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abstract - Cloud data center operators are 

constantly facing the challenge of making 

their clouds run more efficiently.  Various 

forms of virtualization have been employed 

over the years to squeeze out as much 

performance as possible from the data center 

- a very expensive resource. As is often the 

case when new technologies are introduced, 

a certain amount of confusion ensues as 

developers and consumers alike try to figure 

out what are the benefits and what are the 

costs associated with moving to a new 

technology such as containers or unikernels. 

This paper is intended to provide some basic 

facts regarding the design and usage of the 

various technologies to outline their relative 

strengths and weaknesses. 

INTRODUCTION 

Virtualization is the underpinning technology 

that makes any cloud data center successful. 

Virtualization technologies are constantly 

improving as new techniques are being 

discovered and introduced. To properly 

compare the various technologies, it is 

important to understand why each one was 

developed, and what its goals are. We will 

start by briefly explaining what virtualization 

is, the different types and how they work. We 

will then compare two types (unikernels and 

containers) across several points to get a feel 

for what each one does best. The goal of 

isolating users and their programs has not 

changed over the years, while the 

implementation details have changed 

because of additional requirements from the 

users such as direct access to I/O devices and 

rapid deployment of virtual machines in a 

cloud environment. It is important to 

understand some of the history behind these 

technologies to understand what we have 

today, and where we are headed in the future. 

HISTORY 

Machine virtualization was first implemented 

on the IBM 370 mainframe as a means to 

allow several users to share the machine as if 

each was the only user present. The machine 

was very expensive, and it was important to 

maximize its use by allowing multiple 

programmers to use it concurrently. 

Therefore, one of the main goals of 

virtualization at that time was for the user to 

be completely unaware that the program was 

running on a virtual machine, rather than a 

physical machine (bare metal). The 

hypervisor (sometimes called a virtual 

machine monitor or VMM) is the piece of 

software required to allocate and manage the 

hardware resources provided by the host and 

present multiple guest environments (the 

virtual machine or VM for short). It is 

important to realize that at that time, there 

was no separation between operating system 

and application, so it was necessary for 

programs to access hardware directly. For 

that reason, it was important that the users 

were completely isolated from each other 

through the hypervisor.  

Around the same time, the concept of a 

process was developed as an operating 
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Figure 1  - Operating system virtualization (left) vs 

machine virtualization (right) 

system abstraction of an executing context. In 

other words, programs needed isolation from 

each other, regardless of which user was 

running them, and this concept was supported 

by features in the hardware such as virtual 

memory and paged memory. Processes can 

be considered a form of virtualization, in that 

they allow the operating system to share the 

machine’s limited resources among multiple 

programs simultaneously without these 

programs being aware of or actively taking 

part in the scheduling. 

MACHINE VIRTUALIZATION 

At first, the hypervisor was implemented 

completely in software and relied on a set of 

tricks to work around the fact that the x86 

hardware was never designed to support such 

behaviour.  Sometimes these tricks were 

quite costly (thousands of machine cycles) 

and to improve performance, the operating 

system was purposefully modified to 

communicate with the hypervisor directly to 

avoid these costs. This is known as 

paravirtualization, and it means the guest 

software can no longer work in an identical 

manner when running on a bare metal 

machine since the guest operating system is 

now ‘aware’ of the hypervisor. Once chip 

vendors implemented extensions to their 

hardware that support virtualization, these 

tricks in the hypervisor and modifications to 

the guest operating systems were no longer 

needed. However, the concept of 

paravirtualization remains useful when 

applied to the problem of improving I/O 

performance. 

OPERATING SYSTEM VIRTUALIZATION 

In some cases, machine virtualization is not 

necessary, or not possible. Operating system 

virtualization allows the machine to be 

shared in a different way - by allowing 

multiple instances of an operating 

environment to run simultaneously. Sharing 

resources at the operating system level is 

known by many names. One of the first such 

systems became known as BSD Jails [3], but 

there are many other similar implementations 

such as Cells [4] (on Android), LXC [5] (on 

Linux) and LPAR [6] (on AIX). This kind of 

virtualization does not use a hypervisor.  

