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Fepstrum Features: Design and Application to
Conversational Speech Recognition

Vivek Tyagi, Member, IEEE

Abstract—In this paper, we present the Fepstrum features perception[4], [5], [6], [7]. For example, when the AM sidea
— a principled approach to estimate the modulation spectrum of a speech signal are replaced by the envelopes of constant
of the speech signals using the Hilbert envelopes in a non-a4nityde, speech becomes unintelligible. However, $peec
parametric way. The importance of the modulation spectrum ins hiahlv intelligible when the AM si | st
as a feature in the automatic speech recognition (ASR) has remains |g.y|n elligiblie when the S'Q”ast’?‘re presery
long been established by several researchers in the past two but the carriers are replaced by the white noise. Therefore,
three decades. However, traditionally, in the speech recogion amplitude modulator or equivalently its modulation spewatr
literature the modulation spectrum features have been exticted (spectrum of the AM signal) has been an area of great interest
as the DCT/DFT of the log Mel filter's energies over 10 — 15 4 the speech recognition and speech processingf/filtefing

frames. These Mel-filter energies are in-turn computed thraigh dulati lvsis techni tail i f ad
short term spectrum (with 20 — 30ms long primary window). ~moauiation analysis technique entails separafion of aroa

We show, that this approach leads to a crude approximation of band signal (such as speech, music) into several narrod-ban
the modulation spectrum in the Mel-filter bands. Further, we frequency sub-bands followed by the amplitude modulation
show that the log of a particular Mel-Filter's Hilbert envelope  and frequency modulation (AM-FM) decomposition in the
EObtai”‘?d _olvedr a plr_itmgry andal?/sti_s wizf\i/low of 1|00mt_8) Iteac_zls corresponding sub-band. Several such methods are describe
0 a principled amplitude modulation signal estimate in . .

that tﬁ)and.pLower FIJDCT coefficients (il(’1 th)e rgngeo — 25H2) in Ilt_erature[13], [,14]’ [.15]' [16], [18]' [23], [25], buthe

of the AM Signa| leads to the fepstrum features. To assess detaI|S Of hOW a S|gna| IS Separated into Sub'bands, a.nd hOW
the effectiveness of thefepstrum features, we have performed a sub-band is decomposed into a carrier and modulator vary
conversational telephony speech (CTS) recognition expenents from the author to author. Most of these techniques define
on the Switchboard (SWB) corpus using a recently developed g4 exiract the modulation spectrum in a slightly ad-hoc

LVCSR library (IBM IrITK). Our experiments indicate that For inst | h h traweed t
the fepstrum features in simple concatenation with the short- manner. For instance, several researcners have extr

term spectral envelope features (MFCC) provide upto2.5% Speech modulation spectrum by computing a discrete Fourier
absolute improvement in phoneme recognition accuracy andpto  transform (DFT)/DCT of the Mel or critical band spectral
2.5% — 3.5% absolute word recognition accuracy improvement energy trajectories, where each sample of the trajectosy ha
on a 1.5Hr SWB test set with a2, 300 words vocabulary. We  pean gptained through a short-term spectrum (followed by th
Iziitl)sr; provide the details of our IrITK LVCSR acoustic modeling Mel filtering) over20 — 30ms long windows. An illustration
EE)y{CS; SPE-ANLS,SPE-RECO,SPE-LVCR of this is provided in Fig.1. There are two major limitations
of such techniques. First, they implicitly assumes thahinit
each Mel or critical band, the amplitude modulation (AM)
signal remains constant throughout the duration of the arym
Amplitude Modulation (AM) is a very efficient and simple\indow length that is typically20 — 30ms long. Second,
techniq_ue_ in the ele<_:tronic c_ommuni_cation systems for thestead of modeling the constantly and slowly changing am-
transmission of the “information bearing” base-band signay|ityde modulation signal in each band, they mostly model th
over a carrier signal (usually a monochromatic sinusol)[4 spyrious and abrupt modulation frequency changes thatroccu
It has been in use for over a century now owing to it§,e to the frame shifting ofOms.
simple mathematical characterization when the carrienaig Fyrthermore, these techniques only provide feature etidrac
is a single sinusoid as it leads to a simple demodulatigsy the speech recognition and therefore do not concern
scheme at the receiver end. While the original AM formulatioyhemselves with the carrier signal extraction and/or signa
with sinusoidal carriers was done in the field of electronlﬁnering and signal reconstruction which would have regdir
communication systems[46], it turns out that the naturakba 5 more principled approach.
band signals such as speech and music can also be faithfully, the recent past, several researchers, notably AtlasgSch
represented_ by a sum of low _frequency modulators whigle|  sykitannon [8], [9], [10], [11] and Kumaresan and
modulate higher frequency carriers[1], [4], [S], [6]. [1B]. Rao[1], [2], [3] have been developing a unified and formal
[11]. In this case, however, the carriers are not monochtmastdy of the modulation analysis and filtering systems from
sinusoids but are non-zero finite band—W|dth carriers whogesigna“ processing perspective and not just the modulation
central frequencies also change over time. feature extraction for the speech recognition. In particula
Several studies hgve shown that_the amplitude modulat(gas Janssen and Schimmel have argued for the need for a
(AM) of a speech signal are very important for the speesgherent” AM-FM decomposition[8], [9] in order to achieve

V. Tyagi is with IBM India Research Lab, New Delhi (email: meaningful and artifact-free modulation filtering. Margets
vivetyag@in.ibm.com) al[13] have proposed the use of the Teager-energy opexator f
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the AM-FM demodulation of the speech signals. distinguish them from th&-P2).

