
H-0315 (HAI1206-006) June 17, 2011
Computer Science

IBM Research Report

DOVE: Distributed Overlay Virtual nEtwork Architecture

Rami Cohen, Katherine Barabash, Benny Rochwerger
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Vinit Jain, Renato Recio
IBM STG
Austin, TX

USA

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

DOVE: Distributed Overlay Virtual nEtwork Architecture

Rami Cohen Katherine Barabash Benny Rochwerger
IBM Research - Haifa IBM Research - Haifa IBM Research - Haifa
ramic@il.ibm.com kathy@il.ibm.com rochwer@il.ibm.com

Vinit Jain Renato Recio
IBM IBM

vjain@us.ibm.com recio@us.ibm.com

ABSTRACT
Networking is currently a field of innovation and massive
changes driven by several factors, the most prominent of
which is the shift to cloud computing. It is already widely
understood that networking requirements of cloud comput-
ing infrastructures differ from anything that the established
networking technologies can offer.

We present Distributed Overlay Virtual nEtwork (DOVE),
an architecture based on a novel network abstraction allow-
ing to define provider-tenant contracts at application level.
DOVE network abstraction is decoupled from the particulars
of the physical infrastructure design. Still, it captures the
network functionality that matters: connectivity, security,
performance, etc. DOVE architecture allows cloud providers
to consolidate multiple abstractly defined networks on large
scale commodity physical infrastructures, utilizing the ad-
vantages of specialized hardware appliances, and delegating
full control to their tenants that now can manage and admin-
ister their virtual networks.

1. INTRODUCTION
Why do we build roads? Probably the most obvious,

if not the only, answer is to efficiently transport people
and goods from point A to point B. All the technical
details of the road do not really matter to the ”road
customers”, i.e. the people in need of transportation.
Unfortunately, roads alone are not enough to achieve
the efficient ground transportation, so an entire system
of ”transportation aids” have been designed and added
to the initial simplistic model, e.g., synchronized traffic
lights, tolls, priority lanes, etc. Even with all this ad-
ditional complexity, the main goal stays the same, and
that is what the vast majority of the users care about.

Similarly, we build networks to provide computer com-
munication services, and just as in the case of roads,
the technical details of how this goal is achieved are re-
ally not that important to the users and applications
transferring data over the networks. And just as roads-
system has become more complex over time even if its
main goal hasn’t changed, networks have become very

complex systems and require a lot of expertise to build
and manage while their main role hasn’t really changed.

What has changed in recent years is the way we deal
with servers. Virtualization technologies have been the
main enablers of a significant paradigm shift in IT:
server provisioning has become a simple task that users
of the server can usually perform on their own with-
out any help from the IT department. Moreover, vir-
tualizing workloads has enabled the consolidation of
many functional servers (virtualized) into fewer physical
servers, a process that leads to increased utilization of
physical resources, significant space and energy saving,
and simplifies many management aspects (e.g. backups,
maintenance window, etc). As a result, modern consol-
idated data center must support very large scale, highly
dynamic workloads, and multitenancy.

Network virtualization lags behind and has achieved
neither the ease of provisioning, nor the management
and savings advantages that server virtualization has
brought to the data center. On the contrary, in some
cases the technologies developed to address networking
in a virtualized data center increase both complexity
and cost. For example, the attempts to extend the phys-
ical network all the way to the virtual machines, such as
VNTag [2], 802.1Qbg [3], while solve real problems and
add some flexibility, miss a crucial point: less physical
servers (due to server consolidation) mean less ports are
needed, while exposing the VMs to the physical bridges
means that the internal tables stay large, hence the big
expensive networking equipment is still required. Very
large scale and highly dynamic nature of virtualized en-
vironments are not adequately supported by the exist-
ing, legacy based, network virtualization attempts.

What is really needed is a clean abstraction that,
just as in the case of server virtualization, fully sep-
arates the logical function from the underlying physi-
cal infrastructure. This abstraction needs to capture
only the high level functionality needed leaving out-
side the low level physical mechanisms used to achieve
such functionality. In case of network virtualization, the
main function is clearly providing connectivity between

1

endpoints. However, in today’s rich IT environments,
connectivity alone is not enough and much more is ex-
pected from the networking services. In particular, for
security reasons users may want to inspect all the data
flowing in and out of some endpoint, or for efficiency
users may want to compress/uncompress data from/to
a backend networked storage device. In the physical
network, these advanced functions are usually achieved
by placing dedicated middleboxes1 along the physical
path travelled by packets in and out of servers. In a
virtualized environment, users still want these services,
e.g. security, compression, acceleration. There are two
important conflicting issues with moving such services
to a virtual level. On the one hand, the required func-
tion has to be described as part of abstract description
of virtual network and in a way independent of physical
location and topology. On the other hand, it is cru-
cial that the actual function is provided by real hard-
ware devices, highly optimized and efficient, and not by
software substitutes as, for example, is the case with
VMware vShield product family. Clients are not will-
ing to sacrifice the performance and the high level of
service they are used to with hardware appliances and
wish to be able to leverage investment they made into
their existing costly equipment.

In addition to a well defined abstraction, we need the
ability to easily create and maintain multiple isolated
virtual networks without requiring to reconfigure the
physical network. Moreover, the move to cloud com-
puting means that these isolated virtual networks may
belong to different tenants that will demand not only
isolation but also the ability to manage their virtual
networks (including their address spaces, topology, etc)
independently of other tenants and without having to
turn to the infrastructure provider for every change.

From the cloud computing provider point of view
it is crucial to meet the following requirements: Scal-
ability, i.e. large number of highly dynamic virtual
networks and virtual network endpoints; Full isolation
between the different virtual networks, including per-
formance isolation, management control, etc; Ability
to use commodity infrastructure components, including
simple switches and specialized hardware appliances,
to fully realize advantages of scale related to consol-
idation. In addition, good network abstraction is re-
quired to allow network specifications to be, on the one
hand, agnostic of particulars of infrastructure design,
while, on the other hand, to capture all the network
considerations that matter: security, QoS, etc. Meeting
these requirements based solely on commonly used net-

1We use term “middlebox” interchangeably with the term
“network appliance”, to signify a piece of network equip-
ment installed on a data forwarding paths [7]. Examples of
middleboxes are firewalls, intrusion detection systems, en-
cryption and compression engines, SSL accelerators, etc.

working technologies is cumbersome and in many cases
prohibitively expensive. There is a need for a network
virtualization layer that can support multitenancy in a
highly scalable, very dynamic, and cost efficient system.

We have architectured the Distributed Overlay Vir-
tual nEtwork (DOVE), a novel networking architecture
that allows building systems answering the above set of
requirements. DOVE architecture is based on a clean
and simple network abstraction allowing to define provider-
tenant contracts at application level. DOVE network
abstraction is decoupled from the particulars of the phys-
ical infrastructure design. Still, it captures the network
functionality that matters: connectivity, security, per-
formance, etc. DOVE architecture allows cloud providers
to consolidate multiple abstractly defined networks on
large scale commodity physical infrastructures, utiliz-
ing the advantages of specialized hardware appliances,
and delegating full control to their tenants that now can
manage and administer their virtual networks.

The rest of this papers is structured as followed: Sec-
tion 2 describes the most influential related works. In
Section 3 we present the DOVE network abstraction
and in Section 4 the DOVE architecture is described in
details. We present our evaluation of architectural abil-
ity of DOVE to scale in Section 5, and summarize the
work and discuss future directions in Section 6.

