
RI14008 2 June 2014 Computer Science

IBM Research Report

Test Generation from Business Rules

Simon Holm Jensen
Samsung Research America

USA

Suresh Thummalapenta
Microsoft Corporation

USA

Saurabh Sinha
IBM Research – India

Satish Chandra
Samsung Research America

USA

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and

will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dis-

semination of its contents. In view of the transfer of copyright to the outside publisher, its distribution out-

side of IBM prior to publication should be limited to peer communications and specific requests. After out-

side publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment

of royalties). Copies may be requested from IBM T.J. Watson Research Center, Publications, P.O. Box 218,

Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at

http://domino.watson.ibm.com/library/CyberDig.nsf/home.

ABSTRACT
Enterprise applications are difficult to test because their intended
functionality is either not described precisely enough or described
in cumbersome business rules. It takes a lot of effort on the part
of a test architect to understand all the business rules and design
tests that “cover” them, i.e., exercise all their constituent scenarios.
Part of the problem is that it takes a complicated set up sequence
to drive an application to a state in which a business rule can even
fire. In this paper, we present a business rule modeling language
that can be used to capture functional specification of an enterprise
system. The language makes it possible to build tool support for
rule authoring, so that obvious deficiencies in rules can be detected
mechanically. Most importantly, we show how to mechanically
generate test sequences—i.e., test steps and test data—needed to
exercise these business rules. To this end, we translate the rules
into logical formulae and use constraint solving to generate test
sequences. One of our contributions is to overcome scalability is-
sues in this process, and we do this by using a novel algorithm for
organizing search through the space of candidate sequences to dis-
cover covering sequences. Our results on three case studies show
the promise of our approach.

1. INTRODUCTION
A business rule articulates some aspect of the expected func-

tional behavior (or a requirement) of an enterprise application. Here
is a simple business rule that determines how an invoice total is de-
termined in a billing application:

The Balance Type of a customer affects how invoice
total is computed; it can be one of the following:

None: The customer’s account will not hold a balance;
instead all charges accrued in an order will be included
in the next invoice;

Credit: The customer’s account may accrue charges
up to the set credit limit. Charges will automatically
be paid from the users credit pool until the set limit is
reached. Users are responsible for paying their credit
debt as well as any overages.

We will examine this rule closely later; for now, suffice it to say
that the requirements of an enterprise system are typically captured
by a large number (often, hundreds) of business rules such as the
one above.

It is reasonable to expect functional testing of an enterprise sys-
tem to cover its business rules, which is to say, testing would exer-
cise every distinct scenario described in each of its business rules.
For example, in the preceding rule, one of the scenario to be exer-
cised is that a customer’s balance type is credit, and that the order
amount exceeds the customer’s credit limit. A test that exercises
this scenario would set up a customer with the balance type as
credit as well as a certain credit limit, say, 100, create an order
and add items to the order to bring a total to, say, 120, to exceed
the credit limit for that customer, and then finally create an invoice
for that order,and verify the invoiced amount. Figure 1 illustrates
this flow. Although the values credit, 100, and 120 can be iden-
tified just from this rule (by constraint solving), identifying a test
sequence is also important to apply those values at the right fields
on the appropriate screens.1

It requires a carefully thought-out test scenario, i.e., a sequence
of test steps as well as associated test data, i.e., values to be entered
1Not all fields on the screens in Figure 1 are constrained from the point
of view of exercising a particular scenario, but the application might still
demand sensible values for them. The tester is expected to make these up.

in the relevant test steps to exercise a business rule, or a scenario
thereof. Without systematic test creation, testers may end up creat-
ing multiple tests that exercise the same business rule, or a scenario
thereof, over and over again without any additional benefit (espe-
cially if they are incentivised by the number of tests created rather
than quality of the created tests), and more problematically, may
neglect to create tests for some other business rules.

In practice, due to time pressures, testers are more often ad-hoc
than methodical in creating test scenarios and test data. One part
of the problem is that a realistic system might have hundreds of
business rules written out in plain text, and it is difficult to grasp
a global view of how the rules together describe the application
behavior. A related part of the problem is that it may need complex
reasoning to piece together test sequences that would cover each
scenario. The net result is that, despite a lot of resources spent in
testing, bugs still escape into the field.

Our vision is to make testing of enterprise software more tool-
based, by adapting technology developed for automated and sys-
tematic test generation for programs. In this vision, business rules
would be written in a structured notation that allows mechanized
analysis. Special editors could be created to enable non-programm-
ers to capture business rules in a structured notation; this is an in-
dependent challenge in end-user programming. A tool would vali-
date business rules and point out any ambiguities or omissions that
it can detect. After the business rules pass validation, another tool
would generate test sequences and test data to exercise the applica-
tion thoroughly as well as without redundancies.

We have built a system to partially fulfil this vision. In the rest
of this introductory section, we give an overview of our system,
describe some of the challenges in automating test generation for
covering business rules, and briefly summarize our results.

1.1 An Overview
Enterprise systems of interest to us are transaction-oriented, which

means that they consist of a set of transactions or operations (e.g.,
create a customer, add an item to an order, and so on) that oper-
ate on databases. A business rule applies to a particular operation
supported by the system. Formally, a business rule describes the
relation between the database state before and after the operation.
Figure 2 shows formalization of the business rule quoted informally
at the beginning of the introduction. It says that the operation refers
to an invoice record, inv, and modifies specific attributes of inv.
There are three scenarios that occur in this rule. The first scenario
applies when the customer to which the invoice refers has balance
type None; the precondition is shown on the left of the first arrow.
Note that the invoice has references to the customer to which this
invoice pertains and an order created in the system; in a relational
database, these would be foreign keys in the customer and order
tables. The second scenario applies when the customer has balance
type Credit and the credit limit is sufficient to cover the order to-
tal. The third scenario applies when the customer has balance type
Credit, but the order total exceeds the credit limit. In each scenario,
the effect of the operation is to compute invoice total and update
the customer’s residual credit limit; this effect, or postcondition is
shown to the right of the arrow in each case. Note that business
rules refer to the state observable at transaction boundaries; inter-
mediate program states encountered in the implementation while a
transaction is in process, are not important to business rules.

Covering a business rule means to exercise each of its constituent
scenarios, referred henceforth as rule parts. To cover these three
rule parts in the business rule of Figure 2, it is necessary to create
(separately) each of the three preconditions and, in each case, ver-
ify that the postcondition holds after the operation has completed.

1.	 Create	 Customer	 2.	 Enter	 Customer	 Details	 3.	 Create	 Order	 for	 Customer	

4.	 Add	 Item	 to	 Order	 5.	 Generate	 Invoice	 6.	 Verify	 Invoice	 Total	

Figure 1: Test sequence for exercising a business rule from the jBilling application.

Input 	 Invoice	 inv	
Modifies 	 inv.total,	 inv.ord.cust.creditLimit	

Compute	 Invoice	 Total	

inv.ord.cust.balanceType	 =	 None	 ⋀
inv.ord.Total	 >	 0	 	 inv.total	 =	 inv.ord.total	

inv.ord.cust.balanceType	 =	 Credit	 	 ⋀
inv.ord.cust.creditLimit	 ≥	 inv.ord.total	

inv.total	 =	 0	 	 ⋀	
inv.ord.cust.creditLimit	 =	

	 inv.ord.cust.creditLimit	 –	 inv.ord.total	

inv.ord.cust.balanceType	 =	 Credit	 	 ⋀
inv.ord.cust.creditLimit	 <	 inv.ord.total	

inv.ord.cust.creditLimit	 =	 0	 	 ⋀	
inv.total	 =	 inv.ord.total	 –	 	

	 inv.ord.cust.creditLimit	

Figure 2: Business rule for computing invoice amount.

