
RI14005 21 February 2014 Computer Science

IBM Research Report

Robust Test Automation Using Contextual Clues

Rahulkrishna Yandrapally
IBM Research – India

Suresh Thummalapenta
IBM Research – India

Saurabh Sinha
IBM Research – India

Satish Chandra
Samsung Electronics

USA

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be
copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view
of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained
copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center, Publications,
P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at
http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Abstract

Despite the seemingly obvious advantage of test automation, significant skepticism exists in the industry regarding
its cost-benefit tradeoffs. Test scripts for web applications are fragile: even small changes in the page layout can break
a number of tests, requiring the expense of re-automating them. Moreover, a test script created for one browser cannot
be relied upon to run on a different web browser: it requires duplicate effort to create and maintain versions of tests
for a variety of browsers. Because of these hidden costs, organizations often fall back to manual testing.

We present a fresh solution to the problem of test script fragility. Often, the root cause of test script fragility is that,
to identify UI elements on a page, tools typically record some metadata that depends on the internal representation of
the page in a browser. Our technique eliminates metadata almost entirely. Instead, it identifies UI elements relative to
other prominent elements on the page. The core of our technique automatically identifies a series of contextual clues
that unambiguously identify a UI element, without recording anything about the internal representation.

Empirical evidence shows that our technique is highly accurate in computing contextual clues, and outperforms
existing techniques in its resilience to UI changes as well as browser changes.

1 Introduction
By test automation, we mean creation of executable test scripts that exercise a web application through a set of intended
test scenarios. Here is a simple test scenario on the Skype website.

1: Click on Prices and Select Rates
2: Select "View rates" under "United Kingdom"
3: Verify that "Rates to United Kingdom" exists

This scenario can obviously be enacted by a human on a browser, but it can also be automated into a script. Table 1
shows the corresponding test scripts in several different test-automation technologies. Each script can be thought of
as a simple program that contains description of an action to be performed on the application’s GUI—typically a web
browser—and some metadata that identifies the target of that action. We will explain these test-script notations and
their limitations shortly.

1.1 The Fragility Problem
The promise of test automation is that once test scripts are created, they can be used for efficient regression testing
cycles. Despite this promise, there are pragmatic reasons due to which organizations hesitate to deploy test automation
and instead resort to ad-hoc manual testing, in which a human follows the steps of a test scenario and enacts them on
the browser. The reason is that virtually all the existing automation technologies suffer from the fragility problem.
Once created, a script breaks easily in response to minor changes, discussed next, causing both the expense of triaging
script failures from real application failures, as well as the expense of updating the scripts—only to pay that expense
again at the next slew of changes!

Server	 Browser	 Screen	 DB	

Figure 1: Flow of content to screen.

What are these changes? Figure 1 shows how what one sees on the screen is generated: the server reads some
database state, composes a page (in HTML/CSS) and sends it to a browser. The browser translates the page into an
internal representation, called the Document Object Model (DOM), and renders the DOM on a screen using a layout
engine. Obviously, modern web sites are a lot more sophisticated; for example, the browser may ask the server for
additional data before it completes the rendering, but this simple flow is sufficient to illustrate the changes.

First, the site designer could decide to change the look of the page, by changing the HTML/CSS that it sends
to the browser. For example, the screen encountered at the third step of the Skype scenario could change from Fig-
ure 2(a) to Figure 2(b), in which four most-popular destinations are shown instead of three. Second, the database state
may change: the three most-popular destinations—if generated automatically based on statistics—may get reordered.
Third, the browser may represent the DOM in slightly different ways; this happens on a browser version upgrade and,
of course, with a different browser altogether. Lastly, with browser changes, the layout for a given DOM may also
change, but this is less common. In any event, most, although not all, test-automation technologies connect to the
browser at the DOM level.

1

Table 1: Test scripts for the Skype scenario created using different automation techniques.
UI Element

Automation Identification
Technique Method Test Script

Record-Replay Attribute, XPath,
and CSS selectors

Command Target Value
click link=Prices
clickAndWait link=Rates
click //div[@id=’popularDestinationRates’]/div/div[3]/a/div[2]/span[2]
waitForText css=h2.ratesTitle.title-h1 Rates to United Kingdom

ATA Label association, <Click, Prices, > xpath=/html/body/div/nav/ul/li[index:”6”]/a[href:”/en/rates/”, title:”Prices”]/#text[text:”Prices”]
Detailed XPath <Click, Rates, > xpath=/html/body/div/nav/ul/li[index:”6”]/ul/li/a[href:”/en/rates/”, title:”Rates”]/#text[text:”Rates”]

<Click, View rates, > xpath=/html/body/div/.../div[class:”threeColumns separated”]/div[index:”2”, class:”column”]/.../
#text[text:”View rates”]

<Exists, Rates to United Kingdom, > xpath=/html/body/div/.../div[class:”ratesWidget section”]/.../
#text[text:”Rates to United Kingdom”]

ImageProcessing Image

Descriptive Attribute selector Browser(”title:=Skype - Free internet...”).Link(”innertext:=Prices”).Click
Programming Browser(”title:=Skype - Free internet...”).Link(”innertext:=Rates”).Click

Browser(”title:=Cheap international calls...”).Link(”innertext:=United KingdomFrom89 cents/monthView rates”)
.WebElement(”innertext:= View rates”, ”class:=noMobile”).Click

If Browser(”title:=Cheap international calls...”).WebElement(”innertext:=Rates to United Kingdom”).Exist = false Then
msgbox(”Failed”)

End If

Our approach Contextual clues 1. Click on ”Prices” 2. Click on ”Rates”
3. Click on ”View Rates” near ”United Kingdom” 4. Verify ”Rates to United Kingdom” exists

The steps of a test scenario described in plain English are equally meaningful in the face of the changes described
above. To a human, these changes present no trouble. Somewhat surprisingly, almost all the scripts shown in Table 1
will break because—as we elaborate in the next subsection—scripts bake in some form of the internal representation
of the structure of a web page.

Of particular annoyance to organizations is the problem of script fragility across browsers, or even a different
version of the same browser. This means that organizations must create and maintain scripts separately for all the
browsers, and versions of those browsers, that their customers are likely to be using.

The challenge is, can a script work almost in the way a human perceives a web page, and is robust in the presence
of the kinds of changes discussed above? The main contribution of the paper is a scripting notation that accomplishes
this with high accuracy.

In the next subsections, we explain the script representations used by current automation technologies, and then
show why even simple changes cannot be accommodated. We then outline our solution to this problem.

1.2 Existing Test-Automation Technologies
Record and Replay The simplest approach for test automation is record-replay, in which a tester performs the
test steps via a testing tool (e.g., [2, 3, 4]), the tool records the tester’s actions, and creates a test script that replays
the actions automatically. The first row in Table 1 shows the test script for the Skype test scenario recorded using
Selenium [4]. The script specifies the actions to be performed and some information about the target UI elements.

In record and replay, the target UI element can be identified using different “selectors” that specify attributes,
XPaths, or CSS paths. In the first two steps in the recorded script, the target is identified using the HTML link attribute.
In the third step, the target is identified using an XPath selector, which is a path to the node for the target element in
the DOM. Figure 3 shows a partial DOM for the Skype screenshot of Figure 2(a), rooted at the div element for
popularDestinationRates. In the XPath selector, the part //div[@id=’popularDestinationRates’] locates the div element
whose id attribute has the value popularDestinationRates; the remaining XPath encodes the path relative to this div. An
XPath encodes both the hierarchy of elements and the relative position of an element within its parent; for example,
div[3] refers to the third div element within the parent div. Finally, the fourth step records the target using a CSS
selector.

