
H-0330 (HAI1801-001) January 3, 2018
Computer Science

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

IBM Research Report

A Comparison of Virtualization Technologies for Use in Cloud
Data Centers

Joel Nider
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

1

A Comparison of Virtualization

Technologies for Use in Cloud Data Centers
Joel Nider

IBM Research Haifa

joeln@il.ibm.com

abstract - Cloud data center operators are

constantly facing the challenge of making

their clouds run more efficiently. Various

forms of virtualization have been employed

over the years to squeeze out as much

performance as possible from the data center

- a very expensive resource. As is often the

case when new technologies are introduced,

a certain amount of confusion ensues as

developers and consumers alike try to figure

out what are the benefits and what are the

costs associated with moving to a new

technology such as containers or unikernels.

This paper is intended to provide some basic

facts regarding the design and usage of the

various technologies to outline their relative

strengths and weaknesses.

INTRODUCTION

Virtualization is the underpinning technology

that makes any cloud data center successful.

Virtualization technologies are constantly

improving as new techniques are being

discovered and introduced. To properly

compare the various technologies, it is

important to understand why each one was

developed, and what its goals are. We will

start by briefly explaining what virtualization

is, the different types and how they work. We

will then compare two types (unikernels and

containers) across several points to get a feel

for what each one does best. The goal of

isolating users and their programs has not

changed over the years, while the

implementation details have changed

because of additional requirements from the

users such as direct access to I/O devices and

rapid deployment of virtual machines in a

cloud environment. It is important to

understand some of the history behind these

technologies to understand what we have

today, and where we are headed in the future.

HISTORY

Machine virtualization was first implemented

on the IBM 370 mainframe as a means to

allow several users to share the machine as if

each was the only user present. The machine

was very expensive, and it was important to

maximize its use by allowing multiple

programmers to use it concurrently.

Therefore, one of the main goals of

virtualization at that time was for the user to

be completely unaware that the program was

running on a virtual machine, rather than a

physical machine (bare metal). The

hypervisor (sometimes called a virtual

machine monitor or VMM) is the piece of

software required to allocate and manage the

hardware resources provided by the host and

present multiple guest environments (the

virtual machine or VM for short). It is

important to realize that at that time, there

was no separation between operating system

and application, so it was necessary for

programs to access hardware directly. For

that reason, it was important that the users

were completely isolated from each other

through the hypervisor.

Around the same time, the concept of a

process was developed as an operating

2

Figure 1 - Operating system virtualization (left) vs

machine virtualization (right)

system abstraction of an executing context. In

other words, programs needed isolation from

each other, regardless of which user was

running them, and this concept was supported

by features in the hardware such as virtual

memory and paged memory. Processes can

be considered a form of virtualization, in that

they allow the operating system to share the

machine’s limited resources among multiple

programs simultaneously without these

programs being aware of or actively taking

part in the scheduling.

MACHINE VIRTUALIZATION

At first, the hypervisor was implemented

completely in software and relied on a set of

tricks to work around the fact that the x86

hardware was never designed to support such

behaviour. Sometimes these tricks were

quite costly (thousands of machine cycles)

and to improve performance, the operating

system was purposefully modified to

communicate with the hypervisor directly to

avoid these costs. This is known as

paravirtualization, and it means the guest

software can no longer work in an identical

manner when running on a bare metal

machine since the guest operating system is

now ‘aware’ of the hypervisor. Once chip

vendors implemented extensions to their

hardware that support virtualization, these

tricks in the hypervisor and modifications to

the guest operating systems were no longer

needed. However, the concept of

paravirtualization remains useful when

applied to the problem of improving I/O

performance.

OPERATING SYSTEM VIRTUALIZATION

In some cases, machine virtualization is not

necessary, or not possible. Operating system

virtualization allows the machine to be

shared in a different way - by allowing

multiple instances of an operating

environment to run simultaneously. Sharing

resources at the operating system level is

known by many names. One of the first such

systems became known as BSD Jails [3], but

there are many other similar implementations

such as Cells [4] (on Android), LXC [5] (on

Linux) and LPAR [6] (on AIX). This kind of

virtualization does not use a hypervisor.

Instead, it relies on the kernel (the protected

part of the operating system) to provide some

basic services (the kernel interface) that can

be used to create different “personalities” of

the operating system. What is important to

note is that the kernel provides all of the

services required by the system partition,

which runs in user space. This is much less

flexible than machine virtualization, which

allows various operating systems to run

concurrently, and is only constrained by the

instruction set of the CPU and the available

peripherals. In operating system

virtualization, the partitions must understand

the kernel’s ABI (application binary

interface) - in other words, be compiled to run

on top of that particular kernel. In general,

these partitions are implemented as a set of

one or more processes which are restricted

from accessing general system resources

such as file systems, hardware devices and

user accounts. Instead, they are given their

own personalized view of the operating

system.

Now that we have covered the basics, let us

try to compare these two contrasting

approaches to sharing a machine’s resources

to better understand their relative strengths

and weaknesses.

