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Abstract. When a model does not satisfy a given specification, a counterexample
is produced by the model checker to demonstrate the failure. While this service is
important and useful, the analysis of the counterexample in order to understand
the problem it demonstrates, can be difficult and time-consuming.
In this paper, we address the problem of analyzing a counterexample. Using the
notion of causality, introduced by Halpern and Pearl, we formally define a set
of pairs 〈signal, location〉, which cause the failure of the specification on the
counterexample trace. We prove that computation of the exact set of causes is
intractable and provide a polynomial-time model checking based algorithm that
approximates it. Experimental results, conducted on real-life examples suggest
that the approximate algorithm computes causes that match the user’s intuition
on all examples. Our approach is independent of the tool that produced the coun-
terexample and can be applied as an external layer to any model checking tool.

1 Introduction

Model checking ([CE81,QS81], c.f.[CGP00]) is a method for verifying that a finite-state
concurrent system (a model) is correct with respect to a given specification. An impor-
tant feature of model checking tools is their ability to provide, when the specification
does not hold in a model, a counterexample [CGMZ95]: a single trace that demonstrates
the failure of the specification in the model. This allows the user to analyze the failure,
understand its source(s), and fix the specification or model accordingly. In many cases
however, the task of understanding the counterexample is challenging, and may require
a significant manual effort.

There are different aspects of understanding a counterexample. In recent years, the
process of finding the source of a bug has attracted a lot of attention. Many works have
approached this problem (see [CIW+01,JRS02,DRS03,BNR03,Gro04,GK04,CG05],
[SQL05,WYIG06,GSB07,SB07,SFBD08] for a partial list), addressing the question of
the cause of the failure in the model, and proposing automatic ways to extract more in-
formation about the model, to ease the debugging procedure. Naturally, the algorithms
proposed by the above mentioned works involved implementation in a specific tool
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(for example, the BDD procedure of [JRS02] would not work for a SAT based model
checker like those of [Gro04,BNR03]).

We address a different, more basic aspect of understanding a counterexample: the
task of matching the verified specification ϕ with the trace that contradicts it. When a
counterexample is presented to the user, the first phase in the analysis is to check that ϕ
is indeed contradicted by the provided trace, and detect the contradicting places. This
task, although it may seem simple, can become challenging and time-consuming when
the trace involved is long and when ϕ is complex. We present a method and a tool
for explaining the trace itself without involving the model from which it was extracted.
Thus, our approach has the advantage of being light-weighted (no size problem involved
as only one trace is considered at a time) as well as independent: it can be applied as an
external layer to any model checking tool. At the same time, we provide an invaluable
debugging aid to the user.

An explanation of a counterexample deals with the question of which events on
the trace cause it to falsify the specification. Thus, we face the problem of causality.
The philosophy literature, going back to Hume [Hum39], has long been struggling with
the problem of what it means for one event to cause another. We relate the formal
definition of causality of Halpern and Pearl [HP01] to explanations of counterexamples.
The definition of causality used in [HP01], like other definitions of causality in the
philosophy literature, is based on counterfactual dependence. Event A is said to be a
cause of event B if, had A not happened (this is the counterfactual condition, since A
did in fact happen) then B would not have happened.

Unfortunately, this definition does not capture all the subtleties involved with causal-
ity. The following story, taken from [Hal02], demonstrates some of the difficulties in this
definition. Suppose that Suzy and Billy both pick up rocks and throw them at a bottle.
Suzy’s rock gets there first, shattering the bottle. Since both throws are perfectly accu-
rate, Billy’s would have shattered the bottle had it not been preempted by Suzy’s throw.
Thus, according to the counterfactual condition, Suzy’s throw is not a cause for shat-
tering the bottle (because if Suzy wouldn’t have thrown her rock, the bottle would have
been shuttered by Billy’s throw). Halpern and Pearl deal with this subtlety by, roughly
speaking, taking A to be a cause of B if B counterfactually depends on A under some
contingency. For example, Suzy’s throw is a cause of the bottle shattering because the
bottle shattering counterfactually depends on Suzy’s throw, under the contingency that
Billy doesn’t throw.

We adapt the [HP01] definition of causality to the analysis of a counterexample
trace π with respect to a temporal logic formula ϕ. We view a trace as a set of pairs
〈location, signal〉, and look for the pairs that are causes for the failure of ϕ according
to the definition in [HP01]. To demonstrate our approach, let us consider the following
example.

Example 1 A transaction begins when ’start’ is asserted, and ends when ’end’ is as-
serted. Some unbounded number of time units later, the signal ’status-valid’ should be
asserted. A new transaction must not begin before the ’status-valid’ of the previous
transaction has arrived. This specification can be written as

G(start→ (¬end W (end ∧X(¬start Wstatus valid))))
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A counterexample for the above formula may look like the computation path π shown
in Fig. 1.

Fig. 1. A counterexample with explanations

Matching the formula with the counterexample is not trivial in this example. Our ex-
planations, displayed as red dots, immediately attracts the user’s attention to the rele-
vant places, to ease the matching process. Note that each red dot r (indicating a pair
〈location, signal〉) is a cause of the failure of ϕ on the trace: switching the value of r
would, under some contingency, change the value of ϕ on π.

