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Abstract— Given a large variety of resources and billing con-
tracts offered by today’s cloud providers, customers face a non-
trivial optimization challenge for their application workloads.

A number of works are dealing with either billing contracts
selection optimization or resource types selection. We argue
that the largest cost savings to elastic workloads result from
jointly optimizing heterogeneous resources and billing contracts
selection. To this end, we introduce a novel cloud control and
management framework and formulate a novel optimization
problem called Heterogeneous Resource Reservation (HRR).

We evaluate our solution through a thorough simulation study
using publicly available cloud workload data as well as internal
anonymous customer data. For these data we demonstrate dra-
matic cost savings are attainable through our proposed approach.

I. INTRODUCTION

At the dawn of the cloud era, on-demand resource pro-
curement model for relatively limited resource repertoire was
expected to dominate, because of its simplicity and the promise
to eliminate resources rightsizing and long term commitments
and upfront capital investments, effectively relieving a cus-
tomer from capacity planning overhead. However, very soon
providers started differentiating themselves both on resource
heterogeneity and procurement models offering sustained us-
age discount schemes coming both as explicit capacity reserva-
tions models and implicit a posteriori discount. These schemes
aim at setting monetary incentives for the customers for
committing to specific levels of demand to help providers with
capacity planning cycle1

As a result of this evolutionary processes, the current
cloud computing landscape became very complex. A typical
cloud today offers a variety of heterogeneous resources and
procurement models (i.e., contracts) to choose from. The
problem becomes even more complex when workloads should
be deployed and operated on different clouds and brokering
decisions should be made for specific workloads, suggesting
the best clouds to host them. This complexity is both a promise
and a challenge. Essentially, a cloud customer faces a re-
incarnation of a capacity planning problem, where the new
complexity stems from proliferation of the cloud procurement
and billing models as opposed to the well studied traditional

The research leading to these results was partially funded by the European
Community’s Seventh Framework Programme(FP7/2007-2013) under grant
agreement n 610802

1Note that in a pure on-demand model, a provider discovers customer’s
demand reactively, which considerably complicates capacity planning.

capacity planning problem arising in the context of a data
center owned by the application provider.

In this paper, we argue that it is highly beneficial to
consider both resources heterogeneity and long term capac-
ity reservation within a unified optimization framework. We
demonstrate that this approach allows to dramatically slash
operational costs while maintaining application Quality of
Service (QoS). Naturally, long term commitment implied
by capacity reservation, requires some form of forecasting
to predictively provision resources. A number of works on
various forms of predictive elasticity have appeared recently
(see Section II). Also, optimally allocating heterogeneous
resources to application workloads has received considerable
attention [1]. However, to the best of our knowledge, no unified
framework that combines optimal predictive capacity reser-
vation with multi-dimensional heterogeneous cloud resources
procurement, has been presented thus far. This paper intends
to fill this void by developing such a unified generic cost
optimization model that can be applied uniformly across all
major cloud providers.

Essentially, the problem comprises two sub-problems:
Demand Forecasting. Forecast demand of an application in
terms of resource requests for the forecasting horizon, which
is comparable to the billing contract commitment (if such a
commitment exists). In general, precise forecasting of time
series for mid-term and long term horizons is very difficult.
We work around this problem by predicting an empiric dis-
tribution of the demand, i.e., relative frequencies of request
combinations rather than their exact timing.
Reservation and Allocation. Given a forecast of the resources
demand, a catalog of VM types, and a catalog of billing
contracts, find an optimal allocation of demand to instances of
heterogeneous VM types along with an optimal selection of
the billing contracts to be used with these VM types. In Sec-
tion IV, we formulate this problem as a mixed integer linear
problem, which can be efficiently solved by existing solvers
even for the very large problem instances as demonstrated by
our evaluation experiments (millions of decision variables and
tens of thousands of constraints).

Today’s State Of The Art (SOTA) in cloud operations
cost management can be summarized as follows. Application
requests are statically mapped on VM types with matching
CPU/memory ratio. A forecast mechanism is used to predict
future application demand. Based on this prediction, long
term commitments are made either explicitly (i.e., through



reservations) or implicitly (i.e., by keeping VMs up to ob-
tained planned sustained usage discount). Excess demand not
accounted by the forecast mechanism is covered by on-demand
VM procurement.