The ATA Approach ATA is a research tool, developed in our previous work [22, 23], that attempts to address the
perils of hard coding of paths in a DOM. ATA associates neighboring labels with UI elements and attempts to locate UI
elements based on the associated labels. Thus, by not relying on DOM attributes and paths, it can relocate UI elements,
even when they are moved or their internal attributes change, as long as the labels do not change. This solution works

2

(a) Original version

(b) Modified version

Figure 2: Example of a simulated change at the Skype website.

fine if the target label is unique within a webpage, but it is inadequate when a page contains multiple instances of a
label (e.g., the three occurrences of View rates in Figure 2(a)).

In such cases, ATA records the XPath of the target UI element alongwith some attributes and values for each
XPath element. The second row in Table 1 shows the script generated by ATA. For the third step, which clicks on
the View rates link, ATA records the XPath alongwith attribute information about the path elements: e.g., for the third
div element, ATA records the values of the index and class attributes. During playback, if the UI element cannot be
located directly using indexes in the XPath, ATA first attempts to relocate the element via label association and also
filters the identified elements based on the desired element type (e.g., #text) described in the XPath. If it finds multiple
elements of the same type, it recursively compares the attribute-value pairs of those elements and their parents, with
the information stored in the XPath.

Image-Processing-Based Automation Another category of test-automation techniques relies on image processing;
example tools include Eggplant [1] and SIKULI [9, 24]. These tools record a test script as a sequence of actions
performed on images. The tester grabs a portion of the screen centered around the element of interest; when necessary,
the tester must grab some of the surrounding screen to include disambiguating context.

The third row in Table 1 shows the test script recorded using SIKULI. Note that the image for the third step includes
additional contextual information, such as the label United Kingdom, to locate the desired UI element correctly, because
there are multiple “view rates” links on the page. During playback, these tools locate the target image and perform
the desired actions at the hotspot position specified in the image. Usually, the center of the image is considered as the
hotspot, but any other position can also be specified as the hotspot. By being totally DOM-independent, these tools
are tolerant to variations in the DOM representations.

General Programming Test scripts can be written in a general-purpose programming language. For example,
the Rational Functional Tester (RFT) [3] lets test scripts be written in Java, whereas in HP QuickTest Professional
(QTP) [2], scripts can be written in VBScript; Selenium [4] supports many languages, such as Java, C#, PHP, and Perl.
These tools provide API for accessing the DOM and locating UI elements programmatically via attributes, XPaths,
etc. QTP also provides language support for a methodology called descriptive programming where a script describes
a UI element by specifying attributes, and the tool attempts to locate the element using the specified attributes. The
descriptive programming row in Table 1 shows the test script for the Skype scenario written in the QTP descriptive-
programming style. For instance, the innertext HTML attribute is used to describe links and UI elements.

1.3 Illustration of Script Fragility
Consider a simulated change in the Skype application, so that at the third step, one sees the screenshot as shown in
Figure 2(b) as opposed to Figure 2(a), where four most-popular destinations are shown instead of three. Let us see
how the scripts generated by different automation techniques fare on the modified application.

The script generated using record-replay clicks the third View rates link on the page, following the recorded XPath
div/div[3]/.../span[2]. In the path, div[3] refers to the third div element within its parent element—in the screen of
Figure 2(a), it corresponds to the div for United Kingdom, whereas in the screen of Figure 2(b), it maps to the div for

3

DIV

AA

DIV

H3

United

States

SPAN SPAN

View rates
From 89 cents/

month

…

A

H3

DIV

United

Kingdom

DIV DIV DIV

jQuery172=“49”

class=“showRates”

jQuery172=“51”

class=“showRates”

DIVDIV DIV

SPAN

From

SPAN

View rates
89 cents/

month

Figure 3: Partial DOM of the Skype webpage of Figure 2(a). The highlighted path leads to the instance of View rates
referenced in step 3 of the sample test scenario.

China. span[2] refers to the second span element within its parent, and maps to View rates in either case. Thus, on the
modified version, the script ends up clicking the View rates for China instead of United Kingdom.

ATA, in general, attempts to locate UI elements via labels to avoid fragile scripting that results from an over-reliance
on XPaths, etc. However, for this example, ATA finds multiple UI elements when it attempts to locate the element at
step 3 using the label View rates. Because of this ambiguity, it has to resort to the fallback method of locating the
element via its XPath and the desired element type (#text). Thus, like record-replay, ATA erroneously narrows down
to the View rates for China.

For the SIKULI script, image matching fails at step 3 because the destination reordering changes the location of the
flag on the screen. (This change occurs automatically as the application rendering attempts to place four destinations
in the space previously allocated for three destinations.)

Finally, the script created using descriptive programming can locate the correct View rates via the innertext

attribute, whose value “United KingdomFrom89 cents/monthView rates” remains unchanged by destination reordering.
However, if this value were to change, caused by changes in the Skype rates, the script would fail to locate the link. In
fact, during the study, we noticed that the value of innertext attribute changed to United KingdomFrom89 cents/monthFrom

∈1,02 per month View rates, with no change in the actual visual appearance of the page. Because of this change, the
script created using descriptive programming failed.

In general, it is possible to create a highly robust script using general programming, by writing error-handling code
and attempting to locate a UI element using different strategies. But, creating such a script would entail a significant
amount of coding. Moreover, such a script would still rely on DOM internals, which can differ across browsers.
Anticipating such differences and writing browser-specific code would be even more tedious.

As an illustration of browser-specific differences in DOM, consider Figure 3. The two annotations on the div

nodes show jquery attributes associated with those nodes, which appear in the DOMs rendered on Firefox and Internet
Explorer (IE), but not in the DOM rendered on Chrome. Thus, a script that is automated on Firefox or IE and that
refers to the jquery attribute would fail when executed on Chrome. To make scripts truly portable across browsers,
such browser-specific differences must be known and the test scripts have to be carefully coded to avoid references to
unreliable DOM attributes.

1.4 Our Approach
Although the change illustrated in Figure 2 breaks automated test scripts, it poses no problems to a human attempting
to execute step 2 of the Skype test scenario: Select "View rates" under "United Kingdom" makes as much sense on the
modified application version as it does on the original version. Thus, the main insight behind our technique is that
an automated script can also rely on such contextual clues that a human uses. Such a script would be tool/platform-
agnostic, highly portable, and tolerant to variations in DOM as well as differences in visual renderings.

The last row of Table 1 shows the test script generated by our technique. For step 3, the script contains the phrase
“near United Kingdom,” which identifies the intended View rates unambiguously (“near” is a keyword in our script
notation). Our technique automatically infers such contextual clues or labels that are sufficient for locating the target

4

Figure 4: Screenshot illustrating ambiguous UI elements.

UI element uniquely. Moreover, as we show later, if a single clue is insufficient for locating an element, the technique
can compute multiple clues that together identify the element of interest. To execute such a script, the technique
automatically decodes the recorded contextual clues on the given DOM representation—which may differ from the
representation on which the clues were constructed, e.g., when the script is executed on a different browser than the
one on which it was created—and identifies the element of interest. Note that no information about DOM structure is
retained in our contextual clues or test scripts.

We implemented our technique in a tool called ATA-QV.1 We conducted three empirical studies using 47 test
cases (428 test steps) written for five public enterprise web applications. In the first study, we evaluated the accuracy
of ATA-QV in computing contextual clues. Our results show that ATA-QV computed appropriate contextual clues for
98% of the test steps; moreover, 73% of the tool-computed clues matched exactly with the human-selected clues. In
the second study, we investigated the change-resiliency of the scripts on real changes introduced due to evolution of
applications and also on synthetic changes. Our results show that ATA-QV handled 95% of the changes (both real and
synthetic) and outperformed existing state-of-the-art tools. In the final study, we investigated the portability of the
scripts across browsers, by executing the scripts automated on Chrome on Firefox and IE. Our results show that 100%
and 96% scripts passed on Firefox and IE, respectively.

