initial value may
impact the final state of S as Ref(S). Note that if a variable
is always defined before being used in S, it should not be in
its set of input variables, Ref(S).

In the example, if S denotes the entire code fragment of
lines 1-12, we get Mod(S) = {a, sum, prod, i, in, out} assum-
ing in and out are modified on lines 1 and 11, respectively.

Since variables a,sum,prod and i are defined before ever
being used, on the entire fragment, S, of lines 1-12 in Fig-
ure 1(a), we get Ref(S) = {in, out}, as the initial value of
those two variables is used in lines 1 and 11, respectively.
The input of the fragment 7-9 is {a, i, sum, prod}, and only
a and sum are on the input of the extractable fragment 4-10.

An important concept of static program analysis relevant
for computing slices is reaching definitions. A definition of
a variable v at a CFG node n is reaching a CFG node m
iff there is a CFG directed path from n to m with the only
definition of v on n itself. In our example, the definition of
sum on node 3 reaches the entry to lines 4,5,6,7, and even 11
(as the loop might be executed 0 times), but not the entry
to 8 or 9 because the assignment to sum on node 7 is the
only one reaching those points; furthermore, this definition
on line 3 does not reach the entry to node 1 or 2, as those
nodes are not reachable at all from node 3, in the CFG.

More properties related to CFG paths, and the uses and
definitions of variables, will be defined later, in Section 5,
and used in Section 6 to compute slices and co-slices. The
sets of modified and input variables, as well as the notion
of reaching definitions, will be useful in the next section, for
solving the problem of slice extraction.

4. A SLIDING ALGORITHM
Given a code fragment and a set of variables whose slice

is to be extracted, we wish to isolate the computation of
the final value of those variables from the other computa-
tions in the code fragment, such that both the extracted
code and the complementary code (computing the other re-
sults) will consist of a version of the original code resulting
from the deletion of some irrelevant statements. Ideally, the
extracted code and the complementary code will have no
code in common. However, as this will not always be pos-
sible, we should try to come up with the smallest possible
complement, in order to avoid over duplication.

The success of reusing the final value of an extracted vari-
able, in the co-slice, should not be taken for granted. It
could be that the remaining computation requires the ini-
tial value of an extracted variable, instead of the final value,
or perhaps even both; it might as well require some inter-
mediate value of that variable. In any of those cases, no
union of slides will yield the required program, since more
variables, and some renaming of references will be required.
In the example, had we been asked to extract the slice of i,
we would not be able to reuse its final value, in the co-slice,
inside the loop.

Given a code fragment S and a set of variables V , the
sliding algorithm in Figure 4 computes the extracted code
SV and the complementary code SCoV . It fails if correctness
cannot be guaranteed, in this context.

The algorithm delegates the computation of the extracted

Sliding(S, V )

1 SV := ComputeSlice(S, V )

2 SCoV := ComputeCoSlice(S, V )

3 assert V was reusable in its co-slice on S

(or the co-slicing algorithm would have failed)

4 if (Mod(SV ) ∩ Ref(SCoV )) * V Fail.

5 return (SV , SCoV )

Figure 4: A sliding algorithm generating a slice and
co-slice with no need for backup variables. Its cor-
rectness depends on the slicing and co-slicing algo-
rithms (of figures 7 and 8) satisfying the require-
ments of definitions 1 and 2, respectively.

code and the complement to the slicing and co-slicing algo-
rithms of figures 7 and 8, respectively. It then concludes
by checking that correctness can be guaranteed without a
need for any backup of initial, intermediate, or final values.
The condition to check that such backup variables are not
needed is expressed in terms of the set of variables whose
value might be modified in the slice, Mod(S), and the set
of variables whose initial value might affect the result of the
co-slice, Ref(SCoV ).

It is well known in slicing research that a minimal slice,
one that includes the smallest number of statements, is not
computable, in general [21]. (Knowing whether a definition
of a variable in a loop may reach a use outside the loop
requires knowledge that the loop may terminate.) Similarly,
it is not possible, in general, to compute a minimal co-slice or
minimal sets of modified and input variables. We therefore
turn now to consider the semantic requirements from each of
those before showing how to compute a safe approximation.

4.1 Requirements for Correctness
To ensure the correctness of the sliding algorithm from

Figure 4, we investigate its impact on the final value com-
puted for each variable, in the resulting program.

For correctness, the slicer and co-slicer must ensure their
resulting code will terminate on any input that S terminates
on, and this code will have to compute the same results as
those of S, for all variables, provided the refactored code
is started on the same input. Our goal should be to have
variables V computed in SV , leaving all other variables that
act as input to SCoV unchanged; and then SCoV will need to
complete the computation of all other variables CoV . Ac-
cordingly we define a slice and co-slice as follows:

Definition 1 (Slice). A slice of a code fragment S for
a set of variables V is a sub-fragment of S, say SV , that
when started in the same state as S, will terminate with
the same final values in variables V as S will, provided S
terminates on the given initial state at all.

Assuming variable v will exit SV with the expected final
value, the co-slicing algorithm will have to ensure it holds
the same value on exit from SCoV too; we hence expect a
co-slice of S on V not to modify the value of any variable
v ∈ V .

Consider now a variable cov ∈ CoV , where CoV is Mod(S)\
V . The final value of each such variable should be computed
in SCoV , with potential contributions to the computation
flowing into SCoV through variables V from SV . As stated
above, since no new variables are added to store initial val-
ues or intermediate results, variables V may use only the



final value, as the slice SV would compute for them on the
same input; again, as postulated above, on exit from SV all
those variables will indeed hold the required values.