Using Google data, we demonstrate that, on average, HRR
achieves 55% higher cost savings by its joint optimization
strategy compared to the SOTA above. This almost dou-
bles cost savings achievable through separately optimizing
selection of heterogeneous resources and billing contracts.
Moreover, we demonstrate that even when SOTA methodol-
ogy is used with perfect knowledge of application requests
distribution for the next month (which is clearly a theoretical
setting), HRR still outperforms SOTA by 48%, on average.
Likewise, we show that when VMs are procured on-demand,
even when assuming perfect knowledge of exact time series
of application requests, HRR still outperforms this strategy by
59%. Also, it is important to stress that our results are within
2-3% gap from an optimal solution.

II. RELATED WORK

An approach conceptually similar to our own is presented
in [2]. The authors jointly optimize heterogeneous VM se-
lection and billing contracts using an advanced two-stage
integer stochastic programming problem. This model is being
transformed into Equivalent Deterministic Formulation (DEF)
using explicit knowledge of application resource demand and
cloud resources pricing distributions. They apply Sample Aver-
age Approximation (SAA) for obtaining DEF size susceptible
to solving using a linear solver. Besides different problem for-
mulation techniques, there are two main differences between
our work and [2]. First, [2] uses static mapping between VM
types and application request types (we term this ”dedicated”
requests to VMs mapping). We demonstrate that by making
this decision more than once, one can almost double cost
savings. Second, billing contracts modeling of [2] is rather
rudimentary, considering only three basic contract types: on-
demand, one year and three years reservations. At the time
of [2] being published many modern contract types, such as
AWS convertible reserved instances or Google sustained usage
discounts have not been invented yet. In our model, we show
how these new contract types can be explicitly modeled to
allow seamless brokerage across clouds [3].

An IP formulation and a heuristic-based solution for op-
timizing billing contracts selection for single VM type are
developed in [4]. In [5], the joint optimization problem of
billing contracts and heterogeneous VMs is studied for single
resource dimension (CPU). In [6], competitive deterministic
and randomized online algorithms for optimizing capacity
reservation for VM of the same type are presented (based
on extending the Bahncard problem [7]). In [8], contract
optimization for homogeneous VMs using load prediction, is
studied.

Workload prediction attracted considerable attention in the
literature. In [9] HMM and ARIMA are used to predict appli-
cation workload fluctuation. In [10] application of ARIMA
to cloud workload prediction and its application to resource

management is studied. In [8] a number of workload prediction
techniques, including ARIMA, Seasonal ARIMA (S-ARIMA),
Exponential Smoothing, Holt-Winters and other methods are
explored and compared. A two level ensemble method based
on regression and correlation between VMs is used in [11] to
capture highly transient demand. PRESS [12] uses a method
combining signal processing and discrete-time Markov chain
to predict workload. Neural networks and linear regression
are used in [13] to predict resource consumption. In [14] a
workload prediction technique based on past pattern matching
is developed.

III. END-TO-END SYSTEM

A. Approach
All major cloud vendors support dynamic workload al-

location over homogeneous resources through Auto-Scaling
Groups (ASG)2. The amount of resources in each group is dy-
namically adjusted to fit the overall workload Heterogeneity is
desired, as application workload requests are often unbalanced
with respect to resource consumption. In essence, given
an expectation of a specific application workload in terms of
request types combination distribution over some forecasting
horizon, the problem is to find a mapping of application
requests (i.e., resource demand vectors) on heterogeneous VM
instances (heterogeneous bins) resulting in a minimal cost.
This is a difficult problem since it effectively amounts to bin
packing, which is NP-hard even in case of the homogeneous
bins. On top of that, there is a need to optimize selection
of billing contracts associated with VMs. For each billing
contract type and for each VM type, decision whether VM
instances of that type will be provided on-demand or using
some reservation.

Algorithm 1 captures the overall framework. The algorithm
continuously solves the HRR problem using a forecast of ap-
plication request combinations distribution. A reader interested
in the details of the forecast mechanism used is referred to [3].