1.5 Contributions
The contributions of our work are the following:
• A novel script notation in which a target UI element is identified using contextual clues—with “near” clauses—

that are available on the page, without relying on the specificities of the underlying DOM or on image matching
(both of which can lead to script fragility).

• A highly effective recording algorithm that, given a target UI element, automatically computes contextual clues
for locating the element, even in the presence ambiguities. Our results show that, in about 75% of the cases, the
algorithm computes the same contextual clues that a human would use.

• An efficient playback algorithm that replays a script created in this notation.
• An empirical evaluation of how various state-of-the-art test-automation technologies perform on real-world

applications, in the presence of content changes and browser differences.

2 Our Technique
Like a conventional automation technique (e.g., record-replay), our technique consists of two phases: the automation
phase and the playback phase. The automation phase creates a test script of the form shown in the last row of Table 1,
in which steps that deal with ambiguous UI elements have contextual clues recorded. We refer to the contextual clues

1QV stands for qui vicino, an Italian term that translates to “hereabout” or “near here,” alluding to ATA-QV’s capability of
inferring contextual clues in the vicinity of a UI element that identify the element unambiguously.

5

1

3

5

2
4

BlackBerry

“Sort by”

subtree
6

12

8 Samsung Galaxy

11

Postpaid

(PO2)

Prepaid

(PR2)

Learn more

(LM3)

Learn more

(LM4)

10

7

9

Postpaid

(PO1)
Prepaid

(PR1)
Learn more

(LM2)

…

Learn more

(LM1)

Figure 5: Partial DOM for the screenshot of Figure 4.

as anchors.2 The playback phase executes a test script by performing each step of the test: it locates the target UI
element by analyzing the recorded anchors and performs the required action on the element.

In this section, first, we present the core algorithms for automation and playback. Then, we explain the algorithmic
extensions to handle cases where no suitable anchors exist (Section 2.3). To illustrate the algorithms, we use the
example in Figure 4, which has four ambiguous instances of Learn more and each instance requires two anchors to be
identified unambiguously. For example, the top-left instance is identified by anchors Postpaid and BlackBerry.

2.1 The Automation Phase
Given a target UI element e, the automation phase first creates a label to refer to e. For some types of UI elements,
such as buttons or links, the text values inside those elements serve as the labels. For other types of UI elements, such
as text boxes, combo boxes, or radio buttons, such text values do not exist. In such cases, the types of those elements
(i.e., “TextBox,” “ComboBox,” etc.) serve as the labels. If the initial label is unique, the technique does not need to
identify any anchors—the initial label, by itself, is sufficient to locate e unambiguously. However, if the label is not
unique, the technique has to compute the anchors for e.

The algorithm for computing the anchors (shown as Algorithm 1) works on the DOM representation of a webpage.
Figure 5 shows a partial DOM for the screenshot of Figure 4. As shown, the root node has three children: the second
child, node 4, includes the elements in containers of Blackberry and Samsung Galaxy; the third child, node 3, includes
the subtree for the Sort by form. We omit nodes that are not relevant for explaining the algorithm.

The algorithm takes as input the target label li (i.e., the initial label for the target UI element) and computes the
anchors required for identifying li uniquely. Before discussing the steps of Algorithm 1, we explain intuitively the
idea underlying the algorithm.

Suppose that the target is the LM1 instance of Learn more in the DOM shown in Figure 5. There are three other
instances of the label, denoted LM2, LM3, and LM4. Intuitively, the algorithm proceeds as follows. It identifies the largest
subtree in which the target label is unique, and the largest subtrees that contain the other ambiguous instances but not
the target. For the Learn more labels, these subtrees are t9, t10, and t6. (We use the notation tn to refer to the DOM
subtree rooted at node n.) t9 and t10 are the subtrees for LM1 and LM2, respectively, whereas t6 is the subtree for LM3

and LM4. Next, the algorithm attempts to find a label in t9 that distinguishes it from t10 and t6. However, no such
label exists. Therefore, it picks the ambiguous subtree that is closest to t9—in this case, t10—and identifies a label
in t9 that at least distinguishes t9 from t10. Postpaid is such a label in t9, so the algorithm selects it. Now that the
algorithm has found a way of distinguishing t9 and t10, it navigates upward to their common ancestor, node 7, and
further expands the subtree to find the maximal subtree that does not include t6, the remaining ambiguous subtree; this
maximal subtree is t5. At this point, the algorithm searches for a label in t5 that distinguishes it from t6, which it finds
in the form of BlackBerry. Thus, Postpaid and BlackBerry are identified as the anchors for LM1.

Lines 1–5 First, the algorithm finds the other labels that match the target label li and cause ambiguity (line 1).
Then, it computes the unique subtree for li (line 2). The subtree for each other ambiguous label is computed as
the largest subtree containing that particular label and not containing the interesting label (lines 3–4). Function

2The term anchor is not to be confused with the HTML <a> tag.

6

Algorithm 1: The algorithm for computing anchors for the given label (associated with the target UI element).
Input: Label li
Output: Set A of anchors for li

1 let Lother be the other labels on the page that match l;
2 let ti = GetInterestingSubtree(li);
3 initialize the set Tother of trees;
4 foreach l ∈ Lother do
5 add GetOtherSubtree(l) to Tother ;

6 while Tother 6= ∅ do
7 let ldistinct = GetDistinctLabel(ti, Tother);
8 if ldistinct 6= null then
9 add ldistinct to A;

10 return A;

11 let Tcl = GetClosestSubtrees(ti, Tother);
12 let ldistinct = GetDistinctLabel(ti, Tcl);
13 if ldistinct = null then
14 return null;

15 add ldistinct to A;
16 ti = MergeSubtrees(ti, Tcl);
17 remove Tcl from Tother ;

18 return null;

GetInterestingSubtree(), not shown, takes as input a label l and identifies the largest subtree containing l such
that l is unique in the subtree. The function traverses upward in the DOM, starting at l, until it reaches a node n such
that the subtree rooted at n has more than one instance of l. At that point, it returns the previously traversed node. For
example, for LM1, GetInterestingSubtree() returns t9 because the subtree rooted at the parent of t9 contains two
instances of Learn more. Similarly, GetOtherSubtree() for LM3, returns t6—the largest subtree that contains LM3 but
not LM1 (the target label).

Lines 7–10 Next, the algorithm attempts to find a label in the subtree of interest, ti, that distinguishes ti from
other subtrees. It does this by invoking function GetDistinctLabel(), which identifies all labels in ti, and sorts
them based on heuristics that give higher precedence to labels that are headers, have larger font sizes, or are in close
proximity to li. This step may not find such a unique label. For example, when GetDistinctLabel() is invoked
on t9 and {t10, t11, t12}, it finds no unique label in t9 that distinguishes it from each subtree in {t10, t11, t12} because
t11 contains all the labels that occur in t9. In the next iteration of the loop in line 6, when GetDistinctLabel() is
invoked on t5 and {t11, t12}, it finds BlackBerry as the distinguishing label in t5.