This brings us to the main difficulty in creating tests: appropriate
database state, such as a customer with a certain balance type and
an order with a certain amount, needs to be established before any
of these scenarios can be exercised. We showed in Figure 1 the
steps that would be required to create these preconditions. How
can we identify these steps, and the data to be entered in each of
these steps automatically to cover a rule part of a business rule?

Our observation is that the steps that are required to drive the
database state to a desired precondition are carried out by opera-
tions, and those operations too would have rules that specify their
functionality. We could then use business rules as “state trans-
formers” and piece together a sequence of operations to arrive at a
desired state. The advantage of looking at business rules as state
transformers is that we can adapt the technology developed for
test generation on programs for the problem at hand.2 The dis-
advantage of relying on business rules to act as state transform-
ers is that they need to be specified to a certain level of detail for
them to work out as state transformers; this is generally not a big

2We clarify, though, that business rules are themselves not executable pro-
grams; rather they only are an abstract description of the functionality of a
program.

problem—practioners tend to write business rules with an intention
to be complete—but their intended use as input to test generation
process does increase expectations from the rules and, therefore,
from the analysts who write them.

1.2 Our Approach and Results
At a high level, the idea is to use backward analysis to piece

together a sequence of operations to arrive at a desired state. We
look for an operation whose business rule has a rule part whose
postcondition would imply the desired precondition. Such an oper-
ation, if executed in a way that that specific rule part applies, would
establish the desired state. The operation may require some user-
provided values, but may partially rely on prior database state. The
process is repeated until no prior database state is assumed—that
is, all the database state is established by operations identified in
the process.

Consider the second rule part of the rule shown in Figure 2 for the
operation to generate an invoice. To satisfy the precondition of the
rule part, a customer with balance type Credit, and an associated
credit limit, needs to be created first. Then, an order whose total
does not exceed the customer’s credit limit needs to be generated,
which involves adding items with suitable prices to the order. Only
after this state has been set up, the operation for invoice generation
can be invoked. An operation sequence and test data (we explain
the notation in Section 4) that achieves this is:

State st; BalanceType bt = Credit; int crLimit = 100, price = 20;
Customer cust = CreateCustomer(st, bt);
Customer cust1 = AddCreditLimit(cust, crLimit);
Order ord = CreateOrder(cust1);
Item item = CreateItem(int price);
Order ord1 = AddItemToOrder(ord, item);
Invoice inv = GenerateInvoice(ord1);

The idea of backward traversal is definitely not novel; it is rem-
iniscent of weakest preconditions. Our contribution is to make this
idea work in the context of business rules. In general, the space of
possible operation sequences can be large, in which only a few se-
quences cover the target rule part. Thus, the challenge is to search

this space soundly, but efficiently in a goal-driven manner. Specif-
ically, our technique builds the sequence incrementally using con-
straint solving. If the logical formula for a sequence is not satisfi-
able, it extracts the unsatisfied core of the formula and constructs
new candidate sequences by considering only those operations and
rule parts whose postconditions are compatible with the unsatisfied
core. In this way—and using additional optimizations—the tech-
nique can prune out large parts of the search space and efficiently
narrow down to the covering sequences.

We also present a notation for capturing business rules formally,
which enables mechanized analysis for test generation. Moreover,
prior to test generation, formally specified rules can be checked for
various consistency and completeness properties.

We have implemented a prototype system, which includes a busi-
ness rule editor (an Eclipse plug-in) and automated analyses for
rule checking and test generation. Our preliminary results illustrate
the promise of the approach: for 77 rule parts, modeled from three
applications, our technique generated covering sequences and test
data for 99% of the rule parts and missed only one rule part (which
could not be covered because of limitations of the underlying con-
straint solver). By comparison, a technique that performs exhaus-
tive (unguided) search could cover 74% of the rule parts, although
it explored substantially more candidate sequences than our tech-
nique.

Contributions. The contributions of this paper are as follows:

• We describe a notation for describing business rules formally,
and articulate a set of well-formedness properties that can be
checked mechanically. We have also developed an Eclipse
plugin for our rule language.

• We describe an algorithm that can mechanically construct
test sequences that exercise the business rules of a model.
The algorithm uses a novel optimization to prune the search
space. We have implemented the algorithm in a tool called
buster.

• To evaluate our approach, we have formalized the business
rules of three enterprise systems and used buster to generate
test sequences. Using our approach we are able to generate
tests for 99% of the rule parts.

In Section 2, we describe our notation for modeling business
rules and present four well-formedness properties of models. In
Section 3, we present the running example model, JBilling. In Sec-
tion 4 we describe our approach including several optimizations. In
Section 5 is the experimental evaluation using our implementation
buster and in Section 6 we discuss related research.

2. RULE MODELING AND CHECKING
In this section, we discuss the notation for modeling business

rules and the static checking for completeness and consistency per-
formed on formally captured rules.

2.1 Rule-Modeling Language
Overall, our approach models rules in the context of operations

in the system under test. An operation is described by a set of
input entities, a set of created entities, a set of modified entities,
and a set of rules, where each rule consists of a set of precondition-
postcondition pairs. For example, Figure 2 shows the operation
for computing invoice totals in the jBilling application. The rules
associated with this operation, which govern how the invoice total
and the customer’s credit limit are updated, are modeled with the
operation in the form of precondition-postcondition pairs.

RuleSpec ::= Entities Operations Triggers

Entities ::= Entity Entities | ε
Entity ::= Enum | Object
Enum ::= enum ID { EnumVals }
EnumVals ::= ID EnumVals | ε
Object ::= object ID { VarDecl }

Operations ::= Operation Operations | ε
Operation ::= operation ID { Input Creates Modifies Rules Next }
Input ::= input : VarDecl
Creates ::= creates : VarDecl
Modifies ::= modifies : VarDecl
Rules ::= Rule Rules | ε
Rule ::= group ID { RuleParts }
RuleParts ::= RulePart RuleParts | ε
RulePart ::= rule ID { pre : Expr ; post : Expr }
Next ::= next : ID | ε

Triggers ::= ID→ ID Triggers | ε

VarDecl ::= TypeName : ID VarDecl | ε
TypeName ::= bool | int | float | string | set<TypeName> | ID
Expr ::= . . .

Figure 3: Partial rule-modeling syntax.

Figure 3 presents the formal syntax of the rule-modeling lan-
guage (for clarity, we omit some of the details and present only
the important parts of the language). A rule specification consists
of entities and operations. An entity can be an object in the sys-
tem (e.g., invoice, order, customer) or an enumerated type (e.g., a
customer’s balance type can be None, Credit, or Prepaid).

The key part of the syntax, which models rules, is based on oper-
ations. Formally, an operation O is the tuple (I,C,M,R, on), where
I is the set of input entities read during the execution of O, C is the
set of entities created by O, M is the set of entities whose attributes
are modified by O, R is the set of rules that describe the behavior
of O, and on is a succeeding operation that, if specified, is the only
operation that can execute after O.