Algorithm 1: Overall Algorithmic Framework
Input: VM Types, Billing Contracts, History of Resource Requests
Output:

(1) Optimized Selection of VM types
(2) Optimized Selection of Billing Contracts
(3) Optimized Requests Allocation to VM types

History ← accumulate request combination data points;
repeat

forecast ← ECDF(History);
((1), (2), (3)) ← HRR(forecast);

configure Load Balancer weights;
update Reservations Inventory;
control Auto-Scaling Groups sizes;

History ← History
⋃

new data points (if needed);
until TRUE;

B. Architecture
We utilize existing cloud features to execute the output of

Algorithm 1. We assume that a cloud workload (i.e., an appli-
cation) is characterized by a resource footprint that comprises

2We adopt the AWS terminology.



heterogeneous cloud resources. We create a Heterogeneous
ASG by grouping multiple homogeneous ASGs under a
top level LB with configurable weights3. This hierarchical
structure is not supported by cloud providers out of the box,
but it is readily achievable with the existing cloud offerings.

Figure 1 depicts our proposed cloud cost optimization
architecture. Our system creates a plan that defines three
control points: (1) which homogeneous ASGs should be used
and what should be their size (2) which contracts should
be used and how many resources of each type should be
reserved (3) what weights should the top-level LB use to
balance requests across the ASGs. As described above, the
two sub-problems solved are demand forecasting and optimal
reservation and allocation. A brief description of the system
components follows.

Fig. 1: Conceptual architecture

Monitoring Engine: samples the ASGs comprising the ap-
plication at regular intervals assuming standard tools available
for Layer 7 load balancers (e.g., NGINX).
Request Classification Engine: clusters similar application
requests. A specific clustering method is pluggable. As ex-
plained in more details in Section V, one clustering method
uses a ratio between CPU and memory of the application
requests as a label.
Forecast Engine: uses labeled historical data to build a
Empiric Cumulative Distribution Function (ECDF) of requests
combinations with a target confidence band.
Optimization Engine: this component continuously solves
HRR (see the formulation in Section IV). In our reference
implementation, we use ILOG CPLEX [17] linear solver.
Top Level Load Balancer: implements an optimized mapping
of application requests via configuring appropriate weights for
each sub-ASG in a hierarchical LB structure.

IV. OPTIMAL HETEROGENEOUS RESOURCE RESERVATION

In this section we provide the notations and formal defini-
tion of the HRR as a mixed linear problem. The notations are
summarized in Table I.

3Most modern LBs have configurable weights feature. As representative
examples, consider HAproxy [15] and NGINX [16].

TABLE I: Notation summary
Notation Description
Sets Description and default index
R request types, r ∈ R
V virtual machine types, v ∈ V
B billing contracts, b ∈ B
Q resource types, q ∈ Q
Ht forecasted r̄[h], h ∈ [t, t+ 1]

Sequences
T time slots t ∈ T = 1, . . . , T

Parameters
r[h] workload demand of request type r at time h ∈ [t, t+ 1]
wq (r) required resource q for a unit of request type r
wq (r→v) number of v type VMs required per an r type request
cq (v) capacity of resource q in one virtual machine type v
sb (v) normalized setup fee per VM type v with contract b
T b reservation period for contract b
ub (v) hourly usage rate per one VM type v with contract b
Variables
ar→v[t] fraction of type r requests served by type v VMs at time interval [t, t+ 1]
ybv [t] number of type v VMs initialized under contract b at time t
zbv [t] number of type v VMs used under contract b at time t
xb
v [h] number of type v VMs used under contract b at time h ∈ [t, t+ 1]

A. Input Parameters

There is a set of virtual machines types V and each virtual
machine v ∈ V is characterized by its capacity along a set of
consumable resource types Q: with each v ∈ V we associate
a vector c̄(v) = 〈cq (v)〉q∈Q, where cq (v) is the capacity of
a single instance of virtual machine v for resource dimension
q, e.g., memory, CPU, disk, etc.

An application serves multiple request types, where each
request type r ∈ R, is characterized by its demand along
the same resource dimension set Q: each request type is
associated with a vector w̄ (r) = 〈wq (r)〉q∈Q, where wq (r) is
the capacity requirements of a single instance of request type
r. We define wq (r→v) as the capacity requirements of virtual
machines of type v that are needed to satisfy the requirement
of a single request of type r for resource q.