In a series of papers, Kumaresan and Rao have developedaninherent advantage of working with the analytic signal is
auto-regressive parametric technique to decompose a tspebat it elegantly allows the decomposition of an arbitragnal
signal into several narrow-bands followed by a principled-A (possibly non-stationary) into its amplitude modulatidiv)

FM decomposition in each sub-band[1], [2], [3]. They shownd frequency modulation (FM) signals. We make extensive
that the analytic signal of a speech signal can be modeleduse of T-PZ representation in this paper. For the sake of
a conventional pole-zero model in the time domain, just @mpleteness and clarity, we will describe and prove sévera
the spectral envelope of speech and several other sigralsiateresting time-frequency dualities for the analytic reits.
modeled by an all-pole model in the frequency domain[44],hese properties are then used to develop “meaningful” AM-
[45]. Through a series of simplifications, they show that theM decomposition of the speech signal in a non-parametric
AM signal can be estimated by solving for the linear predittioway.

(LP) equations, though in the frequency domain, much in theWe have termed this approach to extract the AM signal and
same way as the classical LP spectral envelope[44], [45] ofta modulation spectrum, as tHfepstrum We later show in
speech signal is estimated by solving for the linear preatict the paper that théepstrumis a signal processing dual of the
equations in the time domain. Therefore Kumaresan et. alell-known quantityreal cepstrum Furthermore, we evaluate
have also termed their technique as linear prediction ictspe the efficacy of the fepstrum features on the large vocabulary
domain (LPSD). Following up with their work Athineos etspeech recognition experiments based on the Switchboard
al. [23], [24] have used the dual of the linear prediction iSWB) conversational telephony speech (CTS) corpus. At the
the spectral domain to improve upon the TRAP[16] featurelBM India Research Lab (IRL), we have developed a C++
However, as is well known, any all-pole model suffers frorbased LVCSR acoustic modeling library (IrITK) and a beam
two major limitations[12], pruned, time synchronous, Viterbi LVCSR recognizer that

« A suitable model order of the all-pole filter has to b&/Ses the IMTK trained acoustic models on @i of the

empirically chosen to estimate the envelope of the undetWitchboard data. Our LVCSR recognition resqlts |n_d|cate
lying signal. Further, the model order may change froffat the fepstrum feature, in simple concatenauon_wnh the
frame to frame as the underlying speech signal’s chait'ort term spectral envelope features (MFCC), provides upto

acteristics change. However, in practice, a fixed modeé>0—3.5% absolute word recognition accuracy improvement
order is chosen while we clearly realize that it may b@n al.5Hr SWB test set. We attribute this improvement to the

sub-optimal. complementary information present in the fepstrum feature

« At the location of the poles, the all-pole enVe|0pé(VhiIe MFCC provides short term spectral envelope feature
(whether in the time or frequency domain) becomd§at is well localized ovee0 — 30ms of the speech signal,
undefined as it takes the undefined formfofFurther, due fepstrum feature provides principled modulation spectifm
to the fixed numerical accuracy of the digital computeré€ slowly moving AM signal in each Mel-band, ovEOms
this fraction (all-pole envelope) evaluates to a randoff the speech signal. . _
high number in the vicinity of the pole. This fact has This remainder of this paper is organized as follows. In
been well described by Murthi and Rao[12] where the§ection I, we describe the use of pole-zero models to reptes
propose the use of a minimum variance distortion-le$d€ speech analytic signal in the time domain and show its

spectrum (MVDR) instead of the all-pole model baseffictorization in terms of the AM and FM signals of each sub-
LP spectrum to alleviate this problem. band. In section Ill, we describe a non-parametric techetqu
estimate the modulation spectrum of the AM signals in each

Therefore, in this paper, we extend the approach of Ku-

maresan et al. by estimating the AM signal in each sub—bar%].b'band and term it depstrum In section IV we describe

: . . . . our Switchboard (SWB) experimental setup, a new LVCSR

However, unlike their work, we will estimate the AM signals . . . :

: . : . ; . —acoustic modeling library (IrITK) followed by the detailed

in a non-parametricway, without using the LP equations in . . . L .
) . .. experimental results. Finally, we summarize our findings in

the spectral domain which may suffer from the above listed ™

L . section V.

limitations. We propose an algorithm to perform the AM-

FM demodulation of the speech signal in the time domain.

As the AM-FM signal model is defined in time domjra Il. POLE-ZERO MODELS IN THE TEMPORAL DOMAIN
demodulation in time domain leads to conceptual clarity and Traditionally, the pole-zero transfer functions have been
a better understanding of the relationships between variaysed to approximate a discrete time frequency responsehwhic
signal sub-components. is inherently periodic with a period ofr. Voelcker and

In this paper, we denote the well studied pole-zero (LRumaresan have used the T-PZ to approximate analytic signal
models that are used for modeling the short-term spectrdjn[4in the temporal domain. We recall that given a real peribdic
[45] of a signal, by'F-PZ” . Lately, Kumaresan and Raol[1],signalz(t) with period T seconds, its analytic versia(¥) is
[2], [3] have proposed to model analytic signals[1] using thgiven by,
pole-zero models in the temporal domain (denoted4BZ to s(t) = x(t) + j2(t) (1)

e(t) = a(z&)cos(f(;S 27 f(t)dt), herex(t) is a narrow band-pass filtered 2This is not a limitation as in short-time Fourier analysisg wnplicitly
speech signal wherey(t) is the corresponding AM signal anfl(t) is the make the signal periodic with the base period equal toZheecond long
corresponding FM signal windowed segment.