We show that the complexity of detecting an exact causal set is NP-complete, based
on the complexity result for causality in binary models (see [EL01]). We then present
a model-checking-based approximation algorithm whose complexity is linear in the
size of the formula and in the length of the trace. Experience show that our algorithm
produces an exact causal set for most practical examples.

There are several works that tie the definition of causality by Halpern and Pearl to
formal verification. Most closely related to our work is the paper by Chockler et. al
[CHK08], in which causality and its quantitative measure, responsibility (see [CH04]
for the definition of responsibility), are viewed as refinement of coverage in model
checking. Another work considers responsibility as a refinement of vacuity [CS07].
Finally, causality and responsibility can be used to improve the refinement techniques
of symbolic trajectory evaluation (STE) [CGY08].

The rest of the paper is organized as follows. In Section 2 we give the definition of
the Linear Temporal Logic LTL, and define causality in binary causal models. Section 3
is the main section of the paper, where we define causality in counterexamples, analyze
the complexity of its computation and provide an efficient approximation algorithm to
compute a causal set. In Section 4 we discuss the implementation of our algorithm, on
top of the IBM’s commercial model checker RuleBase [Rul]. We demonstrate the graph-
ical presentation used in practice, and report on experimental results demonstrating the
usefulness of the method. Section 5 concludes the paper.

2 Preliminaries

Linear Temporal Logic

Formulas of LTL are built from a set V of Boolean variables using Boolean operators
and the temporal operators:.

– Every Boolean variable is an LTL formula.
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– If ϕ and ψ are LTL formulas then so are:
• ¬ϕ • ϕ ∧ ψ • Xϕ • [ϕUψ]

Additional operators are defined as syntactic sugaring of those above:
• ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) • ϕ→ ψ = ¬ϕ ∨ ψ • Fϕ = [true Uϕ]
• Gϕ = ¬F¬ϕ • [ϕWψ] = [ϕUψ] ∨Gϕ

The semantics of an LTL formula are traditionally defined with respect to an infinite
computation path. A computation path is a sequence of states w = s0, s1, s2, ...,, where
si is a subset of the set of Boolean variables V , denoting the set of variables that hold
in the state. The suffix of a computation path w, sj , sj+1, sj+2, ... is denoted by wj .
The finite prefix s0, s1, ..., si of w is denoted wi. The concatenation of a finite prefix w
with an infinite computation v is denoted w · v. We use w |= ϕ to indicate that the LTL
formula ϕ holds on the computation w. The semantics of |= is inductively defined as
follows.

– w |= v iff v ∈ w0

– w |= ¬ϕ iff w 6|= ϕ
– w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
– w |= Xϕ iff w1 |= ϕ
– w |= [ϕUψ] iff ∃k ≥ 0 such that wk |= ψ, and for every 0 < j < k,wj |= ϕ.

Causality

In this section, we review the definition of causality from [HP01]. As we argue below,
models in formal verification are binary, thus we only present the significantly simpler
versions of causality and responsibility for binary models (see [EL01] for the simpli-
fication of the definition of causality for the binary case). We also omit several other
aspects of the general definition including the division of variables to exogenous and
endogenous. Readers interested in the general framework of causality are referred to
Appendix A.

Definition 2 (Binary causal model) A binary causal modelM is a tuple 〈V,F〉, where
V is the set of boolean variables andF associates with every variableX ∈ V a function
FX that describes how the value of X is determined by the values of all other variables
in V . A context ~u is a legal setting for the variables in V .

A causal model M is conveniently described by a causal network, which is a graph
with nodes corresponding to the variables in V and an edge from a node labeled X to
one labeled Y if FY depends on the value of X . We restrict our attention to what are
called recursive models. These are ones whose associated causal network is a directed
acyclic graph.

A causal formula ϕ is a boolean formula over the set of variables V . A causal
formula ϕ is true or false in a causal model given a context. We write (M,~u) |= ϕ if ϕ
is true in M given a context ~u. We write (M,~u) |= [~Y ← ~y](X = x) if the variable X
has value x in the model M given the context ~u and the assignment ~y to the variables
in the set ~Y ⊂ V .

For the ease of presentation, we borrow from [CHK08] the definition of criticality in
binary causal models, which captures the notion of counter-factual causal dependence.
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Definition 3 (Critical variable) [CHK08] Let M be a model, ~u the current context,
and ϕ Boolean formula. Let (M,~u) |= ϕ, and X a Boolean variable in M that has the
value x in the context ~u.and x̄ the other possible value (0 or 1). We say that (X = x) is
critical for ϕ in (M,~u) iff (M,~u) |= (X ← ¬x)¬ϕ. That is, changing the value of X
to ¬x falsifies ϕ in (M,~u).

With these definitions in hand, we can give the definition of cause in binary causal
models from [HP01,EL01].

Definition 4 (Cause) We say that X = x is a cause of ϕ in (M,~u) if the following
conditions hold:

AC1. (M,~u) |= (X = x) ∧ ϕ.
AC2. There exist a subset ~W of V with X 6∈ ~W and some setting (x′, ~w′) of the

variables in (X, ~W ) such that setting the variables in ~W to the values ~w′ makes
(X = x) critical for the satisfaction of ϕ.