Discrete decisions on how many VMs of each type un-
der each billing contract to keep active are being made at
times h, h ∈ Ht, for some t, and VM configurations stay
put throughout intervals [h, h + 1]. Discrete decisions about
purchasing new VMs are made at times t, which are multiples
of h. T , which is a multiple of t denotes the overall planning
horizon (e.g., h might correspond to hours, t might correspond
to weeks, and T might correspond to months resolution).
Application workloads are collected at discrete times, called
samples: r̄[h] = 〈r[h]〉r∈R denotes the combination of request
demands at sampling time h. In general, accurate prediction
of time series r̄[h] for h ∈ Ht is a very difficult task that
requires application specific knowledge. Our optimization does
not require an accurate prediction of time series. Rather than
predicting the value of each r̄[h] for every request type at
every point in time, we only need to predict the counts of
each value of r̄[h] over the entire window Ht. In other words,
we are only interested in the overall number of hours each r̄
is served and not the exact times it was served. Historic data
points from time interval Ht−1 are used to predict data points
that will occur in any order in time interval [t, T ] from the
reservation time t for the whole time horizon T . The order is
immaterial, because we are only interested in the number of



occurrences of a particular resource request combination.
A billing contract b ∈ B defines an effective hourly rate

for each virtual machine type. The effective hourly rate for
each contract, b, per a particular virtual machine type, v, is
comprised of a usage rate ub (v) and a flat setup fee sb (v). The
usage rate is paid per each h per each virtual machine used (we
will to h as hour even though this does not have to be an actual
hour). The setup fee is paid per payment cycle, T b, by the
number of initialized virtual machines; that is, if ybv[t] virtual
machines of type v were initialized at time t then the flat setup
cost for the entire pay cycle [(t+1), (t+2), . . . , (t+T b)] would
be sb (v) · ybv[t]. If the flat setup fee is not zero then a virtual
machine can be used only if its setup fee was paid.

B. Optimization goal and output

Our goal is to minimize the overall cost of virtual machines
required for providing elastic application on a cloud.

For a given workload, we seek an execution plan that
defines the number of virtual machines of each type that we
should use in any interval [ti, ti+1] and the billing contracts by
which these machines should be procured. Furthermore, our
execution plan needs to be complemented by an allocation
plan that specifies how many instances of each VM type are
allocated to serve which requests.

The execution plan for each virtual machine type is denoted
by two time series. The first series, (ybv[1], y

b
v[2], . . . y

b
v[T ]),

defines how many virtual machines of type v are initialized
under billing contract b at each point in time t. The second
series, (zbv[1], z

b
v[2], . . . , z

b
v[T ]), defines how many virtual ma-

chines of type v are expected to be used under billing contract
b during period t.

Although we defined above that t = m · h, the forecast
Ht might include more data points corresponding to ”hours”
h than m. This is due to bootstrapping and trending. To
normalize xbv[h] to m number of hours we use ρt = m

|Ht| :
zbv[t] = ρt

∑
h∈Ht

xbv[h] ∀v∈V,b∈B,t∈T .
The allocation plan is denoted by the time series

(ar→v[1], ar→v[2], . . . ar→v[T ]), where ar→v[t] defines the frac-
tion of request of type r that should be served by virtual
machines of type v at time t. At run time, the allocation
ar→v[t] is realized by a load-balancer that supports weight-
based distribution simply by using ar→v[t] as the weights. The
load-balancer needs to set different weights per request type.
Therefore, it must be able to classify requests as they are
being served. In general, the weights should be adjusted per
time slot t, to match ar→v[t]. However, if dynamic updates
cannot be supported by the underlying infrastructure, then we
add an additional constraint that ar→v[t] remains static, i.e.,
ar→v[t] = ar→v for all t ∈ T .