A DFT/DCT over a few frames, for a fixed Mel/Linear frequency bin yielc
a crude approximation of the modulation spectrum of that frequency bin.
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Fig. 1. An approximate AM demodulation technique.
where #(t) denotes the Hilbert transform af(¢). If z(t) is
band-limited, then so _is_;(t). Moreov_ers(t) has non-zero TR (1 = prei®) Q _
spectrum for only positive frequencies. Thereforg) can s(t) = age?@t! ;’J:l Y2 ‘ (1 _qlejm) @)
be expressed in terms of a finite number of Fourier series [Ty (1 — ued) =1

coefficients at positive frequencies. where,p; andg; are the zeros inside and outside the unit circle

v respectively. The poles; are guaranteed to be inside the unit
s(t) = et Z ajeTF ) circle as proved in the following lemma.
k=0 Lemma 1 The T-PZ factorization of an analytic signal(t)
wherew, is an arbitrary frequency translatioff,= 2r/T and has all the polesy; inside the unit circle.
M is sufficiently large. Noting that(¢) is a polynomial, it

can be factored in terms of T-PZ as follows, Proof: Lets assume that there is a pole: |r|e® outside the
unit circle, with|r| > 1. The expansion of(¢) will then have
P Q a term,
s(t) = age’ ' [0 = pie/™) [0 = @) (3) A A 1

i=1 =1 (1 —rei®t) — pei ] — p—le—iC

whereP+@Q = M andp; andq; are the complex roots, inside A&, _jk

and outside the unit circle respectively. We note that thia i T et r e (5)

unit circle in the time domains’*, ¢t € [0, 7], @ = 2%. More k=0

generally, if s(t) is not band-limited, it can be represenising where, A is a constant. (5) implies thaft) has non-zero
poles and zeros. spectrum for negative frequencies. This is in contradicto



the fact thats(t) being an analytic signal has zero spectrat integral multiple ofQ2® and hence is a discrete sequence.
energy for negative frequencies. Herleg< 1. Let us assume that the phad€t) is the Hilbert transform
The importance of lemma 1 will become apparent later oof the log envelopéog |s(t)|. This implies thatlog s(¢) is an
Let us now specify the dual analogues of three well knowamalytic signal and hence its F¥(f) is zero for negative
properties which are, frequencies (i. e.§'(f) is a discrete and F-causal sequence).
« Minimum-phase: Traditionally, minimum phase is a freUSIng the duality principle we note thatg s(—f) is the FT
quency domain phenomenon. A frequency response @-S( S . In fact, S( ) is the complex cepstrum(CC) of a signal
PZ) is termed minimum-phase (F-MinP) if all its poIe&WhQSG FT iss(—f). As S(t) has the same functional form
and zeros are inside the unit circle. Similarly, a T-PZ i8s S(f), this implies thatS(¢) is a discrete and causal CC
called T-MinP if all its poles and zeros are inside the ungequence. Therefore in light of lemma (3), it follows that
circle. s(—f) is minimum-phase F-PZ with all the zeros and poles
« All-pass: Traditionally, all-pass is a frequency domaiinside the unit circle. Therefore we get,
phenomenon. A frequency response, (F-PZ), is said to Hf;(l )

be all-pass (F-AllP) if its magnitude is unity at all s(—f) = =& _
frequencies. Similarly, a T-PZ is called T-AlIP if it has [Tim1 (1 — ued=10)
unity magnitude for € (—oo, 00). substituting t for ’-f’ we get,
« Causality: Traditionally, causality is a time-domain phe- Hf;(l — piedS)
nomenon. A signak(t) is said to be causal (T-causal) if s(t) = 12, (1 — wiei) 7
i=1 i

it is non-zero only for the > 0. Similarly, we define a
frequency response to be F-causal if it is non-zero onhis proves that the T-PZ(¢) that is T-MinP results in its
for the f > 0. Therefore, an analytic signal is F-causal.phase being the HT of its log-envelope.
With these definitions in place, we are ready to describe theTherefore, using Lemma (4)s(t) can be expressed as
decomposition of an analytic signaft) into its T-MinP and follows,

T-AlIP part which will lead to its AM and FM parts. Therefore, Q
reflecting the zerog; inside the unit circle, we get, s(t) = ag H( @) ex i) gin(®) (8)
=1 l T-MinP  T-AlP
= in
o T, (1= piei®) £ | i
s(t) = age’*rt =1 —T](-1/g;e")  (6) . . .
[T (1 — ued®t) -5 where A, is a constanta(t) is the logarithm of the absolute
_ magnitude of the AM signaky(t) its HT anda(t) + y(¢) is
TMlnP . . . . . :
0 g the phase signal and its derivative is the FM signal.
6
H H —59r) log|s(t)] = a(t) + log(A.) 9)
i=1 171 (10)
T-AllP
We recall the following two well-known lemmas, As, &(t) can be determined from the log AM signal(t)
4 it forms the redundant information and hence is excluded
Lemma 2 Given a frequency response (F-PX) f) from the FM signal. Thereforey (¢) is the FM (instantaneous

= |X(f)]e’?), its phase responsé(f) is the Hilbert trans- frequency) signal of interest, whefedenotes derivative with
form of its log-enveloplg | X (f)|, if and only if the frequency respect to time.
response is minimum phase (i.e a F-PZ with all the poles andThe next step is to develop an algorithm that can automat-

zeros inside the unit circle). ically achieve the decomposition as in (8). Noting that the
all-pole F-PZ as estimated using classical linear preaficti
Lemma 3 Given a frequency response (F-PX) f) technique is guaranteed to be minimum phase, Kumaresan et.