3

MACHINE INTERFACE

Machine virtualization has proven its

effectiveness in solving several common

problems such as running multiple operating

systems simultaneously on a single machine,

allowing multiple untrusted users to share the

resources of a single machine, and increasing

the utilization of a machine’s resources. What

is important to note about machine

virtualization is that there are two sides that

must cooperate to ensure performance - the

hypervisor on the host side, and the guest

operating system inside the virtual machine.

It is important to emphasize that the

hypervisor is responsible for the isolation

between the guest and the host, as well as

isolation between guests. The hypervisor

defines a rigid interface by which the guest

must communicate with the host, and may

employ special features in the hardware to

enforce the isolation. Such features generally

provide protection to virtual machines from

I/O hardware, and protection to I/O hardware

from virtual machines. The original goal of

the hypervisor was to provide a virtual

machine environment that is

indistinguishable from its physical

counterpart, meaning the guest OS should not

have to be aware that it is running in a virtual

environment. However, virtual machines and

hypervisors may end up doing a lot of

unnecessary work if they are not aware of

each other’s capabilities and requirements.

By carefully looking at the interface between

the two components, sometimes we can

recognize more efficient ways of doing

things which can gain huge performance

improvements, but at the cost of breaking

compatibility. This is a tradeoff that each

cloud operator must consider carefully.

UNIKERNELS

If we were to design an operating system that

was to run solely as a guest (i.e. only ever

inside a VM) we could make many

assumptions about the generality that the

operating system must provide. By imposing

constraints such as the number of processes

that must run concurrently and I/O interfaces

that are available, it becomes possible to

design a system that is more efficient than a

general purpose one which cannot make

those assumptions. This is exactly the

thought process that the unikernel approach

advocates. Some examples of unikernels are

OSv [1] and MirageOS [2].

Unikernels are built using a library OS,

which means only the operating system

components which are required to support the

application are included in the final image.

This reduces the image size, as unneeded

components are excluded from the system. It

also potentially reduces attack surface,

because there are fewer components that

could be compromised during an attack,

making unikernels more secure than full

VMs (at least in theory).

PERFORMANCE

Linux containers such as Docker have

recently started to gain popularity as a form

of “lightweight virtualization”, implying that

they don’t incur the same performance and

resource overhead associated with machine

virtualization. While that is generally true, it

is important to understand why, and what is

lost in return. If we compare the performance

of a given application running on a bare metal

machine (no virtualization) to the same

application running inside a VM or a

container, the bare metal version will almost

invariably be faster. CPU instructions for

both VMs and containers run directly on the

physical CPU, and memory accesses both use

the physical memory through the virtual

memory subsystem of the processor.

However, there are some important

differences that cause virtualized

applications to run slower such as how the

virtual memory hardware works for virtual

machines.

4

VIRTUAL MEMORY

Hypervisors expect a virtual machine to

come with its own operating system, and

manage its own virtual memory. But at the

end of the day, the memory needs to be

managed by the hypervisor, because the

hypervisor is responsible for allocating the

machine memory among the multiple guests,

and ensuring the protection mechanisms are

in place. That means every time a guest

accesses a virtual address, it must be

translated twice before getting a physical

memory address that the CPU can use.

Since containers run as host processes, they

benefit from the same virtual memory

addressing scheme as other host processes, so

each memory address is only translated once

per access. Additional hardware inside the

processor makes these lookups very fast, and

caching (in both cases) often eliminates

lookups completely, but on average, there are

more memory translations performed in a

VM than in a container.

STARTUP TIME

It is commonly believed that containers start

faster than virtual machines, which is why

they should be preferred for short running

jobs. This follows from the thinking that

starting a single (or small set) of processes in

a running system is faster than starting up an

entire operating system, including several

processes. However, a recent study from

IBM Research [7] suggests that this is not

always true. The study shows that the

overhead is actually an artifact of the

hypervisor implementation, and virtual

machines can actually start faster than

containers by throwing away certain features

in the hypervisor that won’t be used, or by

reimplementing them in a different way. This

leads to a loss of generality - the hypervisor

would no longer be suitable for running all

kinds of virtual machines, but does provide

an impressive performance boost which is

critical for certain workloads such as

serverless computing. When we consider that

unikernels do not run generic workloads -

that is, the application of the unikernel VM is

known when it is built - we could start the

hypervisor to support only a subset of

features, thus reducing startup time.

In addition, the unikernel itself has much less

work to do than a general purpose operating

system when starting. Based on the

assumption that the unikernel is running in a

virtual environment, it has fewer devices and

services that must be initialized, which also

contribute to the faster startup time.

I/O

When an operating system performs I/O on

behalf of an application in a bare metal

system (such as reading or writing files to a

disk or sending packets on the network), it

does so by calling functions in a driver which

manipulates the necessary hardware device

(such as a disk or NIC). The driver does so by

reading and writing small pieces of

information through registers which tells the

hardware what to do. Registers are a very

convenient way to talk to hardware, and is

relatively efficient. When the operating

system wishes to perform I/O inside a VM, it

must also talk to a device. However, the

device is generally not hardware, but rather a

device that is emulated by the hypervisor.