3 Causality in Counterexamples

In this section we show how thinking in terms of causality is useful for explaining
counterexamples. In Section 3.1 we define the causal model for counterexamples and
discuss the complexity of computing causality. In Section 3.2 we describe an approxi-
mate algorithm for explaining counterexamples that is based on causality and study its
complexity.

3.1 Model

A counterexample to a formula ϕ in a model K is a computation path π = s0, s1, . . .,
where si is a state of K for all i ≥ 0, such that π 6|= ϕ. The labeling function L of K
maps each pair 〈si, v〉 of π, for a state si and a Boolean signal v, to {0, 1} in a natural
way: 〈si, v〉 = 1 iff si is labeled with v, and 0 otherwise.

We view the counterexample trace π and the formula ϕ as a binary causal model.
The set of pairs 〈si, v〉 is the set of variables V in the causal model M , and ~u is defined
by L (since the range of L is binary, our model is indeed binary).

We note that there are two important differences between the definition of causality
in Section 2 and our setting:

1. The value of ϕ. Since π is a counterexample, the value of ϕ in our model is initially
false. Thus, in our setting, we are looking for causes for falsification, not causes for
satisfaction.

2. The formula ϕ is in LTL, and not a Boolean formula. However, based on the
automata-theoretic approach to branching-time model checking [KVW00], model
checking can be viewed as evaluating a Boolean circuit with the values of the pairs
〈si, v〉 being the inputs to the circuit, and the output being the value of ϕ on the
given trace. As shown in [CHK08], Boolean circuits are a special case of binary
causal models, where each gate of the circuit is a variable of the model, and values
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of inner gates are computed based on the values of the inputs to the circuit and the
Boolean functions of the gates. A context ~u is a setting to the input variables of the
circuit.

There is one subtlety, which we need to take care of before we formally define
causes in counterexamples: the value of ϕ on finite paths. It is important to note that
while computation paths are infinite, it is often sufficient to determine that π 6|= ϕ after
a finite prefix of the path. Thus a counterexample produced by a model checker may be
a finite execution path. If π is finite, we use the following definition for the value of ϕ
on π.

Definition 5 Let π be a finite path and ϕ an LTL formula. We say that:

1. The value of ϕ is true in π (denoted π |=f ϕ, where |=f stands for “finitely
models”) if and only if for all infinite computations ρ, we have π · ρ |= ϕ;

2. The value of ϕ is false in π (denoted π |=/fϕ, where |=/f stands for “finitely falsi-
fies”) if and only if for all infinite computations ρ, we have π · ρ 6|= ϕ;

3. The value of ϕ in π is unknown (denoted π ? ϕ) if and only if there exist two infinite
computations ρ1 and ρ2 such that π · ρ1 |= ϕ and π · ρ2 6|= ϕ.

Remark 6 We note that our definition of satisfiability on finite paths coincides with the
definition of truncated semantics for linear temporal logic in [EFH+03], specifically
the abort operator. It was shown in [ABKV03] that translating linear temporal logic
formulas with the abort operator to B’̈uchi automata has nonelementary complexity,
in constrast to the reset operator, which differs from the abort slightly but enjoys the
“fast-compilation property”: adding reset to the linear temporal logic formulas does
not increase the (single exponential) complexity of translation to B’̈uchi automata. Es-
sentially, the semantics introduced in [ABKV03] states that the value on a truncated
path is unknown (or weakly satisfied) if we didn’t see a failure yet. However, the only
case where the definition in [EFH+03] differs from the definition in [ABKV03] is when
the specification in unsatisfiable. Since we assume that our specifications are satisfiable
to start with, we do not have the comlexity problem mentioned in [ABKV03].

After the current context ~u is changed, the original value false of ϕ can change to
either true or unknown. With these observations in hand, we can give the definition of
cause for counterexamples.

Definition 7 (Cause in counterexample trace) Let ϕ be an LTL formula that fails on
an infinite path π = s0, s1, . . ., and let k be the smallest index such that π[0..k] 6 |=f ϕ.
If ϕ does not fail on any finite prefix of π, we take k =∞ (then π[0..∞] naturally stands
for π). Then, a pair 〈s, v〉 is a cause of the failure of ϕ in π[0..k] if it is a cause (as in
Definition 4) of ¬ϕ in the binary causal model that corresponds to π[0..k] and ϕ.

In other words, 〈s, v〉 is a cause of the failure of ϕ in π[0..k] if there exists a set of
pairs S = {〈si, r〉 : i ≤ k, r is a signal in the labeling of π} such that changing the
labeling function L for all pairs in S makes 〈s, v〉 critical for the falsification of ϕ in
π[0..k] (note that the change in the value of ϕ can be either to true or to unknown ).
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Examples 8 1. As an example of failure of the specification on a finite prefix, consider
ϕ1 = Gp and a path π1 = s0, s1, s2, s3, (s4)ω labeled as (p)·(p)·(¬p)·(¬p)·(p)ω.
Clearly, ϕ1 fails on a finite prefix of π1. The shortest such prefix is π1[0..2]. It is
easy to see that according to our definition, 〈s2, p〉 is a cause of failure of ϕ1 in π1,
while 〈s3, p〉 is not a cause. It is also easy to see that 〈s2, p〉 is the only cause of
failure of ϕ1 in π1, which indeed meets out intuition.