Lines 11–17 If the algorithm does not find a distinct label in ti, it expands ti by merging it with the closest other
subtrees, say Tcl . The rationale behind expanding ti is that this allows additional labels to be considered that can
distinguish between the expanded subtree and the remaining subtrees (that contain ambiguous labels). However,
while expanding ti, we need labels that distinguish between ti and subtrees in Tcl . Without computing such labels,
merging ti with subtrees in Tcl would not make sense because the ambiguous instances of li in ti and Tcl would be
indistinguishable during playback. Therefore, first the algorithm finds a label that distinguishes ti from all subtrees in
Tcl , and adds that label to the set of anchors (lines 12–15).

Next, the algorithm merges ti with subtrees in Tcl by calling function MergeSubtrees() (line 16). MergeSubtrees()
invokes GetInterestingSubtree() by ignoring other ambiguous labels in Tcl . After expanding the subtree of in-
terest, the algorithm removes subtrees in Tcl from the set of ambiguous subtrees (line 17).

For our example, the algorithm computes Postpaid as the anchor that distinguishes t9 from t10, merges t9 and
t10 to form t7, and expands t7 to t5. In the next iteration of the loop in line 6, it detects BlackBerry as the label that
distinguishes t5 from t11 and t12. Using these anchors, it generates the command for clicking LM1 as Click on "Learn

more" near Postpaid near BlackBerry.

7

Algorithm 2: The algorithm for identifying the target label from the recorded anchors.
Input: Label li, set A of anchors
Output: The target instance of li

1 let Li be the set of all instances of li in the DOM;
2 SetInstances(li, Li);
3 foreach la ∈ A do
4 let La be the set of instances of la in the DOM;
5 SetInstances(la, La);

6 push li and A onto stack S;
7 while true do
8 pop labels l1, l2 from S;
9 FilterInstances(l1, l2);

10 if S is empty then
11 L2 = GetInstances(l2);
12 if |L2| = 1 then
13 return L2[1];

return null;

14 push l2 onto S;

15 return null;

2.2 The Playback Phase
The playback phase executes the actions in an automated test script. The main task for this phase is to locate the target
label li, using the anchors recorded in the test script. The key idea of playback is to refine subtrees iteratively using
anchors. In a sense, this phase does the reverse of what the automation phase does: whereas the automation phase
expands subtrees, starting from the subtree that contains li, to collect anchors, the playback phase starts with the entire
DOM tree and prunes out subtrees, using the anchors, to narrow down to the subtree that contains li. Intuitively, the
playback phase attempts to find the smallest subtree that includes li and all anchors (say, a1, a2, . . . , ak). Once such
a subtree is identified, it discards the last anchor ak because that anchor has served its purpose of focusing the search
to a specific subtree. Next, within that subtree, the playback phase finds the smallest subtree that contains li and the
anchors a1, a2, . . . , ak−1. It continues in this manner, narrowing the search space and discarding an anchor in each
iteration, until it finds a subtree in which li is unique.

For our running example, the technique first identifies t5 as the smallest subtree that contains li (Learn more) and
the two anchors (Postpaid and BlackBerry). Next, it discards BlackBerry and searches within t5 for the smallest subtree
containing Learn more and Postpaid. At this step, it narrows down to t9, in which Learn more is unique. Thus, it locates
LM1 as the target label.

Although intuitively this approach makes sense, a naı̈ve algorithm based on identifying subtrees can be exponential.
Suppose that there are k anchors and that the DOM contains n instances of li and n instances of each anchor. Then,
there are nk+1 possible combinations of li and the anchors. Moreover, the complexity of identifying the smallest
subtree for a combination is O(k ∗ h), where h is the height of the tree. Thus, the complexity of the search in each
iteration is O(nk+1 ∗ k ∗ h) and there are k iterations.

We present a polynomial-time playback algorithm (shown in Algorithms 2 and 3) that processes anchors in
pairs, instead of processing all anchors together. In the presentation of the algorithm, we assume the availability
of a global store that maps a label to its instances and that can be accessed using functions SetInstances() and
GetInstances().

Lines 1–5 First, the algorithm identifies all instances of li and each anchor in the DOM, and stores them in the global
store. For our running example, for which Learn more is the target label, the algorithm identifies four instances—LM1,
LM2, LM3, and LM4—and stores them in the global store. Similarly, it identifies two instances of Postpaid (PO1 and PO2)
and one instance of Blackberry.

Lines 6–14 Next, the algorithm pushes the label of interest li and all anchors—in order—onto stack S. Figure 6(a)
shows the initial state of the stack. The figure also shows the contents of the global store as the instances of each

8

Algorithm 3: The algorithm for filtering anchor instances.
Input: Label l1, label l2

1 initialize a two-dimensional matrix M ;
2 L1 = GetInstances(l1);
3 L2 = GetInstances(l2);
4 foreach i = 1, . . . , len(L1) do
5 foreach j = 1, . . . , len(L2) do
6 Mi,j = GetCommonAncestor(L1[i], L2[j]);

7 initialize Lfiltered ;
8 foreach i = 1, . . . , len(L1) do
9 if all values in Mi are equal then

10 continue;

11 let maxval be the maximum value in Mi;
12 foreach j = 1, . . . , len(L2) do
13 if Mi,j = maxval then
14 add L2[j] to Lfiltered ;

15 SetInstances(l2, Lfiltered);

label on the stack. After initializing S, the algorithm iteratively removes the top-two elements, l1 and l2, from S and
processes them. It invokes FilterInstances (explained later) to filter instances of l2 using the instances of l1 and
store the filtered instances into the global store. When the stack becomes empty, the algorithm checks whether there
exists only one instance of l2 (the target label). If so, it returns the instance; otherwise, it returns null indicating
failure to locate the target label.

FilterInstances (lines 1–6) FilterInstances contains the key steps for refining subtrees based on identifying the
common ancestor of two given labels in the DOM. The function takes as input labels l1 and l2, and filters the instances
of l2 using the instances of l1. For each pair of instances of l1 and l2, the function calls GetCommonAncestor to
identify the farthest common ancestor from the DOM root node and compute the distance from the root. The function
populates a two-dimensional matrix M with the computed distances. Figure 6(b) shows the matrix generated using
the instances of Blackberry (BB) and Postpaid (PO1 and PO2). Each cell in the matrix shows the distance of the common
ancestor for that pair from the root; the values in parentheses are IDs of the common ancestors in Figure 5. For
example, for BB and PO1, the common ancestor is node 5; it occurs at distance two from the root. Identifying the
common ancestor for a pair of instances is analogous to identifying a subtree that is rooted at the common ancestor
and that includes both the instances. For example, the common ancestor node 5 represents subtree t5 that contains BB

and PO1.

FilterInstances (lines 7–14) Next, FilterInstances analyzes each row in the matrix. If all values in a row are
the same, it ignores the row (lines 9–10) because this indicates that the corresponding instance of l1 do not help filter
any instances of l2. This could happen if there exist some instances of l1 that are irrelevant for locating the target
label. Next, the algorithm identifies the instances of l2 with the maximum value in a row and adds them to the filtered
list. The maximum value in the row indicates that the subtree of that common ancestor is smaller than the subtrees of
other common ancestors. FilterInstances identifies all candidate instances of l2 that belong to smaller subtrees
and stores those instances in the global store.

For our running example, as shown in Figure 6(b), the algorithm selects PO1 and stores the filtered instance in the
global store. Figure 6(c) shows the state of the stack and the global store after the invocation of FilterInstances.
Next, the main loop (loop 7–14) of Algorithm 2 invokes FilterInstances with l1 set to Postpaid and l2 set to Learn

more, resulting in the computation of the matrix shown in Figure 6(d). Because the pair PO1 and LM1 has the highest
distance value, the algorithm returns LM1 as the target label.