The notion of succeeding operation can simplify the modeling of
“coarse grained” operations that have many rules associated with
them. Such an operation can be broken down into a sequence of
finer-grained operations—with the sequence specified via the next
clause—that have simpler rules. The specification lets the test-
generation algorithm ensure that the atomic nature of the coarse-
grained operation is preserved in the finer-grained sequence: while
chaining operations, the algorithm avoids interleaving other oper-
ations in the middle of a finer-grained operation sequence. More-
over, such decomposition is necessary when the rules of an op-
eration have data dependences, which define an implicit ordering
among the rules.

A rule R = {r1, r2, . . . , rk}, k ≥ 1, consists of a set of rule parts. A
rule part r is a precondition-postcondition pair, p =⇒ q, where p
and q are boolean formulas such that if p holds in the state before
the operation, q is true in the state resulting from the execution of
the operation. If the precondition of a rule part is true, we say that
the rule is applicable.

The rule shown in Figure 2 has three rule parts, each of which
consists of a precondition and a postcondition. The first rule part
pertains to the case where the customer’s balance type is None; the
second rule part is for the case where the balance type is Credit
and the credit limit exceeds or equals the order total; the third rule
part covers the case where the balance type is Credit and the order
total exceeds the credit limit.

Often in enterprise systems, the execution of an operation or a
transaction automatically triggers other transactions or operations.
For example, in jBilling, customers with balance type Prepaid

have the option of getting their prepaid limit automatically recharged
if it falls below a threshold amount. Our rule-modeling syntax ac-
commodates this via the Triggers clause, using which the triggers
relation between a pair of operations—where the first operation au-
tomatically triggers the second operation—can be specified.

The primitive types include boolean, integer, float, and string
types. The model also accommodates sets of these types.3

2.2 Rule Checking
We define a few well-formedness properties on rule specifica-

tions to ensure consistency and completeness, and that also facil-
itate operation chaining for test generation. These properties are
amenable to mechanical checking. Thus, we envision that the rules
can be iteratively refined in a rule editor, based on automatic se-
mantic checking for property violations (in addition to syntactic
checking for conformance to the modeling syntax).

Property 1: Rule-part Disjointedness. In our notation, a
rule part is intended to represent disjoint preconditions so that when
a rule is applicable, the precondition of only one rule part is true;
consequently, there is no ambiguity in identifying the relevant rule
part for an applicable rule. Formally, we define this property as fol-
lows. Let R = {r1, r2, . . . , rk} be a rule such that k ≥ 2. Then, for all
ri, r j ∈ R where ri B (pi =⇒ qi) and r j B (p j =⇒ q j), (pi∧p j) must
not be satisfiable. A simple example of a rule specification that vi-
olates this property is pi = (a > 0) and p j = (a < 10); this speci-
fication represents ambiguous behavior when, for example, a = 5.
The rule parts illustrated in Figure 2 have disjoint preconditions.

To check that a rule satisfies this property, first, we enumerate
all pairs of rule parts. Then, for each pair of rule parts (with pre-
conditions pi and p j), we determine whether the boolean formula
(pi∧p j) has a solution; if it does, we flag a violation of the property.

Property 2: Rule-part Completeness. This property is in-
tended to ensure that a rule specifies the complete operation behav-
ior for the variables mentioned in the rule. Let R = {r1, r2, . . . , rk} be
a rule such that k ≥ 2 and ri B (pi =⇒ qi). Then, ¬(p1∨p2∨. . .∨pk)
must not be satisfiable. For example, the rule consisting of two rule
parts with preconditions (a < 5) and (a > 10), respectively, vio-
lates the completeness property because the operation behavior for
5 ≤ a ≤ 10 is left unspecified. To verify this property, our tech-
nique checks, for each rule that has two or more parts, whether the
formula ¬(p1 ∨ p2 ∨ . . . ∨ pk) has a solution.

Property 3: Rule Compatibility. The rule compatibility prop-
erty requires that for any set of applicable rules of an operation,
the postconditions of their relevant rule parts must not be con-
flicting. To illustrate, consider rules R1 = {r1} and R2 = {r2}

for an operation, such that r1 B ((a > 0) =⇒ (total = 10)),
r2 B ((b > 0) =⇒ (total = 20)), and the two preconditions are
not disjoint (i.e., (a > 0) ∧ (b > 0) is satisfiable). This pair of rules
violates the compatibility property because the postconditions are
conflicting, whereas the corresponding preconditions can be true
simultaneously—the first precondition does not constrain the value
of b, and the second precondition does not constrain the value of a.
Thus, when both preconditions are true, it is not clear what value
total would have after the operation.

To state this property formally, let r1 B (p1 =⇒ q1) and r2 B
(p2 =⇒ q2) be the relevant rule parts of two applicable rules of
an operation. Then, if (p1 ∧ p2) is satisfiable, (q1 ∧ q2) must be
satisfiable. To verify this, our technique enumerates all pairs of

3In the currently implemented system, set types are handled in a restricted
manner: by limiting the set size to two and specifying the predicates over a
set in terms of its (two) elements.

Figure 4: Screenshot of the Eclipse-based rule editor.

rules for an operation. Then, for each pair R1 and R2, the techniques
lists each combination (p1, p2) of the preconditions of R1 and R2,
and checks the satisfiability of (p1 ∧ p2) and the conjunction of the
corresponding postconditions.

If two rules violate the compatibility property, it might in fact
indicate that their rule parts can be merged into one rule. In the pre-
ceding example, R1 and R2 could be merged into one rule with two
rule parts Rm = {rm1 , rm2 }, where rm1 B (a > 0) =⇒ (total = 10)
and rm2 B (a ≤ 0 ∧ b > 0) =⇒ (total = 20). Note adding the con-
junct a ≤ 0 (the negation of the precondition of r1) to the precondi-
tion of rm2 makes the two preconditions disjoint, which ensures that
Rm satisfies the rule-part disjointedness property. Alternatively, the
negation of the precondition of r2 could be added to the precondi-
tion of rm1 to satisfy this property.

Property 4: Rule Independence. Finally, we enforce the re-
striction that there can be no data dependence between the postcon-
dition of one rule and the precondition of another rule of the same
operation. This property ensures that there is no implicit ordering
among the rules of an operation. When such an ordering exists be-
tween two rules of an operation, the operation should be split into
two operations in a sequence specified using the next clause.

We formalize this property as follows. Let R = {R1,R2, . . . ,Rn}

be the rules associated with an operation. For any Ri,R j ∈ R, let
Vi,post be the set of variables used in the postconditions of the rule
parts of Ri and V j,pre be the set of variables used in the preconditions
of the rule parts of R j. Then, Vi,post ∩ V j,pre = ∅. The checking
of this property is straight forward: for each pair of rules for an
operation, the technique computes the sets of variables used in the
preconditions of one rule and the postconditions of the other rule,
and verifies that the two sets are non-intersecting.

2.3 Guided Model Creation
The modeling process must be realistic in that users should be

able to create and refine models in a tool-assisted manner, with im-
mediate checking of, and feedback on, errors in the models. We
have implemented such a rule editor as an Eclipse plugin; Fig-
ure 4 shows a screenshot of the editor. The editor is built us-
ing Eclipse Xtext,4 which is a general framework for developing
domain-specific and programming languages. Much like any mod-
ern syntax-directed editor for a programming language, the rule

4https://www.eclipse.org/Xtext/

Create

Customer
Customer

Add Credit

Limit

Create

Order
Order

Create

Item
Item Add Item

To Order

Generate

Invoice

Invoice

creates entity

reads entity

modifies entity

Figure 5: Sample operations and their interactions in jBilling.

editor provides syntax highlighting, navigation features, auto com-
pletion, and on-the-fly detection of syntax errors. The user can also
run a semantic checker to detect violations of the well-formedness
properties discussed previously. Thus, the editor provides a conve-
nient environment for writing rules, in which the user is guided by
automated checking and feedback.