To ensure correctness of SCoV , we demand that all other
variables will hold their initial value on entry to SCoV ; this
is ensured by the conditioned failure on Line 4, keeping any
non-extracted variable whose value on entry to SCoV is rel-
evant for correct execution, from being modified in the co-
slice. This condition will prevent unintended and possibly
incorrect dataflow from the slice to its complement.

Having the required initial state, we expect the correct
final value of variable cov to be computed by the co-slice,
SCoV , in cases of termination.

Definition 2 (Co-Slice). A complementary slice (or
co-slice for short) of a code fragment S and a set of variables
V , is a sub-fragment SCoV of S that computes the same re-
sults for all variables other than V if started in a state corre-
sponding to the initial state of S, provided S terminates on
that state, in the following way: all variables hold the same
value as in the given initial state of S, except variables V ;
those variables hold the corresponding final value computed
by S on that initial state.

So we are left to present the slicing and co-slicing algo-
rithms, and show that they yield sub-fragments that com-
pute the same results as the original, on the set of sliced
variables and on its complementary set, respectively.

5. PROGRAM REPRESENTATION
In this section we recall some definitions from the litera-

ture about the program dependence graph (PDG) and PDG-
based slicing, and define a new program decomposition to
serve as a basis for the construction of both the extracted
slice and its complement. Our provably-correct slicing algo-
rithm will yield the same results as PDG-based slicing.

5.1 Background on Program Dependence

Definition 3 (Postdominance). A node n postdom-
inates a node m in a program’s CFG iff every path from m
to the exit includes n.

In the example, node 9 postdominates nodes 7 and 8 but
not nodes 3-6, due to the CFG path from those to the exit
without entering the loop body, bypassing it with the edge
from node 6 to node 11.

Definition 4 (Control Dependence). A CFG node
n is control dependent on a CFG node m iff n postdominates
a successor of m, but n does not postdominate m itself.

Back in the example, node 9 is control dependent on node
6 because 9 postdominates 7 but not 6 itself. Note that
node 9 is not control dependent on node 2, as 9 does not
postdominate either successor of 2. Note also that each node
that postdominates the T -successor of the entry is control
dependent on the entry node, due to the special construction
of the CFG’s entry as a pseudo-predicate with the exit node
as its F -successor.

Definition 5 (Data Dependence). A CFG node n is
data dependent on a CFG node m iff m defines a variable
v that is used in n, and there is a path from m to n in the
CFG with no further definitions of v.

Entry

1 2

3 4 5 6 11

8 97

Data (Flow) Dependence

Control Dependence

Figure 5: A program dependence graph of the ex-
ample code fragment of Figure 1(a). All nodes in
the slice of 7 are highlighted.

We will further stress that n is data dependent on m due
to variable v. This will help us decide, later on, whether to
consider a dependence when computing a co-slice.

Definition 6 (PDG). The program dependence graph
(PDG) corresponding to a given program’s CFG is a directed
graph with the same nodes as in the CFG (except the CFG’s
exit node) and with an edge directed from node m to node n
iff n is control or data dependent on m.

The PDG of the example program is depicted on Fig-
ure 5. PDG-based slicing, when started with a set of nodes,
say C, finds all nodes from which there is a directed PDG
path to any node c ∈ C [18]. A PDG-based slice staring
from node 7, where sum is defined, consists of the nodes
{Entry, 1, 2, 3, 5, 6, 7, 9}. One path causing the inclusion of
node 1 goes through nodes 2 and 5, using a data dependence
edge followed by two control dependence edges. The same
resulting PDG-based slice would be computed for the set of
nodes 1, 4 and 7, where all definitions of a, in and sum occur.

5.2 Slides and the Slide Dependence Graph

Definition 7 (Controlling Nodes). The set of con-
trolling nodes of a PDG node n consists of the PDG control-
dependence ancestors of n, i.e. the nodes from which there
exists a directed path of control-dependence edges ending in
n.

The entry node, as well as nodes 2 and 6 are the controlling
nodes of node 7 in the example PDG of Figure 5.

Definition 8 (Slide). A slide of a given code frag-
ment S and one of its statements corresponding to a node
n of the CFG of S, is the sub-fragment Sn resulting from



deleting each statement of S whose CFG node is neither n
itself nor is it a controlling node of n.

All slides of the example program are shown on Figure 2.
The slide of line 7, for example, is the sub-fragment result-
ing from the deletion of statements 1,3,4,5,6,9 and 11. This
leaves us with the lines corresponding to node 7 and its con-
trolling nodes 6 and 2. Note how in terms of concrete syn-
tax, lines 10 and 12, for closing the blocks started on 6 and
2, respectively, were not deleted. In practice it is simpler
to delete excluded statements than constructively combine
all included statements, since the included statements are
more likely to be non-contiguous. The preservation of con-
crete syntax, wherever possible, is particularly important in
refactoring tools. Without it, there is a risk that program-
mers would not feel familiar with the refactored code and
would be less inclined to using the tool. In this sense, slic-
ing is suitable for the construction of refactoring tools.

Definition 9 (Union of Slides). The union of a set
of slides of a code fragment S is the sub-fragment of S result-
ing from deleting all statements whose node is not on any of
the slides to be united.