2. RELATED WORK
The most recent attempts to address the need for

creating and managing multiple isolated virtual net-
works in large scale consolidated environments at low
deployment and operational costs are VXLAN [21] and
NetLord [23]. Both these, as well as many other works
(see [35, 13, 17]), acknowledge the limitations of existing
network virtualization technologies. For example, both
recognise that VLAN [1] technology is too rigid and too
tied to the physical infrastructure so it can not allow for
proper network virtualization where dynamics, flexibil-
ity and scale are required both in operation and in con-
figuration. NetLord also rightfully criticizes solutions
requiring the networking state of every attached (vir-
tual) endpoint to be exposed to the physical switches
(e.g. SPAIN [22]) for their inability to scale without
heavily increasing switch resources, as well as architec-
tures depending on complex feature support in physical
switching hardware (e.g., SEATTLE [17] requires pro-
grammable MAC-in-MAC encapsulation support).

Both VXLAN and NetLord provide multiple virtual
networks by creating overlays to achieve benefits of scale,
isolation of tenants one from another and from the phys-
ical infrastructure, and ease of operation and configu-
ration. However, neither provides proper abstraction
for describing the virtual network services, both have
non-trivial requirements from the underlying infrastruc-
ture and both are limited in their ability to scale. Not

2

VXLAN and not NetLord address supporting network
services besides the simple connectivity. In what fol-
lows we briefly summarize how these works come short
of answering the complete set of requirements.

In order to stretch multiple L2 networks over a shared
L3 data center infrastructure, Virtual eXtensible Lo-
cal Area Network (VXLAN [21]) emulates the learning
based control protocols used by L2 including data and
control flooding. For this purposes, in order to provide
unicast service, VXLAN relies on a multicast infrastruc-
ture where each multicast group emulates a virtual L2
broadcast domain. Thus, while avoiding the limitations
associated with VLAN maintenance and configuration,
it inherits the complexity and inflexibility of physical
L2 network by reusing the fully distributed, learning
based method of dealing with unknown information,
and thus can not adequately scale in highly dynamic
environments.

NetLord is a novel multitenant network architecture
that, like VXLAN, encapsulates tenant’s L2 packets.
Encapsulation is different and involves a custom mix
of L2 and L3 headers to ensure both tenant isolation
and efficient packet delivery in the underlying multi-
path L2 network. Although NetLord provides isolation
between tenants and takes care of efficient packet for-
warding, it equates network virtualization with address
space virtualization allowing tenants to control their L2
and L3 addresses. We claim that address virtualization
alone is not enough and there is a need to fully ab-
stract the application level network services from the
underlying resources. In addition, in NetLord architec-
ture, a fully consistent network state is maintained and
synchronized between all the NetLord Agents (NLAs).
Thus, every change (VM creation, migration, or ter-
mination, virtual network creation, etc) requires the
information to propagate to all the overlay endpoints
which clearly can not scale in highly dynamic environ-
ments. Another, lesser, NetLord limitation is requiring
L2 based forwarding fabric underneath while it is start-
ing to become apparent that simple L3 based data cen-
ter designs are cheaper and more robust at large scales.

Most of other recent research works advocating the
creation of novel network architectures focus on specific
network properties or services: security [30], access con-
trol [9, 8], policy based routing and switching [16], mul-
titenancy [5], and performance isolation [33, 34], while
some, like Portland [24], target specific physical net-
work environments. Most solutions expose to the net-
work clients constructs and interfaces familiar from the
physical networks: L2 broadcast domains, switch ports,
per-port access control properties and even VLANs [17,
24, 14, 23]. The reason is that most of the community
is caught in the conceptual trap of trying to provide,
in one way or another, the same type of controls and
interfaces as everyone is used to receive from physical

networks. Some works that do try to create a better
abstraction of virtual network services [5, 4, 10], still
end up with abstractions that closely follow the existing
networking constructs. For example, Oktopus [4], when
aiming at abstraction that can be used to create cloud-
tenant contracts with network performance guarantees,
ends up providing concepts emulating the existing data
center network design constructs like “cluster” emulat-
ing switch and “oversubscribed cluster” emulating a two
tier fat tree switching network.

OpenFlow [20], initially developed to add programma-
bility into the physical data forwarding devices, has
been taken very far since its initial conception and have
given raise to the Software Defined Networking (SDN),
a network architecture in which the network control
plane is decoupled from the physical topology. While
most often the SDN concept is applied to programmatic
control of the physical network [27, 15, 18], there are
initial attempts to adopt it to the virtualization use
case [28, 10]. To the best of our knowledge, there are
no SDN based solutions answering the full set of re-
quirements presented in this paper. We believe that
the DOVE architecture is aligned with the vision and
the direction of SDN.

The policy-aware switching layer, proposed by Joseph
at al [16] acknowledged the importance of network ap-
pliances to provide essential enhanced networking ser-
vices, and showed how traffic engineering techniques can
be used to enforce forwarding of different types of traffic
through different sequences of middleboxes in a flexible,
efficient and guaranteed way considering a dynamic en-
vironment such as data center. The way we’ve chosen
to support hardware appliances in DOVE architecture
(see Section 4) is greatly inspired by this work.

3. DOVE NETWORK ABSTRACTION
Modern network applications are usually deployed

as sets of interconnected components, and connectiv-
ity requirements between application components are
integral part of deployment specification. Figure 1a
presents an example three tier application consisting of
a load balancer connected to the public Internet and to
a set of application servers that in turn are connected
to a set of database servers. In this example, security
and performance constrains dictate that the following
appliances must be properly installed and configured:
firewall for checking all the traffic between the load
balancer and the application servers, SSL accelerator
to speed up HTTPS communications between the load
balancer and the application servers, and compression
engine on a way to/from the database servers.

Typically, deploying network applications as in Fig-
ure 1a requires the involvement of a network adminis-
trator to design and configure the network infrastruc-
ture supporting the above connectivity requirements.

3

This can be done, for example, by subnet configura-
tion whereby a single L2 domain is divided into sub
networks to enable, among other things, endpoint isola-
tion and to enforce forwarding paths to pass through the
required middleboxes. With these technologies, appli-
cation deployment specifications include low level net-
working constructs such as VLAN tags, switch ports,
and router configuration. Although these constructs are
well known to and widely used by the network adminis-
trators [36], they are ill suited to specifying the essence
of the networking requirements of the application. In
addition to being difficult to grasp for not networking
professionals, such low level specifications are inevitably
tied to a particular network infrastructure, making it
hard to correlate changes in application-level network-
ing requirements (e.g. due to application dynamics)
with physical network required to support them and
vice versa. as a result, data center networks are usually
rigid, hard to manage and thus non-scalable.

There is a need for a clear, convenient, high level,
and infrastructure independent abstraction for specify-
ing networking requirements of applications. Abstract
network description must not contain any physical or
control information but only high level functional in-
formation in order to provide a flexible and hardware
independent blueprint that can be used for logical speci-
fication of an application network. An abstract network
description should be technology and topology indepen-
dent, and therefore can be instantiated into an actual
deployment over any kind of physical infrastructure by
means of infrastructure specific configuration actions.

We create such an abstraction, observing that appli-
cation level networking requirements are best described
in terms of the connectivity between endpoints and
the policies associated with the connectivity. In what
follows we describe DOVE network abstraction that is
based on the notions of policy, policy action, and policy
domain. Later, in Section 4, we show how DOVE ar-
chitecture resolves the abstract application network de-
scription into a set actions and instructions applied to
a physical infrastructure in order instantiate and main-
tain the logical network blueprint.