This is how the hypervisor helps trick the

guest operating system into thinking it is

running on bare metal. That means the guest

operating system must read and write the

same registers that it would use on a real

device. The problem is that we don’t have a

real device - we are emulating it in software!

Here, the concept of paravirtualization comes

in handy. If we relax the constraint that the

guest doesn’t know it is actually running in a

virtual machine, we can provide a new, much

more efficient interface called paravirtual

5

I/O. This requires a new driver for each guest

operating system for each kind of virtual

device. Some examples of this kind of

interface are VMXNet [8] on VMWare, and

virtio [9] on KVM.

In a unikernel, the software layers to perform

I/O are much simpler than in a general

purpose VM. Since there is only a single

process, file systems and driver code don’t

need to deal with the same level of

complexity, and have a simplified model for

locking and concurrency. This can provide a

huge boost when performing I/O operations.

Even larger performance gains can be

realized by breaking the standard sockets

API. While this requires some modifications

to application programs, in many cases the

benefits can outweigh the effort.

Containers don’t have the problem of having

to perform all I/O through a hypervisor.

Instead, I/O is performed through system

calls to the kernel, rather than through a

hypervisor. However, since containers run in

a general-purpose operating system (which is

necessarily multi-process), I/O must be

vetted through a complicated I/O subsystem,

which can hurt performance. Also, I/O

performance can be potentially limited by the

kernel for fairness through mechanisms such

as cgroups.

APPLICATION DEPLOYMENT

Companies such as Docker market the

concept of containers as a simple deployment

model for DevOps applications, where

release cycles are short, and continuous

deployment is encouraged. In such a work

environment, it is important to have precise

control over the deployment environment

where applications may be dependent on

hundreds of different packages and

components, and the ability to quickly

change any particular component is critical

when working on a production system.

For unikernels, there are deployment systems

which accomplish the same goal, but in a

slightly different manner. For example, the

Capstan [10] system enables packaging any

application with the OSv unikernel to be

deployed as a virtual machine.

CONCLUSION

Both containers and unikernels are modern

methods for effectively deploying your

application to the cloud. They both offer easy

deployment models, good performance and

security features. Selecting which method

will work best for a particular application

depends on understanding the demands of

that application, and understanding the

underlying virtualization technologies to be

able to make an educated decision.

ACKNOWLEDGEMENTS

This project has received funding from the

European Union’s Horizon 2020 research

and innovation programme under grant

agreement No 645402.

BIBLIOGRAPHY

[1] Linux Foundation, "OSv: The Open Source

Cloud Operating System That is Not

Linux," The Linux Foundation, 14 11 2013.

[Online]. Available:

https://www.linuxfoundation.org/blog/osv-

the-open-source-cloud-operating-system-

that-is-not-linux/.

[2] MirageOS, "A programming framework for

building type-safe, modular systems,"

MirageOS, 2017. [Online]. Available:

https://mirage.io/.

[3] P.-H. Kamp and R. Watson, "Building

Systems to Be Shared, Securely," in

Building Systems to Be Shared, Securely,

New York, NY, USA, 2004.

[4] C. Dall, J. Andrus, A. Van't Hof, O. Laadan

and J. Nieh, "The Design, Implementation,

and Evaluation of Cells: A Virtual

6

Smartphone Architecture," in ACM

Transactions on Computer Systems, New

York, NY, USA, 2012.

[5] C. C. C. B. N. SA, "Linux Containers,"

LXC, 2017. [Online]. Available:

https://linuxcontainers.org/lxc/introduction

/.

[6] B. Buros, "An Introduction to LPAR," IBM

Systems Magazine, 10 2002. [Online].

Available:

http://ibmsystemsmag.com/aix/administrat

or/lpar/an-introduction-to-lpar/.

[7] R. Koller and D. Williams, "Will Serverless

End the Dominance of Linux in the

Cloud?," in HotOS '17, Whistler, BC,

Canada, 2017.

[8] VMware, "Performance Evaluation of

VMXNET3 Virtual Network Device,"

VMware Inc., 08 2009. [Online].

Available:

https://www.vmware.com/techpapers/2009

/performance-evaluation-of-vmxnet3-

virtual-network-10065.html.

[9] R. Russell, "Virtio: Towards a De-facto

Standard for Virtual I/O Devices," SIGOPS

Oper. Syst. Rev., vol. 42, pp. 95--103, 2008.

[10] OSv, "Rapid VM builds - Capstan,"

Cloudius, 2017. [Online]. Available:

http://osv.io/capstan/.

[11] M. Rosenblum, "Vmware’s virtual

platform: A virtual machine monitor for

commodity pcs," in Hot Chips 11, 1999.

[12] IBM Knowledge Center, "IBM Workload

Partitions for AIX," IBM, 2015. [Online].

Available:

https://www.ibm.com/support/knowledgec

enter/en/ssw_aix_72/com.ibm.aix.wpar/wp

ar-kickoff.htm.

