

H-0324 (HAI1606-001) 1 June 2016

Computer Sciences

IBM Research Report

Megos: Enterprise Resource Management in

Mesos Clusters

 Abed Abu-Dbai Khalid Ahmed David Breitgand

IBM Research – Haifa IBM Platform Computing, Toronto, CA IBM Research – Haifa

 Gidon Gershinsky Alex Glikson

 IBM Research – Haifa IBM Research – Haifa

Research Division

Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

Megos: Enterprise Resource Management in Mesos Clusters

Abed Abu-Dbai
IBM Research – Haifa

Khalid Ahmed
IBM Platform Computing, Toronto, CA

David Breitgand
IBM Research – Haifa

Gidon Gershinsky
IBM Research – Haifa

Alex Glikson
IBM Research – Haifa

Abstract
Enterprise data centers increasingly adopt a cloud-like
architecture that enables the execution of multiple work-
loads on a shared pool of resources, reduces the data
center footprint and drives down the costs. The
Apache Mesos project is emerging as a leading open
source resource management technology for server clus-
ters. However, the default Mesos allocation mechanism
lacks a number of policy and tenancy capabilities, im-
portant in enterprise deployments. We have investigated
integration of Mesos with the IBM EGO (enterprise grid
orchestrator) technology which underpins various high
performance computing, analytics and big data clusters
in a variety of industry verticals including financial ser-
vices, life sciences, manufacturing and electronics. We
have designed and implemented an experimental integra-
tion prototype, and have tested it with SparkBench work-
loads. We demonstrate how Mesos can be enriched with
new resource policy capabilities, required for managing
enterprise data centers.

1 Introduction

Enterprise workloads become increasingly diverse. Even
within the same class of applications, such as Big Data
analytics, workload types range from pure batch to in-
teractive [5, 10]. Therefore, an ability to use the same
resource pool for executing heterogenous workloads,
owned by different parties in the enterprise (e.g., depart-
ments, groups, and teams), becomes critically important
for cost-efficiency.

To deal with this challenge, a number of cluster re-
source managers have appeared over the last few years,
aimed at providing a uniform technology-neutral re-
source representation and management substrate allow-
ing to harmonize execution of long run services, batch
and interactive jobs on the same infrastructure com-
prising physical resources, virtual ones or combina-

tion thereof. Examples include YARN [4], Borg [15],
Omega [13], Mesos [8], and EGO [9].

Being driven by similar incentives, these resource
management frameworks share many features. However,
they also differ considerably on the richness of their re-
spective resource models, supported resource manage-
ment policies, maturity levels and ownership (proprietary
e.g., Borg, Omega, EGO vs open source e.g., Apache
YARN and Mesos). Consequently, the choice of a par-
ticular resource manager is influenced by multiple con-
siderations.

Mesos recently exploded as an extremely popular
Apache project with a number of large organisations suc-
cessfully using it for production [1, 12, 14, 7]. Mesos of-
fers simple yet powerful and flexible APIs, highly avail-
able and fault tolerant architecture, scalability to large
clusters, isolation between tasks using Linux containers,
multi-dimensional resource scheduling, ability to allo-
cate shares of the cluster to roles representing users or
user groups, and a clear separation of concerns between
the applications (termed frameworks) and the ”cluster
kernel”, which is Mesos. The resource scheduler of
Mesos supports a generalization of max-min fairness,
termed Dominant Resource Fairness (DRF) [6] schedul-
ing discipline, which allows to harmonize execution of
heterogeneous workloads (in terms of resource demand)
by maximizing the share of any resource allocated to a
specific framework.

There are a number of areas where Mesos can be im-
proved to meet enterprise customer requirements. In this
paper, we present a work in progress focusing on policies
that are present in enterprise-grade resource managers,
but are missing in Mesos. We demonstrate how Mesos
can be enriched with IBM Platform EGO features [9],
such as

• Capturing of the hierarchical structure of an en-
terprise (organisations, departments, groups, teams,
users) by defining the corresponding resource con-

sumer tree;

• A fine grained resource plan allowing to de-
fine resource share ratio, ownership and lend-
ing/borrowing policies for each resource consumer;

• A rich set of resource management policies mak-
ing use of the hierarchical resource consumer model
and providing fairness and isolation to the members
of hierarchy including an important ability to dy-
namically change the allocations (time-based pol-
icy);

• A Web-based GUI providing a centralized console
through which the whole cluster is observed and
managed. In particular, the cluster-wide resource
management policies are applied through this GUI.