In DOVE, policy is a set of criteria characterizing
the connectivity between a pair of communicating enti-
ties, communication source and communication target.
This characterization can specify, among other things,
access control, QoS, security, and performance criteria.
For this, policy characterization can include a sequence
of policy actions that must be applied when forwarding
data between the source and the destination endpoints.
Policy actions define, among other things, security and
performance related demands, which are typically en-
forced by network appliances such as network acceler-
ators, intrusion detection and prevention systems, fire-
walls, etc. Note that although DOVE policies and ac-

tions associated with them are abstract and may include
any type of criteria, their actual enforcement is carried
out by the physical infrastructure. Thus, in practice,
specified policy actions must be backed up by specific
infrastructure capabilities. For instance, while a sim-
ple accept/deny authorization policy can be enforced
by any infrastructure, enhanced firewall capabilities and
accelerating SSL operations will usually depend upon
existence and suitable configuration of corresponding
network appliances.

While, in general, policies characterizing network con-
nectivity can be defined directly between communicat-
ing endpoints, in DOVE policies are defined between
sets of endpoints sharing common policy criteria and
called policy domains. Specifying policies at this level
enables identical policies aggregation and reduces the
total number of policies required to define network func-
tionality. In addition, defining policies between policy
domains and not between endpoints decouples policy
management from endpoints management thus enabling
better separation of duties between different manage-
ment roles. For example, management entity respon-
sible for application deployment can define empty pol-
icy domains and polices between them while a different
management entity (or set of such) can subsequently
add, remove and maintain endpoints within policy do-
mains assigned to it. Such separation of duties allows
for flexible and dynamic creation and maintenance of
virtual networks.

With DOVE network abstraction, the network appli-
cation presented in Figure 1a can be described using
four policy domains as shown in Figure 1b: the first
policy domain for the database servers, the second for
the application servers, the third for the load balancer,
and the forth policy domain for the external clients.
Application blueprint can be deployed before actually
instantiating any of the components or together with a
minimal set of instantiated components. Later during
the application lifetime, endpoints can be dynamically
added to and removed from policy domains according
to, for example, the application load, while the appli-
cation network blueprint remains the same. Clearly, if
different endpoints in a single policy domain require dif-
ferent network services, a policy domain may be further
partitioned into several new policy domains so that all
the endpoints within a single policy domain have the
same policy criteria.

Note, that in DOVE, policies are unidirectional and
typically two unidirectional policies should be defined
for each pair of policy domains. Also, a policy from
a policy domain to itself can be defined to specify the
communication criteria associated with data sent be-
tween endpoints inside this policy domain. In addition,
to simplify the network description, one may set a de-
fault policy that should be applied when there is no ex-

4

(a) (b)

Figure 1: Network Application Example – (a) shows the application architecture as it is typically provided by the applica-
tion architect, while (b) shows DOVE network description for the same application architecture. Note that both parts are
completely logical and abstract and do not contain any concepts form the core networking domain.

plicit policy definition. Thus, the application network
can be specified as a directed graph where the vertexes
represent policy domains and the directed edges repre-
sent policies.

4. DOVE ARCHITECTURE
In this section we describe DOVE architecture allow-

ing to create virtualization layer for deploying, control-
ling, and managing multiple independent and isolated
network applications over a shared physical network in-
frastructure. As was stated in the introduction, our
goal is to satisfy requirements of large scale consolidated
data centers hosting multiple applications belonging to
different tenants, while preserving the functionality and
the flexibility of each application network and without
reproducing the complexity and the overhead associated
with typical network deployments. In DOVE, data traf-
fic is handled by distributed data plane entities called
DOVE Switches2 and control is achieved through a con-
trol plane engine called DOVE Policy Service, as de-
scribed below.

• dSwitch, described in Section 4.1, is responsible for
connectivity and policy enforcement in DOVE en-
vironment. Each dSwitch serves a dynamic set of
endpoints3, and all the traffic sent and received by
a DOVE hosted endpoint must traverse its host-
ing dSwitch. dSwitches obtain connectivity and
policy information through interaction with the

2In the rest of the paper we denote DOVE Switch by a short
term dSwitch.
3Strictly speaking communication endpoint is an address-
able network interface, either virtual or physical. In this
paper, for simplicity, we refer to virtual or physical hosts as
to endpoints as well.

DOVE Policy Service (DPS), and cache it locally.
In a typical virtualized data center deployment, a
dSwitch is deployed on each physical server and
serves the virtual machines currently hosted by
this server.

• DOVE Policy Service (DPS), described in Sec-
tion 4.2, is responsible for maintaining the abstract
blueprint of virtual networks as described in Sec-
tion 3, as well as for creation, modification, and
deletion of virtual networks. In addition, DPS
maintains the correlation between the logical de-
scription of the virtual networks and the physi-
cal infrastructure, including the physical location
of virtual machines, implicit or explicit informa-
tion regarding the location of network appliances,
their configuration, etc. Based on this informa-
tion, DPS resolves and validates policy requests
received from dSwitches and maps these requests
to packet sending instructions.

DOVE provides isolation between the virtual and the
physical domains by creating an overlay network be-
tween dSwitches that is transparent to the endpoints
and is used to send and receive data between them.
Each packet sent from one endpoint to another, is en-
capsulated by the dSwitch serving the source endpoint
using an IP based tunnelling protocol4 and sent to the
dSwitch serving the destination endpoint, subject to
policy enforcement actions. Despite the overhead asso-
ciated with tunnelling, such approach overcomes many
limitations associated with direct connectivity in which

4Here it is assumed the underlying physical infrastructure is
IP based. Otherwise, a different tunnelling protocol should
be used.

5

endpoints are clients of the physical network. First,
physical switches do not longer need to deal with all
the dynamic set of virtual servers, but only with much
smaller set of static physical servers, so they need to
support less addresses and less configuration and con-
trol protocols. Second, with overlay, virtual servers
are isolated from the physical infrastructure, enabling
to deploy DOVE over different network technologies
(e.g. Ethernet, Infiniband, IPv4, IPv6) and topolo-
gies. Third, overlay achieves isolation between virtual
networks, enabling each virtual network to define its
own network characteristics independently, including its
topology and address space. As a result, more than one
virtual network can share the same address space in the
virtual domain and different virtual networks (e.g. IPv4
and IPv6) can coexist on a shared physical infrastruc-
ture. For further reading regarding overlay advantages
in the virtual environment see [23, 26].

DOVE provides isolation between the virtual and the
physical domains, making it possible to allow each net-
work to define its own network configuration including
IP and MAC addresses so that address spaces used by
virtual networks are decoupled from the physical net-
work address space. We refer to addresses defined in
virtual networks as to virtual addresses and to addresses
used in the physical infrastructure as to physical ad-
dresses. Note that, architecturally, DOVE is agnostic
to anything related to the core networking business and
can be implemented in any physical network infrastruc-
ture with the only assumption of reachability (L2 or
L3) between the dSwitches and between the dSwitches
and the DPS. Data network connecting dSwitches can
be either separate or shared with the control network
connecting dSwitches to the DPS. Simple IP-based data
center networks built with commodity components eas-
ily answer these requirements.

Although endpoints are connected to the DOVE en-
vironment by NICs (physical or virtual), DOVE does
not emulate L2 protocol (e.g. Ethernet), making a
point that L2 protocol is not a service but a means
to carry data. DOVE enables endpoints to send and
receive L2/L3 data without emulating and reproducing
the complexity of the control protocols associated with
L2 infrastructure. For instance, instead of emulating
ARP in the virtual domain by sending ARP requests
to all the members within virtual network or the policy
domain, DOVE utilizes the DPS in order to deal with
such resolutions, and instead of setting VLAN tags to
enforce security requirements, DOVE controls the data
forwarding by configuring the overlay network as will
be described later in this section.