C. Basic Model (B-HRR)

We can now formally define the model for the HRR
problem.
Given a workload:

W[t, t+ 1] = (r̄[1], r̄[2], . . . r̄[m ∗ h]), t ∈ [1, T ] (1)

Minimize the total cost:

TotalCost =
∑

t∈Tv,∈V,b∈B

(sb (v) ybv[t] + ub (v) zbv[t]) (2)

Subject to the following constraints:∑
v∈V

ar→v[t] =1 ∀r∈R
∀t∈T (3)

∑
b∈B

cq (v)x
b
v[h] ≥

∑
r∈R

ar→v[t]r[h]wq (r→v)
∀v∈V
∀q∈Q
∀t∈T
∀h∈Ht

(4)

xbv[h] ≤
t∑

τ=t−T b+1

ybv[τ ]
∀{b∈B|sb(v)>0}

∀v∈V
∀t∈T
∀h∈Ht

(5)

zbv[t] =ρt
∑
h∈Ht

xbv[h]
∀v∈V
∀b∈B
∀t∈T

(6)

ar→v[t], z
b
v[t] ≥0; ybv, x

b
v ∈ Z∗

∀v∈V
∀b∈B
∀q∈Q
∀t∈T

(7)

The TotalCost (2) summarizes setup and usage costs of all
machines under all contracts. Constraint (3) ensures that the
allocation plan is valid and can be rewritten as

∑
v∈V ar→v = 1

∀r ∈ R to support a static allocation.
The main constraint (4) ensures that the total capacity of

the virtual machines is enough to support the total demand of
the workload. It can be written in vector form as∑

b∈B

xbv[h]c̄(v) ≥
∑
r∈R

ar→v[t]r[h]w̄ (r) ,
∀v∈V
∀t∈T
∀h∈Ht

(8)

where the LHS is the capacity of virtual machines of type
v at time t and the RHS is the fraction of the overall demand
that is served by those virtual machines.

The reservation constraint (5) is optional and applies only to
billing contracts that offer reduced effective hourly rate if the
virtual machines are reserved and paid for in advance. Such
contracts have a non-zero setup cost and may have zero usage
rate. The RHS is the total number of virtual machines that
were reserved and are still available at time t. In the special
case, where reservations are only made once, (5) becomes

xbv[h] ≤ ybv. ∀v ∈ V,∀b ∈ B,∀t ∈ T, ∀h ∈ Ht.

Constraints (6) calculate zbv[t] based on xbv[h] and syn-
chronization coefficient ρt. Constraints (7) define the allowed
domain of the decision variables.

V. EVALUATION

We study performance of our proposed model using trace-
driven simulations. We use two data sets: a publicly available
Google’s clusterdata-2011-2 trace [18] and an obfuscated data
of a customer who prior to migrating to IBM’s SoftLayer has
run its workload on AWS.

A. Google Trace Data

The clusterdata-2011-2 trace represents 29 days of infor-
mation about compute jobs submitted to a Google comprising
about 12.5K machines, in May 2011. The job records are



Fig. 2: A synthetic workload inspired by clusterdata-2011-2
trace

comprised of task records with each task record having nor-
malized information on its resource requirements (e.g., CPU
and memory). There are over 46M of individual tasks in
the trace. We discard approximately 0.3% of tasks due to
missing information, inconsistent time stamps or other similar
problems.

Having only one month of data precludes us from using the
trace as-is for exploring the role of the quantity discounts over
long periods of time. To cope with this obstacle, we scaled the
one month worth of the data to be a year long trace with one
virtual ”hour” of the scaled trace being h = end time stamp

365∗24 ,
which came out to be h ≈ 4.8 min. This scaling resulted in ap-
proximately 5K tasks per ”hour” as opposed to approximately
67K tasks per hour in the original trace. No claim is made that
the actual one year worth of the trace data would look exactly
as our scaled trace. Rather we use clusterdata-2011-2 trace as
inspiration and a proxy for a massive realistic workload that
can be executed on a cloud.

Another transformation of the original clusterdata-2011-
2 trace that we perform deals with classifying application
requests (i.e., tasks) into types. We compute a request type
as CPU

mem ratio with one digit after the decimal point to keep
the number of types relatively small. This results resulting
in 11 request types memory bound request types (the ratio is
smaller than 1) and a similar number of CPU bound request
types (the ratio is greater than 1). For each hour of the scaled
trace, we calculate the number of requests of each type along
with their total CPU and memory demand. The resulting time
series is used as an input for our model.