3. EXAMPLE APPLICATION MODEL
Before presenting our technique, we elaborate upon the billing

application example (jBilling) mentioned in the previous sections:
we explain various operations and rules for the application, which
we use subsequently to illustrate our technique. To facilitate the
illustration, we use a simplified version inspired by the actual ap-
plication.5 (In the empirical evaluation, we modeled a larger part
of the application.) The model for jBilling includes four enti-
ties: Customer, Item, Order, and Invoice. Figure 5 shows the
flow among some of the operations, which create, read, or mod-
ify these entities. For example, operation CreateCustomer creates
an instance of Customer, whereas the operation AddItemToOrder
modifies an Order instance by adding a new item to the order.

Table 1 presents the formal specification of the jBilling oper-
ations and rules. Columns 2–4 list, respectively, the entities read,
created, and modified by an operation. Columns 5 and 6 provide
informal descriptions and formal representations of the rules asso-
ciated with an operation. GenerateInvoice has two rules associated
with it, whereas all the other operations have only one rule associ-
ated with them. The first rule for GenerateInvoice has three rule
parts, which determine how the invoice total and the customer’s
credit limit are updated by the operation, based on the customer’s
balance type. The second rule for GenerateInvoice has two rule
parts—which also determine the computation of invoice total, this
time based on the customer’s state of residence.

The boolean expressions in the rule parts refer to the input/crea-
ted/modified entities by names: e.g., the rule part for CreateOrder
refers to the input Customer instance as cust and the created Order
instance as ord. The expressions also refer to attributes of the enti-
ties. For example, some of the relevant attributes of Customer are:

Customer {
State: state
BalanceType: balType
int: crLimit

}

where State and BalanceType are enumerated types (e.g., at-
tribute BalanceType can take two values—None or Credit) and the
attribute crLimit is an integer.

If an expression needs to refer to the old and new values of an
attribute (i.e., the values prior and subsequent to an operation in-
vocation), the old value is distinguished by appending ‘@’ to the
attribute name. For instance, consider the postcondition in the rule

5http://www.jbilling.com/

r
4.1

r
4.2

r
4.3

r
5.1

r
5.2

Rule R4

Rule R5

Figure 6: Operation flow graph for GenerateInvoice.

for AddCreditLimit: cust.crLimit = cust.crLimit@ +amount; this
states that the input credit amount is added to the customer’s old
credit limit to obtain the new credit limit.

4. TEST GENERATION
Given an operation O and a target rule part r in O, our technique

attempts to generate a test sequence, consisting of an operation se-
quence and test data, that covers r—that is, the sequence produces
all input entities of O in appropriate object states to ensure that the
precondition of r is satisfied. The challenge is to search for a cov-
ering sequence efficiently from a large set of candidate sequences.
For example, one of our experimental subjects, Cebu-pacific, has
eight operations that accept an entity Ticket as input and modify it.
Therefore, any sequence composed using one or more of these op-
erations can be a candidate sequence; however, different sequences
and orderings produce different object states of Ticket. Our tech-
nique addresses this challenge by exploring the large search space
efficiently, in a goal-directed manner, by ignoring sequences that
are not likely to cover the target rule.

4.1 Terminology
Before presenting the test-generation algorithm, we introduce

some terminology and definitions: we discuss two types of graphs
(the dependence graph and the operation flow graph) and define
abstract and concrete operation sequences.

4.1.1 Graphs
Dependence Graph. A dependence graph is a directed graph
that captures interactions of operations with entities: nodes in the
graph represent operations and entities, whereas edge represent cre-
ates, reads, and modifies relations. A creates edge or a modifies
edge from an operation to an entity indicates that the operation cre-
ates or modifies that entity; a reads edge from an entity to an oper-
ation indicates that the operation reads the entity. Figure 5 shows
the dependence graph for our example application.

Operation Flow Graph. To identify combinations of rule parts
(within an operation) that create different object states of entities,
we model an operation as a flow graph. The operation flow graph
for an operation is a directed graph consisting of rule subgraphs—
one per rule of the operation—and edges representing flow among
the rule subgraphs. A rule subgraph consists of a unique entry
point, a unique exit point, and nodes that represent rule parts; the
subgraph contains an edge from the entry point to each node and
an edge from each node to the exit point. Figure 6 illustrates the
operation flow graph for GenerateInvoice with two rules, R4 and
R5, which have three and two rule parts, respectively.

Because preconditions of all rule parts in a rule are disjoint (Prop-
erty 1, Section 2), control flow through a rule covers exactly one
rule part. The rule subgraph captures this aspect by representing
each rule as a choice among its rule parts. Moreover, because there
are no data dependences between rules of an operation (Property 4,
Section 2), the rule subgraphs can be composed in any order in the
operation flow graph (i.e., all orderings are equivalent).

Table 1: Formal specification of sample business rules in jBilling.
Rules (R)

Operation Inputs (I) Creates (C) Modifies (M) Description Formal Representation
Create {State, {Customer} ∅ R1: The credit limit (crLimit) of newly r1.1: (true) =⇒ (cust.state = state ∧
Customer BalanceType} created customers should be zero cust.balType = balType ∧ cust.crLimit = 0)
Create {Int} {Item} ∅ R2: The price of an item must be greater r2.1: (price > 0) =⇒ (item.price = price)
Item than zero
Create {Customer} {Order} ∅ R3: The total of a newly created order r3.1: (true) =⇒ (ord.total = 0 ∧ ord.cust = cust)
Order should be zero
Generate {Order} {Invoice} ∅ R4: A customer’s balance type determines r4.1: (ord.total > 0 ∧ ord.cust.balType = None) =⇒

Invoice how the invoice total is computed (inv.total = ord.total)
(see complete rule in the Introduction) r4.2: (ord.total > 0 ∧ ord.cust.balType = Credit ∧

ord.cust.crLimit ≥ ord.total) =⇒

(inv.total = 0 ∧
ord.cust.crLimit = ord.cust.crLimit@ − ord.total)

r4.3: (ord.total > 0 ∧ ord.cust.balType = Credit ∧
ord.cust.creditLimit < ord.total) =⇒

(inv.total = ord.total − ord.cust.crLimit ∧
ord.cust.crLimit = 0)

R5: If the customer’s residence is in r5.1: (ord.total > 0 ∧ ord.cust.state = NY) =⇒

NY state, an additional 2% discount (inv.total = ord.total ∗ (98/100))
is given while generating invoices r5.2: (ord.total > 0 ∧ ord.cust.state = Other) =⇒

(inv.total = ord.total)
Add Credit {Customer, ∅ {Customer} R6: The credit limit can be incremented for r6.1: (cust.balType = Credit ∧ amount > 0) =⇒

Limit Int} customers with balance type Credit (cust.crLimit = cust.crLimit@ + amount)
Add Item {Order, Item} ∅ {Order} R7: Adding an item to an order increases r7.1: (true) =⇒ (ord.total = ord.total@ + item.price)
to Order the order’s total by the item’s price

4.1.2 Operation Sequences
Abstract Sequence. An abstract sequence is a sequence of op-
erations describing flow of objects among the operations such that
all variables that represent instances of entities are defined and
other variables (of enumerated and primitive types) need not be
defined. An example abstract sequence for GenerateInvoice is:

State st; BalanceType bt; int price;
Customer cust = CreateCustomer(st, bt);
Order ord = CreateOrder(cust);
Item item = CreateItem(price);
Order ord1 = AddItemToOrder(ord, item);
Invoice inv = GenerateInvoice(ord1);

All instances of entities are initialized within the sequence. In
case an operation creates or modifies multiple entities, we represent
those entities as arguments prefixed with the keyword out.