Our specific contributions are as follows. First, we
describe an experimental architecture for loose coupling
between Mesos and EGO resource management mecha-
nisms. Second, we implement the proposed architecture,
called Megos, and evaluate it using Spark based work-
loads. Third, we demonstrate through experimentation
that the enterprise policies (e.g. hierarchical shares man-
agement and time-dependent share re-allocation), cur-
rently missing in Mesos, can be efficiently applied to the
existing Mesos frameworks, by linking the Mesos master
to the EGO policy mechanism.

The main purpose of this work is to demonstrate fea-
sibility and benefits of EGO-style policies for Mesos to
achieve enterprise-grade cluster resource management.

2 Related Work

Apache YARN [4] provides the functionality of a re-
source manager and a resource scheduler. These func-
tionalities are separated into different daemons: a global
Resource Manager (RM) and per application Applica-
tion Manager (AM). Application frameworks negotiate
resource allocations with the global RM. In that respect,
it is similar to EGO [9]. YARN supports scheduling with
pluggable scheduling policies. The policies provided
off-the-shelf include Fair Scheduler and CapacitySched-
uler. YARN is an integral part of Hadoop ecosystem. As
such, YARN is optimized for running MapReduce ap-
plications in a shared, multi-tenant cluster while maxi-
mizing the throughput and the utilization of the cluster.
The primary abstraction provided by YARN scheduling
is a queue. To achieve control and predictability of re-
source sharing, the YARN supports hierarchical queues
to ensure resources sharing among the sub-queues of an
organization before other queues are allowed to use free
resources. This way, affinity for sharing free resources
among applications of a given organization is provided.

While this feature is similar to EGO, it should be noted
that (a) YARN is not intended as a general-purpose re-
source manager and (b) the policy model of YARN is less
expressive than that of EGO. In particular, there are no
concepts of ownership, lending and borrowing in YARN.
Also, it does not support time-based policies.

Omega [13] is a proprietary data center manager that
employs an optimistic concurrency control by offering
each application framework a local copy of the cluster
state. Omega does not support fairness. Rather, the
high priority jobs (service ones) can preempt low prior-
ity ones (batch MapReduce ones). Omega is not a publi-
cally released technology, making an explicit comparing
Megos difficult.

Production experience with Borg was recently re-
ported by Google [15]. Borg shares many assumptions
with Omega, because it serves the same Google work-
loads. Borg copes with extreme heterogeneity and re-
portedly scales to tens of thousands of nodes. Again,
direct comparison to Megos is difficult as Borg is propri-
etary.

3 EGO Enterprise Policies

EGO manages resource allocation via resource plans,
configured by cluster administrator using the Platform
Management Console (PMC) web interface. Resource
plans are comprised of a consumer tree and resource
groups, mapped to the tree.

The consumer tree reflects the organizational structure
(root/department/group/consumer), with the leaf nodes
being the consumer entities that actually run the jobs
and service applications. The tree outlines organizational
relationships among consumers, while the plan speci-
fies a policy of resource allocation. The choice of con-
sumers and their hierarchy should reflect long-term busi-
ness goals. The resource groups are non-overlapping
sets of cluster resources (hosts), selected according to
some criteria.

The resource plan defines how cluster resources are al-
located among consumers. The plan takes into account
the differences between consumers and their needs, re-
source properties, and various other policies concern-
ing consumer rank and the allocation of resources. Re-
sources are allocated to a consumer through ownership,
borrowing, or sharing. Ownership refers to the guaran-
teed allocation of a minimum number of resources to a
consumer. Borrowing is a temporary allocation of owned
resources from a lending consumer to a consumer with
an unsatisfied demand. Sharing refers to the temporary
allocation of unowned resources from a share pool to a
consumer with an unsatisfied demand.

When a consumer experiences demand, EGO consid-
ers and allocates resources in the following order (by

2

default): 1. Idle resources already owned by the con-
sumer. 2. Idle, unowned resources from the share pool.
3. Idle resources owned by other consumers that are
configured for lending (borrowed resources). 4. Re-
sources owned by the consumer but currently lent-out
to other consumers (reclaimed resources to owner). 5.
Unowned resources from the share-pool but currently in
use by consumers with a smaller share-ratio (reclaimed
resources to share-pool).