2. As an example of failure of the specification on an infinite path only, consider ϕ2 =
Fp and a path π2 = (s0)ω = (¬p)ω. Clearly, ϕ2 fails in π2, yet it does not fail on
any finite prefix of π2. According to our definition, the set of pairs {〈si, p〉 : i ∈ IN}
is the set of causes for failure of ϕ2 on π2.

3. A slightly more complicated example is as follows. Consider ϕ3 = aU(bUc) and a
trace π3 = s0, s1, s2, . . . labeled as a · (∅)ω (the prefix of ϕ3 of length 3 is pictured
in Figure 2). Clearly, ϕ3 fails on π3. Moreover, it is easy to see that the prefix in
Figure 2 is the shortest prefix on which ϕ3 fails. Indeed, a possible continuation of
π3[0] on which ϕ3 is satisfied can be a trace in which c is up in the first position,
so ϕ3 does not fail on π3[0]. What is the set of causes for failure of ϕ3 on π3[0..1]?
Clearly, 〈s0, a〉 is not a cause, since ϕ3 is monotonic increasing in the value of a,
and thus changing the value of a from 1 to 0 cannot contribute to the satisfaction of
ϕ3 on π3. By checking all possible changes of the current setting we can also see
that 〈s0, b〉 is not a cause. On the other hand, 〈s1, a〉 is a cause for the falsification
of ϕ3 on π3[0..1] because if we change the value of a in s1 from 0 to 1, the value
of ϕ3 on π3[0..1] becomes unknown. Changing the value of b in s1 from 0 to 1
has the same effect, thus zugs1, b is also a cause. The pairs 〈s0, c〉 and 〈s1, c〉 are
causes because changing the value of c in either s0 or s1 from 0 to 1 changes the
value of ϕ3 to true on π[0..1]. The values of signals in s2 are not causes because
the first failure of ϕ3 happens in s1. The causes are represented graphically as red
dots in Figure 2.

Fig. 2. A counterexample trace for aU(bUc).

4. The following example demonstrates the difference between criticality and causal-
ity. Consider ϕ4 = G(a∧b∧c) and a trace π4 = s0, s1, s2, . . . labeled as (∅)ω (the
prefix of ϕ4 of length 3 is pictured in Figure 3). Clearly, ϕ4 fails on π4[0], however,
changing the value of any signal in one state does not change the value of ϕ4. There
exists, however, the change of the setting that makes the value of a in s0 critical for
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the value of ϕ4 in π4[0]: the change of the value of b and the value of x in s0 from
0 to 1. Similarly, there exists a change of the setting that makes the value of a and
the value of c (separately) in s0 critical for the value of ϕ4 in π4[0]. Thus, all three
of them are causes and are marked by red dots in Figure 3.

Fig. 3. A counterexample trace for G(a ∧ b ∧ c).

Why do we need to consider the cases where there is a finite prefix on which the
specification fails separately? Note that a trace π may demonstrate more than one point
of failure, as in our example above. We state that the first failure is usually the most
interesting one to the user. Also, focusing on one failure naturally reduces the set of
causes, and thus makes it easier for the user to understand the explanation.

3.2 Complexity and algorithms

Eiter and Lukasiewicz showed that in binary causal models, computing causality is NP-
complete [EL01]. The reduction from binary causal models to Boolean circuits and
from Boolean circuits to model-checking, shown in [CHK08], proves that computing
causality in model checking of branching time specifications is NP-complete as well.
Our setting differs from the setting in [CHK08] in two aspects: our specifications are
in linear-time temporal logic, and we compute causes for falsification, rather than satis-
faction. Since on a single trace linear-time and branching temporal logics coincide, and
since computing the causes for satisfaction is easily reducible to computing the causes
for falsification, we have the following lemma.

Lemma 9. Computing the set of causes for falsification of a linear-time temporal spec-
ification on a single trace is NP-complete.

Since traces are usually short and specifications are small, applying the brute-force
algorithm (which amounts to checking the effect of changing the value of every subset
of literals on the criticality of each pair 〈 state, signal 〉) for finding the exact set of causes
is not unreasonable. On the other hand, our tool is interactive, and thus is supposed to
perform the computation of causes while the user is waiting. Thus, it is important to
make the algorithm as efficient as possible.
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We start with presenting a reduction of the causality problem to SAT. Since there is
currently a plethora of efficient SAT solvers (in particular, IBM’s model checker Rule-
Base has a very powerful SAT solver Mage built into it), such a translation can lead to
an efficient implementation of causality computation. Then, we describe an approxima-
tion algorithm for computing causality, with the linear complexity both in the size of
the specification and the size of the trace.