Figure 2 shows the time series at resolution of one ”hour”
between ”Month 3” and ”Month 12”, where demand is ex-
pressed in terms of total CPU and total memory requested
by different requests at each ”hour”. As one can observe,
the workload exhibits variability with peaks and valleys of
demand. There is a moderate upward trend. The trace also
indicates a two-month cyclicity.

B. AWS Customer Data

Our second data set comes from a real customer running its
workload on AWS. This is a mid-size workload with hundreds
of VMs deployed in 8 regions of AWS at any given time.
The bulk of VM expenses occurs in just three regions: us-
east, us-west1, and us-west2. Thus, in our experiments we
focus on these three regions. The workload exhibits variability
in resource demand. There is a moderate upward trend in
consumption. There is no cyclicity in the workload4.

Our input data comes from the standard AWS detailed
billing files, which provide information about active VMs at
hourly resolution. In this trace, we do not have information
about resource consumption at the application request level.
Rather we treat the CPU and memory parameters of a VM
as a single ”request”. The VMs are then mapped on bare
metal servers. For the sake of an experiment, we assume an
inventory of the bare metal servers, which is identical in its
assortment of configurations to that of the AWS VMs. It should
be stressed that the resulting costs should not be treated
literally by the reader, because, for one, AWS does not provide
bare metal machines as a service to cloud consumers. This
set of experiments demonstrates a potential value for cloud
provider that would be interested to provide user’s workload
on the minimal number of physical servers.

C. Experiments

All our experiments have been performed on a standard
laptop Lenovo TP W530 i7-3740QM 2.7 GH having 16 GB
RAM and 8 cores. We used IBM ILOG CPLEX 12.6.3 [17].

Maximum running time for experiments performed on the
clusterdata-2011-2 inspired trace was set 45 at minutes. For
AWS trace maximum running time of the optimizer was
configured to be 15 minutes. Relative optimal gap threshold
was set at 0.1%5.

Table II summarizes our experiments. First thing to notice
is that the actual experiments have completed much faster
than the maximal execution time configured. In all experi-
ments, a one month forecast of ECDF of application requests
combinationswas used. Table III and Table IV summarize
the results of our evaluation study for the clusterdata-2011-
2 inspired and AWS traces respectively. In the first set of
experiments, summarized in Table III, the minimal history
window used to calculate the next month ECDF forecast
has been varied. The results corresponding to each history
window are shown in a separate row. Table IV has similar
structure to that of Table III, but each row represents a
different AWS region. Minimal history used in this set of
experiments was one month. Both tables show absolute total
cost of resource consumption for each experiment and their
relative performance with respect to HRR6. Relative overhead
of a strategy A vs HRR is represented by the intersection of the

4Due to the lack of space we do not present graphs.
5Optimization stops if the gap between a candidate solution and the lower

bound is smaller than the threshold.
6We used AWS VM inventory and prices to obtain concrete figures. These

numbers are probably outdated since prices are subject to change.



TABLE II: Experiments Summary

Experiment Acronym Meaning Description
HRR Heterogeneous Resource

Reservation (HRR)
HRR with monthly forecast of application requests combinations distribution and dynamic mapping of request
types to VM types. Demand unmatched by the reservations is addressed by on-demand elasticity of the cloud.

HRR-DK HRR with full requests
Distribution Knowledge

HRR with knowledge of the actual application requests distribution per month instead of a forecast.

HRR-TK HRR with full requests
Time series Knowledge

HRR with full knowledge of exact time series of requests for the entire planning horizon.

SOTA The current State-Of-The-
Art

HRR with static mapping of request types to VM types minimizing cost (i.e., matching CPU/memory ratios).

SOTA-DK SOTA with full requests
Distribution Knowledge

SOTA with knowledge of the actual application requests distribution per month instead of a forecast.

PE Pure Elasticity Request types are statically mapped to VM types minimizing cost. All VM instances deployed on demand.
E-TK Elasticity with full requests

Time series Knowledge
Request types are dynamically mapped to VM types with full knowledge of exact time series of requests for
the next hour. All VM instances are deployed on demand.