Complexity Analysis Considering again the same parameters—n anchors with m instances of each anchor—algorithm
FilterInstances takes O(m2 ∗ h) time, where h is the height of the DOM. Because FilterInstances is called
n times, the overall time complexity of the playback algorithm O(n ∗m2 ∗ h).

9

(a)

Learn more (LM1, LM2,
LM3, LM4)

Blackberry (BB)

Postpaid (PO1, PO2)

1 (4)2 (5)BB

PO2PO1
Learn more (LM1, LM2,

LM3, LM4)

Postpaid (PO1)

(c)

3 (7)

LM2

1 (4)

LM3

1 (4)4 (9)PO1

LM4LM1
(d)

(b)

Figure 6: Illustration of label filtering during playback.

BODY

DIV DIV

SPAN

DIV

SPAN

…

You are

here

Get

insurance

H1

Get

insurance

TR
TR…

INPUT

DIV

Phone

Number
INPUT INPUT INPUT

3

2

1
Email

Figure 7: Illustrative example for the algorithm extensions: the screenshot of an insurance website and the associated DOM.

2.3 Extensions to the Algorithms
When the technique attempts to merge the subtree of interest (ti) with the closest subtree (tcl) and finds no suitable
anchors to distinguish ti and tcl, it tries to compute three other types of anchors: negation anchors, proximity-based
anchors, and ordinal-based anchors. We use Figure 7 to explain the extensions.

Negation Anchors Suppose that the Get insurance header in Figure 7 is the target element for a verification step.
Because there exists another Get insurance label, in the bread crumb shown above the header, our technique attempts to
find a label that distinguishes the subtrees containing the two instances. However, there is no other label in the subtree
of the Get insurance header (shown as subtree 1). Therefore, the technique computes negation anchors to distinguish
the two instances, and generates the script command Verify that "Get insurance" not near "You are here" exists to
verify the existance of the Get insurance header.

Visual-proximity-based Anchors If the technique does not find suitable negation anchors, it tries to compute visual-
proximity-based anchors: it searches for labels that are visually close to the target element in the left, bottom, right,
and top directions. Suppose that the text box below Email is the target element. Because the corresponding subtree
(shown as subtree 2) does not have any labels, the technique identifies nearby labels as anchors and generates the script
as Enter "t@gmail.com" in text box below "Email".

Ordinal-based anchors If the technique does not find any proximity-based anchors, it next attempts to generate
ordinal-based anchors. Whereas proximity-based anchors include only directional clues, ordinal-based anchors are
more expressive and include both directional and positional clues. Consider the Phone Number label and the three text
boxes next to it. Suppose that the target element is the second text box. The corresponding DOM is shown as subtree 3
in Figure 7. Neither negation nor proximity-based anchors can be computed for the target because the interesting
subtree contains only the INPUT node (highlighted in subtree 3) for the second text box and there are no other nearby
labels. Therefore, the technique computes an ordinal-based anchor by calculating the relative position of the text box

10

Table 2: Subjects used in the empirical studies.
Test Test Steps

Subject Description Cases Tot Act Ver Amb
Bell Canada Phone, mobility, TV, and internet service provider 9 119 87 32 57 (48%)

(www.bell.ca)
Bupa Healthcare provider 10 67 46 21 32 (48%)

(www.bupa.com.au)
Citi Banking and financial services provider 10 119 78 41 46 (39%)

(www.citibank.com)
ICICI Lombard Insurance provider 9 66 58 8 38 (58%)

(www.icicilombard.com)
Nationwide Financial services provider 9 57 34 23 25 (44%)

(www.nationwide.co.uk)
Total 47 428 303 125 198 (46%)

Tot: Total steps Act: Action steps
Ver: Verification steps Amb: Steps with ambiguity

from the nearest label in the left, bottom, right, or top directions, and generates the script Enter "802" in the second

text box to the right of "Phone Number".

3 Empirical Evaluation
We implemented our technique over the ATA tool [22, 23]; we refer to the enhanced tool as ATA-QV. Using ATA-QV,
we conducted three empirical studies. In the first study, we evaluated the accuracy of ATA-QV in computing anchors.
In the second and third studies, we investigated the resiliency of the scripts generated by ATA-QV to content changes
and browser differences, respectively; in these studies, we also compared ATA-QV with existing tools.

3.1 Experimental Setup
We used five public enterprise websites as experimental subjects. Table 2 lists the subjects and, for each website,
provides a brief description and the URL. The websites cover different domains, such as healthcare, insurance, and
finance. All the sites host modern AJAX applications that exhibit a high level of dynamism and contain pages with
ambiguous UI elements. Table 2 also presents information about the test cases for the subjects. We created the test
cases to exercise different major functionalities offered by these websites. Column 7 shows the number and percentage
of steps that reference ambiguous UI elements: the percentage of test steps that encounter ambiguity ranges from 39%
to 58%.3 For each test step that refers to an ambiguous element, we specified appropriate anchors in the manual test
to identify the target element.

We used four tools: ATA-QV, ATA, SIKULI, and QTP. For each tool, we automated the tests on a baseline browser:
Chrome 29 for ATA-QV, ATA, and SIKULI; Internet Explorer (IE) 8 for QTP (version 11 of QTP, which we used,
does not support Chrome 29). On QTP, we used the record-replay feature to create the scripts; this feature of QTP
has advanced capabilities for locating UI elements. For ATA-QV, ATA, and QTP, it is sufficient to point to the target
element, and each tool automatically captures sufficient contextual information to identify the target element uniquely.
However, for SIKULI, we have to ensure explicitly that the captured images include sufficient context to locate the
target element uniquely, and also specify scrolling commands, where needed, to bring the relevant screen area into
the view port. Therefore, automation using SIKULI took longer than the other tools. On average, for each subject,
automation using ATA-QV, ATA, and QTP took about 30 minutes, whereas automation using SIKULI took 90 minutes.

Next, using each tool, we executed each script on the baseline browser. For ATA and SIKULI, all scripts executed
successfully, whereas, for ATA-QV and QTP, one script for Citi failed. We used these results as the baseline for our
studies and explain the reason for the failure in the subsequent sections. We also measured the total test execution
time for each tool. On average, for each subject, QTP, SIKULI, and ATA took roughly the same amount of time (≈14
minutes), whereas ATA-QV took more time (≈20 minutes). This is expected as the playback algorithm of ATA-QV is
more sophisticated and compute-intensive than that of the other tools.

3The test cases and test scripts are available at https://sites.google.com/site/irlexternal/ata-qv.

11

Table 3: Accuracy and types of anchors computed.
At 6= Ah

Anchor |At| |At| Types of Anchors
Subject Comp At = Ah Precise Imprecise Pos Neg Prox Ord

Bell Canada 57 36 (63%) 21 (37%) 0 56 1 0 0
Bupa 32 20 (63%) 12 (37%) 0 27 4 1 0
Citi 46 35 (76%) 10 (22%) 1 (2%) 34 2 7 3
ICICI Lombard 38 35 (92%) 2 (5%) 1 (3%) 35 1 2 0
Nationwide 25 18 (72%) 7 (28%) 0 24 0 1 0
Total 198 144 (73%) 52 (26%) 2 (1%) 176 8 11 3

At: Tool-Computed Anchors Ah Human-Selected Anchors

TBODY

TR TR

Primary

Phone

Number

* INPUTINPUTINPUT

Figure 8: A screenshot from Citi showing three text boxes for entering phone number, and the corresponding DOM.