= |X(f)|e’?¥), it is minimum phase, if and only if, itsal. used the dual of linear prediction in the spectral domain
complex cepstrum (CQ)..(n) is causal (i.ex..(n) =0,n € (LPSD) [1], [2], with sufficiently high prediction order 'M’
[—o0, —1]) to derive the T-MinP signal. The T-AlIP signal was obtained
as the residual signal of the LPSD.

However, it is well known that the LP technique overesti-
mates the peaks and poorly models the valley. In particular,
for values close to the poles, the all-pole model takes up an
indefinite form %[12]. However, due to the fixed numerical

1—p; . ) accuracy of the digital computers, this fraction (all pole
L 7w eJQP) = [s(t)]e?"("), all of its poles and zeros are envelope) evaluates to a random high number in the vicinity

1
wnﬂnthe linit-circle (i.e s(t) is T-MinP) if and only if ishase f the pole leading to erroneous envelope estimate in that
U (t) is the Hilbert transform of its log envelopeg |s(¢)|.

The proof of above two lemmas can be found in the pages
782-783 of [45]. Using thdime-frequencyduality, we will
state and prove a dual of the lemmas (2), (3).

Lemma 4 Given an analytic T-PZ signai(t)

SThis can be seen by series expansion log(l — pe/) =

Proof: LetS(f) be the Fourier transform (FT) dbgs(t) = oo —pkeakot
log |s(t)| +j¥(t). We note thatS(f) consists of spectral lines “Due to the HT relationship between the two



vicinity[12]. Moreover, the results are highly suscepittb fepstrum is the DFT/DCT of théog absolute magnitude of
the model order 'M’ whose actual value is not known. the analytic signal. Therefore, fepstrum is a dual of the well

Therefore, in this work, we use a non-parametric techniqi®own quantity: real cepstrum.
to estimate the AM signals. From (8), we note that|s(t)| = As is widely known, the adjacent frequency bands of the
a(t) + log(A.), wherelog(A.) is a constant over the frame.speech signal are correlated with each other. And thereby,
Therefore the logarithm of the absolute magnitude of thbe fepstrum of each Mel-band is also correlated with each
analytic signal in each band is an estimate of the correspgndother. Therefore, the fepstrum features from each of the Mel
AM signal + a constant term. In the following section, wéands are concatenated together, and then de-correlatep us
explain how to estimate the AM signal and its spectrura Principal Component Analysis transform (PCA or KLT).
(modulation spectrum) in each sub-band in a non-parameftfibe PCA transform matrix is obtained by the SVD of the
way. The corresponding FM signal(¢) is extracted through autocorrelation matrix of the concatenated fepstrum festu
homomorphic filtering and its details can be found in [20]. lfrom all the Mel-bands. We further reduce the dimensiopalit
the remainder of this paper, we are only interested in the Abf the PCA transformed fepstrum feature by keeping only the
signal for its use in the speech recognition as a feature rectoefficients corresponding to the top-fé@f:) eigenvalues.
These top50% eigenvalues accounted for almd¥i.0% of
the total eigenvalues’ mass.

Fig. 3 shows a particular example of our non-parametric
2000 AM signal estimation technique. First pane shows a wide-

IIl. FEPSTRUMFEATURE EXTRACTION
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band speech signal which is then filtered by Mel-filters of
bandwidth160H > and 104 H z respectively. Second and third
pane shows the narrow band-pass filtered speech signals and
their corresponding AM signals. We note that these AM
signals are indeed low modulation frequency signals as they
change rather slowly over time. Therefore, their lower DCT
coefficients (fepstrum) lead to their parsimonious desicnip

We next describe our SWB experimental setup.