TABLE III: Summary of experimental results for a synthetic
workload inspired by thhe clusterdata-2011-2 trace

History HRR PE SOTA E-TK SOTA-
DK

HRR-
DK

HRR-
TK

1 week 5697 12614
(121%)

8795
(54%)

9108
(60%)

8476
(49%)

5681
(0%)

5518
(-3%)

2 weeks 5707 12614
(121%)

8656
(52%)

9108
(60%)

8476
(49%)

5681
(0%)

5518
(-3%)

1 month 5745 12614
(120%)

8654
(51%)

9108
(59%)

8476
(48%)

5681
(-1%)

5518
(-4%)

4 months 5815 12614
(117%)

9444
(62%)

9108
(57%)

8476
(46%)

5681
(-2%)

5518
(-5%)

(Average %) (120%) (55%) (59%) (48%) (-1%) (-4%)

TABLE IV: Summary of experimental results for the AWS
detailed billing data trace

Region HRR PE SOTA E-TK SOTA-
DK

HRR-
DK

HRR-
TK

us-east1 6551 8753
(34%)

7038
(7%)

8327
(27%)

6353
(-3%)

6114
(-7%)

5972
(-9%)

us-west2 4442 6324
(42%)

4955
(12%)

5795
(31%)

4584
(3%)

3908
(-12%)

3768
(-15%)

us-west1 4556 6571
(44%)

4906
(8%)

6181
(36%)

4487
(-2%)

4260
(-6%)

4194
(-8%)

(Average %) (40%) (9%) (31%) (-1%) (-8%) (-11%)

A column and a row describing the experiment. The relative
overhead RO is calculated as RO = A−HRR

HRR 100%.
Table III shows that, on average, HRR outperforms PE,

SOTA, E-TK, and and SOTA-DK by 120%, 55%, 59%, and
48%, respectively. Table IV shows results for AWS trace.
The gains are smaller (but still significant), because the trace
already embodies best static mapping of requests to VMs.

To make it easier to navigate our experimentations, we
explain the intuition behind them. HRR-DK, HRR-TK and
E-TK are theoretical algorithms in a sense that they assume
knowledge of the future. HRR-DK measures importance of
precisely forecasting application request distribution. On av-
erage, on the data at hand, it performs only 1% better than
HRR, even though it knows the exact distribution for the
next month. While, it’s easy to construct adversarial scenarios,
our experiment demonstrates that there are reasonable inputs
where exact knowledge of distribution is not a big advantage
and simple non-parametric estimation works well enough.

HRR-TK’s role is to explore importance of knowing the ex-
act time series of requests vs distribution. HRR-TK improves
over HRR and HRR-DK. This experiment emphasizes the
importance of being able to configure Load Balancing every
hour, which amounts to an additional 3% efficiency increase
over HRR-DK, on average. E-TK illustrates the advantage of
dynamic resource diversification. Dynamic mapping of request
types to VM types reduces relative overhead by a factor of 2
compared to PE. SOTA and SOTA-DK demonstrate a similar
opportunity offered by reserving heterogenous resources with
static mapping of requests to resources.

A dramatic improvement happens when we unleash the
full power of joint optimization of capacity reservation and
resource diversification through HRR, where application re-
quest types are dynamically mapped on the VM types. As
one can see, HRR is 48% better than SOTA-DK, on average.
Its relative overhead compared to HRR-DK and HRR-TK is
between 0% − 3% and 3% − 5% respectively. Moreover, we
observe that HRR is a robust algorithm, with minimal history
window size having only minor effect on its performance.

Table IV presents similar results for the AWS trace. Note
that AWS trace is a more difficult use case for HRR, since we
treat requests for VM procurement as ”requests”. Naturally,
these requests are already ”optimized” for the VM inventory of
AWS. Hence, dynamic requests mapping has smaller effect on
the overall performance. Still, because HRR reuses previously
reserved servers and there are many situations when more than
one VM request can be mapped on the same server (consider
these to be physical servers for the sake of discussion), HRR
is able to significantly improve results obtained by the PE and
E-TK, and SOTA.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel Heterogeneous Resource Reservation
(HRR) problem. Future directions include combining short-
term workload patterns prediction with HRR to optimize QoS.
In particular, short term prediction allows to power VMs
up/down in advance to avoid cold boot, while HRR allows
to select optimized VM types and contracts to slash overall
operational costs.
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