Reducing causality to SAT [**sketch**] The path π is a counterexample to ϕ, thus the
values of signals in states of ϕ represent the satisfying assignment to the SAT formula
derived from the product of the whole model with ¬ϕ [BCCZ99]. Since we are looking
for modifications of π in orded to compute causality, we do the following: (1) Let 〈si, p〉
be the pair for which we compute whether it is a cause for the falsification of ϕ in
π[0..k]. We replace all other values of signals in states with variables, and denote the
resulting formula by Ψ〈i,p〉(¬ϕ, π[0..k]). (2) We flip the value of 〈si, p〉, and denote the
formula that is the product of ϕ and the trace π[0..k] with the value of 〈si, p〉 flipped and
the other signals replaced with variables by Ψ¬〈i,p〉(ϕ, π[0..k]). Then, 〈i, p〉 is a cause
for falsification of ϕ in π[0..k] iff the formula Ψ〈i,p〉(¬ϕ, π[0..k]) ∧ Ψ¬〈i,p〉(ϕ, π[0..k])
is satisfiable. Indeed, it is satisfiable iff there exist values of signals in states other than
〈si, p〉 such that the trace with these values and the original value of 〈si, p〉 still falsifies
ϕ, and flipping the value of 〈si, p〉 causes satisfaction of ϕ in π[0..k]. [** how to express
unknown? also, need to add the truncated semantics to BCCZ99 **]

Approximation algorithm We note that while the definitions provided in previous sec-
tions are good for both finite and for infinite computations, the procedure given below
considers finite computations only. This is because in practice, the counterexamples we
work with are always finite. When representing an infinite path, the counterexample
will contain a “loop” indication.

The procedure below produces C(w,ϕ), the approximation of the set of causes for
the failure of ϕ on w. We sometimes use v(w,ϕ) to denote the valuation of ϕ on w (that
is, v(w,ϕ) = 1 iff w |= ϕ). The function Time, used when a proposition is evaluated,
returns the time unit we are currently checking. Note that when the recursive procedure
gets to the proposition level, the computation is in many cases shorter than the original
computation with which it started. This is because the X and U operators recursively
apply the algorithm on w1. Let the length of the top level computation be n, and let w
be the computation at the proposition level. Then Time(w) = n− |w|.

Algorithm 10 (A Recursive Procedure) A causality set C for ϕ and π can be com-
puted as follows.

– C(π, true) = C(π, false) = ∅

– C(π, p) =
{
{(Time(π), p)} if v(s0, p) = 1
∅ otherwise

– C(π,¬p) =
{
{(Time(π), p)} if v(s0, p) = 0
∅ otherwise

– C(π,Xϕ) =
{
C(π1, ϕ) if |π| > 1
∅ otherwise
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– C(π, ϕ ∧ ψ) =
C(π, ϕ) ∪ C(π, ψ) if π 6|= ϕ and π 6|= ψ
C(π, ϕ) if π 6|= ϕ and π |= ψ
C(π, ψ) if π |= ϕ and π 6|= ψ
∅ otherwise

– C(π, ϕ ∨ ψ) ={
C(π, ϕ) ∪ C(π, ψ) if π 6|= ϕ and π 6|= ψ
∅ otherwise

– C(π, [ϕUψ]) =
C(π, ψ) ∪ C(π, ϕ) if π 6|= ϕ and π 6|= ψ
C(π, ψ) ∪ C(π1, [ϕUψ]) if π |= ϕ and π 6|= ψ

and π 6|= X[ϕUψ] and |π| > 1
∅ otherwise

The procedure above recursively performs model checking of the given formula ϕ
on the counterexample π. At the proposition level, p is considered a cause in the current
state if and only if it has the erroneous value in the current state. At every level of
the recursion, a sub-formula is considered relevant (that is, its exploration can produce
causes for falsification of the whole specification) if it is falsified at the current state.
Note that for conjunctions, if both conjuncts are relevant, only one conjunct is chosen.
[** really? then we don’t always find the shortest path to faliure! **] We explain in
detail the recursive definition of the Until operator, since it is the most difficult to follow.

The formula η = [ϕUψ] is relevant on π in two cases.

1. If π |= η.
The trace π can satisfy η in one of the following ways.
(a) π |= ψ. The relevance set of η would be the relevance set of ψ.
(b) π |= ϕ ∧ w |= X[ϕUψ]. The relevance set for this case would be the union of

the relevance set for ϕ and the relevance set for X[ϕUψ].
2. If π 6|= η, there can be one of the three reasons to that:

(a) π 6|= ϕ ∧ π 6|= ψ, in which case, the relevance set would be the union of the
relevance sets for ϕ and for ψ.

(b) π |= ϕ∧ π 6|= ψ ∧ |π| = 1, in which case the relevance set would be the set for
ψ.

(c) π |= ϕ ∧ π 6|= ψ ∧ π 6|= X[ϕUψ]. The relevance set would be the union of the
sets for ψ and for X[ϕUψ].

It is easy to see that the computation of the approximate set of causes and the first
point of failure of ϕ on π is done in one path on π, and the satisfaction of ϕ is checked
locally at each state. Thus, we have the following lemmas.

Lemma 11. The Algorithm 10 returns the shortest prefix of π on which ϕ fails.

Lemma 12. The complexity of Algorithm 10 is linear in k and in |ϕ|.
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4 Implementation and Experimental Results

The idea of explaining counterexamples arose from a genuine need encountered by
RuleBase PE users. A RuleBase PE user is typically a verification engineer, who is for-
mally verifiying a hardware design written by a logic designer. The verification engineer
writes temporal formulas and runs them in RuleBase PE, selecting one or more model
checking engines with which to check each formula. Each engine uses a different model
checking algorithm, as described in [Rul]. If a formula fails on the design-under-test
(DUT), the model checking engine produces a counterexample trace, which the verifi-
cation engineer views in RuleBase PE’s built-in trace viewer.