In general, policy may refer to many subjects, includ-
ing security, QoS, etc., and its enforcement is typically
subject to the physical infrastructure capabilities. The
enforcement of QoS based policy, for example, may re-

Figure 2: DOVE Data Flow between endpoints hosted by
two different dSwitches: Step 1 – Packet interception by
dSwitch hosting the sending endpoint; Step 2 – Local policy
lookup and, if needed, acquiring it from the DPS; Step 3
– Packet encapsulation and sending through a set of ap-
pliances towards the destination dSwitch; Step 4 – Packet
decapsulation and delivery to the destination endpoint.

quire some support from the forwarding entities, while
a security policy, on the other hand, may require de-
ployment of network appliances such as firewall, and
the exact functionality is varied from one appliance to
another, according to their specifications. Thus, the
set of policies that can be defined in the logical net-
work description is derived from the physical deploy-
ment and the implementation. In this work we focus on
network appliances based policies (firewalls, intrusion
detection and prevention systems, accelerators, etc.),
that is, policies requiring the data to pass through a
sequence of physical appliances. Inspired by Joseph
at al [16], DOVE enforces such policies by control-
ling the data path. That is data is not sent directly
from the source to the destination dSwitch, and a path
control mechanism is required. The exact path con-
trol mechanism depends of the physical infrastructure
and it may be based on loose source routing [31, 11] or
MPLS [32] tagging. Other approaches are possible, for
example one used by Spain [22] or by Joseph at al [16].
While DOVE is responsible to carry the data through
the appliances, their configuration done independently.
In particular, these appliances should be logically parti-
tioned such that each tenant can manage and configure
its own partition. In addition, such multitenant appli-
ances should be able to distinguish between data sent
from different virtual networks (see for example Juniper
NetScreen Firewall).

Figure 2 illustrates DOVE data flow between end-
points served by two different dSwitches. In this exam-
ple, the packet sent from VM-1 to VM-3 is intercepted
by the dSwitch located on physical server 1 (Step 1 in
Figure 2). If the policy associated with this packet is
not found in its local cache, this dSwitch acquires it by
sending a policy request to the DPS. The DPS parses
and resolves the request, and sends a policy reply to
the dSwitch. The policy reply contains the address of
the dSwitch hosting VM-3, as well as the path control

6

Figure 3: DOVE Data Flow of packets destined to a just
migrated endpoint: Step 1 – Upon migration the DPS is
updated by the dSwitch at the new location; Step 2 – An-
other dSwitch uses its stale cached policy and sends data to
the dSwitch at the old location; Step 3 – dSwitch at the old
location sends location invalidation message to the source
dSwitch; Step 4 – Source dSwitch acquires the correct pol-
icy so that following packets are sent correctly.

information (a set of appliances the packet must pass
through on its way to the destination) required to en-
force the policy (Step 2 in Figure 2). Upon receiving the
policy reply, dSwitch stores the policy information in its
local cache so it can be reused for subsequent packets
subject to the same policy. At this point, dSwitch en-
capsulates the packet so that the outer headers contain
the physical addresses of the source and the destina-
tion dSwitches, as well as the path control information
necessary for the packet to traverse the sequence of re-
quired appliances. In addition, packets sent over the
wire must contain the virtual network identification to
enable the destination dSwitch to dispatch the original
packet to the destination endpoint (Step 3 in Figure 2).
Once the packet is received by the destination dSwitch,
it decapsulates the packet and delivers it to the destina-
tion endpoint according to the destination address and
the virtual network identifier (Step 4 in Figure 2).

When some endpoint changes its location and its host-
ing dSwitch (for example, when virtual machine is mi-
grated from one physical server to another), stale cached
policy can be used to send data destined to the migrated
endpoint to the old location. To achieve policy consis-
tency in a scalable manner, we use cache invalidation
messages as illustrated in Figure 3. In this example,
VM-3 is migrated from physical server 2 to physical
server 3. When the migration is completed, dSwitch
at the new endpoint location updates the DPS about
the new physical location of the endpoint (Step 1 in
Figure 3). If, as shown in Step 2 of Figure 3, another
dSwitch sends encapsulated packet to the old destina-
tion, the dSwitch located there sends a location invali-
dation control message to the source dSwitch (Step 3 in
Figure 3). Upon receiving the location invalidation con-
trol message, the source dSwitch acquires the new policy
containing the new location information and sends fur-
ther packets according this new policy (Step 4 in Fig-

ure 3)5. Note, that if the old destination dSwitch is
unavailable (e.g. due to physical server shutdown or in
a server failover scenario), the policy consistency has to
be achieved by other means. In DOVE, there are two
additional mechanisms that are used in such cases: first,
policy cache timeout will eventually force new policy ac-
quisition, and second, DPS will push policy invalidation
messages (as described in Section 4.2) to a computed set
of dSwitches when required.

4.1 DOVE Switch (dSwitch)
dSwitches serve as middle men in all the communi-

cations between the hosted endpoints so there must be
dSwitch adjacent to every endpoint in the environment.
Deployement decisions can differ according to the envi-
ronment, taking into account requirements of scale and
resiliency as well as depending on a data center inter-
connect and the endpoint type. For example, dSwitch
serving virtual machines can be deployed as part of the
hypervisor virtual switch. Another possibility is to col-
locate dSwitch with the ToR switch, allowing it to serve
all the physical servers in the rack. For endpoints ex-
ternal to DOVE environment (e. g. Internet clients,
servers in the remote data center or computers in the
home office), dSwitches can be introduced as part of
or immediately adjunct to the perimeter routers (see
Section4.3).

4.1.1 Protocols
dSwitches participate in several types of communi-

cations, each requiring its own protocol, as described
below:

Delivering data packets. dSwitches deliver data packets
between endpoints using the data encapsulation proto-
col. Particulars of the protocol are not enforced by the
architecture but depend on the actual implementation.
For example, to provide L2 type of service, data pack-
ets must contain meaningful endpoint-level L2 headers
while to provide L3 type of service, L2 headers can be
safely discarded by dSwitches thus reducing the com-
plexity and processing overhead as well as to reduce
the total packet size transported by the wire. Outer
headers, on the other hand will depend on the physical
infrastructure where DOVE is deployed and the same
holds for fields carrying the path control information.
DOVE specific fields of the encapsulation header abso-
lutely must include the logical network identity but can
be extended to include other fields, for example, finer
grained identity of the destination endpoint or fragmen-
tation related flags.

5Policy acquisition process can be eliminated if new end-
point location information can be included in the location
invalidation control message

7

Sending inter dSwitch control messages. Control mes-
sages can be sent either over the data network or over
the control network interconnecting dSwitches. One
case where such message is needed, namely, invalidating
stale cache entries relating to the migrated endpoints,
is described above, with relation to Figure 3.

Acquiring policy information for packets generated by
hosted endpoints. For this, dSwitches engage in policy
request/reply protocol with the DPS. dSwitches store
the resolved policy information received from the DPOS
in the local cache with timed entries. When some in-
formation used to resolve the policy is changed in the
DPS, it will push cache invalidation messages to rele-
vant dSwitches as described in Section 4.2.