Instead, it relies on the kernel (the protected 

part of the operating system) to provide some 

basic services (the kernel interface) that can 

be used to create different “personalities” of 

the operating system. What is important to 

note is that the kernel provides all of the 

services required by the system partition, 

which runs in user space. This is much less 

flexible than machine virtualization, which 

allows various operating systems to run 

concurrently, and is only constrained by the 

instruction set of the CPU and the available 

peripherals. In operating system 

virtualization, the partitions must understand 

the kernel’s ABI (application binary 

interface) - in other words, be compiled to run 

on top of that particular kernel.  In general, 

these partitions are implemented as a set of 

one or more processes which are restricted 

from accessing general system resources 

such as file systems, hardware devices and 

user accounts. Instead, they are given their 

own personalized view of the operating 

system.  

Now that we have covered the basics, let us 

try to compare these two contrasting 

approaches to sharing a machine’s resources 

to better understand their relative strengths 

and weaknesses. 
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MACHINE INTERFACE 

Machine virtualization has proven its 

effectiveness in solving several common 

problems such as running multiple operating 

systems simultaneously on a single machine, 

allowing multiple untrusted users to share the 

resources of a single machine, and increasing 

the utilization of a machine’s resources. What 

is important to note about machine 

virtualization is that there are two sides that 

must cooperate to ensure performance - the 

hypervisor on the host side, and the guest 

operating system inside the virtual machine.  

It is important to emphasize that the 

hypervisor is responsible for the isolation 

between the guest and the host, as well as 

isolation between guests. The hypervisor 

defines a rigid interface by which the guest 

must communicate with the host, and may 

employ special features in the hardware to 

enforce the isolation. Such features generally 

provide protection to virtual machines from 

I/O hardware, and protection to I/O hardware 

from virtual machines. The original goal of 

the hypervisor was to provide a virtual 

machine environment that is 

indistinguishable from its physical 

counterpart, meaning the guest OS should not 

have to be aware that it is running in a virtual 

environment. However, virtual machines and 

hypervisors may end up doing a lot of 

unnecessary work if they are not aware of 

each other’s capabilities and requirements.  

By carefully looking at the interface between 

the two components, sometimes we can 

recognize more efficient ways of doing 

things which can gain huge performance 

improvements, but at the cost of breaking 

compatibility. This is a tradeoff that each 

cloud operator must consider carefully. 

UNIKERNELS 

If we were to design an operating system that 

was to run solely as a guest (i.e. only ever 

inside a VM) we could make many 

assumptions about the generality that the 

operating system must provide. By imposing 

constraints such as the number of processes 

that must run concurrently and I/O interfaces 

that are available, it becomes possible to 

design a system that is more efficient than a 

general purpose one which cannot make 

those assumptions. This is exactly the 

thought process that the unikernel approach 

advocates. Some examples of unikernels are 

OSv [1] and MirageOS [2]. 

Unikernels are built using a library OS, 

which means only the operating system 

components which are required to support the 

application are included in the final image. 

This reduces the image size, as unneeded 

components are excluded from the system. It 

also potentially reduces attack surface, 

because there are fewer components that 

could be compromised during an attack, 

making unikernels more secure than full 

VMs (at least in theory). 

 

PERFORMANCE 

Linux containers such as Docker have 

recently started to gain popularity as a form 

of “lightweight virtualization”, implying that 

they don’t incur the same performance and 

resource overhead associated with machine 

virtualization. While that is generally true, it 

is important to understand why, and what is 

lost in return. If we compare the performance 

of a given application running on a bare metal 

machine (no virtualization) to the same 

application running inside a VM or a 

container, the bare metal version will almost 

invariably be faster. CPU instructions for 

both VMs and containers run directly on the 

physical CPU, and memory accesses both use 

the physical memory through the virtual 

memory subsystem of the processor.  

However, there are some important 

differences that cause virtualized 

applications to run slower such as how the 

virtual memory hardware works for virtual 

machines. 
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VIRTUAL MEMORY 

Hypervisors expect a virtual machine to 

come with its own operating system, and 

manage its own virtual memory.  But at the 

end of the day, the memory needs to be 

managed by the hypervisor, because the 

hypervisor is responsible for allocating the 

machine memory among the multiple guests, 

and ensuring the protection mechanisms are 

in place. That means every time a guest 

accesses a virtual address, it must be 

translated twice before getting a physical 

memory address that the CPU can use. 

Since containers run as host processes, they 

benefit from the same virtual memory 

addressing scheme as other host processes, so 

each memory address is only translated once 

per access. Additional hardware inside the 

processor makes these lookups very fast, and 

caching (in both cases) often eliminates 

lookups completely, but on average, there are 

more memory translations performed in a 

VM than in a container. 