In this paper, a slide may interchangeably refer to the ac-
tual code sub-fragment it stands for, as defined above, or to
the set of PDG/CFG nodes included in this sub-fragment,
expecting that the intent will be evident from the context.
Similarly, the slicing and co-slicing algorithms will collect
and return a set slides, or equivalently the union of that
set, or simply the program fragment corresponding to that
union. The slides of a code fragment will be further catego-
rized based on properties of the variables their nodes use or
define, as follows:

Definition 10 (Final-Def Node). Given a code frag-
ment S, a CFG node n, and a variable v, we say that n is a
final-def node of v in S iff v is defined in n and there exists
a path in the CFG from n to the exit, free of definitions of
v.

It is common to say in such cases that the definition of v
at n reaches the exit. Accordingly, note that each reaching
definition of v at the exit stand for a final-def slide of v.

Definition 11 (Final-Def Slide). Given a code frag-
ment S and a slide Sn corresponding to a CFG node n, the
slide Sn is a final-def slide of S with respect to variable v iff
n is a final-def node of v in S.

Definition 12 (Final-Use Node). Given a code frag-
ment S and a variable v, a node n on the CFG of S is a
final-use node for v in S iff v is used in n and each path in
the CFG from n to the exit is free of definitions of v.

Definition 13 (Non-Final-Use Slide). Given a code
fragment S and a slide Sn corresponding to a CFG node n,
the slide Sn is a final-use slide of S with respect to variable
v iff v is not defined in Sn and each CFG node m ∈ Sn on
which v is used is a final-use node for v in S.

Accordingly, Sn′ is a non-final-use slide of S on v iff v is
either defined on any CFG node m of Sn or it is used in m
and m is not a final-use node of S for v.

Note that according to this definition, a slide may be nei-
ther a final-use slide nor a non-final-use slide of S on v if
none of its nodes is using or defining v. The non-final-use
slides of the set {sum, a, in} in the example, are slides 1,3
and 7. All uses of variable a on all the other slides are of its
final value, and so is the use of sum on slide 11.

Definition 14 (Slide Dependence). There is a slide
dependence due to variable v between the slides Sm and Sn

of CFG nodes m and n, respectively, iff there is a definition
of v in m that reaches any node n′ ∈ Sn and v is used in n′.

Definition 15 (SlideDG). The slide dependence graph
(SlideDG) representing a code fragment S, in correspon-
dence with the fragment’s CFG, is a directed labeled graph
with a node for each slide Sn of S corresponding to a CFG
node n, and with an edge directed from a slide Sm to a slide
Sn iff Sn is slide dependent on Sm. An edge from Sm to
Sn is labeled with the set of variables U causing the depen-
dence (i.e. there is a slide dependence from Sm to Sn due to
variable u iff u ∈ U).

The SlideDG of the example code fragment is depicted on
Figure 6. Note how no slide depends on slide 2 or 6, since
their respective sets of defined variables are empty; those
two slides are therefore excluded from the figure.

6. MEANINGFUL SETS OF SLIDES

6.1 Slide-Based Slicing
A slicing algorithm to fulfill the requirements of Defini-

tion 1 is presented in Figure 7. Given a code fragment S
and a set of variables V , the algorithm computes the set of
slides whose union results in a valid slice SV of S for the
final value of variables V .

The algorithm starts by building the SlideDG and col-
lecting the set SV of final-def slides of variables V , e.g.
slides {S1, S3, S7} in the example, when S is the code of Fig-
ure 1(a) and V is {sum, a, in}. It then adds to SV (shown on
the top row of Figure 6) all predecessor slides of members
of SV , iteratively. In the example, slides S5 and S9 are such
predecessors, due to the initialization and increment of the
loop variable, respectively.

Theorem 16. A sub-fragment SV computed by the algo-
rithm of Figure 7 for a code fragment S and a set of variables
V , is a correct slice of S on V as specified by Definition 1.

Proof. For correctness, this algorithm is based on a sim-
ilar slicing algorithm that has been proved to satisfy the re-
quirements of computing the same results on all variables V
when S is terminating [6], with one key difference. There,
the slide of a variable was defined to include all assign-
ments to that variable, along with their controlling state-
ments. Accordingly, the slide dependences were defined in
a flow-insensitive manner, rather than by using the CFG.
So each referenced variable, on a slide, caused dependence
on the slide of that variable, regardless on whether those
assignments may flow into that reference. This construc-
tion made it relatively easy to prove correctness for the
simple programming language used in that work, using the
predicate calculus and program semantics of Dijkstra and
Scholten [5]. Of course, such slices are unnecessarily large,
especially when compared with the results of traditional,



if (a != null) {

i = 0;

}

2

5

if (a != null) {

while (i<a.length) {

prod *= a[i];

}

}

2

6

8

if (a != null) {

while (i<a.length) {

i++;
}

}

2

6

9

if (a != null) {

prod = 1;

}

2

4

if (a != null) {

print(out,a,sum,prod);
}

2

11

if (a != null) {
sum = 0;

}

2
3

if (a != null) {

while (i<a.length) {
sum += a[i]; 

}

}

2

6
7

a = readData(in);1

{a}{a}

{a} {a} {a} {a} {a}

{sum}
{sum}{sum}

{sum}

{prod}

{prod}

{i}

{i}

{i}

{i}

{prod}

{prod}

{i}

{i}

Figure 6: A slide dependence graph (SlideDG) of the example code of Figure 1(a).

flow-sensitive, slicing algorithms such as the original work
by Weiser [21] and the popular PDG-based solution [18].