3.2 Study 1: Accuracy of the Technique
Goals and Method In the first study, we evaluated the accuracy of ATA-QV. For each test step that encountered
ambiguity, we assessed the accuracy of the inferred anchors by comparing them with the anchors recorded in the
manual test cases. An issue in this evaluation is that the ground truth (i.e., the anchors recorded in the manual test) can
be subjective: in cases where alternative anchors are available, different testers may select different anchors, or a tester
may not specify all anchors. The anchors computed by ATA-QV are based on an objective analysis of the entire DOM
(all of which may not be visible to the user at the same time) and guided by some heuristics (e.g., ranking of candidate
anchors based on font size, etc.); so, it is possible that tool-computed anchors differ from what a human might select.
However, the tool-computed anchors guarantee mechanized identification of the target element unambiguously.

In the evaluation, we distinguished the cases where the tool-computed anchors (At) match, or differ from, the
human-selected anchors (Ah). For the cases where the anchors differed, we further grouped them into two categories:
precise and imprecise. The first category consists of cases where ATA-QV computed the minimum number of anchors
required to identify the target element uniquely, but computed more anchors than the human. This happens if the
human does not specify enough anchors in the manual tests. The second category consists of cases where ATA-QV
computed more than the required number of anchors.

To investigate the applicability of the algorithm extensions (Section 2.3), we also identified the cases where no
tree-based anchors could be computed and ATA-QV had to resort to computing negation, visual-proximity-based, or
ordinal-based anchors.

Results and Analysis Table 3 presents the results of the study. Column 2 shows the number of steps that require
anchor computation (as column 7 of Table 2 shows). Column 3 shows the number of steps for which At and Ah are
the same, whereas columns 4 and 5 list the number of steps where At and Ah differ.

Overall, 73% (144 / 198) of the At anchors match exactly with the Ah anchors. Among others, interestingly,
26% (52 / 198) of the At anchors are precise. One reason is that, while writing manual tests, humans do not scan the
entire web page to identify ambiguous instances, all of which may even not be visible, and then specify anchors. ATA-
QV, however, scans the entire web page and generates the desired number of anchors to identify the target element
precisely. Only in 1% (2 / 198) of the cases, ATA-QV computed more than the required number of anchors, which
occurred due to the order in which the anchors are computed.

Columns 6–9 present data about the types of anchors computed. The results show that a large percentage of
anchors—89% (176 / 198)—are tree-based anchors, showing the effectiveness of ATA-QV’s core algorithm. A small
percentage of anchors belong to the other three categories; ATA-QV computed these anchors due to lack of distinguish-
ing labels within the subtrees of the target elements.

Over all subjects, ATA-QV successfully generated the script commands for 98% (419 / 428) of the test steps. For
nine test steps that belong to one test for Citi (mentioned earlier as the failing test), ATA-QV could not generate relevant
anchors. We explain the root cause for these cases using Figure 8, which shows a screenshot of a form containing three

12

Table 4: Types of real changes observed in the subject websites.
Change Category Description Exp. # of

(Name) Result Changes
Element type (EC) Changes made to the type of a UI element PASS 1
Attribute (AC) Changes made to values of internal attributes PASS 10

such as ID or name
Structural (SC) Changes where the position of the target PASS 19

element is modified (as illustrated in Fig 2)
Behavioral (BC) Changes where the exercised scenario FAIL 10

is changed, making the test obsolete
Flow-level (FC) Changes where the target label or test FAIL 8

flow is changed

text boxes for entering a phone number, and the corresponding DOM. For these text boxes, ATA-QV could not infer
any tree-based anchor because all three text boxes, represented as INPUT elements, belong to one subtree, and the label
Primary Phone Number belongs to a different subtree. Generally, in such cases, ATA-QV resorts to ordinal-based anchors.
However, in this scenario, all the text boxes are at the same position with respect to the label—below the label. For
such corner cases, ATA-QV falls back to the XPaths of ATA to generate the script command.

3.3 Study 2: Resilience to Content Changes
To assess resilience to content differences, we used two sets of changes: (1) real changes that were introduced during
the evolution of the subject websites over a period of time, and (2) synthetic changes introduced in a controlled manner,
by manipulating the browser DOM, for the purpose of this study.

3.3.1 Real Changes

Goals and Method To study real changes, we revisited our subject websites about four months after creating the
initial scripts, and checked whether any changes were introduced in the pages exercised by the scripts. Table 4 sum-
marizes the types of changes that we observed. The first three categories (EC, AC, and SC) represent internal DOM-level
changes; e.g., SC represents the changes where UI elements are moved within the page. In such cases, the scenarios ex-
ercised by the test cases are still valid and, therefore, the scripts are expected to pass (Column 3). An interesting aspect
is that we found no changes to anchor labels identified by ATA-QV, which indicates that contextual clues may gener-
ally be more stable than DOM structures or internal attributes and, consequently, more robust for locating UI elements.
The remaining two categories (BC and FC) represent semantic changes, where the covered behavior is modified (BC) or
scripts require flow repair (insertion, deletion, or modification of steps) to execute successfully (FC). Therefore, scripts
exercising such changes are expected to fail (Column 3) at the step, referred to as behavioral-difference-exposing step
(bde), that encounters the behavioral difference. Column 4 of the table lists the number of changes in each category.

Using these changes, we classified the scripts into two groups: passing (group 1) and failing (group 2), which
consist of 28 and 18 scripts, respectively. We ignored the script that could not be automated by ATA-QV (see Sec-
tion 3.2). Next, we executed the scripts using each tool, on the baseline browser, and examined whether the expected
test-execution results (pass or fail) were produced. For group 1, we consider an execution result as true positive if
the tool successfully executes the script, or false negative otherwise. For group 2, we consider an execution result as:
(1) true positive if the tool fails to execute the script exactly at the bde step, (2) false positive if the execution fails
earlier than the bde step, or (3) false negative if the tool successfully executes the bde step. The false-negative result
indicates that the tool failed to expose the behavioral difference. In summary, group 1 illustrates the change resilience
of the tools in dealing with real changes, whereas group 2 illustrates the fault-detection capability (i.e., the potential
for exposing behavioral differences).

Results and Analysis Figure 9 presents the results: for each group and tool, it shows the percentage of scripts in
each execution-result category. Overall, the results show that ATA-QV outperformed the other tools in both groups.
Among the group 1 scripts, ATA-QV could not execute only two scripts. One of the scripts could not be executed
due to change in the HTML element type—LABEL is changed to DIV (EC change category). Except SIKULI, none of the
tools handled this change. The other failing script could not be executed because of a major structural change, which
rendered the anchors useless in locating the target element. This change also modified the page layout, causing SIKULI
and QTP to fail as well. The low true-positive rate of the other tools shows that they were unable to handle many of

13

0

20

40

60

80

100
True Positives False Positives False Negatives

ATA-QV ATA SIKULI QTP

Passing tests (28) Failing tests (18)

ATA-QV ATA SIKULI QTP

Figure 9: Results on resilience to real content differences.

the changes introduced in the course of normal website evolution; not surprisingly, test automation faces considerable
skepticism in industry.

The group 2 results show that ATA-QV can be highly effective in exposing behavioral differences compared to
the other techniques—ATA-QV exposed all the behavioral differences, whereas the other tools’ effectiveness ranged
from 50% (ATA) to 70% (SIKULI). Our results also show that QTP and ATA produced 33% and 22% false negatives,
respectively, indicating that high reliance on DOM or internal attributes may end up performing actions on wrong UI
elements at the bde step.