IV. EXPERIMENTS ANDRESULTS
A. Switchboard train-test-dev sets

In order to assess the effectiveness of the fepstrum fea-
tures, speech recognition experiments were conducteden th
Switchboard-1 (SWB) corpus[35]. SWB corpus in one of the
& Speech fitered by a fiter most important benchmarks for recognition tasks involving
- ;goba”dWid‘“ 13&‘)‘ Hz Ce”‘erjgoa‘ 598 Hz — . the large vocabulary conversational speech (LVCSR). It is a
Discrete time very challenging task notwithstanding the limitations @obs
by the telephone channel, including bandwidth, transducer
noise and echo. Fast speaking rates; poor co-articulatithrea
word boundaries; a wide range of dialects, speaking stylds a
Fig.2 illustrates our feature extraction scheme. A wideaccents; and the large variation in the pronunciations ef th
band analytic speech signal s(t) (with typical bandwidth ofords, all present unique problems for the recognition @hsu
4K H ~ for telephony speech) is decomposed irite- 24 Mel-  spontaneous speech[36], [37]. Moreover, these conversati
frequency sub-banésWe take the log magnitude of the Mel-are heavily populated with dysfluencies such as ungramaiatic
filtered analytic signal to obtain its corresponding AM sifin pauses, stutters, laughter, repeats and self-repairsvddab-
a(t) as following (8) we havéog |s(t)| = a(t) +log(A.). At ulary is large and dominated by monosyllabic words which
this point AM signala(t) has the same sampling frequencyre typically hard to recognize[36].
as the original speech signa{t). However, the AM signals  For our experiments we took about fif& hours of speech
are slowly changing low frequency signals and hence they ateta from SWB-1 (the data present in fits&t CD-ROMs of the
appropriately low-pass filtered and then down-sampled bySWWB-1 corpus) and divided it into disjoint test, developtnen
factor of 40. Following this, their lower DCT coefficients areand train sets as follows
retained as the feature vector. To distinguish this reptesien  , Test set: Our test set consists of the firs8 two-sided
from the previous use of the word “modulation spectrum” [14]  conversations in the SWB-1 corpus with the conversation
[15], [16], [18], [23], we have termed this representatian @&  id running fromST/2001 throughST/2019. It consists of
fepstrum As is well known, real cepstrum is the inverse DFT  about1.5 hours of speech00 utterances and has about
of the log absolute magnitude spectrum of a signal. Whereas, 15,500 word-tokens in it. The vocabulary size #5300
words.
« Dev set:consists ofl00 utterances that are disjoint from
the test-set and was used to tune the word insertion

AM signal
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Fig. 3. The AM signal derived using narrow-band filters

5The spectrum of thed00ms long analytic signal is multiplied with the
triangular frequency responses of the Mel-filters, followley the IDFT to
obtain the Mel-filtered analytic signal of the corresporgdiel-band
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Fig. 2. The FEPSTRUM feature extraction

penalty and the bigram language model weight factonodels. These models are evaluated through the following tw
decoders,

used in the decoder for the recognition experiments.
Train set: consists of the next0 hours of the SWB-1

corpus and consists of abot0 two-sided conversations

with the conversation id running frorf172022 through
SW2894. The train set consist of about 1 million word

B. LVCSR Library: IBM IrTK

S.

At the IBM India Research lab (IRL), we have developed a

compact C++ based LVCSR acoustic modeling library IrITK
estimate the maximum likelihood (ML) parameters of the h

to
id-

den Markov model, Gaussian mixture model (HMM-GMM)
based speech recognition systems using the standard ML re-

estimation formulas[43]. IfITK is capable of training sat
of-the-art phonetic decision tree clustered triphone neodée

builds a standard phonetic decision tree with the likeldhoo

gain criterion for the node splitting. One tree is built fadh

of the state of the triphones that share the same middle phone
and the node splitting stops when the gain in the likelihobd o
all the training samples under that node, falls below a gerta

threshold[31]. Finally all the triphones at the leaf nodds

(o]

a tree become the tied-states and their statistics are ghoole

together during the HMM-GMM parameter re-estimation. T

he

training then proceeds with the gradual increase of the Gaus
sian components, re-estimating the HMM-GMM parameters

in each iteration, to finally output tied-state triphone wastic

A cross-word context dependent, beam-pruned, time-
synchronous Viterbi search basptonetic recognizent
uses a tied-state triphone acoustic model and a phonetic
bigram language model and outputs a string of phonemes
corresponding to an input utterance.

A one-pass, beam-pruned, time-synchronous, Viterbi
search baseaontinuous word recognizer (LVCIBJ]

that uses word-internal triphone acoustic model. This
decoder creates a dynamic search graph[30] and for
simplicity uses a linear lexicon instead of a prefix tree
based lexicon[29]. However, to reduce the redundant and
expensive likelihood computation, it caches the evaluated
likelihood of each active leaf (tied-state) at the current
frame and if any other state that is tied to the same
leaf becomes active, the cached likelihood value of the
corresponding leaf is used instead of evaluating it again
which otherwise would have led to redundant compu-
tation. Appropriate data-structures are used to achieve
this effect. Token passing algorithm is used to keep the
word histories as the linked-lists[34]. At each time frame,
all those states whose accumulated likelihood upto that
time frame fall below a certain threshold value (Beam)
of the highest likelihood state, are pruned away from the
Viterbi search space and thereby they do not propagate



new paths[30]. concatenated together to form a super-vector of dimenkigna
With these refinements, our LVCSR decoder with aBeaeo’ 120 (5x24). As is well known, the adjacent frequency bands of
word vocabulary, a bigram language model an2@ com- the speech signal are correlated with each other. We threrefo
ponent Gaussian mixture model with800’ leaves or tied- performed a Principal Component Analysis (PCA) transform
states (i.e.1800 x 20 = 36,000 Gaussians) runs at abouton this 120 dimensional concatenated vector and retained
6 x RT (six times real time) on the SWB test-set. HoweveRnly the top60 coefficients that corresponded to the tp
we note that the current instance of our LVCSR decoder @igenvalues. These tof) eigenvalues accounted for almost
relatively simplified as compared to the mature and lon§5.0% of the total eigenvalues’ mass. At this stage, thiis
standing LVCSR decoders such as the HTKBecode[32] dim. feature vector can be concatenated with the stangtard
and other LVCSR decoders[29]. In particular, our presefimensional .MFCC feature vector or can be used of its own
LVCSR decoder can only handle the word-internal triphor@s a feature in a HMM-GMM based LVCSR system. We have

acoustic model and a bigram language model. evaluated fepstrum features in both the configurations laeyl t
are described next.