To gain flow-sensitivity, while maintaining correctness, the
slides-based slicing algorithm of [6] was made to work on the
static single assignment (SSA) form of the program [4]. This
form is essentially a CFG with an extract feature, namely
that each variable may not be defined in more than one node;
so moving into SSA requires the splitting of a variables into
a number of variable instances; and to avoid conflicts when
more than one definition may reach a certain reference to a
variable’s value, new variable instances are added at static
control-flow merge points, to contain the required value on
each time this reference point is reached at execution time.
The transformation of the original code into SSA, and back
from it, after slicing, has been proved correct too. A key
component of this proof shows that the merging of all in-
stances of each variable, after slicing, when going back from
SSA to the original form, using the original variable names,
is indeed possible. Such merge of instances is not possible in
general, after the SSA form has been further transformed,
since two or more variable instances may be live simultane-
ously; if those instances cannot be shown to hold the same
value in such points where both their values appear to be
relevant, their merger might be incorrect.

The correctness of this original slides-based slicing algo-
rithm using SSA will render our direct slides-based slicing
algorithm of Figure 7 correct too, if we can only show the
slices resulting from either algorithm are identical.

Suppose we transformed our code fragment to SSA and
constructed our slides and slide dependence graph on that
program representation. As stated above, the single assign-

ment property ensures that the slide of each SSA node, say
n, for a variable instance defined in n, say vi, will be iden-
tical to the slide defined to include all assignments to vi.
Similarly, the single assignment property of the SSA form
ensures that each variable reference incurs at most one slide
dependence. (The exception is in any reference to a vari-
able’s initial value, where no slide dependence is incurred.)
Therefore, again, the slide dependence as defined in this pa-
per is identical to the slide dependence defined in the orig-
inal, provably correct, SSA-based algorithm. So applying
our algorithm on the SSA form will yield the same result as
the original and this result has been shown to be amenable
for successful return from SSA.

Accordingly, the correctness of our slicing algorithm will
follow from showing that performing the algorithm directly
on the CFG-based slides yields identical results to perform-
ing it on the SSA and then returning to the original form.

When using a general SSA form for slicing, it has been
shown [2] that the resulting slices may be unnecessarily large.
The problem mainly occurs in merge nodes of more than two
predecessors; it is common in unstructured code, but may
also occur in structured code, say when a conditional state-
ment is followed by a loop: the loop entry has the end of the
two sides of the conditional as predecessors as well as the end
of the loop’s body. When a variable v is defined in any side
of the conditional, but not in the loop, the merge of its three
predecessor instances will be control dependent on the loop’s
predicate, causing at least a part of the loop to be added to
any slice that requires the definition of v in the conditional.
Accordingly, in order to ensure the equivalence of results of
slicing using CFG-based slides and SSA-based slide, we must



ComputeSlice(S, V )

1 (N, E) := SlideDG(S)

2 SV :=
⋃

v∈V {final-def slides of S on v}
3 Worklist := SV

4 while Worklist 6= ∅
5 Sn := Poll(Worklist)

6 forall Sm, U such that (Sm, Sn, U) ∈ E do

7 SV := SV ∪ {Sm}
8 return SV

Figure 7: A slicing algorithm.

avoid this weakness of the SSA. When focusing our atten-
tion on correct slicing of programs of a simple programming
language, with structured constructs only, such as loops and
conditionals with a single exit, we avoid the problem men-
tioned above by insisting on two-way merge nodes, as in [6].
So the conditional followed by a loop will have one merge
node for the conditional, flowing into a second merge node
for the loop. This way, a conditional’s merge node will not
have a control dependence on the loop’s predicate.

When the goal is to support the slicing, sliding, and refac-
toring of real-life programs, a practical approach would be
to forgo the desire to formulate and construct a provably-
correct solution, and replace it with some engineering tech-
niques borrowed from the slicing literature. For example,
for supporting dynamically allocated objects with potential
aliasing, it is common to use and extend the program depen-
dence graph, e.g. by adding new types of dependences or by
redefining the existing definition of a data dependence. Our
prototype implementation for Java is based on such a practi-
cal extension of the PDG. But back in the realm of a simple
programming language, let’s consider the similarity of our
slides-based slicing with the popular PDG-based approach.

As mentioned above, the result of a traditional PDG-
based slicing algorithm [18] is a collection of PDG/CFG
nodes. Considering that each slide stands for a set of CFG
nodes, and considering that a result SV of the slicing algo-
rithm from Figure 7 is a set of slides, we can also think of
SV as the union of all CFG nodes on its slides.

Theorem 17. Let S be a code fragment and V a set of
variables of interest. The set of CFG nodes corresponding
to the PDG-based slice of all final-def nodes of V in S is
identical to the set of CFG nodes on the slides-based slice,
SV , computed using the algorithm of Figure 7.

Proof. If a node m is in the PDG-based slice due to
a PDG path p to a final-def node n of variable v ∈ V , it
is also in the slides-based slice of V , by induction on the
number of data dependence edges on p. When there is no
data dependence edge on the path, m either controls n or it
is n itself; in such cases, m is on the slide Sn corresponding
to node n, and therefore enters the slice SV on line 2 of
the algorithm. When p has l > 0 data dependence edges,
we can split p into three segments: a possibly empty path
made exclusively of control dependence edges, from m to a
node d, a single-edge path from d to a node u, due to a data
dependence edge, and a path from u to n. Clearly, u is in
the PDG-based slice, due to the third segment, and since
it starts a path to n with fewer than l data dependence

edges, the induction hypothesis ensures u is in the slides-
based slice SV too. By the definition of slide dependence,
any slide Su′ that includes node u depends on the slide Sd

corresponding to node d. Accordingly, Sd will be added to
SV on line 7 of the algorithm when the slide dependence
graph’s predecessors of Su′ are considered. Now similar to
the base case above, node m is on Sd and hence in the slides-
based slice as required.