3.3.2 Synthetic Changes

Goals and Method To gain a deeper understanding of how each tool handles the AC and SC categories of changes
(Table 4), we performed a controlled study using a set of synthetic changes. We used one subject, Citi, in which we
introduced changes on specific pages by manipulating the browser DOM. For some test steps, we made both types of
changes (represented using MIXED)—i.e., we changed the position of the target element and also modified its attributes.
We also introduced SC changes on pages where the target element is unambiguous. We use SC UNB and SC AMB to refer to
changes in pages where target element is unambiguous and ambiguous, respectively. Note that all scripts are expected
to pass for these synthetic changes. In all, we introduced 20 changes.

Results and Analysis Figure 10 presents the results: for each change category and tool, it shows the percentage
of tests that executed successfully. The number next to a category name represents the number of changes in that
category.

For the AC category, all tools except QTP successfully handled all the changes. Because QTP primarily relies on
attributes for identifying target elements, it could handle only 20% of the changes. For SC AMB, where the target element
is ambiguous, only ATA-QV handled all the changes. Finally, for the MIXED category, only ATA-QV handled all changes
except one change. SIKULI handled only 40% of the changes because changing some attributes, such as align or size,
modifies the visual appearance of an element, resulting in SIKULI’s image matching to fail.

Figure 11 illustrates a change that could not be handled by any tool. For the test step Enter Zip Code as 27608, ATA-
QV generated a proximity-based anchor in the script—Enter 27608 in textbox below "Find Citi Locations"—as it did
not find distinguishing labels within the subtree of the Zip Code text box. Because the modification placed the Address

text box below the label, ATA-QV entered 27608 in the Address text box. Unlike DOM-based anchors, proximity-based
anchors are susceptible to such changes in the visual appearance of a page. Overall, our results show that ATA-QV
handled 95% (19 / 20) of the changes, substantiating the claim that ATA-QV generates more change-resilient scripts
than the existing state-of-the-art tools.

3.4 Study 3: Resilience to Browser Differences
In the third study, we evaluated our technique’s resilience to differences in an application’s rendering on different
browsers.

Goals and Method For all tools except QTP, we executed the automated scripts on Firefox 17 and IE 8. For QTP, we
executed the scripts on Firefox 17. For each tool, we measured the number of passing scripts in each browser. Due to

14

0

20

40

60

80

100

AC (5) SC_UNB (3) SC_AMB (7) Mixed (5)

ATA-QV ATA SIKULI QTP

Figure 10: Results on resilience to synthetic content differences.

Figure 11: Example of structural and attribute changes.

limitations of Selenium in handling hover actions on IE [5], we could not execute ATA-QV and ATA for ICICI Lombard.
Therefore, for ATA-QV and ATA on IE, we present the results for the remaining four subjects.

Results and Analysis Figure 12 presents the results. In the figure, the horizontal axis lists the subjects and tools,
and the vertical axis shows the percentage of passing scripts. Next, we discuss the results for each tool and compare
them with the baseline.

ATA-QV. Compared to the baseline results on Chrome, all scripts passed on Firefox . On IE, only two scripts
failed in the four subjects (excluding ICICI Lombard). One of the scripts failed because of Selenium’s limitation in
handling frames in IE. For the other script, ATA-QV could not identify the target element because of a difference in the
behavior of Chrome and IE. In particular, using Selenium on IE, some hidden popups—that are considered invisible
in Chrome—are considered visible. One of these popups contains the target element and the computed anchors.
Therefore, ATA-QV could not identify the target element.

ATA. On Firefox and IE, two and six scripts failed, respectively. The main reason is differences in internal IDs of
parent elements, such as DIV, between Chrome, Firefox, and IE. Unlike ATA, most of the scripts passed with ATA-QV
because ATA-QV does not rely on internal IDs.

SIKULI. In contrast to ATA and ATA-QV, a large percentage of the SIKULI scripts failed: 66% on Firefox and 62%
on IE. There are two main reasons for the failures. First, different browsers render web pages differently. Although we
attempted to adjust the similarity threshold to accommodate these differences, we noticed that reducing the threshold
beyond a certain value resulted in spurious matches. For example, when we reduced the threshold to 0.5, an image
captured for First Name matched with an image for Last Name because of the common “Name” term. Second, there are
differences in scrolling effects across browsers for SIKULI. SIKULI (or any other image-matching-based technique)
can identify elements only in the displayed view port of a web page. To handle parts that are not displayed, SIKULI
provides commands, such as WHEEL or PAGE DOWN, to scroll the page. However, different browsers respond to these
commands differently, resulting in the script failures.

QTP. Finally, using QTP on IE as the baseline, five scripts failed on Firefox. The recent version of QTP incorporates
a new feature that records the ordinal position of the target element along with its attributes. In our analysis, we found
that many scripts passed due to this new feature. The script failures occurred primarily due to differences in internal
IDs.

4 Discussion
Overall, our approach is a fundamentally new way of creating robust test scripts—by using contextual clues to locate
UI elements. Its main strengths are as follows. First, it is resilient to changes in XPaths, values of internal attributes,

15

0

20

40

60

80

100

ATA-QV ATA SIKULI QTP ATA-QV ATA SIKULI QTP ATA-QV ATA SIKULI QTP ATA-QV ATA SIKULI QTP ATA-QV ATA SIKULI QTP

Bell Canada Bupa Citi ICICI Lombard Nationwide

Chrome Firefox IE

Figure 12: Results of the study on resilience to browser differences.

and differences in visual rendering. Second, it generates scripts that are platform-agnostic and tool-agnostic and,
therefore, highly portable. Although image-matching-based techniques also result in somewhat agnostic scripts, in
our experience (see Section 3.4), some platform-specific behavior, such as the amount of scrolling to be performed in
different browsers, has to be coded in the scripts to make them truly portable.

In terms of weaknesses, the scripts generated by our techniques can be brittle in the presence of label changes,
such as renaming a label or replacing a label with an image. Second, the DOM can be reorganized in ways that our
technique is unable to play back a script, but where an image-matching-based technique would succeed. However,
our empirical results show that these types of changes happen rarely compared to the other types of changes (which
make the existing techniques generate fragile test scripts). Although further empirical evidence with more subjects
will increase confidence in these observations, the fact that they are drawn from changes in production sites gives
them considerable credence. Future studies, in more varied experimental setups, can investigate the generality of our
observations.

5 Related Work
Corroborative Studies Several authors have written experience reports that mention the fragility of GUI tests.
Berner et al. [7] present a compendium of practical advice on test automation based on their experience with real-
world projects. They mention several challenges in test automation, among them the concern that GUI tests are hard
to create and maintain—the latter because slight changes to UI can lead to adjustments in many scripts. Because of
their tendency to break easily, GUI scripts often deliver a large number of false-positive failures and are, therefore,
executed less often than expected, calling into question the investment in automation in the first place. Collins and
Lucena [13] also found investment in automating GUI tests unproductive until the UI is stablized.

GUI Test Repair Because test maintenance is a frequent and time-consuming activity in the context of GUI test
automation, several authors have proposed approaches to assist with this task.

Grechanik et al. [15] present a tool that identifies steps that are possibly impacted by changes in an application’s
GUI by comparing the GUI before and after the change. Their tool shows these steps to a tester for review and repair.
WATER [12] is a technique for fixing broken GUI scripts. It records step-wise DOM states for the older, passing run
of a script, as well as for a failing script run. Their technique tries to find, via exploration, alternative locations of UI
elements or alternative content values that would make the script pass. These repair suggestions are shown to the user.

Memon et al. [18] present an approach for repairing GUI tests by automatically applying user-specified transforma-
tions to scripts. These transformations could, for example, insert a step that makes a previously broken script usable.
Daniel et al. [14] propose to repair test scripts automatically by observing refactorings as they are being applied on a
GUI and then deriving script refactorings from them. Recently, Zhang et al. [25] presented Flowfixer, an exploration-
based technique to migrate scripts automatically to a new and evolved GUI. In comparison to these techniques, our
approach creates scripts that are change resilient for a class of changes; the repair happens internally. However, the
scope of change resilience is necessarily limited. Our technique will not, for example, automatically insert a new
action step that was not necessary in the existing script but does become necessary with the changed GUI.