It is possible to change the default resource allocation
policy so that owned resources get reclaimed by con-
sumers before they are borrowed or allocated from else-
where. Also, allocation policy can be adjusted so that
resources are never reclaimed by the share pool, but are
only returned when the borrowing client releases them.

The resource plans can change according to time of
day (master host timezone), using a time-based config-
uration option. This allows to have different e.g., day-
time and night-time resource allocation policies, or to
modify the policies according to the business hours in
different branches of the organization (e.g., Europe, US,
Asia-Pacific).

The resource allocation can be performed using ei-
ther Slot scheduling or Multi-dimensional scheduling
(MDS)1. With Slot scheduling, each host in a resource
group is logically split into a number of slots that be-
come the units of resource allocation and runtime man-
agement. The number of slots per host can be defined
by the cluster administrator, or automatically by an ex-
pression, taking into account the host CPU and memory
parameters.

4 Design and Implementation

Mesos uses a bottom-up resource offer mechanism,
where the free host resources are detected by an agent
(slave), and offered to Mesos applications (frameworks)
via the master node. EGO uses a top-down approach
where the applications request specific amount of re-
sources. There is no straightforward mapping of the
two mechanisms, but its possible to integrate these re-
source managers in a number of ways, with a final result
being application of EGO policies to Mesos framework
management. In this paper, we describe an experimen-
tal loosely coupled integration approach that allows to
demonstrate EGO policies in Mesos with minimal code
changes. It is a work in progress, focused on a proof-of-
concept demonstration; later designs might use a differ-
ent integration approach.

1With MDS, the allocation units are simply the hosts (absolute num-
ber of hosts, assigned to a consumer, within its resource group) or a per-
centage of each host in a resource group (specified by resource metrics,
such as CPU, memory, etc), assigned to a consumer.

Figure 1: Megos architecture

The loosely coupled design requires no changes in
Mesos frameworks or agents (slaves), and it works with
the existing EGO technology. The integration is per-
formed as a custom Mesos allocator, using the standard
plug-in API in Mesos master [2]. We take the existing
Mesos DRF allocator source code as a basis for the im-
plementation.

Megos plug-in uses EGO C APIs to connect to EGO
Kernel process, deployed on a different host, or co-
located with the Mesos master. The EGO Kernel is con-
figured with a hierarchical resource management policy,
created via the PMC (Platform Management Console)
GUI, as shown in the example below (Figure 2). The
figure shows a resource group called MesosGroup2. The
consumer tree is comprised of a parent (Mesos), two de-
partments (DeptA and DeptB) and a number of leaf con-
sumers - all sharing the same cluster of hosts (Mesos-
Group2). The resource plan specifies the policy parame-
ters - ownership, lend limit, share ratio - at different lay-
ers in the hierarchy. Here we use slot-based scheduling
for simplicity. The host slots are summed up into clus-
ter slots, and can be distributed by an administrator as
cluster-wide resource ownership to different departments
and consumer leaves in the organization.

We map each EGO leaf consumer to a Mesos role
(full path, eg ”/Mesos/DeptB/ConsB1” is a role). Upon
Mesos master start-up, the Megos allocation plug-in
module loads and connects to EGO Kernel as an EGO
client, using pre-configured credentials. Then, in a loop
over all defined roles, Megos executes EGO allocation
requests for every consumer leaf, and collects alloca-
tion or reclaim responses. EGO sends a reclaim mes-
sage when an under-allocated consumer has a demand
for resources currently held by an over-allocated con-
sumer. In a few seconds, Megos has a full allocation
map - the number of slots, allocated by EGO to each
consumer/role, according to the current EGO hierarchi-
cal policy. We simply use this number as a weight in the
DRF mechanism, since it reflects the proportional share
of cluster resources for the Mesos role represented as an
EGO consumer leaf. The weights are not static - we per-
form the EGO allocation cycle once in a minute. This is

3

Figure 2: Configuring resource plan in EGO GUI

done only for the active Mesos roles - the ones with reg-
istered frameworks. If a role doesn’t have a framework
yet, Megos won’t request EGO slots for it, but will set its
weight to a minimal value (1), so the role still can receive
some resource offers if a new framework is registered to
it later. In the next allocation cycle, this role will be con-
figured with its proper weight, since it became active in
the meantime.