Conversely, if a CFG node m is on a slide Sm′ ∈ SV added
to the slides-based slice due to a path q of slide dependence
edges from S′m to the slide Sn corresponding to a final-def
slide of v ∈ V , we prove m is also on the PDG-based slice
of the final-def nodes of V by induction on the length of
the path q. When S′m is Sn itself, the zero-length slide
dependence path q translates to a control-dependence path
from m to n, due to the definition of a slide and in particular
of a final-def slide: there, v is defined in the CFG node n,
and each other node on Sn, including m, controls n. (Note
that a side-effect definition of v on a node n′, if permitted,
may occur on a slide S′′n of a different node n′′; in such a
case, while the slide Sn′ is a final-def slide of v, the slide Sn′′

is not, unless v is also defined in n′′ itself. Otherwise, there
could be an m on a final-def slide Sn′′ of v with no control
dependence path to n′.) For the induction step, assume the
path q is of length l > 0 and let’s split q to its first edge from
Sm′ to a slide Sm′′ corresponding to the CFG node m′′, and
the rest of the path q′. According to the definition of slide
dependence, there is a variable w ∈ Def(m′) and there is a
CFG node u on Sm′′ such that w ∈ Use(u) and the definition
of w in m′ reaches u. The slide Sm′′ is clearly in the slides-
based slice, and hence all its nodes are in the PDG-based
slice due to the induction hypothesis. In particular, the
node u on Sm′′ is in the PDG-based slice due to some PDG-
dependence path p′. There must also be a data dependence
edge in the PDG from m′′ to u, due to the fact that the
definition of w in the former reaches the latter. And, finally,
by the definition of slides, and since m ∈ Sm′ , there is a
control-dependence path, p′′, from m to m′. Accordingly,
there is a PDG path from m to the final-def node n, i.e. the
concatenation of the control path q′′, the data dependence
edge (m′′, u), and the path q′, and therefore m is in the
PDG-based slice.

6.2 Slide-Based Co-Slicing
A co-slicing algorithm to fulfill the requirements of Def-

inition 2 is presented in Figure 8. Given a code fragment
S and a set of variables V , the algorithm computes a set
of slides whose union results in a valid co-slice SCoV of S
for variables V , with their expected final value available for
reuse on entry.

Like in the slicing algorithm of Figure 7, we compute the
co-slice by collecting a set of slides, called SCoV this time.
We initialize this set with the final def slides of the variables
of interest (line 4). Here, instead of the set V , we care
about the computation of its complementary set CoV (line
3). The main loop considers each predecessor Sm of a slide
Sn from SCoV . Such Sm is added to the co-slice only if its
dependence of Sn is due to at least one variable outside of
V (line 11). Whenever we add slides to the co-slice (lines 4
and 13), we check that they are not violating the expected
reuse by including a reference to an intermediate or initial
value of any member of V .

In the example, when V = {sum, a, in}, we get CoV =



ComputeCoSlice(S, V )

1 (N, E) := SlideDG(S)

2 NonFU :=
⋃

v∈V {non-final-use slides of S on v}
3 CoV := Mod(S) \ V

4 SCoV :=
⋃

cov∈CoV {final-def slides of S on cov}
5 if SCoV ∩NonFU 6= ∅ Fail.

6 Worklist := SCoV

7 while Worklist 6= ∅ do

8 Sn := Poll(Worklist)

9 assert Sn /∈ NonFU

10 forall Sm, U such that (Sm, Sn, U) ∈ E ∧ Sm /∈ SCoV do

11 if U * V

12 if Sm ∈ NonFU Fail.

13 SCoV := SCoV ∪ {Sm}
14 assert SCoV ∩NonFU = ∅
15 return SCoV

Figure 8: A co-slicing algorithm.

{i, prod, out}, and the corresponding final-def slides are
{S4, S5, S8, S9, S11}. The set NonFU of non-final-use slides
of {sum, a, in} collected on line 2 of the algorithm includes
S1, for its reference to the initial value of in, S3 for its
definition of sum, and S7, for both the definition and ref-
erence to intermediate values of sum. Since none of the
slides in NonFU = {S1, S3, S7} is also in the initial SCoV =
{S4, S5, S8, S9, S11}, a failure on line 5 of the algorithm is
avoided.

Next, the main loop considers the dependences of slides
from SCoV on other slides. There are such dependence edges
from S1 to all members of SCoV due to a and two more
edges from S3 and S7 to S11 due to sum. Since both a ∈
V and sum ∈ V the algorithm never reaches lines 12 and
13, and therefore terminates successfully, without adding
any further slide. The resulting code on the union of slides
{S4, S5, S8, S9, S11} can be seen in Figure 1(c).

Had we not included the input stream in in V , we would
have ended up including it in CoV and failing on line 5 of
the algorithm. This failure would have been due to S1 being
both a final-def slide of in, added to SCoV on line 4, and a
non-final-use slide of a, added to NonFU on line 2.

Theorem 18. A sub-fragment SCoV computed by the al-
gorithm of Figure 8 for a code fragment S and a set of vari-
ables V , is a correct co-slice of S on V as specified by Defi-
nition 2.

To see why this algorithm is correct let’s take a bit of a
detour, in order to benefit from the correctness of our slic-
ing algorithm and the similarity between the requirements
of a co-slice and a slice. In the course of this detour, let’s ig-
nore the requirement to find a sub-fragment, focusing on the
semantic requirement from a co-slice. The eventual result
will be shown to be a sub-fragment identical to that of the
co-slicing algorithm. In this sense, that detour will provide
us with a second co-slicing algorithm, an indirect one. the
equivalence of results will mean that the formal derivation of
the second algorithm provide us with a proof of correctness
not only for the second, but rather for both algorithms.