Languages and Notations Chickenfoot [8] is a programming system for automating web tasks that provides an API
for finding elements on a web page by keyword matching on the label of the element. In case of ambiguities, positional
clues such as “link after image” can be given. If there are multiple matches, Chickenfoot returns an iterator over all

16

of the matches. CoScripter [16] is a system to create scripts based on observing user actions on a web page. It also
includes positional attributes to help disambiguate an element of interest. ATA-QV’s nesting of “near” clues is more
expressive than these two systems. Moreover, ATA-QV relieves the user from having to identify the right contextual
clues for precise matching.

Descriptive programming, as in QTP, also provides a “find” based API, with the difference that the API takes
additional attributes against which to match an element. A programmer can use these API with a set of well-chosen
attributes to locate the element of interest precisely. ATA-QV, by contrast, reduces this effort and can be used even by
novices or non-programmers.

Image-Matching-Based Automation Similar to SIKULI [9], which we discussed in Section 1.2, Eggplant [1] is a
commercial tool based on the principle of locating UI elements via image matching. As our experiments show, ATA-
QV can be more robust than image-matching-based automation because image-based techniques can suffer from the
differences in rendering and scrolling behavior.

Cross-Browser Testing WebDiff [10] analyzes web pages visually and detects layout differences across different
browsers. Mesbah et al. [19] use dynamic crawling to analyze entire web applications and focus on detecting functional
defects across browsers. CrossCheck [11] combines these two techniques to improve the detection of cross-browser
incompatibility defects. These techniques are orthogonal to our technique and attempt to find functional and visual
differences across browsers. These techniques can benefit from our technique by adopting our script representation.

Finally, other approaches that generate test cases for web applications (e.g., [17, 20, 6, 21]) can also benefit from
our technique in generating more change-resilient tests.

6 Summary and Future Work
We presented a novel solution to the script-fragility problem that widely afflicts the field of GUI test automation.
Our solution generates test scripts by encoding contextual clues—instead of internal properties or visual renderings,
as existing technologies do—for locating UI elements. The created scripts are tool/platform-agnostic and resilient
to changes in internal properties or visual renderings. Our empirical results demonstrate the high accuracy of the
technique in automatically inferring contextual clues. The results also show that the technique can be quite effective
in compensating for real content changes and browser-specific DOM/rendering variations, and outperforms existing
techniques. Thus, our technique can be a useful alternative to the existing approaches.

In general, there exist situations where any of these techniques can be better than the others and, in general, no one
technique would be absolutely the best in all circumstances. We envision that, to address the script-fragility problem
effectively, a tool would combine the different strategies for locating UI elements, providing users with flexibility to
select the ones likely to generate the most robust scripts, taking into account various factors, such as the types of
changes made in the application under test and the nature of testing performed (e.g., functional regression testing,
cross-browser testing, testing of locale-specific application variants, etc.). This would be a fruitful direction for future
research.

Our approach may be even more valuable for automation of mobile applications. In that space, our platform-
agnostic script notation, suitably extended, could be leveraged to deal with the high diversity (e.g., in platforms,
devices, and application variants) that poses challenges for robust and efficient test automation.

References
[1] EggPlant. http://www.testplant.com/products/eggplant.

[2] HP Quick Test Professional. http://www8.hp.com/us/en/software-solutions/software.html?
compURI=1172122&jumpid=reg_r1002_usen#.T-amcRfB-Gc.

[3] IBM Rational Functional Tester. http://www-01.ibm.com/software/awdtools/tester/functional.

[4] Selenium. http://seleniumhq.org.

[5] Selenium Internet Explorer Driver. https://code.google.com/p/selenium/wiki/
InternetExplorerDriver/.

17

[6] D. Amalfitano, A. R. Fasolino, and P. Tramontana. Rich internet application testing using execution trace data. In ICST
Workshops, pages 274–283, 2010.

[7] S. Berner, R. Weber, and R. K. Keller. Observations and lessons learned from automated testing. In Proceedings of the 27th
international conference on Software engineering, pages 571–579, 2005.

[8] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller. Automation and customization of rendered web pages. In
Proceedings of the 18th annual ACM symposium on User interface software and technology, pages 163–172, 2005.

[9] T.-H. Chang, T. Yeh, and R. C. Miller. GUI testing using computer vision. In Proceedings of the Conference on Human
Factors in Computing Systems, pages 1535–1544, 2010.

[10] S. Choudhary, H. Versee, and A. Orso. WEBDIFF: Automated identification of cross-browser issues in web applications. In
IEEE International Conference on Software Maintenance, pages 1–10, 2010.

[11] S. R. Choudhary, M. R. Prasad, and A. Orso. CrossCheck: Combining crawling and differencing to better detect cross-browser
incompatibilities in web applications. In Proceedings of the International Conference on Software Testing, Verification and
Validation, pages 171–180, 2012.

[12] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application test repair. In Proceedings of the First International
Workshop on End-to-End Test Script Engineering, pages 24–29, 2011.

[13] E. F. Collins and V. F. de Lucena. Software test automation practices in agile development environment: An industry experi-
ence report. In Proceedings of the 7th International Workshop on Automation of Software Test, pages 57–63, 2012.

[14] B. Daniel, Q. Luo, M. Mirzaaghaei, D. Dig, D. Marinov, and M. Pezzè. Automated GUI refactoring and test script repair. In
Proceedings of the First International Workshop on End-to-End Test Script Engineering, pages 38–41, 2011.

[15] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving gui-directed test scripts. In Proceedings of the 31st International
Conference on Software Engineering, pages 408–418, 2009.

[16] G. Leshed, E. M. Haber, T. Matthews, and T. Lau. Coscripter: automating & sharing how-to knowledge in the enterprise. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1719–1728, 2008.

[17] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of AJAX web applications. In International Conference on Software
Testing, Verification, and Validation, pages 121–130, 2008.

[18] A. M. Memon. Automatically repairing event sequence-based gui test suites for regression testing. ACM Trans. Softw. Eng.
Methodol., 18(2):4:1–4:36, 2008.

[19] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility testing. In Proceedings of the 33rd International
Conference on Software Engineering, pages 561–570, 2011.

[20] A. Mesbah and A. van Deursen. Invariant-based automatic testing of AJAX user interfaces. In ICSE, pages 210–220, 2009.

[21] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra. Guided test generation for web applications. In
Proceedings of the International Conference on Software Engineering, pages 162–171, 2013.

[22] S. Thummalapenta, N. Singhania, P. Devaki, S. Sinha, S. Chandra, A. K. Das, and S. Mangipudi. Efficiently scripting
change-resilient tests. In Proceedings of the 20th International Symposium on the Foundations of Software Engineering, Tool
Demonstrations Track, 2012.

[23] S. Thummalapenta, S. Sinha, N. Singhania, and S. Chandra. Automating test automation. In Proceedings of the 34th Interna-
tional Conference on Software Engineering, pages 881–891, 2012.

[24] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using GUI screenshots for search and automation. In Proceedings of the 22nd
Symposium on User Interface Software and Technology, pages 183–192, 2009.

[25] S. Zhang, H. Lü, and M. D. Ernst. Automatically repairing broken workflows for evolving GUI applications. In Proceedings
of the International Symposium on Software Testing and Analysis, pages 45–55, 2013.

18