Concrete Sequence. A concrete sequence constrains an ab-
stract sequence with selected rule parts for each operation. For
an operation, there can be multiple rule parts selected from differ-
ent rules of the operation. Our technique uses concrete sequences
to generate test data by leveraging a constraint solver: it builds a
logical formula from concrete sequences using preconditions and
postconditions of all rule parts, and uses constraint solver to check
whether the formula is satisfiable. An example concrete sequence
for the preceding abstract sequence is:

State st; BalanceType bt; int price;
Customer cust = CreateCustomer(st, bt) [r1.1];
Order ord = CreateOrder(cust) [r3.1];
Item item = CreateItem(price) [r2.1];
Order ord1 = AddItemToOrder(ord, item) [r7.1];
Invoice inv = GenerateInvoice(ord1) [r4.1];

4.2 The Algorithm
The test-generation algorithm (shown as Algorithm 1) takes as

inputs an operation O and a rule part r, and generates a concrete
sequence seq that cover r. To illustrate the algorithm, we consider
the operation GenerateInvoice and rule part r4.2. For brevity, we
omit details such as exiting the main loop (lines 6–13) when the
user-defined threshold of maximum number of sequences to be ex-
plored is reached. We first explain the core algorithm and then
present our optimization based on using unsatisfied cores for effi-
ciently exploring the search space.

Algorithm 1: The algorithm for generating a concrete sequence
that covers a given rule part.

Input: Operation O, Rule part r
Output: Concrete sequence seq or null

1 Let q represents a queue of concrete sequences;
2 Generate all initialization sequences iseqs for O;
3 foreach sequence iseq ∈ iseqs do
4 Generate all concrete sequences cseqs for iseq;
5 Add cseqs to queue q;

6 while q not empty do
7 Dequeue sequence cseq from q;
8 Check whether cseq is satisfiable;
9 if satisfiable then

return cseq;

10 Identify candidate operations ops;
11 foreach operation op ∈ ops do
12 Generate new sequences nseqs by adding op to cseq;
13 Add all nseqs to queue q;

return null;

Generate Initialization Sequences (Lines 2–5). The al-
gorithm first generates, using the dependence graph, all possible
initialization sequences that produce input entities of O. An initial-
ization sequence is an abstract sequence, with the restriction that
it includes only those operations that create entities. To create the
initialization sequences, the algorithm identifies input entities I =

{i1, i2, . . . , im} of O through reads edges in the dependence graph.
For each ik, it identifies the operations OPk = {Ok

1,O
k
2, . . . ,O

k
n} that

create ik through creates edges in the graph. Then, it computes
combinations of all operations across each set corresponding to ik

to generate initialization sequences. Therefore, for m input entities
and n operations that create each entity, the algorithm generates nm

initialization sequences. Note that the order of operations among
the sequences does not matter because the operations create differ-
ent entities. In theory, the number of initialization sequences could
be high; however, in our empirical evaluation, we found that the
number of operations that create entities is often quite low, result-
ing in a few initialization sequences only.

The algorithm checks whether any operation in OPi further re-
quires additional entities, and repeats this process until no new

input entities are required in all initialization sequences. For our
illustrative example, the initialization sequence for the operation
GenerateInvoice is:

Sequence S 1:
State st; BalanceType bt;
Customer cust = CreateCustomer(st, bt);
Order ord = CreateOrder(cust);
Invoice inv = GenerateInvoice(ord);

Next, for each initialization sequence, the algorithm generates
concrete sequences by computing all possible combinations of rule
parts among operations in the sequence. To do this, it joins the op-
eration flow graphs for the operations and enumerates all paths in
the composed flow graph. The concrete sequences generate differ-
ent object states for input entities of O. For our running example,
there is only one concrete sequence because each operation in the
initialization sequence has only one rule part:

Sequence S 2:
State st; BalanceType bt;
Customer cust = CreateCustomer(st, bt) [r1.1];
Order ord = CreateOrder(cust) [r3.1];
Invoice inv = GenerateInvoice(ord) [r4.2];

Check Satisfiability (Line 8). Next, the algorithm checks whe-
ther the concrete sequences in the queue are satisfiable. A concrete
sequence is satisfiable if it generates desired object states for all in-
put entities of O that cover the precondition of the target rule part.
To achieve this, the algorithm constructs a logical formula com-
posed of constraints in preconditions and postconditions in each
rule part of the sequence and leverages a constraint solver to check
whether the composed formula is satisfiable.

For illustration, consider the sequence of operations with se-
lected rule parts as (O1[r1.1],O2[r2.1], . . . ,On[rn.1],O[r]). The al-
gorithm starts with the precondition of r (referred to as target) in
operation O. It generates binding constraints that substitute the en-
tities consumed by O with the entities created or modified by the
predecessor operation On. The binding constraints bind the identi-
fiers in the postcondition of rn.1 to the identifiers of the same type in
the precondition of r. Because the solver has no notion of objects,
the binding constraints ensure that referenced object attributes are
appropriately bound as well.

The binding constraints are generated as follows. Let v be an
identifier of type τ occurring in the creates or modifies clause of a
predecessor (e.g., On) and let w be an identifier of the same type
occurring in the input clause of the successor (e.g., O). If τ is an
enumerated or primitive type, the only binding constraint needed is
w = v. However, if τ is an object type, we must bind all attributes
as well, yielding the following constraint:

bn: w = v ∧ w. f1 = v. f1 ∧ . . . ∧ w. fn = v. fn

Here, f1, . . . , fn are attributes of τ. To generate the final binding
constraint, this process is applied recursively on each attribute of
object type. Using binding constraints, the algorithm generates the
formula as pn.1∧qn.1∧bn∧p, where pn.1 and qn.1 are the precondition
and postcondition of rn.1. The algorithm checks whether the com-
posed formula is satisfiable. If it is, this formula becomes the next
target and On−1 the predecessor operation, and the algorithm re-
peats the same process with other operations in the sequence. Once
it has processed all operations in the sequence and the formula is
satisfiable, it extracts values for variables of primitive and enumer-
ated types from the constraint solution to generate test data.

For our running example, the solver finds the composed formula
unsatisfiable. The reason is that rule part r3.1 of CreateOrder as-
signs zero to attribute total of Order, whereas the precondition of
r4.2 of GenerateInvoice requires total to be greater than zero.

Identify Candidate Operations (Line 10). Our algorithm
next identifies candidate operations ops (along with relevant rule
parts in those operations) that modify any of the entities that were
produced in the sequence. The reason is that sometimes object
states corresponding to intermediate objects need to be modified
to produce desired object states for input entities of O to cover the
rule part r. For instance, in our running example, the customer
whose balance type is Credit should have sufficient credit limit to
cover rule target r4.2.