When the user views a counterexample trace for the first time, her purpose is not
trying to debug the hardware design. Although the verification engineer understands the
specification of the DUT, she is probably not familiar with the detailed implementation,
which is owned by the logic designer. What the user is looking for is some very basic
information about the manner in which the formula fails on the specific trace. For ex-
ample, if the formula is a safety property, the first question is when the formula fails
(at what cycle in the trace). If the formula is a complex combination of several condi-
tions, she needs to know which of these conditions has failed. These basic questions are
prerequisites to deeper investigations of the failure.

For answering these questions, the user restricts her view of the trace to the signals
that appear in the formula itself. For example, if the formula is G ¬ERROR, then the
user only views the behavior of the signal ERROR in the trace viewer. For this particular
formula, it is then relatively easy to visually scan the trace and find a time point at
which ERROR holds (although even this simple task may be difficult if the trace is very
long). However, the boolean invariant in the formula may be more complex, involving
multiple signals and boolean operations between them, in which case the visual scan
becomes non-trivial (see Example 13 below). Adding other temporal operators to the
formula, such as X or U , makes the visual scan even more difficult, since relations
between several trace cycles must be considered.

This is the point at which visual trace explanation becomes helpful. In the RuleBase
PE trace viewer, the trace is displayed as usual, but with the addition of small red dots
at several 〈signal, cycle〉 locations on the trace. This shows the user which points in
the trace are relevant for the fail, allowing her to focus on these points and ignore other
parts of the trace.

These red dots will also accompany the trace when it becomes part of a bug report
sent to the logic designer. The designer will also use them as a starting point for actually
debugging the fail.

Implementation in RuleBase PE

The algorithm used in practice by RuleBase PE for computing the displayed set of “red
dots” is a variant of the recursive procedure presented in Algorithm 10. This procedure
is applied to every counterexample trace produced by the model checking engines. The
procedure receives the trace and formula as input, and is oblivious to the method by
which the trace was obtained. The output of the procedure is a set of 〈signal, cycle〉
pairs, which is passed on to the trace viewer for displaying the red dots at the designated
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locations. The execution time of the red dots computation is negligible, and is not felt
by the user.

In addition to counterexample traces for fails, RuleBase PE provides witness traces
for formulas that pass [XXX citation needed]. Red dots are displayed on these traces as
well. In practice, a witness trace is simply a counterexample trace for a witness formula,
and therefore the procedure for computing red dots on a witness trace is the same as for
a counterexample trace.

Examples

We implemented Algorithm 10 in RuleBase PE, replacing the similar algorithm that is
normally used in the tool. We used this implementation to obtain the red dots shown in
the following examples.

Example 13 (A boolean invariant) As an example of a complex boolean invariant,
consider the formula

G ((STATUS VALID ∧ ¬LARGE PACKET MODE ∧ LONG FRAME RECEIVED) →
((LONG FRAME ERROR ∧ ¬STATUS OK) ∨ TRANSFER STOPPED))

The trace in Figure 4 was produced by a SAT-based BMC engine, which was con-
figured to increase its bound by increments of 20. As a result, the trace is longer than
necessary, and the failure does not occur on the last cycle of the trace. The red dots
point us to the failure at cycle 12.

Fig. 4. Counterexample for a boolean invariant

Example 14 (A liveness property) For a liveness property, the model checking engine
gives a counterexample with a loop. This is marked by the signal LOOP in the trace
viewer. The point at which the loop begins is marked with a red dot (in addition to the red
dots computed by Algorithm 10). For example, the trace in Figure 5 is a counterexample
for the formula

G (P1 ACTIVE → X F P2 ACTIVE)
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Fig. 5. Counterexample for a liveness property

Example 15 We revisit the formula aU(bUc) from Example 8, to compare the causality
set computed by Algorithm 10 with the causality set derived from Definition 7. We know
that the algorithm cannot compute the exact set in all cases, and indeed in this case we
see a difference. Figure 6 shows the red dots computed by Algorithm 10. The algorithm
places a red dot on signal b at cycle 0, which is not a cause of the failure according to
Definition 7.

Fig. 6. Counterexample for aU(bUc)

5 Conclusion and Future Directions

We have shown how the causality definition of Halpern and Pearl [HP01] can be applied
to the task of explaining a counterexample. Our method is implemented as part of the
IBM model checking tool-set RuleBase [Rul], and it is applied to every counterexam-
ple presented by the tool. Experience shows that when visually presented as described
in Section 4, the causality information substantially speeds up the time needed for the
understanding of a counterexample. Since the causality algorithm is applied to a sin-
gle counterexample at a time, no size issues are involved. An important advantage of
our method is the fact that it is independent of the tool that produced the counterex-
ample. When more than one model checking “engine” is invoked to verify a formula,
as described in [BDEGW03], the independence of the causality algorithm is especially
important.