C. MFCC and Fepstrum feature extraction

SWB speech data has a bandwidtr8éf H z. We have used D. Acoustic Model Training
the standar@4 Mel-frequency filterbank covering—4 K H zto
obtain the 13 dimensional Mel Frequency Cepstral Coe
ficients (MFCC) using a primary analysis window of siz
30ms and a frame-shift oflOms. Their first and second

s TheIrlTK library was used to train the maximum likelihood
éML) gender independent decision-tree tied-state trighon
models. We have used ISIP’s 2001 plain orthographic word

order delta/derivative features were also computed toiobt evel transcriptions of the SWB train set without any prior

a composite39 dimensional MFCC feature vector which is_lfﬁmel I_Ire}\</’el tse_gr_nentanct)_n In terms o{hp?(;nemes_ or \;\_/ords.
used throughout this paper. e IrITK’s training routine assumes that for a given time-

For the fepstrum feature extraction, we have usdd@ns frgn;e, both the Tth (trl_p;th%ng? ?tat;a and tthe Ga;sgg;m
long primary window to obtain a speech segmefit). At a mixture component that emitied the feature vector, are

sampling rate oRK Hz, this corresponded to 00 sample and hence performs full Forward-backward recursions[43] t

: : oo collect the required sufficient statistics for estimatire t
speech segment(n). We then obtained it800 point discrete . . .
Fourier transform (DFT), denoted by (k). The analytic parar_geterl')sl OJI th.E.ITM.MihGMM mo?hel.t Wh'lelthls p(;o:_/j;d?s
signals(n) of a real signak:(n) is the inverse discrete FouriercOnstderanie Tiexibility in the sense that we only needempia

transform (IDFT) of its positive frequency DFT (i.e. the DF1Word level orthographic transcriptions to train the modéls

samples of X(k) that correspond to the angular frequenogeanSt'" required us to make subtle choices. For example, oudwo

(—,0) are set to zero before taking the IDFT). Thereforéevel orthographic transcriptions do not provide the défigi
we éet the lasti00 samples of the DFT (i.eX (k) to zero ihformation whether there was an inter-word silence betwee

as they corresponded to the frequency ratiger,0). This a word pair. If we had a prior SWB acoustic model, we

way we obtained the DFTS(k)) of the analytic signak(n) pould hgve had used forced Viterbi alignment to get tr_]is
directly. This was followed by the Mel-filterbank ﬁltering”‘"corm"jltlon with some accuracy. However, as we were sgrtin

in the frequency domain to separate the broadband analﬂﬁm scratch and we didn't have any prior SWB acoustic

signal s(n) into 24 Mel-frequency sub-bands. The filteringmodel, we decided to uniformly use a silence between every

operation was done in the frequency domain that simvaord pair. This transformed our word level transcriptiors a
involved multiplication of each of the Mel-filter's trian¢ar : u_str_ated below..

frequency response with the DFT of the analytic sighigt). EXISting _transcript  sw202002. nfcc 5262 6164 UH
We performed IDFT on the filtered frequency response VER1 OG- | DOI DOLIKEAA LGOI OF
finally obtain the Mel-filtered analytic signals for each bét DI FFERENT FORMB OF MUSIC SO I SWTCH QUITE

24 Mel-bands. Thereafter, as per the equation (9), we tooktf?e:-“,z!\l M- 1 THl NK- T LI KE UH

logarithm of the absolute magnitude of each analytic signjjedified transcript sw202002. nfcc 5262 6164

in each band to obtain its AM signal. This schematic is alsg L UH SIL HOABVER SIL I SIL DIQ- SIL |
illustrated in Fig. (2). At this stage, the AM signal has taeng SIL DOSIL I SIL DO SIL LIKE SIL A SIL A
sampling frequency as the original speech sigR&l 7 z). As SIL LOT SIL OF SIL DI FFERENT SIL FORMS SI L
can be noted in the Fig. 3, the AM signals are low modulatigd. S'L MUSIC SIL SO SIL I SIL SWTCH SIL
frequency signals. Therefore, we filtered the AM signalgJI TE SIL GFTEN SIL UM SIL - SIL | SIL
through a simple0 point moving average (MA) low-pass filterTHI_NK SiL I. SiL L'_KE SIL UH SIL _

of cutoff-frequency~ 88H z® and then down-sampled them b>)lvr_nle we realize that this may be erroneous at certain w_ord—
a factor of40. We then retained its firski DCT coefficients Pairs Where there was no inter-word silence, we still detide
(Fepstrum) that roughly correspond @, 25]H = modulation to take this route as it was a uniform decisiorFurther,

frequency range. Fepstrum sub-vector from each band wds implicitly made our subsequent triphone transcripsio
(obtained by replacing each word by its pronunciation and

8A /M’ point moving average filter's frequency response has therfil

point at fnurr = —j and the3db cutoff at feyi0ff = Tj*fs where "This may have also helped as it would have partially modetedever-
fs is the sampling frequency. present short-pause between the word-pairs.