The advantages of the first algorithm, in turn, are twofold:
(1) more elegantly, through union of slides of the original
code, it makes it apparent that the result is a sub-fragment;
and (2) more practically, it leads to a more efficient sliding
implementation by avoiding the need to compute both a slice

of the original code and another slice of a modified version
of that code, with the associated need to re-compute the
internal program representation.

The detour for deriving the second algorithm will require
the following two operations:

Definition 19 (Normal/Final-Use Substitutions).
A normal substitution of variables U by variables V in a code
fragment S, denoted with the postfix operator S[U \V ] (as in
e.g. [16]) is the code fragment given by S with all references
and definitions of a variable u ∈ U replaced with the corre-
sponding v ∈ V . This operation is well defined iff U and V
are same-length sequences of distinct variable names, and V
is a fresh set of names, none of which occurs in S.

A final-use substitution of U by V on S, denoted
S[final-use U \V ], is similar to normal substitution, with one
difference: only final-use references to a u ∈ U is replaced
with the corresponding v ∈ V . Definitions and references to
intermediate or initial values remain unchanged.

And we are ready to prove Theorem 18, as follows:

Proof. As input to a co-slice of S on V , we have the
initial value of all variables other than V available, and the
final value, as computed by S on the given input, in V itself.
Consider a similar construction, in which we also have the
initial value of variables V available in backup variables iV :

=

=

v

=

=

(V := iV ; S)[live CoV ]

{ let fV be a fresh set of variable names, disjoint
from Glob(S) and iV ; note that we get V = fV after S}

(fV := V ; V := iV ; S)[live CoV ]

{ let S′ := S[final-use V \ fV ] }

(fV := V ; V := iV ; S′)[live CoV ]

{ let S′CoV := ComputeSlice(S′, CoV ) }

(fV := V ; V := iV ; S′CoV )[live CoV ]

{ provided V ∩Glob(S′CoV ) = ∅ }

(fV := V ; S′CoV )[live CoV ]

{ let SCoV := S′CoV [fV \ V ]; the live variables clause
is now redundant, since Mod(SCoV ) ⊆ CoV }

SCoV .

To summarize, the co-slice SCoV resulting from the deriva-
tion above is (ComputeSlice(S[final-use V \fV ], CoV ))[fV \
V ] and it is well-defined iff V ∩Glob(ComputeSlice(S[final-use V \
fV ], CoV )) = ∅.

We now show that the two co-slicing approaches, of Fig-
ure 8 and of the derivation above are well-defined under
the same conditions, and yield identical results. That is,
for any given code fragment S and a set of variables V ,
the code on ComputeCoSlice(S, V ) is identical to that of
(ComputeSlice(S[final-use V \fV ], CoV ))[fV \V ] and the
former is successful to generate a co-slice iff the latter is well-
defined.

In terms of slides, and the slide dependence graph, com-
paring the representation of S with that of S′ := S[final-use V \
fV ], we observe that the only changes made by final-use sub-
stitution are in removing final-use dependences on the slides
of V . (No other dependence comes in their place since fV
are not defined in S′.) Let EfV be the set of removed edges.



We prove by induction on the steps of the algorithm that
the two co-slicing algorithms are successful under the same
conditions, and yield identical results.

Since no definition has been modified by final-use substi-
tution, the final-def slides of CoV on S and S′ are the same
slides. Hence, the initialization of the result set of slides per-
formed by both algorithms is identical. Slicing S′ for CoV
starts by collecting the final-def slides of CoV on line 2 of
Figure 7, calling it SV , and the co-slicing algorithm on S for
V does the same on lines 3-4 of Figure 8, into the set called
SCoV ).

The co-slicing algorithm fails on line 5 if any final-def slide
of CoV either defines or makes a non-final reference to a
variable v ∈ V . In such a case, the corresponding slide of
S′ will be in the detour co-slice, and since only final uses
are substituted, it will definitely define or make reference
to v and therefore be unsuitable for the subsequent step of
normal substitution. On the other hand, if the test on line
5 passes, there is no such v ∈ V on any final-def slide of V
and so the only references to V are to final values, and those
were substituted with references to fV , so the initial SV is
definitely clear of definition of reference to V , as required.

Next, in the main loop, the slicing on S′ for CoV adds
the predecessor Sm of a slide Sn ∈ SCoV if the set U on the
label of edge (Sm, Sn, U) is not of a subset of V . If it is a
subset of V , each reference in Sn to a u ∈ U must be to a
final value, and we have (Sm, Sn, U) ∈ EfV ; so the detour
algorithm will similarly not add Sm in such a case. Now
before adding Sm to the co-slice, the first algorithm checks
it is not in NonFU ; if it is, the algorithm fails just like
the second algorithm would fail in the final step of normal
substitution (as explained in the initialization step).

So both algorithms fail under the same conditions and
end up with the same sets of slides; but the second algo-
rithm’s result of the slicing step has final-use references to
V replaced with fV ; the final step substitutes all those ref-
erences back to the original name, making the two resulting
co-slices literally identical.

Accordingly, our co-slicing algorithm of Figure 8, when
successful on S and V , yields a valid sub-fragment that
computes the same results as the original program for all
variables in the complementary set of variables CoV (being
Mod(S) \ V ).