Reporting location and virtual address information for
hosted endpoints. In most environments, the most effi-
cient way to trace endpoint location and virtual address
information is by being deployed immediately close to it
in the physical network in a way enabling to oversee all
its communications. This is exactly the way dSwitches
are deployed. One way to actualize DOVE architecture
is with dSwitches that collect and trace this information
(either using hypervisor specific hints or by inspecting
data packets) and send endpoint location updates upon
every detected change.6

Providing network services for hosted endpoints. In some
cases, dSwitch acts as a proxy between the hosted end-
point and other network component assumed by it to
be immediately reachable in the network. For exam-
ple, dSwitch intercepts address resolution (for exam-
ple, ARP) requests and, instead of broadcasting them
so they can reach the destination (endpoint with the
requested IP address), consults the policy correspond-
ing to the request and creates address resolution reply
using data needed to create such a reply (in ARP ex-
ample, the MAC address of the destination endpoint)7.
For all such cases, dSwitch must engage in communi-
cation with endpoint (generate protocol messages for
their consumption) and with the policy service which
must be extended to handle all the supported proto-
cols and provide enough information to implement the
proxy functionality as part of policy resolution reply.
To support ARP, for example, DPS is extended to keep
the mapping between the virtual MAC and the virtual
IP of the hosted endpoints, as described in Section 4.4.

4.1.2 Data Structures
To serve their hosted endpoints and to participate in

6In some environments, global data center management
tools can be used by DPS to acquire and maintain endpoint
location and virtual address data.
7Another example would be DHCP proxying.

the communications described above, dSwitches must
maintain and manage simple state as follows:

Hosted endpoints table. For every currently active hosted
endpoint, dSwitch keeps its NIC properties (e.g. virtual
interface number), its DOVE related properties (vir-
tual network identity, policy domain identity, etc), and
its available virtual address information (e. g. virtual
MAC, virtual IP).

Local policy cache. In its local cache dSwitch keeps in-
formation received from the DPS as part of replies for
its own policy requests. Policy cash must be designed
to allow efficient look ups in order not to delay data
forwarding for packets that have their policy informa-
tion in cache. Policy cache entries are timed according
to the caching properties assigned to them by the DPS
(see Section4.2). Policy cache entries can also be evicted
by policy invalidation messages either from the DPS or
form another dSwitch.

DPS access information and state. For DOVE to func-
tion, it is crucial that each dSwitch at any time is able
to reach the DPS for resolving policy for a data packet
it has to send. Depending on the DPS distribution and
deployement models, dSwitches will have different ways
to reach the DPS and to track the status of outstanding
communication with it. This can include, for example,
the heartbeat messages, retry state of the policy reso-
lution protocol messages, etc.

4.2 DOVE Policy Service (DPS)
DOVE Policy Service is a critical component serving

the entire DOVE environment, and as such it should be
carefully designed, implemented and deployed so that
it is always available to serve policy resolution requests
by any dSwitch in the environment and provides policy
resolution replies with a sufficiently low latency. For
this, DPS must be highly available, resilient, and scal-
able. The exact quantitative requirements are subject
to many parameters, including the number of virtual
networks to be supported and their size, the service level
to be provided, etc., and will vary from one deployment
to another, resulting in different designs. In our design,
DPS is a highly available servers cluster maintaining
eventually consistent distributed state. For the sake of
brevity, we omit the exact cluster design and present
the architecturally significant functional properties of
the DPS as if it was implemented by a single server.

4.2.1 Databases and Virtual Network Maintenance
DPS maintains all the information required to resolve

policy requests issued by dSwitches, information regard-
ing existing virtual networks, their policy domains, poli-
cies, endpoints, etc., and their correlation with the phys-
ical infrastructure (if available). Since policy resolution

8

latency is critical, one should pay attention to the way
these databases are implemented and maintained to al-
low for fast and efficient resolution. Such considera-
tions are out of the scope of this work; we describe the
databases as a set of tables focusing on their content
and their correlation with each other.

DOVE Virtual Networks table. The first database is a
global one that serves the entire DPS and contains all
the currently existing virtual networks. Each virtual
network is identified by a unique ID and is, in turn,
associated with a set of databases maintaining informa-
tion regarding the policy domains, the endpoints, the
policies, the policy actions and other DOVE properties
associated with this virtual network.

DOVE Policy Domain table. This table contains all the
information regarding policy domains within a specific
virtual network. Each policy domain has an ID, unique
in the virtual network, as well as a list of the members in
the policy domain, that is a set of endpoints, including
virtual machines and external nodes.

DOVE Policy Action table. To define the abstract net-
work policies as described in Section 3, each virtual
network can define a set of logical actions. These ac-
tions, on the one hand, are describing what checks or
filters must be enforced upon the traffic, while, on the
other hand, must be backed up by actual appliances de-
ployed and configured in a physical infrastructure. The
DOVE Policy Action table maintains all the configured
actions within a specific virtual network, identified by
their IDs, unique in the virtual network. Policy action
entry may also contain the actual configuration asso-
ciated with each action (e.g. the set of firewall rules)
and a mapping information used to correlate between
the action and the physical infrastructure, based on the
path control mechanism used to enforce the policy. For
instance, if IP source routing is used to control the data
path, then each action contains the IP address of the
corresponding appliance.

DOVE Policy table. The DOVE Policy Table is used to
maintain all the policies within a specific virtual net-
work. Each entry in the table contains a unidirectional
policy that is valid for data sent from endpoints in the
source policy domain to endpoints in the destination
policy domain. If both source and destination domains
are identical, the entry describes policy internal to the
domain, namely the policy associated with data sent
between endpoints in the domain. For each policy, iden-
tified by an ordered pair of identities of involved policy
domains, this table contains a sequence of logical actions
identified by their IDs. In addition, each policy can
be assigned its own caching property, determining the

amount of time this policy should be cached from the
moment is was acquired by the dSwitch. In addition,
each policy has a tracking number, which is increased
by one each time the policy is updated. dSwitches iden-
tify deprecated policy cache entry when they detect that
tracing number associated with it is less when the one
currently distributed by the DPS.

DOVE Endpoint table. The DOVE Endpoint table con-
tains information regarding endpoints, both internal and
external, accessible by a specific virtual network. Each
endpoint entry contains an ID that is unique within the
virtual network, and may vary from one type of end-
point to another. Virtual machine, for example, can
be identified by a unique ID generated by the virtu-
alization platform manager, while external servers can
be identified by aunique ID or by their IP addresses,
masks or domain names8. In addition, each endpoint
entry contains the following information:

Policy domain: Identity of the policy domain the
endpoint belongs to.

Physical location: Information regarding the cur-
rent dSwitch serving the endpoint. This informa-
tion is dynamic and can change when the endpoint
migrates from one physical location to another. As
described in Section 4.1, DPS tracks the location
of virtual machines through interaction either with
the virtualization manager or with the dSwitches.

Endpoint virtual addresses: The set of L2 (e.g.
MAC) and L3 (e.g. IPv4 or IPv6) addresses used
by the endpoint to send and receive the data. While
the virtualization platform management is usually
responsible to the physical location upon provi-
sioning, deletion, and migration of virtual machines,
it may be not part of its role to handle the vir-
tual machine address configuration which may be
configured statically or automatically (e.g. using
DHCP). As described in Section 4.1, dSwitches
collect this information through data packets in-
spection and update the DPS on every detected
change. In some cases, however, for example when
the deployed endpoint has not sent/received any
messages yet, this information is not available to
its hosting dSwitch and thus to the DPS. For such
(rare) cases, DPS implements the DOVE Address
Resolution Protocol (described later Section 4.4)
to discover the virtual addresses and fill in this
field in the table.

Figure 4 shows one possible deployment of the logical
network described in Section 3. In this example, the
application components are deployed on three physical
8By using mask and domain, a set of servers can be aggre-
gated, and presented as a single entry in the table.