grouping adjacent three phones as a triphone) aswnitvel- of each of the Mel-band in the ran@e- 25H z and the MFCC
internal triphones. The first triphone of each word had a Slbroviding the short-term spectral envelope informatioheif
phone as the left context phone and similarly the last trighosimple concatenation was able to harness this information a
of each word had a SIL as the right context phone. And, thigovided2.5% absolute improvement over the MFCC baseline
also resulted in considerably lower complexity in the desigsystem.

of our LVCSR decoder as it implicitly had to use only the

. . TABLE |
Word'|nterna|tr|ph0nes. PHONEME RECOGNITION ACCURACY USING PHONEME BIGRAMLM ON
Three feature sets were computed, THE 1.5 HR TESTSET WITH 13 CONVERSATIONS SPANNING00

« [MFCC:] 39 dimensional MFCC (primary window UTTERANCES
30ms).
« [Fepstrum:]60 dimensional Fepstrum (primary window | System Corr % | Acc % | Del % | Ins % | Sub %
MFCC 580 | 511 | 219 | 7.0 | 200
100ms). _ _ FEP 558 | 49.1 | 238 | 6.7 | 204
« [Concat. Fepstrum +MFCC:$0 dimensional fepstrum MFCC+FEP | 60.3 536 | 208 6.8 18.8

feature concatenated with tt3® dim MFCC to obtain
a 99 dimensional feature.

We first set out to train our baseline system using 8% F Continuous Word Recognition on SWB
dimensional MFCC features. We had aba@t000 triphones
in our train set. The phonetic decision-tree based staeg) -
sulted in about, 800 tied-state models covering all the, 000
triphones. Gaussian mixture components were gradualhginc
mented to obtair20 component GMM for each tied-state. Th
recognition performance started to saturate aroliid- 20
Gaussian components and hence we decided to keep

While the phoneme recognition experiments do provide
useful insights in the evaluation of the new features, ugtiad
final goal is the continuous word recognition. Therefore, we
designed another set of experiments to evaluate the fepstru
Seatures for the SWB word recognition task using our LVCSR
decoder which has been described in the sub-section 1V-B.
_IW?hese experiments, we have used simple bigram language

"hodels (bgLM) trained on the raw word transcriptions of
about1800 x 20 = 36,000 physical unique Gaussians in our, (bgLM) P

. - ) . . the SWB corpus which pre-dominantly consists of incomplete
acoustic model. Similarly, acoustic models with approxieha P b y b

1800 tied-stat a0 t GMM Iso trained f words, stuttering, self-repairs and word-compounding &tc
\ed-states andt componen were aiso fraine Orparticular, we did not perform any particular word tokeniza
the fepstrum and fepstrum+MFCC features.

tion/normalization procedure. We simply used the plain raw
word level orthographic transcriptions:(1.0/ words) in our
E. Phoneme Recognition train set to create a bigram LM covering a vocabulary of size

Our first experiment consisted of a continuous phonerde300 words. These raw word transcriptions exhibited a highly
recognition task on tha.5Hr test-set. This was motivatedUn-grammatical structure due to the presence of the stutgr
by the TIMIT phoneme recognition task[48] which is widelyself-repairs, word-compoundings, repetitions, vocalineise
used by the speech researchers to test new frontends @gptudnd laughter. Further, the topics of the conversations were
and new acoustic modeling techniques. In fact, our initifighly diverse. The bigram LM trained on abdu®}/ bigrams
evaluation of the fepstrum features was on the TIMIT taskf the train-set transcriptions, resulted in a perplexity o
where it provided about.5 — 2.0% absolute improvement PP = 1180.7 on our test-set word-transcriptions. This meant
when concatenated with the MFCC features over the MFCthat the average branching factor after every word ws0
only baseline system[21]. However, TIMIT consists of onlyvords. This extremely high perplexity was due the above
about 4Hrs of total speech data and hence our preseftentioned factors and it clearly indicated the inadequécy o
SWB setup provided us a much larger train and test setis LM for the decoding. As the typical perplexity range of
in addition to the challenging spontaneous speech phonetfi@ LMs used in the LVCSR i®P = {30,100}, we decided
recognition task, to evaluate these features. The aboiretta t0 create a “test-set” matched LM with low perplexity. Tosthi
triphone acoustic models and a phoneme bigram langudj#Pose, we interpolated the train-set bigrams1(0M/)and
model (trained on the phonetic transcriptions of the traithe test-set bigramd§, 000) with varying weights. We trained
set) were used. The continuous phoneme recognizer was ¥ bgLMs covering a vocabulary of siz 300 words.

IITK context dependent triphone decoder described in thee bgLM1: Usedl million train set bigrams withveight =
sub-section IV-B. The word insertion penalty and the LM 1 and 16,000 test-set bigrams witweight = 50.

weight factor were tuned on the disjoini0 utterance dev-set. « bgLM2: Used only thel6, 000 test-set bigrams.

In Tab I, we present the phoneme recognition accuracied of hese LMs that are matched to the “test-set” conditions,
the three feature sets. The fepstrum-alone feature resirite resulted in a perplexity 0£9.95 and19.12 respectively. This
an accuracy 089.1% as compared to the MFCC'’s accuracy ofneant that these were very good bigram LMs to perform
51.1%. MFCC features had a good time-localization of abotite decoding of the test-SetWhile, it would have been
20—30ms. Whereas, the fepstrum features were estimated over

a100ms Iong window and hence did not possess a gOOd time-gAS our research focus was not exactly in training high-dydliMs from
e unprocessed spontaneous speech word transcriptidrish wemains an

L . .ot
Iogallzatlon. However, they complemented each other y“cetrxtensive research area in its own right, we decided to parfur recognition
with the fepstrum feature providing the modulation spetitru experiments using these “test-set” matched LMs.