Generate Alternate Sequences (Lines 11–13). After a
candidate operation op (along with relevant rule parts) is identified,
the algorithm checks whether any additional input entities that are
not yet available in the current sequence cseq are required by the
operation op. If so, it identifies the additional operations that cre-
ate those entities. Then, using the dependence graph, it identifies
all positions in cseq where the candidate operation (along with the
additional operations) can be inserted. Note that there can be mul-
tiple positions that satisfy dependencies for inserting the candidate
operation, and the resulting sequences can produce different object
states for the input entities of O. Therefore, the algorithm can gen-
erate multiple sequences while inserting candidate operation into
cseq. Finally, the algorithm adds all newly generated sequences to
the queue to further analyze those sequences. Our algorithm also
prunes duplicate sequences that were already explored in the previ-
ous iterations.

For our running example, it identifies candidate operations as
AddItemToOrder and AddCreditLimit. Since AddItemToOrder re-
quires an additional entity Item that is not available in the sequence,
the algorithm adds operation CreateItem as well to the newly gen-
erated sequence. In the next iteration, for the sequence including
AddCreditLimit, our algorithm identifies AddItemToOrder as a can-
didate operation, and finally generates the concrete sequence that
covers r4.2 as follows:
Sequence S 3:
State st; BalanceType bt; int price;
Customer cust = CreateCustomer(st, bt) [r1.1];
Customer cust1 = AddCreditLimit(cust, crLimit) [r6.1];
Order ord = CreateOrder(cust1) [r3.1];
Item item = CreateItem(price) [r2.1];
Order ord1 = AddItemToOrder(ord, item) [r7.1];
Invoice inv = GenerateInvoice(ord1) [r4.2];

4.3 Optimizations
The preceding algorithm can handle only small models where

there exist only a few operations that modify entities. Instead,
if there exist many operations that modify each entity, the search
space can easily become exponential. To address this issue, we
use the following optimizations based on unsatisfied core that helps
prune the search space. These optimizations replace Line 10 of Al-
gorithm 1 for identifying candidate operations.

Extract Unsatisfiable Core. In particular, if the composed
formula in Line 8 is unsatisfiable, we extract the unsatisfiable core,
ucore, of the formula. The unsatisfiable core is a subset of the for-
mula that preserves the unsatisfiability but is simplified compared
to the original formula. ucore guides our algorithm towards opera-
tions that modify attributes of entities that help produce the desired
object states. (Section 5.1 presents the implementation details of
how we extract ucore from a formula.) In our example, for se-
quence S 2, we extract ucore as ord.total = 0 ∧ ord.total > 0,
composed of constraints from rule parts r3.1 and r4.2.

Before searching for other candidate operations, we discard con-
straints from ucore that are contributed by the last analyzed oper-
ation (as these constraints cause the unsatisfiability of target). We

use the notation ucore- to represent the remaining constraints in the
extracted unsatisfied core. The intuition behind computing ucore-
is to identify candidate operations that are compatible with ucore-
so that the composed formula can be satisfiable. We first extract
entities and their attributes involved in ucore-. Next, we identify
candidate operations that modify those entities. For each such can-
didate operation, we identify rule parts that modify the desired at-
tributes and also whose postconditions are compatible with ucore-,
i.e., q ∧ b ∧ ucore- is satisfiable, where q is the postcondition of
the selected rule part in the candidate operation and b represents
binding constraints. This additional satisfiability check helps dis-
card candidate operations that do modify the desired attributes but
still cannot help in identifying a covering sequence for r; this can
significantly reduce the search space of candidate sequences.

For our illustrative example, we compute ucore- as ord.total
> 0, and identify the entity as Order and the desired attribute to
be modified as total. We then analyze all operations that create or
modify Order, and identify the candidate operation as AddItemToOrder
and the rule part r7.1, since q7.1 ∧ ucore- is satisfiable. Even if there
exist many operations that modify the Order entity, our optimiza-
tion helps discard many of those operations, thereby increases the
efficiency by aggressively pruning the search space. After creating
the new concrete sequence, we check satisfiability of the new se-
quence, where we further identify ucore as cust.crLimit = 0 ∧
cust.crLimit > 0 and find AddCreditLimit as a candidate opera-
tion.

Check Progress. While identifying candidate operations, our
optimization discards those operations that do not help cover the
target rule part. However, in a few cases, even the identified op-
erations may not help make progress and need to be discarded to
make the exploration efficient. To identify such cases, we check the
following two aspects for each sequence cseq.

First, if the extracted unsatisfiable core ucorewas already seen in
previous iterations related to cseq, we discard cseq. The reason is
that the candidate operation that was added to cseq in the previous
iteration did not help satisfy the previous ucore, resulting in the
same ucore in the next iteration as well.

Second, when ucore includes integer variables, we use a fitness
function to measure whether cseq helps get closer to cover the rule
part r or not. The first check is sufficient for boolean variables or
variables of enumerated types but is insufficient to deal with the
integer variables.

To illustrate the issue, consider that our model includes another
operation, RemoveItemFromOrder, that removes a selected item and
decreases the value of attribute total of Order. While exploring
candidate operations, our optimization identifies AddItemToOrder
and RemoveItemFromOrder because both operations modify total.
However, RemoveItemFromOrder does not help cover r4.2 as it actu-
ally decreases the value of total. To handle such cases, our opti-
mization uses a fitness function, originally proposed in Fitnex [25],
to measure whether cseq gets closer to covering the target rule part.
The idea is to compute a fitness value from ucore and if this value is
better than the fitness value computed during the previous iteration,
cseq is processed further; otherwise, it is discarded.

5. EMPIRICAL EVALUATION
We implemented our technique in a prototype tool called buster

(BUSiness TEsting Rules), and conducted two empirical studies
using two open-source applications and one proprietary enterprise
application. In the first study, we compared the effectiveness of
buster in covering business rules with a related technique that sys-
tematically explores the search space without any guidance. In the

Table 2: Subjects used in our empirical studies.
Subject URL Entities Operations Rules Rule parts

Cebu-pacific www.cebupacificair.com 8 10 15 31
jBilling www.jbilling.com 10 10 14 26
App — 12 13 13 20
Total 33 42 77

second study, we investigated the efficiency of both the techniques.
After describing the experimental setup, we present results of the
two studies.

5.1 Experimental Setup
Implementation. Our implementation buster uses choco con-
straint solver [1] for checking the satisfiability of sequences. Since
choco does not provide functionality for extracting unsatisfied core,
we use a heuristic-based implementation to extract the core. While
checking whether a concrete sequence is satisfiable, buster starts
with the last operation of the sequence and performs backward
analysis by handling each operation and their rule parts. Therefore,
when a composed formula is unsatisfiable, it can be caused only by
a constraint in the most recently analyzed rule part. Next, it uses the
variables involved in that constraint to extract the complete unsatis-
fied core. Note that buster may not extract the minimal unsatisfied
core; however, the extracted core is sufficient to suggest candidate
operations. We leave improvements in the implementation to future
work, for example, by exploring advanced algorithms for extracting
unsatisfied core [7] and also leverage other constraint solvers [3].
Another optimization could include caching and reusing constraints
(e.g., as discussed in the Green approach [22]) to improve further
the efficiency of the search.

To compare the efficiency of buster with an unguided search
over the space of candidate sequences, we implemented another
tool, called exhaust. exhaust is primarily the same as buster with-
out optimizations presented in Section 4.3. Being an unguided
technique, exhaust lets us evaluate the effectiveness of leveraging
unsatisfied core to guide the search for covering sequences.