7. EVALUATION
To evaluate the usefulness of sliding, we have implemented

a number of sliding algorithms in a tool integrated into the
Java development environment in Eclipse, and applied it in
the construction of two refactoring techniques.

7.1 Implementation
Inside the Java source-code editor in Eclipse, the user can

select a variable of interest and add it to an accumulated
list V ; as the relevant fragment S, the current prototype
tool focuses on the whole method’s body. If one wishes to
perform sliding on a smaller fragment, it should be possi-
ble to extract that fragment into its own method object,
call it from the original, and collect the relevant final values
from the extracted object. After performing sliding on that
new method, the resulting code can be inlined back into its

original method.
For slicing we use the WALA slicer, and for co-slicing,

the current implementation performs the indirect algorithm
described in Section 6.2. Compared with the algorithm of
Figure 8, which has been proved to yield identical co-slices
on a simple language, the implemented algorithm needs to
compute slicing after slightly changing the original program.
This requires expensive re-computation of the WALA inter-
mediate representation; we anticipate that a re-implementation
of co-slicing based on the algorithm of Figure 8 will there-
fore perform better in terms of time and space. It is left
to experimentation to verify that it indeed yields the same
results in practice.

The current sliding tool includes an implementation of the
algorithm of Figure 4 (with slicing and co-slicing computed
differently, as stated above), and a number of more advanced
algorithms, where additional variables are added to store the
initial value of variables ahead of the slice and retrieve it
ahead of the co-slice, and similar backup variables for storing
the extracted results after the slice and retrieving them at
the end, after the co-slice. Another advanced feature is to
specify whether an extracted value should be reused of not;
this way, one can avoid rejection when the successful reuse
is not possible.

An additional sliding algorithm finds all variables whose
slice is included in the extracted slice, and automatically
attempt to reuse those too. This way, the user can ask to
extract the computation of sum, in our example, and the
tool will find that a should be extracted and reused too, and
that in must be extracted too, to avoid rejection due to the
duplication of line 1.

7.2 Sliding-Based Refactoring Tools
A direct application of sliding is the Split Loop refactoring

[1]. We have yet to add a designated tool for splitting loops,
but the user can apply it using the sliding tool. Extract
the loop and the relevant initialization into a new method
object, select the variables of interest, and apply sliding. If
the initialization of the loop index is not in the selected code
fragment (as in the fragment of lines 6-10 in our example)
the tool based on Figure 4 would correctly reject the trans-
formation, as the loop in the co-slice would be skipped. One
of the more advanced versions described above would add a
backup variable for the initial value of that loop index.

For the refactoring Replace Temp with Query (RTwQ)
[8] we have implemented a tool with similar user interface
as that of Extract Method. This refactoring involves the
extraction of the computation of a single variable, a tem-
porary one, into a method of its own. That method may
have no side effects and it will be invoked from all places
in the original code where the final value of the temp was
used. Invoking RTwQ on the variable prod of the co-slice on
Figure 1(c), assuming this variable was local, would replace
the use of prod in line 11 with a call to the new method, and
the loop would be eliminated from the original code (assum-
ing i was local too). Invoking it on the original program of
Figure 1(a) would be rejected, correctly, since the extracted
slice would involve side-effects on the input stream.

For invoking the tool, the user selects the local variable of
interest, instead of a fragment of code in Extract Method,
and the tool prompts the user to specify a name for a new
method. The tool performs the transformation in three
steps: sliding, followed by Extract Method on the extracted



slice and by Inline Temp on the selected variable [6]. The
sliding is given the selected local variable as V and extracts
its slice; the sliding may fail, and correctly so, if a non-final
value of the temp is still relevant in the co-slice; moreover,
since the query may have no side effects, the tool must fail
if any global variable is modified in the slice.

An additional refactoring we have implemented is for Sep-
arate Query from Modifier (SQfM) [8]. This refactoring in-
volves the splitting of a non-void method with side effects
to two methods. Like in RTwQ, the extracted slice is of a
single variable, the one holding the returned value from the
original method. (If there is no such temp, we add it first.)
After sliding the slice of this temp away from the compu-
tation of the modifier, i.e. the code with the side effects,
we perform Extract Method twice, on the slice and co-slice,
and finally perform Inline Method, to replace all calls to the
original method with the two invocations, of the query and
modifier. The SQfM tool can be useful also for temporarily
updating the code, unlike in a typical refactoring scenario,
for testing, debugging, or verification, e.g. by enabling the
application of tools and techniques that assume no side ef-
fects exist in conditional expressions.

8. RELATED WORK
Earlier research on extracting slices from existing systems,

in the context of software reverse engineering and reengi-
neering, has focused mainly on how to discover reasonable
slicing criteria [3, 14]. In the context of refactoring tools,
it is common to leave the choice of what to extract to the
programmer.

The earliest mention of an interactive process for behavior-
preserving method extraction [17, 9] considered the extrac-
tion of contiguous code only.

Maruyama [15] proposed a scenario for the extraction of
the slice of a single variable from a selected fragment, or
block of statements, into a new method; a call to that method
is placed ahead of the code for the remaining computation.
The importance of proving correctness is mentioned, but
no proof is given. The suggestion to base the proof on a
theorem that two programs are equivalent if they have iso-
morphic PDGs [10] would prohibit the desired duplication
of nodes. A more recent work building on that approach [19]
suffers from the same limitation.

A number of provably correct algorithms for the extrac-
tion of a set of not-necessarily contiguous statements have
been proposed in the literature [13, 11, 12].