The approach presented in this paper defines and (approximately) detects a set of
causes for the first failure of a formula on a trace. While we believe that this information



14

is the most beneficial for the user, there can be circumstances where the sets of causes
for other failures are also desirable. A very small and straightforward enhancement of
the algorithm will allow to compute the (approximate) sets of causes of all or a subset
of failures of the given counterexample.

As a future work, it is interesting to see whether there exist subsets of LTL for which
the computation of the exact set of causes is polynomial. One of the natural candidates
for being such an “easy” sublogic of LTL is the PSL simple subset defined in [EF06].
Another natural candidate could be the common fragment of LTL and ACTL, called
LTLdet (see [Mai00]), however, we were not able to come up with a polynomial-time
algorithm for computing the set of causes for this logic yet. The main reason for that is
that, roughly speaking, it seems that we need determinism in falsification rather than in
satisfaction of the specification.

Another possible direction for a future research is to try to come up with efficient
implementations of the brute-force algorithm for computing the exact set of causes.
A promising direction is to reduce this problem to a satisfiability problem, due to the
abundance of efficient SAT solvers.

Finally, we note that our approach, though demonstrated here for LTL specifica-
tions, can be applied to other linear temporal logics as well, with slight modifications.
This is because our definition of cause holds for any monotonic temporal logic. It will
be interesting to see whether it can also be extended to the full PSL without significantly
increasing its complexity.
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A The General Framework of Causality

In this section, we review the details of the definitions of causality for general recursive
causal models from [HP01].

A signature is a tuple S = 〈U ,V,R〉, where U is a finite set of exogenous variables,
V is a set of endogenous variables, and the function R : U ∪ V → D associates with
every variable Y ∈ U ∪ V a nonempty set R(Y ) of possible values for Y from the
range D. Intuitively, the exogenous variables are ones whose values are determined by
factors outside the model, while the endogenous variables are ones whose values are
ultimately determined by the exogenous variables. A causal model over signature S is
a tuple M = 〈S,F〉, where F associates with every endogenous variable X ∈ V a
function FX such that FX : (×U∈UR(U)) × (×Y ∈V\{X}R(Y )) → R(X). That is,
FX describes how the value of the endogenous variable X is determined by the values
of all other variables in U ∪ V . If the range D contains only two values, we say that M
is a binary causal model.

We can describe (some salient features of) a causal model M using a causal net-
work. This is a graph with nodes corresponding to the random variables in V and an edge
from a node labeled X to one labeled Y if FY depends on the value of X . Intuitively,
variables can have a causal effect only on their descendants in the causal network; if Y
is not a descendant of X , then a change in the value of X has no affect on the value
of Y . For ease of exposition, we restrict attention to what are called recursive models.
These are ones whose associated causal network is a directed acyclic graph (that is,
a graph that has no cycle of edges). It should be clear that if M is a recursive causal
model, then there is always a unique solution to the equations in M , given a context,
that is, a setting ~u for the variables in U .

The equations determined by {FX : X ∈ V} can be thought of as representing
processes (or mechanisms) by which values are assigned to variables. For example, if
FX(Y, Z, U) = Y + U (which we usually write as X = Y + U ), then if Y = 3 and
U = 2, then X = 5, regardless of how Z is set. This equation also gives counterfactual
information. It says that, in the context U = 4, if Y were 4, then X would be u + 4,
regardless of what value X , Y , and Z actually take in the real world.

While the equations for a given problem are typically obvious, the choice of vari-
ables may not be. For example, consider the rock-throwing example from the introduc-
tion. In this case, a naive model might have an exogenous variable U that encapsulates
whatever background factors cause Suzy and Billy to decide to throw the rock (the de-
tails of U do not matter, since we are interested only in the context where U ’s value is
such that both Suzy and Billy throw), a variable ST for Suzy throws (ST = 1 if Suzy
throws, and ST = 0 if she doesn’t), a variable BT for Billy throws, and a variable BS
for bottle shatters. In the naive model, BS is 1 if one of ST and BT is 1.

This causal model does not distinguish between Suzy and Billy’s rocks hitting the
bottle simultaneously and Suzy’s rock hitting first. A more sophisticated model is the
one that takes into account the fact that Suzy throws first. It might also include variables
SH and BH, for Suzy’s rock hits the bottle and Billy’s rock hits the bottle. Clearly BS
is 1 iff one of BH and BT is 1. However, now, SH is 1 if ST is 1, and BH = 1 if BT = 1
and SH = 0. Thus, Billy’s throw hits if Billy throws and Suzy’s rock doesn’t hit.
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Given a causal model M = (S,F), a (possibly empty) vector ~X of variables in V ,
and vectors ~x and ~u of values for the variables in ~X and U , respectively, we can define
a new causal model denoted M ~X←~x over the signature S ~X = (U ,V − ~X,R|V− ~X).

Formally, M ~X←~x = (S ~X ,F
~X←~x), where F ~X←~x

Y is obtained from FY by setting the
values of the variables in ~X to ~x. Intuitively, this is the causal model that results when
the variables in ~X are set to ~x by some external action that affects only the variables in
~X; we do not model the action or its causes explicitly. For example, if M is the more
sophisticated model for the rock-throwing example, then MST←0 is the model where
Suzy doesn’t throw.