Subjects and Rules. We used two open-source applications and
a proprietary enterprise application, listed in Table 2, as the exper-
imental subjects. Due to confidentiality reasons, we refer to the
proprietary application as App. Cebu-pacific is an airlines appli-
cation, jBilling is an enterprise billing application, and App is a
telecom application. Column 2 shows the URLs of the first two
subjects. Columns 3–6 show additional details, such as the number
of entities, operations, and rules. For each subject, we identified a
module that is likely to have large number of interesting rules with
respect to the sequences and test data required for coverage, and
modeled those modules using our tool. In particular, we used the
ticket cancellation and generate invoice modules for Cebu-pacific
and jBilling, respectively. In total, we modeled 33 operations
with 42 rules and 77 rule parts.6 For each subject, we spent ap-
proximately 10 hours to model the operations and rules. We also
found that our rule editor and property checking helped create cor-
rect rule set.

Method. We applied buster and exhaust on the models created
for each subject and generated test sequences. For each rule part,
we let each tool explore up to a maximum of 100 concrete se-
quences. Next, we inspected the generated sequences to ensure
that they cover the targeted rule parts. To evaluate the efficiency of

6The complete dataset including original English descriptions, models
and the generated test sequences is available at http://tinyurl.com/
k4b4j8x (also available on request from the authors).

0

20

40

60

80

100

Cebu-pacific jBilling App

BUSTER EXHAUST

Figure 7: Effectiveness of the two techniques in covering busi-
ness rules.
the tools, we measured the number of sequences explored and the
lengths of sequences produced by each tool. All experiments were
conducted on an Intel Core 2 Duo CPU machine with 2.53 GHz
and 8GB RAM. Next, we present the results of the studies.

5.2 Coverage of Business Rules
Figure 7 presents the results for all three subjects: it shows the

percentages of rule parts covered by each tool. For example, for
Cebu-pacific, buster generated covering sequences for all 31 rule
parts, whereas exhaust was able to generate sequences only for 16
rule parts. Overall, the results show that buster covered 99% of the
rule parts, whereas exhaust could cover only 74% of the rule parts.

We further analyzed the cases where the tools could not cover
the targeted rule parts. We found that, in general, exhaust per-
forms poorly if there are many operations that create or modify
the required input entities. This is expected because it results in a
large search space of candidate operation sequences, which buster
is able to navigate effectively in a goal-directed manner (guided
by the unsatisfied core), whereas exhaust has to try the candidate
sequences in a blind manner. Thus, exhaust performed well on
jBilling, in which each entity is created or modified by only a few
operations. But, for Cebu-pacific, where some entities are modi-
fied by many operations, exhaust was much less effective. In such
cases, a directed search guided by unsatisfied core, is necessary—
and can be highly effective—for attaining high rule coverage.

For jBilling, both buster and exhaust could not cover one rule
part because of an issue with choco solver: choco terminated with
an out-of-memory error while solving the composed formula for
that rule part.

Next, we illustrate a complex sequence generated by buster for
a rule part in Cebu-pacific. This rule part pertains to fare re-
funds because of flight cancellation due to a delay of more than
two hours. Cebu-pacific allows a ticket to be booked as multiple
sectors, where each sector represents part of the journey from one
city to another city. The airlines has a refund policy that if the flight
corresponding to any sector gets canceled due to a delay of more
than two hours, passengers can get a refund so as to make alter-
native travel arrangements. To cover this rule part that belongs to
operation Refund, a specific instance of Ticket entity is required.
First, the ticket should include at least one sector and the passen-
ger should have sufficient funds to add a sector to the ticket. Next,
the flight corresponding to that sector should be delayed by more
than two hours and, consequently, canceled. buster successfully
generated the following covering sequence and test data, whereas
exhaust failed to generate a covering sequence.

int fund = 200, passenger = 1, delay = 3, sectorid = 1;
Fund fund = CreateFund(fund, passenger);
Ticket ticket = CreateTicket(passenger);
int flight = 901, price = 100, departure = 10;
Sector sector = MakeSector(flight, price, departure);
AddSector(ticket, sector, fund, out Ticket ticket1, out Fund f1);
Ticket ticket2 = DelayFlight(ticket1, sectorid, delay);

Table 3: Efficiency of buster and exhaust.
Sequence Length # of Sequences Explored
buster exhaust buster exhaust

Subject Max Avg Max Avg Max Avg Max Avg
Cebu-pacific 7 5 9 5 27 4 100 73
jBilling 6 3 6 3 48 2 39 2
App 9 6 10 6 51 5 100 46

Ticket ticket3 = PartialCancellation(ticket2, sectorid);
Refund(ticket3, sectorid, f1, out Ticket ticket4, out Fund f2);

Overall, our results illustrate the promise of our technique in ef-
fectively generating complex sequences for covering business rules.

5.3 Efficiency
Table 3 presents data about the lengths of sequences and the

number of sequences generated by buster and exhaust. Columns 2–
5 show the maximum and average lengths of sequences generated
for all rule parts, whereas Columns 6–9 show the number of se-
quences explored by each tool for all rule parts.

The results show that, in some cases, buster generated relatively
shorter sequences compared to exhaust. More significantly, buster
explored much fewer sequences than exhaust. For example, for
Cebu-pacific, buster explored on average only 4 sequences (maxi-
mum of 27), whereas exhaust explored on average 73 sequences for
each rule part (and also hit the upper bound of 100 sequences). In
none of the cases, buster terminated by reaching the upper bound.
Overall, these results indicate that guided search via unsatisfied
core can make buster highly efficient compared to exhaust.

5.4 Discussion
These results illustrate the promise of our technique. But, further

experimentation with more varied subjects and business rules are
required to confirm the generality of, and increase our confidence
in, these observations.

This work partially fulfills our vision of making the testing of
enterprise applications more tool-based. Our longer-term goal is
to generate executable test cases that drive the application via its
GUI—as illustrated by the flow depicted in Figure 1—to test the
application’s conformance to business rules. Toward that goal, we
plan to leverage our previous work [17], in which we developed a
tool, wateg, that performs directed crawling of a web application
to generate executable GUI test cases. wateg also takes as input a
specification of rules, but those rules are expressed in terms of the
GUI elements (e.g., links, buttons, and text boxes) of an applica-
tion, and pertain to access-control properties, navigational proper-
ties, and so on. A natural integration between this work and wateg-
style crawling technology would be to extend our rule-modeling
language to accommodate flow specifications for operations, which
(along with the test data) could be provided as input to wateg to
generate executable rule-covering tests.

6. RELATED WORK
At first blush, this problem seems to be reminiscent of the prob-

lem of generating tests for programs written as control-flow graphs,
with the goal of exercising each acyclic path in the program, if pos-
sible. There have been a number of techniques in the literature
for test generation. Mostly notably, techniques such as concolic
testing attempt to identify a series of test data that would force pro-
gram execution thorough different paths [5, 16]. Other approaches
are based on model checking, with the goal of creating test inputs to
reach specific program states. However, the problem of test genera-
tion from business rules is different. Business rules do not describe
the implementation of a system: rather they only describe a model

and many of the concerns that arise when dealing with control flow
graph derived from real code are not pertinent.

Model Based Testing. The set of business rules can viewed as
a model of an actual system that supports them and our approach
then becomes a variant of model based test generation [21].