Of those, tucking [13] is most generally applicable for iso-
lating the slice of a code fragment. Tucking starts by adding
to the statements designated for extraction all other state-
ments in their slice, limited to the smallest fragment enclos-
ing those statements. If we apply this algorithm by selecting
such a slice in the first place, no other statement would be
added to the extracted code. This is unfortunately not the
case in the algorithm of Komondoor and Horwitz [12], where
each statement that the algorithm is unable to move away
from the slice, correctly, is added to the extracted code. In
the worst case, this approach extracts the whole fragment,
essentially leaving it unchanged. In particular, no assign-
ment can be duplicated and loop statements can either be
extracted fully, or not extracted at all. Therefore, splitting
loop as in our example of sum and prod, is not possible
by that algorithm. Komondoor and Horwitz had an ear-
lier algorithm [11] in which all permutations of the selected

statements were considered, in looking for an arrangement
of statements in which all selected statements are contiguous
and where all control and data dependences are preserved.
This algorithm does not permit any duplication, not even
of conditionals, and may therefore be applicable for slice
extraction only in cases where each predicate in the slice
appears in it along with all the statements it controls.

So tucking is the only previous solution to slice extraction
that can untangle a loop that computes more than one re-
sult, as in the example of sum and prod [7]. In tucking, how-
ever, the complementary code is computed as the slice from
all non-extracted statements, so no reuse of the extracted
results is possible. In our example, that complement would
include the whole fragment of lines 1-12, as it would start
slicing from nodes 4,8 and 11 of figure 5. The duplication
of the computation of sum, in this case, is undesirable but
still correct. The problem is with the duplication of node
1, for reading integers from the input stream: tucking’s pre-
condition states that a variable whose value on exit from the
fragment is relevant, may not be defined in both the slice
and its complement; in this case, even if assuming the values
of i,sum and a are not relevant after this fragment, the input
stream in clearly is, and the transformation would have to
be rejected.

The idea of allowing data to flow from the extracted code
to the complement, in sliding, is based on the two Komon-
door and Horwitz algorithms [11, 12].

9. CONCLUSION
To paraphrase Weiser’s seminal work [21], sliding is a new

way of recomposing programs automatically. Limited to
code already written, it may prove useful during the refac-
toring, testing, and maintenance portions of the software
life cycle. This paper concentrated on the basic methods for
sliding programs and their embodiment in automatic tools
for refactoring. Future work on sliding-based programming
aids is necessary before the implications of this kind of re-
composition are fully known.

Acknowledgements
I gratefully acknowledge the writing guidance of Cindy Eis-
ner and the implementation work of Alex Libov, Eli Kfir,
Daniel Lemel, Dima Rabkin, and Vlad Shumlin.

10. REFERENCES
[1] An online refactoring catalog.

http://www.refactoring.com/catalog/.

[2] A. Abadi, R. Ettinger, and Y. A. Feldman. Improving
slice accuracy by compression of data and control flow
paths. In 7th Joint Mtg. European Software
Engineering Conf. (ESEC) and ACM Symp.
Foundations of Software Engineering (FSE), Aug.
2009.

[3] A. Cimitile, A. D. Lucia, and M. Munro. Identifying
reusable functions using specification driven program
slicing: a case study. In ICSM, pages 124–133, 1995.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490,
1991.



[5] E. W. Dijkstra and C. S. Scholten. Predicate calculus
and program semantics. Springer-Verlag New York,
Inc., New York, NY, USA, 1990.

[6] R. Ettinger. Refactoring via Program Slicing and
Sliding. PhD thesis, University of Oxford, Oxford,
United Kingdom, 2006.

[7] R. Ettinger and M. Verbaere. Untangling: a slice
extraction refactoring. In AOSD ’04: Proceedings of
the 3rd international conference on Aspect-oriented
software development, pages 93–101, New York, NY,
USA, 2004. ACM Press.

[8] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 2000.

[9] W. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM Transactions on
Software Engineering, 2(3):228–269, July 1993.

[10] S. Horwitz, J. Prins, and T. W. Reps. Integrating
non-interfering versions of programs. In POPL, pages
133–145, 1988.

[11] R. Komondoor and S. Horwitz. Semantics-preserving
procedure extraction. In POPL ’00: Proceedings of the
27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 155–169,
New York, NY, USA, 2000. ACM Press.

[12] R. Komondoor and S. Horwitz. Effective automatic
procedure extraction. In Proceedings of the 11th IEEE
International Workshop on Program Comprehension,
2003.

[13] A. Lakhotia and J.-C. Deprez. Restructuring programs
by tucking statements into functions. Information and
Software Technology, 40(11-12):677–690, 1998.

[14] F. Lanubile and G. Visaggio. Extracting reusable
functions by flow graph-based program slicing. IEEE
Trans. Software Eng., 23(4):246–259, 1997.

[15] K. Maruyama. Automated method-extraction
refactoring by using block-based slicing. pages 31–40.
ACM Press, 2001.

[16] C. Morgan. Programming from specifications (2nd
ed.). Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1994.

[17] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, IL, USA, 1992.

[18] K. Ottenstein and L. Ottenstein. The program
dependence graph in a software development
environment. Proc. of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, pages 177–184,
1984.

[19] N. Tsantalis and A. Chatzigeorgiou. Identification of
extract method refactoring opportunities. In CSMR
’09: Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, pages
119–128, Washington, DC, USA, 2009. IEEE
Computer Society.

[20] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: a
scripting language for refactoring. In ICSE, pages
172–181, 2006.

[21] M. Weiser. Program slicing. In ICSE, pages 439–449,
1981.