9

Figure 4: A possible deployment of the logical network pre-
sented in Figure 1

servers: physical server, with IP address of 10.0.0.2,
hosts the load balancer and the second web server; sec-
ond physical server, with the IP address of 10.0.0.3,
hosts the first database and the third web servers; while
the third physical server, with IP address of 10.0.0.4,
hosts the second database and the second web servers.
In every physical server, there is dSwitch serving hosted
virtual machines, while an additional dSwitch, accessi-
ble through the 10.0.0.1, serves the edge router connect-
ing the data center to the public Internet9. The DPS
databases derived from this network description and de-
ployment may consist of the tables 1, 2, 3, and 4. Note
that in the network state shown in the tables, not all
the virtual IP addresses are known to the DPS. When
these addresses will be required to resolve a policy re-
quest, DPS will initiate the DOVE Address Resolution
Protocol described in Section 4.4.

Unique ID Name Member List
D-1 External E-1
D-2 Load Balancer E-2
D-3 Application E-3, E-4, E-5
D-4 Database E-6

Table 1: Policy Domain Table for network application pre-
sented in Figure 1 and its deployment presented in Figure
4

Unique Source Destination Tracking Cache Action
ID Policy Domain Policy Domain Number (Sec.)

P-1 D-1 D-2 1 300 A-1
P-3 D-2 D-3 137 200 A-2

.

.

.
P-6 D-4 D-3 1 300 A-3
P-9 Default 1 300 A-4

Table 2: Policy Table for network application presented in
Figure 1 and its deployment presented in Figure 4

9This dSwitch can be collocated with the router, or it can
be deployed on a different virtual or physical server. In
both cases the router should be configured such that all the
incoming external traffic is directed to this dSwitch, and vice
versa.

Unique Name Policy Physical Virtual
ID Domain IP IP
E-1 Ext. D-1 10.0.0.1 255.255.255.255/32
E-2 LB D-2 10.0.0.2 9.2.10.34
E-3 WS1 D-3 10.0.0.3 9.2.10.26

...
E-7 DB2 D4-2 10.0.0.4 N/A

Table 3: Endpoint Table for network application presented
in Figure 1 and its deployment presented in Figure 4

Unique Name Physical Config.
ID Location
A-1 FW-1 9.2.5.1 ...
A-2 SSL 9.2.5.4 ...
A-3 Compession 9.2.4.3 ...
A-4 Deny N/A N/A
A-5 Accept N/A N/A

Table 4: Action Table for network application presented in
Figure 1 and its deployment presented in Figure 4

4.2.2 Policy Resolution
Upon receiving a policy resolution request from a

dSwitch, the DPS maps the request into a set of in-
structions required for the policy enforcement by means
of a sequence of database lookups. First, the DPS uses
the Endpoint table to resolve the destination endpoint
location by mapping the destination virtual address to
the destination physical address (i.e. the address of the
hosting dSwitch)10. Using the same entry in the End-
point table, the DPS obtains the policy domain of the
destination endpoint. Then, using the source policy do-
main extracted from the request and the destination
policy domain, the DPS locates the policy entry in the
policy table. The path control information is deter-
mined according to the Action field and the Policy Ac-
tion table lookup. For example, in source routing based
path control, the sequence of logical actions in the policy
entry is mapped to a sequence of physical addresses (one
per action). When the resolution process is completed,
the DPS creates policy reply containing the destination
physical address, the path control information, the pol-
icy tracking number and the cache expiration time, and
sends the reply to the requesting dSwitch.

4.3 External Connectivity and Addressing
Inside a DOVE environment, most endpoints can be

configured using private address spaces. VPN tech-
niques can be used to provide connectivity between DOVE
virtual networks and remote servers. In many cases,
however, DOVE endpoint should be addressable by ex-
ternal machines in the public domain. In this case, sim-
ilarly to established networking practices, each virtual
network must own at least one global public IP address

10In a rare case the table does not contain the virtual address
of an endpoint, DPS initiates the DOVE Address Resolution
protocol as described in Section 4.4.

10

that is used for external connectivity. These IP ad-
dresses are part of the virtual network configuration as-
signed by the data center operator, either manually or
automatically, and must be part of DPS state main-
tained for this virtual network. The exact number of
public IP addresses may vary, depending, for example,
on a service level agreement.

External connectivity between virtual networks and
public servers can be achieved using NAPT (Network
Address Port Translation) and port forwarding. In this
case, dSwitches connected to edge routers and respon-
sible to outgoing and incoming traffic, perform address
translation in addition to policy acquisition and packet
encapsulation/decapsulation. Thus, upon receiving ex-
ternal packet, the edge router sends it to such dSwitch
that performs address translation (replacing the desti-
nation public IP address with the private IP address),
followed by policy acquisition using the public IP ad-
dress as an identifier to the specific virtual network (re-
call that each public IP address is assigned to a spe-
cific virtual network). Following the address transla-
tion, dSwitch encapsulates the packet according to the
policy instructions and sends it through a sequence of
network appliances to the destination dSwitch. Outgo-
ing packets, on the other hand, are sent by the dSwitch
hosting the source endpoint to the dSwitch serving ex-
ternal endpoint. This switch decapsulates the packet,
performs address translation and sends the packet to
the edge router.

Note that such translating dSwitches can be either
collocated with the edge router or deployed on a sepa-
rate host. In addition, the address translation module
can be separated from the dSwitch. In this case, it must
be logically located between the edge router and the
dSwitch and its configuration should enable the dSwitch
to distinguish between packets sent to different virtual
networks11. In addition, to enable scalability, resiliency,
and high availability, a set of x dSwitches may serve a
set of y edge routers by directing data from the router
to the dSwitch based on the virtual network identity,
session based load balancing, etc.

4.4 Dealing With Unknown Information
The process of sending data between network end-

points typically involves dealing with unknown infor-
mation. This includes mapping a domain name to a
network address, mapping a network address to a MAC
address, setting routing information in the forwarding
entities (switches, and routers), etc. The actual method
for resolving unknowns depends on the type of informa-
tion and its scale, but it is also derived from legacy ar-
chitectures. In particular, data generated by endpoints
is typically followed by a broadcast ARP (Address Reso-

11For the sake of brevity, we omit details here and will provide
them in the extended version of this paper.

lution Protocol) [29] or multicast NDP (Neighbour Dis-
covery Protocol) [25] request used to map the network
address to a MAC address. These resolution protocols
have a significant overhead over the network infrastruc-
ture, requiring to limit broadcast domains by dividing
the network into smaller subnets for reducing the fre-
quency and the span of such messages.

As all data to and from DOVE endpoints is inter-
cepted by their hosting dSwitches, DOVE can deal with
the problem of resolving unknown information in a unique,
efficient and transparent to the endpoints way. The so-
lution is to leverage DPS instead of emulating existing
protocols and propagating their control messages to the
entire virtual network.

Taking address resolution as an example, ARP re-
quest sent by an endpoint is intercepted by the hosting
dSwitch that resolves it by sending a policy request to
the DPS (if such information cannot be resolved by the
local policy cache). Thus, while the endpoints keep us-
ing ARP, no ARP messages are propagated to the entire
virtual network. Another example of the DPS based
resolution mechanism is DHCP [12], where a broad-
cast message is used by the initiator to discover the set
of DHCP servers. In DOVE, such broadcast requests
(that can be identified according to the port numbers,
or to the packet format) trigger a special policy request
in which the DPS replies with a set of locations corre-
sponded to the DHCP servers serving the policy domain
(such information can be configured in the DPS in ad-
vance). In this case, the dSwitch may send multiple
copies of the request, one for each DHCP server.