The EGO ownership is explicitly mapped to Mesos
static reservations. This is a simple PoC implementa-
tion based on the available Mesos features at the time,
and can be replaced with the new Mesos Quota mecha-
nism released in Mesos v0.27.

Once the Mesos DRF weights and static reservations
are configured according to the EGO policies, the sub-
sequent resource management process is performed by
the standard Mesos mechanism - the resource offers are
generated by the agents (slaves), and distributed to the
frameworks according to reservation and DRF param-
eters. The only runtime intervention by EGO is the
periodic re-configuration of DRF weights, as described
above, to handle changes in active roles, and in the EGO
policies (for example, the time-based policies).

5 Experiments

5.1 Testbed
Our testbed comprises a cluster of 11 machines. Nine
machines have been used as compute nodes and the re-
maining two have been used to run masters of Mesos,
Hadoop, and EGO. The Mesos master and the Hadoop
master (manages the HDFS file system) run together on
a Ubuntu 14.04 machine. The EGO master runs in a sep-
arate Red Hat machine. The remaining 9 machines are
Ubuntu 14.04 that run the EGO LIM daemons, the Mesos

slaves, and the data-nodes of Hadoop-HDFS. Every com-
pute host has 4 CPU’s and 8GB of physical memory.

We use Mesos verion 0.23.0, Hadoop version 2.4 and
the compatible Spark version 1.5 . The experiments are
based on SparkBench benchmark suite [11], that covers
a number of application categories. In this work, we
employ Spark Logistic Regression (LR) sample job as
a workload for the tests described in the following sec-
tions.

5.2 Time-based policy
Time-based policy is a feature that allows to apply
changes in resource sharing policy based on the time
of day. In this experiment we divided the day into
two intervals: 00:00-16:00 and 16:00-24:00. In the
first interval we configured the share ratio (weight) to
be 1 for the consumer ”/Mesos/DeptB/ConsB1” and 4
for ”/Mesos/DeptB/ConsB2”. In the second interval
(starting at 16:00) we switched the share ratio and the
weight of consumer ”/Mesos/DeptB/ConsB1” became 4
while the weight of consumer ”/Mesos/DeptB/ConsB2”
became 1. The test is 4 hours long, we started it
at 14:00 so the policy’s settings would be switched at
the middle of the run. F1 and F2 are the frameworks
registered to consumers ”/Mesos/DeptB/ConsB1” and
”/Mesos/DeptB/ConsB2” respectively. The frameworks
run identical workloads of LR iterations in a loop. We
use 8 sample points every 30 minutes and measure the
job rate (iterations/hour) of each framework in every
sample point. Figure 3 shows the job rate of F1, F2, and
the total rate of F1+F2 in Megos. In the middle of the run
(2 hours from start), the job rate of F1 starts increasing
while F2 diminishes as a result of the automatic policy
switch in Megos.

4

Figure 3: Job rates with time-based policy

Figure 4: Mesos resource sharing behavior

5.3 Hierarchical resource sharing
Department considerations are absent in the standard
Mesos. To illustrate this, we run three identical Spark
frameworks, where each framework is running LR it-
erations as a workload and uses three different con-
sumers from two departments. Frameworks F1 and F2
are registered to consumers ”ConsA1” (weight 4) and
”ConsA2” (weight 1) in the department ”/Mesos/DeptA”
(department weight 4) while F3 is registered to a
consumer ”ConsB1” (weight 4) from the department
”/Mesos/DeptB” (department weight 1).

Since the standard Mesos doesn’t support de-
partment hierarchy, we configure three roles:
”/Mesos/DeptA/ConsA1”, ”/Mesos/DeptA/ConsA2”,
and ”/Mesos/DeptB/ConsB1” with the accumulated
weights of 16, 4, and 4 respectively. Besides, we use 12
sample points every 15 minutes and a smaller regression
data than in the previous tests (leading to higher job-rates
than before). In the beginning of the test, we run all
frameworks in parallel (Figure 4). The first framework
(F1) runs for one hour and stops. Its resources are freed
- and divided between the other two frameworks without
department considerations. That is why the job-rates
of both F2 and F3 increase equally. Later, when F2
finishes, its resources are allocated to F3.