Given a signature S = (U ,V,R), a formula of the form X = x, for X ∈ V
and x ∈ R(X), is called a primitive event. A basic causal formula is one of the form
[Y1 ← y1, . . . , Yk ← yk]φ, where φ is a Boolean combination of primitive events;
Y1, . . . , Yk are distinct variables in V; and yi ∈ R(Yi). Such a formula is abbreviated
as [~Y ← ~y]φ. The special case where k = 0 is abbreviated as φ. Intuitively, [Y1 ←
y1, . . . , Yk ← yk]φ says that φ holds in the counterfactual world that would arise if Yi

is set to yi, i = 1, . . . , k. A causal formula is a Boolean combination of basic causal
formulas.

A causal formula φ is true or false in a causal model, given a context. We write
(M,~u) |= φ if φ is true in causal modelM given context ~u. (M,~u) |= [~Y ← ~y](X = x)
if the variable X has value x in the unique (since we are dealing with recursive models)
solution to the equations in M~Y←~y in context ~u (that is, the unique vector of values for

the exogenous variables that simultaneously satisfies all equations F
~Y←~y
Z , Z ∈ V − ~Y ,

with the variables in U set to ~u). We extend the definition to arbitrary causal formulas
in the obvious way.

With these definitions in hand, we can give the definition of cause from [HP01].

Definition 1. We say that ~X = ~x is a cause of ϕ in (M,~u) if the following three
conditions hold:

AC1. (M,~u) |= ( ~X = ~x) ∧ ϕ.
AC2. There exist a partition (~Z, ~W ) of V with ~X ⊆ ~Z and some setting (~x′, ~w′) of the

variables in ( ~X, ~W ) such that if (M,~u) |= Z = z∗ for Z ∈ ~Z, then
(a) (M,~u) |= [ ~X ← ~x′, ~W ← ~w′]¬ϕ. That is, changing ( ~X, ~W ) from (~x, ~w) to

(~x′, ~w′) changes ϕ from true to false.
(b) (M,~u) |= [ ~X ← ~x, ~W ← ~w′, ~Z ′ ← ~z∗]ϕ for all subsets ~Z ′ of ~Z. That is,

setting ~W to ~w′ should have no effect on ϕ as long as ~X has the value ~x, even
if all the variables in an arbitrary subset of ~Z are set to their original values
in the context ~u.

AC3. ( ~X = ~x) is minimal, that is, no subset of ~X satisfies AC2.

AC1 just says thatA cannot be a cause ofB unless bothA andB are true, while AC3
is a minimality condition to prevent, for example, Suzy throwing the rock and sneez-
ing from being a cause of the bottle shattering. Eiter and Lukasiewicz [EL01] showed
that one consequence of AC3 is that causes can always be taken to be single conjuncts.
The core of this definition lies in AC2. Informally, the variables in ~Z should be thought
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of as describing the “active causal process” from ~X to φ. These are the variables that
mediate between ~X and φ. AC2(a) is reminiscent of the traditional counterfactual cri-
terion. However, AC2(a) is more permissive than the traditional criterion; it allows the
dependence of φ on ~X to be tested under special structural contingencies, in which the
variables ~W are held constant at some setting ~w′. AC2(b) is an attempt to counteract
the “permissiveness” of AC2(a) with regard to structural contingencies. Essentially, it
ensures that ~X alone suffices to bring about the change from φ to ¬φ; setting ~W to ~w′

merely eliminates spurious side effects that tend to mask the action of ~X .
To understand the role of AC2(b), consider the rock-throwing example again. Look-

ing at the simple model, it is easy to see that both Suzy and Billy are causes of the bot-
tle shattering. Taking ~Z = {ST, BS}, consider the structural contingency where Billy
doesn’t throw (BT = 0). Clearly [ST ← 0,BT ← 0]BS = 0 and [ST ← 1,BT ←
0]BS = 1 both hold, so Suzy is a cause of the bottle shattering. A symmetric argument
shows that Billy is also the cause.

But now consider the model that takes into account that Suzy throws first. It is still
the case that Suzy is a cause in this model. We can take ~Z = {ST, SH, BS} and again
consider the contingency where Billy doesn’t throw. However, Billy is not a cause of
the bottle shattering. For suppose that we now take ~Z = {BT,BH, BS} and consider
the contingency where Suzy doesn’t throw. Clearly AC2(a) holds, since if Billy doesn’t
throw (under this contingency), then the bottle doesn’t shatter. However, AC2(b) does
not hold. Since BH ∈ ~Z, if we set BH to 0 (it’s original value), then AC2(b) requires
that [BT ← 1, ST ← 0,BH ← 0](BS = 1) hold, but it does not. Similar arguments
show that no other choice of (~Z, ~W ) makes Billy’s throw a cause.

The causal model is represented graphically in Figure 7. Clearly BS is 1 iff one of
BH and BT is 1. However, now, SH is 1 if ST is 1, and BH = 1 if BT = 1 and SH = 0.
Thus, Billy’s throw hits if Billy throws and Suzy’s rock doesn’t hit. In Figure 7 there is
an arrow from variable X to variable Y if the value of Y depends on the value of X .

Fig. 7. The rock-throwing example.