Typical modeling languages used by model based testing sys-
tems include UML sequence diagrams [10], modeling specific lan-
guages such as Systems Modeling Language [4] and finite state
machine notations such as UML state charts [11]. While the busi-
ness rules as presented in this paper could be expressed in any of
these notations, it would be cumbersome and require some degree
of non-trivial encoding on part of users, making it unattractive to
a non-programmer such as a business analyst. Our business rule
language is designed to be user friendly, where syntax is close to
prose, thereby making it more accessible to non-programmers.

The work on combinatorial test optimization [15] also requires a
model of an application as a starting point, but that model is typ-
ically not rich enough to allow generation of test scenarios; the
model does not have an operation-based view of the application.
However, test optimization can be carried out in a post pass over
the tests generated by our technique.

AI Planning. Previous work has applied AI planning to software
testing [14, 6]. The sequencing of operations done by our algorithm
is similar to the AI planning problem [23] where actions with pre-
and postconditions are sequenced by a planner algorithm using ei-
ther forward or backward chaining. The algorithms used by AI
planners are similar to exhaust (presented in Section 5) and proved
to be insufficient for our benchmarks. Part of an AI planning prob-
lem is the initial state of the program, including what objects exist
and what conditions can be assumed. Our technique does not need
such information—the types of objects that exist in the system are
defined in the model along with operations that create them.

Paradkar et al. [13] present a system for testing web services
specified in the semantic markup language OWL-S [8]. The sys-
tem is backed by an AI planner. OWL-S represents operations in a
manner similar to our language with pre- and postcondtions. How-
ever each operation has only one associated pre- and postcondition
pair making it more akin to a rule in our language. If one were to
translate a model in our business rule language into OWL-S, each
rule would be translated into a standalone operation. Such a transla-
tion could potentially increase the size of the search space and lead
to spurious sequences being constructed. The focus of the tech-
nique presented in the paper is on conformance testing, that is, to
test whether a given implementation conforms to the specification.
In our technique, business rules are the specification and the aim is
instead to generate sequences that cover all rules. Their paper does
not mention the size of the models the technique was evaluated on
nor the size of the generated test sequences.

Testing Object-Oriented Programs. Our work is also re-
lated to existing techniques that focus on test generation for object-
oriented programs [12, 19, 18, 24, 2, 9, 20]. At a high level, these
techniques also focus on inferring operation sequences with a goal
of generating different object states for receiver or arguments of
method under test so as to achieve high code coverage. Among
these techniques, Symstra [24] uses bounded-exhaustive technique,
Randoop [12] and JCrasher [2] select methods randomly to com-
pose sequences, and Tonella [20] and McMinn et al. [9] use evo-
lutionary approaches. Among all these techniques, our work is
closely related to Seeker [18] that also attempts to compose se-
quences incrementally based on branches that are not yet covered.

The major contribution of Seeker is to infer candidate operations
especially when those branches include private fields, since private
fields cannot be modified directly. In our current work, we do not
face that issue, since our model does not have the notion of pub-
lic and private attributes. Our current work extends Seeker by ex-
tracting unsatisfied core and using to guide the search process. We
believe that Seeker can greatly benefit with our new algorithm of
leveraging unsatisfied core as a guidance for suggesting candidate
operations.

7. CONCLUSION
In this paper, we presented a new domain-specific language for

modeling business rules that can capture functional specifications
of enterprise systems. We also defined well-formedness properties
on the model that can be verified mechanically. We implemented
our tool as an Eclipse plug-in, where non-programmers also can
create and refine models in a guided fashion We also presented a
novel technique, based on unsatisfied cores, that generates test se-
quences by translating rules in to logical expressions. Our tech-
nique was evaluated using three models that were derived from
business rules written in English. The results show that our tech-
nique is able to cover 99% of all business rules.

In future work, experimentation with more subjects would help
confirm the generality of our results. Toward our longer-term vi-
sion of bringing end-to-end automation to the testing of enterprise
applications, we will investigate the integration of buster and wa-
teg (our previous work [17]) to generate executable test cases for
validating an application’s conformance to business rules.

8. REFERENCES
[1] Choco. http://www.emn.fr/z-info/choco-solver/.
[2] C. Csallner and Y. Smaragdakis. JCrasher: An automatic

robustness tester for Java. Softw. Pract. Exper.,
34(11):1025–1050, 2004.

[3] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, 2008.

[4] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to
SysML: the systems modeling language. Elsevier, 2011.

[5] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 213–223, New York,
NY, USA, 2005. ACM.

[6] A. E. Howe, A. V. Mayrhauser, R. T. Mraz, and D. Setliff.
Test case generation as an ai planning problem. Automated
Software Engineering, 4:77–106, 1997.

[7] M. H. Liffiton and K. A. Sakallah. Algorithms for computing
minimal unsatisfiable subsets of constraints. J. Autom.
Reason., 40(1):1–33, 2008.

[8] D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott,
S. Mcilraith, S. Narayanan, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara. OWL-s: Semantic markup for
web services, 2004.

[9] P. McMinn and M. Holcombe. Evolutionary testing of
state-based programs. In Proc. GECCO, pages 1013–1020,
2005.

[10] A. Nayak and D. Samanta. Model-based test cases synthesis
using uml interaction diagrams. SIGSOFT Software
Engineering Notes, 34(2), Feb. 2009.

[11] J. Offutt and A. Abdurazik. Generating tests from uml
specifications. In Proceedings of the 2Nd International
Conference on The Unified Modeling Language: Beyond the
Standard, UML’99, pages 416–429, 1999.

[12] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed
random testing for java. In Companion to the 22Nd ACM
SIGPLAN Conference on Object-oriented Programming
Systems and Applications Companion, OOPSLA ’07, pages
815–816, New York, NY, USA, 2007. ACM.

[13] A. M. Paradkar., A. Sinha, C. Williams, R. D. Johnson,
S. Outterson, C. Shriver, and C. Liang. Automated functional
conformance test generation for semantic web services. In
ICWS, pages 110–117. IEEE Computer Society, 2007.

[14] M. Scheetz, A. von Mayrhauser, R. France, E. Dahlman, and
A. E. Howe. Generating test cases from an oo model with an
ai planning system. 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE),
0:250, 1999.

[15] I. Segall and R. Tzoref-Brill. Interactive refinement of
combinatorial test plans. In ICSE, 2012.

[16] K. Sen. Concolic testing. In Proceedings of the
Twenty-second IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, pages 571–572,
2007.

[17] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and
S. Chandra. Guided test generation for web applications. In
Proceedings of the 2013 International Conference on
Software Engineering (ICSE), pages 162–171, 2013.

[18] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and
Z. Su. Synthesizing method sequences for high-coverage
testing. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 189–206,
2011.

[19] N. Tillmann and J. de Halleux. Pex-white box test generation
for .NET. In Tests And Proofs, pages 134–153, 2008.

[20] P. Tonella. Evolutionary testing of classes. In Proc. ISSTA,
pages 119–128, 2004.

[21] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of
model-based testing approaches. Software Testing,
Verification and Reliability, 22(5):297–312, 2012.

[22] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green:
reducing, reusing and recycling constraints in program
analysis. In 20th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE), page 58, 2012.

[23] D. S. Weld. An introduction to least commitment planning.
AI Magazine, 1994.

[24] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A
framework for generating object-oriented unit tests using
symbolic execution. In Proc. TACAS, pages 365–381, 2005.

[25] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In Proc. the 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
2009), pages 359–368, June-July 2009.