 

STARTUP TIME 

It is commonly believed that containers start 

faster than virtual machines, which is why 

they should be preferred for short running 

jobs. This follows from the thinking that 

starting a single (or small set) of processes in 

a running system is faster than starting up an 

entire operating system, including several 

processes. However, a recent study from 

IBM Research [7] suggests that this is not 

always true. The study shows that the 

overhead is actually an artifact of the 

hypervisor implementation, and virtual 

machines can actually start faster than 

containers by throwing away certain features 

in the hypervisor that won’t be used, or by 

reimplementing them in a different way. This 

leads to a loss of generality - the hypervisor 

would no longer be suitable for running all 

kinds of virtual machines, but does provide 

an impressive performance boost which is 

critical for certain workloads such as 

serverless computing. When we consider that 

unikernels do not run generic workloads - 

that is, the application of the unikernel VM is 

known when it is built - we could start the 

hypervisor to support only a subset of 

features, thus reducing startup time. 

In addition, the unikernel itself has much less 

work to do than a general purpose operating 

system when starting. Based on the 

assumption that the unikernel is running in a 

virtual environment, it has fewer devices and 

services that must be initialized, which also 

contribute to the faster startup time. 

 

I/O 

When an operating system performs I/O on 

behalf of an application in a bare metal 

system (such as reading or writing files to a 

disk or sending packets on the network), it 

does so by calling functions in a driver which 

manipulates the necessary hardware device 

(such as a disk or NIC). The driver does so by 

reading and writing small pieces of 

information through registers which tells the 

hardware what to do.  Registers are a very 

convenient way to talk to hardware, and is 

relatively efficient. When the operating 

system wishes to perform I/O inside a VM, it 

must also talk to a device. However, the 

device is generally not hardware, but rather a 

device that is emulated by the hypervisor. 

This is how the hypervisor helps trick the 

guest operating system into thinking it is 

running on bare metal. That means the guest 

operating system must read and write the 

same registers that it would use on a real 

device.  The problem is that we don’t have a 

real device - we are emulating it in software! 

Here, the concept of paravirtualization comes 

in handy.  If we relax the constraint that the 

guest doesn’t know it is actually running in a 

virtual machine, we can provide a new, much 

more efficient interface called paravirtual 
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I/O. This requires a new driver for each guest 

operating system for each kind of virtual 

device.  Some examples of this kind of 

interface are VMXNet [8] on VMWare, and 

virtio [9] on KVM. 

In a unikernel, the software layers to perform 

I/O are much simpler than in a general 

purpose VM. Since there is only a single 

process, file systems and driver code don’t 

need to deal with the same level of 

complexity, and have a simplified model for 

locking and concurrency. This can provide a 

huge boost when performing I/O operations. 

Even larger performance gains can be 

realized by breaking the standard sockets 

API. While this requires some modifications 

to application programs, in many cases the 

benefits can outweigh the effort. 

Containers don’t have the problem of having 

to perform all I/O through a hypervisor. 

Instead, I/O is performed through system 

calls to the kernel, rather than through a 

hypervisor. However, since containers run in 

a general-purpose operating system (which is 

necessarily multi-process), I/O must be 

vetted through a complicated I/O subsystem, 

which can hurt performance. Also, I/O 

performance can be potentially limited by the 

kernel for fairness through mechanisms such 

as cgroups. 

 

APPLICATION DEPLOYMENT 

Companies such as Docker market the 

concept of containers as a simple deployment 

model for DevOps applications, where 

release cycles are short, and continuous 

deployment is encouraged. In such a work 

environment, it is important to have precise 

control over the deployment environment 

where applications may be dependent on 

hundreds of different packages and 

components, and the ability to quickly 

change any particular component is critical 

when working on a production system. 

For unikernels, there are deployment systems 

which accomplish the same goal, but in a 

slightly different manner. For example, the 

Capstan [10] system enables packaging any 

application with the OSv unikernel to be 

deployed as a virtual machine. 

CONCLUSION 

Both containers and unikernels are modern 

methods for effectively deploying your 

application to the cloud. They both offer easy 

deployment models, good performance and 

security features. Selecting which method 

will work best for a particular application 

depends on understanding the demands of 

that application, and understanding the 

underlying virtualization technologies to be 

able to make an educated decision. 
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