4.4.1 DOVE Address Resolution Protocol
As explained above, in order to resolve policy re-

quests, the DPS needs to correlate between the virtual
address and the physical location. Since host configu-
ration is decoupled from the virtual network configura-
tion and from the DOVE environment, such information
may not be available to the DPS. However, dSwitches
position on a data path allows them to intercept data
packets, track virtual addresses of the hosted endpoints
and send this information to the DPS. Nevertheless,
there are cases, such as the presence of a silent host,
in which this method will not work and the information
may not be available to the DPS. In such cases, when
the DPS needs to resolve the policy and the physical
location based on unknown virtual address it performs
DOVE Address Resolution sequence, in which a query
containing the virtual address and the virtual network
is sent to subset of the dSwitches (e.g. all the dSwitches
serving endpoints from this virtual network with yet un-
known virtual addresses). Each dSwitch that receives
such request sends a set of ARP requests to all its
endpoints that belong to the virtual network at hand,
querying the virtual IP address. When the endpoint,

11

owning this address, responds with an ARP reply, the
dSwitch sends this information to the DPS. Note that
once the DPS obtains endpoint’s virtual IP address, it
can retain it through subsequent migrations of the end-
point, so only endpoint creation or reconfiguration may
trigger new resolutions. In order to avoid database in-
flation by virtual addresses, it is possible to limit the
number of virtual addresses per endpoint (subject to
virtual network SLA agreement). Moreover dSwitches
may periodically initiate ARP requests to their end-
points and update the DPS with invalid addresses.

4.5 Multicast and Broadcast
As shown in the previous Section, DOVE leverages

the DPS for eliminating broadcast and multicast mes-
sages required by control protocols. However, appli-
cation level broadcast and multicast support might be
required in order to support legacy applications, to pro-
vide enhanced services (e.g. IPTV), or to serve as a
basis for other broadcast/multicast based control pro-
tocols. DOVE supports such cases by mapping applica-
tion level broadcast domains and multicast groups into
multicast groups in the physical infrastructure12.

In a physical network, the broadcast domain is de-
rived from the physical network configuration (e.g. an
Ethernet based LAN is a broadcast domain that can be
divided into several domains using VLAN) and deter-
mines the set of endpoints sharing a single broadcast
infrastructure. In DOVE, on the other hand, this term
is not associated with a physical constrains, and it can
be interpreted differently according to the logical net-
work description. Thus, while the entire virtual net-
work can be considered to be a broadcast domain, one
may refer to each policy domain as a broadcast domain.
In this case, in order to provide broadcast service, one
multicast group should be assigned in the physical in-
frastructure for each policy domain13. Upon intercept-
ing a broadcast packet sent by an endpoint, the source
dSwitch encapsulates it using the corresponding phys-
ical multicast address (received from the DPS as part
of a policy resolution reply). As a result, the packet is
forwarded to the entire multicast group, that is to all
the dSwitches hosting endpoints from the target broad-
cast domain. It is the responsibility of dSwitches to
join and leave relevant multicast groups (using multi-
cast control protocols such as IGMP [6]) to correctly
serve their hosted endpoints.

In order to support multicast the DPS should main-
tain a multicast table for each virtual network, with all
the virtual multicast groups currently used and their
members (i.e. endpoints joined the group). In addition,

12In order to provide broadcast/multicast services the under-
lying infrastructure should support multicast.

13These groups can be assigned statically or dynamically and
have to be maintained by the DPS.

each group contains a physical multicast address to be
used to disseminate data associated with this group.
Thus, multicast based policy acquisition (triggered by
a multicast packet sent by an endpoint) is similar to
the unicast flow described above. The multicast ta-
ble is updated by the dSwitch upon intercepting IGMP
messages. When an endpoint joins multicast group, its
hosting dSwitch updates the DPS that creates new en-
try or adds the endpoint to an existing entry.

Considering the policy enforcement discussed above,
the encapsulated multicast packet may be subject to
path control in which the multicast dissemination is
done only after the packet passes through the entire
set of required appliances (in IP source routing based
path control, for example, only the last address contains
the multicast address). In the extended version of this
paper we explain how a single virtual multicast group
can be mapped to multiple physical multicast groups
in order to provide multicast service between endpoints
located of different policy domains.

5. IMPLEMENTATION
We have designed, implemented and deployed fully

functional DOVE system. Envisioning heterogeneous
data center environments, we have dSwitch implemen-
tations on three different hypervisor platforms. Our
DPS is implemented as Linux user space application
where the logical networks information is stored in a set
of in-memory hash tables. At this point, we did not have
a chance to deploy DOVE in a large scale test bed. We
are preparing a comprehensive simulation-based study
of DOVE performance which will be covered in the ex-
tended version of this paper. Here we give an evaluation
of DPS performance, observing that DPS is essential
component in the DOVE architecture and has direct
implication on the overall system performance 14.

While DPS can be implemented in a distributed fash-
ion to provide high availability and resiliency, the actual
way it is designed, implemented, and deployed is sub-
ject to many factors including the data center size, the
characterization of the network applications including
their connection distribution, the physical infrastruc-
ture, the service level to be provided, etc. We examine
the DPS performance by evaluating the latency of the
policy acquisition process on a single DPS server. To
obtain these results, we have executed our Linux-based
DPS server on a single core Intel Xeon CPU X5570
running at 2.93GHz with 8MB cache and DRAM size
of 8GB. We have measured the policy acquisition la-
tency (including the network and client and server la-
tency) using a user space client executed on a similar

14While DOVE performance is also affected by the overhead
associated with the overlay infrastructure, this aspect was
studied and examined in previous work dealing with evalu-
ating tunneling and overlay overhead (see for example [19]).

12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

Q
u
e
ry

 L
a
te

n
c
y
 (

m
ic

ro
 s

e
c
o
n
d
s
)

Load (1000’s queries per seconds)

DPS Policy Acquisition Latency

50 percentile
90 percentile
99 percentile

99.9 percentile
100 percentile

Figure 5: Policy acquisition latency in µseconds, including
the wire delay, as a function of total load on a single DPS
server.

server connected with 10G NIC 15. Figure 5 depicts the
latency in µseconds for different loads and different per-
centiles. It can be seen that DPS handles up to 380K
requests per second, with an impressive latency of under
150µseconds even at the rate of 250,000 requests per sec-
ond. One should take into account that with distributed
DPS deployment strategies, it is possible to achieve the
required latency defined by factors like the amount of
dSwitches to be supported, the expected policy resolu-
tions rate, as well as QoS and service level agreements
with the customers.

6. CONCLUSIONS
DOVE architecture presented in this paper fully an-

swers the set of requirements listed in Section 1. Being
based on overlay technology, DOVE supports multiple
collocated tenants so that data traffic of each tenant is
fully isolated and recognizable. DOVE network abstrac-
tion is easy for the clients to grasp while allowing them
to define rich set of network policies besides the sim-
ple connectivity. There is no architectural prohibition
to support more services that we have described here,
either natively by the system or by providing hooks for
third party tools to add them. For example, host con-
figuration services and QoS levels can be easily defined
and we plan to add them to our DOVE implementation.

DOVE does not have any complex requirements from
the underlying infrastructure apart from a simple con-
nectivity between the dSwitches as well as between the
dSwitches and the DPS. In DOVE, network state syn-
chronization is achieved through careful separation of
duties between the components, so that information is
delivered strictly in “have-to-know” basis and is never

15Note that our implementation is very simple and many op-
timizations can be done including kernel based implemen-
tation, optimizing networking parameters such as interrupt
coalescing, offloading, etc.

flooded, making the system scalable and flexible.
DOVE finally achieves the proper network virtual-

ization, whereby conceptual infrastructure agnostic ap-
plication blueprints can easily be created by the ap-
plication architects and turned, by the DOVE network
virtualization layer, into concrete deployments on any
type of infrastructure.