Figure 5: Megos resource sharing behavior

Figure 6: Megos: Total job rates of the departments

Next, we use Megos to run the same experiment. We
show in Figure 5 and Figure 6 that freed resources remain
in the same department. When framework F1 stops at
01:00:00, its resources are given to its sibling in DeptA
- the framework F2, leading to significant increase in F2
job rate. The rate of F3, belonging to another department,
doesnt change much. The total rate of DeptB stays lower
than DeptA after the end of F1 run at 01:00:00.

6 Conclusions and Future Work

This paper presents Megos, a resource management sys-
tem that extends the Apache Mesos capabilities by inte-
grating with the IBM Platform EGO policy mechanism.

We demonstrate feasibility and usefulness of applying
such policies to the existing Mesos frameworks. Apache
Mesos can be enhanced by either coupling it with an ex-
ternal enterprise policy mechanism, or by direct contri-
bution of the relevant features to the Mesos code, or by
a combination thereof. For example, the concept of re-
source lending and reclaim is already being integrated
into core Mesos [3]. This and other advanced features
will expand the Mesos management model and allow it
to address a wider set of requirements in enterprise data
centers.

5

References
[1] ANISZCZYK, C. Apache Mesos at Twitter. Texas LinuxFest,

2014.

[2] APACHE MESOS PROJECT. Mesos Allocation Modules.
http://mesos.apache.org/documentation/latest/

allocation-module/, 2016.

[3] APACHE MESOS PROJECT. Mesos Optimistic Of-
fers. https://docs.google.com/document/d/

1RGrkDNnfyjpOQVxk_kUFJCalNMqnFlzaMRww7j7HSKU/

edit#heading=h.qa9kakriyq0d, 2016.

[4] APACHE SOFTWARE FOUNDATION. Apache Hadoop
YARN. https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html, 2016.

[5] CHEN, Y., ALSPAUGH, S., AND KATZ, R. Interactive analyt-
ical processing in big data systems: A cross-industry study of
mapreduce workloads. Proceedings of the VLDB Endowment 5,
12 (2012), 1802–1813.

[6] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness: Fair
allocation of multiple resource types. In NSDI (2011), vol. 11,
pp. 24–24.

[7] HARRIS, D. Scaling Mesos at Apple, Bloomberg, Netflix and
more. Mesosphere Technical Blog, Aug 2015.

[8] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,
JOSEPH, A. D., KATZ, R. H., SHENKER, S., AND STOICA, I.
Mesos: A platform for fine-grained resource sharing in the data
center. In NSDI (2011), vol. 11, pp. 22–22.

[9] IBM PLATFORM COMPUTING. An Introduction to
EGO: an enterprise ready resource manager for all work-
loads. https://www.ibm.com/developerworks/

community/wikis/form/anonymous/api/wiki/

250c325e-a324-491c-9006-999ad6e1df9f/page/

ab943ccd-542a-4c53-bb36-b757d16466bf/attachment/

6a26aeed-214f-44b2-acce-91adcdfed13e/media/EGO_

whitepaper_v1.pdf, 2015.

[10] KAMBATLA, K., KOLLIAS, G., KUMAR, V., AND GRAMA, A.
Trends in big data analytics. Journal of Parallel and Distributed
Computing 74, 7 (2014), 2561–2573.

[11] LI, M., TAN, J., WANG, Y., ZHANG, L., AND SALAPURA, V.
Sparkbench: A comprehensive benchmarking suite for in mem-
ory data analytic platform spark. In Proceedings of the 12th ACM
International Conference on Computing Frontiers (2015), ACM,
p. 53.

[12] MATTHEWS, B. How Airbnb Simplifies with Mesos.
https://engineering.twitter.com/university/

videos/how-airbnb-simplifies-with-mesos, 2014.

[13] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M.,
AND WILKES, J. Omega: flexible, scalable schedulers for large
compute clusters. In Proceedings of the 8th ACM European Con-
ference on Computer Systems (2013), ACM, pp. 351–364.

[14] THE EBAY PAAS TEAM. Delivering eBay’s CI Solution with
Apache Mesos. eBay Technical Blog, Apr 2014.

[15] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER,
D., TUNE, E., AND WILKES, J. Large-scale cluster manage-
ment at google with borg. In Proceedings of the Tenth European
Conference on Computer Systems (2015), ACM, p. 18.

6