7. REFERENCES
[1] IEEE 802.1q: VLAN, 2005.
[2] Cisco vn-link: Virtualization-aware networking,

2009.
[3] IEEE 802.1qbg - edge virtual bridging, June 2011.
[4] Hitesh Ballani, Paolo Costa, Thomas Karagiannis,

and Ant Rowstron. Towards predictable
datacenter networks. In ACM SIGCOMM,
volume 41, pages 242–253. ACM, October 2011.

[5] Theophilus Benson, Aditya Akella, Anees Shaikh,
and Sambit Sahu. CloudNaaS: a cloud networking
platform for enterprise applications. In
Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011.

[6] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and
A. Thyagarajan. RFC 3376: Internet group
management protocol, version 3, October 2002.

[7] B. Carpenter and S. Brim. RFC 3234:
Middleboxes: Taxonomy and issues, February
2002.

[8] Mart́ın Casado, Michael J. Freedman, Justin
Pettit, Jianying Luo, Natasha Gude, Nick
McKeown, and Scott Shenker. Rethinking
enterprise network control. IEEE/ACM
Transactions on Networking (TON),
17(4):1270–1283, 2009.

[9] Mart́ın Casado, Michael J. Freedman, Justin
Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: taking control of the enterprise.
In ACM SIGCOMM, pages 1–12. ACM, 2007.

[10] Mart́ın Casado, Teemu Koponen, Rajiv
Ramanathan, and Scott Shenker. Virtualizing the
network forwarding plane. In Proceedings of the
Workshop on Programmable Routers for
Extensible Services of Tomorrow, 2010.

[11] S. Deering and R. Hinden. RFC 2460: Internet
Protocol, Version 6 (IPv6) specification,
December 1998.

[12] R. Droms. RFC 2131: Dynamic host configuration
protocol, March 1997.

[13] Albert Greenberg, James Hamilton, David A.
Maltz, and Parveen Patel. The cost of a cloud:
research problems in data center networks. ACM
SIGCOMM Computer Communication Review,
39(1):68–73, 2008.

[14] Albert Greenberg, James R Hamilton, Navendu
Jain, Srikanth Kandula, Changhoon Kim,

13

Parantap Lahiri, David A Maltz, Parveen Patel,
and Sudipta Sengupta. VL2: a scalable and
flexible data center network. Commun. ACM,
54:95–104, 2011.

[15] Natasha Gude, Teemu Koponen, Justin Pettit,
Ben Pfaff, Mart́ın Casado, Nick McKeown, and
Scott Shenker. NOX: towards an operating system
for networks. ACM SIGCOMM Computer
Communication Review, 2008.

[16] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica.
A policy-aware switching layer for data centers. In
ACM SIGCOMM, pages 51–62. ACM, 2008.

[17] Changhoon Kim, Matthew Caesar, and Jennifer
Rexford. SEATTLE: A scalable ethernet
architecture for large enterprises. ACM Trans.
Comput. Syst., 29, 2011.

[18] Teemu Koponen, Mart́ın Casado, Natasha Gude,
Jeremy Stribling, Leon Poutievski, Min Zhu,
Rajiv Ramanathan, Yuichiro Iwata, Hiroaki
Inoue, Takayuki Hama, and Others. Onix: A
distributed control platform for large-scale
production networks. 2010.

[19] Alex Landau, David Hadas, and Muli
Ben-Yehuda. Plugging the hypervisor abstraction
leaks caused by virtual networking. In Proceedings
of the 3rd Annual Haifa Experimental Systems
Conference, pages 16:1–16:9. ACM, 2010.

[20] Nick McKeown, Tom Anderson, Hari
Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan
Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[21] M.Mahalingam, D.Dutt, K.Duda, P.Agarwal,
L.Kreeger, T.Sridharand M.Bursell, and
C.Wright. Vxlan: A framework for overlaying
virtualized layer 2 networks over layer 3 networks,
August 2011.

[22] Jayaram Mudigonda, Praveen Yalagandula,
Mohammad Al-Fares, and Jeffrey C. Mogul.
Spain: Cots data-center ethernet for multipathing
over arbitrary topologies. In USENIX conference
on Networked systems design and implementation,
pages 18–18. USENIX Association, 2010.

[23] Jayaram Mudigonda, Praveen Yalagandula, Jeff
Mogul, Bryan Stiekes, and Yanick Pouffary.
NetLord: a scalable multi-tenant network
architecture for virtualized datacenters. In ACM
SIGCOMM, pages 62–73. ACM, 2011.

[24] Radhika Niranjan Mysore, Andreas Pamboris,
Nathan Farrington, Nelson Huang, Pardis Miri,
Sivasankar Radhakrishnan, Vikram Subramanya,
and Amin Vahdat. PortLand: a scalable
fault-tolerant layer 2 data center network fabric.
In ACM SIGCOMM, SIGCOMM ’09, pages

39–50. ACM, 2009.
[25] T. Narten, E. Nordmark, W. Simpson, and

H. Soliman. RFC 4861: Neighbor discovery for ip
version 6 (ipv6), September 2007.

[26] T. Narten and M. Sridharan. Problem statement:
Using l3 overlays for network virtualization, 2011.

[27] Ping Pan and Thomas Nadeau. Software-defined
network (sdn) problem statement and use cases
for data center applications, 2011.

[28] B. Pfaff, J. Pettit, T. Koponen, K. Amidon,
M. Casado, and S. Shenker. Extending networking
into the virtualization layer. In HotNets, 2009.

[29] David C. Plummer. RFC 826: An ethernet
address resolution protocol, November 1982.

[30] Lucian Popa, Minlan Yu, Steven Y. Ko, Sylvia
Ratnasamy, and Ion Stoica. CloudPolice: taking
access control out of the network. In HotNets.
ACM, 2010.

[31] J. Postel. RFC 791: Internet Protocol, September
1981.

[32] E. Rosen, A. Viswanathan, and Callon R. RFC
3031: Multiprotocol label switching architecture,
January 2001.

[33] Alan Shieh, Srikanth Kandula, Albert Greenberg,
and Changhoon Kim. Seawall: performance
isolation for cloud datacenter networks. In
Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, pages 1–1.
USENIX Association, 2010.

[34] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the
data center network. In Proceedings of the 8th
USENIX conference on Networked systems design
and implementation, NSDI’11, pages 23–23.
USENIX Association, 2011.

[35] Xin Sun, Yu-Wei Sung, Sunil Krothapalli, and
Sanjay G. Rao. A systematic approach for
evolving vlan designs. In IEEE INFOCOM, pages
1451–1459. IEEE, 2010.

[36] M. Yu, J. Rexford, X. Sun, S. Rao, and
N. Feamster. A survey of virtual LAN usage in
campus networks. IEEE Communications
Magazine, 49(7):98–103, July 2011.

14

	Introduction
	Related Work
	DOVE Network Abstraction
	DOVE Architecture
	DOVE Switch (dSwitch)
	Protocols
	Data Structures

	DOVE Policy Service (DPS)
	Databases and Virtual Network Maintenance
	Policy Resolution

	External Connectivity and Addressing
	Dealing With Unknown Information
	DOVE Address Resolution Protocol

	Multicast and Broadcast

	Implementation
	Conclusions
	References