. . TABLE I
ideal to obtain a LM that would not have seen the test-S@lorp rRecoaNITION ACCURACY USING B&M1 ON THE 1.5 HR TESTSET

bigrams, we believe that it was not a major limitation for WITH 13 CONVERSATIONS SPANNINGIO0 UTTERANCES
our experiments due to the following two reasons. First, our

acoustic models were indeed trained on the train-set which [ System Corr % | Acc % | Del % | Ins % | Sub %
was completely disjoint with the test set and the fepstrum I“:"EPCC ié-g ig-g ig-% i-g gg-g
features, which we were evaluating, could have made their —yessrrep 5332 78 153 54 315

contribution only through the acoustic likelihoods. Seton
the “test-set” matched LM was used for both the MFCC

baseline system and the proposed fepstrum+MFCC syst§ffyso ysing the ML word-internal triphone models. The

Therefore, it would have helped both the systems during tg.,gnition accuracies are presented in Tab. IIl. As exgkct
decoding, in the similar ways. Therefore, any recognitioye note that the recognition accuracies of all the features
accuracy improvement of one system over the another woulgl,  eq as compared to the use of bgLM1 in Tab. II. More
have been most likely due to the differences in the featurﬁﬁportantly, the concatenation of the Fepstrum and MFCC
(front-ends) of the two systems. feature provided an accuracy improvement3a§% absolute

In Tab. Il, we show the recognition performance on thg e the MFCC feature. In this case, the Fepstrum+MFCC

1.5Hr test-set using the bgLM1. The word insertion penalti, .+ re had an accuracy 61.0% as compared to the MFCC's
and the language model weight factor used in the deCOd(f(fcuracy of53.5

were tuned on thd00 utterance dev-set which was disjoint
from the test-set. We note that the MFCC system provided TABLE 11l
a word recognition accuracy of5.2% while the fepstrum WORD RECOGNITION ACCURACY USING B&M2 ON THE 1.5 HR TESTSET
feature alone provided an accuracy4®8%. MFCC features WITH 13 CONVERSATIONS SPANNING OVERIO0 UTTERANCES
have good Iocglization property as th_ey were computed over — O e T
a short-term window oR0 — 30ms, while fepstrum features M3;:CC 501 535 78 56 571
were computed ovetO0ms. We, then concatenated the two EEP 55.7 50.1 15.0 57 20.1
features and trained an acoustic model. The compositeréeatu | MFCC+FEP | 62.8 570 | 125 | 57 24.7
benefited from the short term spectral envelope information
in the MFCC and the AM modulation spectrum information In all the above experiments, the increased performance
in the fepstrum, thereby, resulting in an accuracy4df8% of the concatenated Fepstrum and MFCC feature is due to
— an improvement o2.6% absolute over the MFCC feature.the complimentary information present in these two feature
Here, we also note that our acoustic model is a relativeljchasets. While, the MFCC provided short term spectral envelope
acoustic model with ML word-internal triphones and withouinformation with a good time-localization &f0 — 30ms, the
VTLN[41] and MLLR[42] adaptations. Further, we have use¢epstrum provided the spectrum of the amplitude modulation
a simple one-pass decoder with just a bigram LM. ThereforgdAM) signal in each Mel-band, estimated in a principled
our recognition accuracies are not in tbe — 65% range as way. Fepstrum features were estimated over a window of size
have been achieved by the long-standing speech groups[26])ms, and covered a brodtl-25H = range of the modulation
[27], [28] with multiple adaptations (VTLN, MLLR) and frequency.
several pass decoding strategies v§ith— 4" order LMs. It is
widely acknowledged that the LVCSR system design and bui I : .
has n):)w reached %n extremely high-lev}ézl of sophigticatiuh ag' Qualitative comparison with the MLP transformed feasure
complexity. On one hand, it reflects the maturity of the area In the recent years, multi-layer perceptron (MLP) trans-
and the impressive gains that have been achieved through figrened features, which in concatenation with the regular
interplay of these multiple techniques. On the other harfthst MFCC features, are input to the second-stage HMM-GMM
also partially impeded the rapid evaluation of new techegusystems, have shown improvements over the simple MFCC
on the LVCSR tasks due to the sheer complexity of developifitputted HMM-GMM systems[16], [17], [22]. These improve-
and building these systems from the ground up. In theBeents are due to two effects. First, the complementary in-
experiments, while we have not been able to implement theyrmation present in the new features that are used to train
VTLN and MLLR adaptations, we have still endeavored tthe first-stage MLP, gets presented in concatenation with
bring them as close as possible to the full-fledged LvCSiRe MFCC, to the training of the second-stage HMM-GMM
experiments. Therefore, our results are similar in spaitiie  system. This way, the second-stage HMM-GMM system can
SWB results reported in [38], [39], [40] where the authord0o some soft error-correction, during its own training, bét
have also highlighted the ever-increasing trade-off betwelearned MLP output8. Second, MLP being a discriminative
the development of the novel acoustic-modeling techniqué$assifier, non-linearly transforms the features to insesthe
features and dealing with the LVCSR system developmegiscrimination between the different phonemes. It is theco
complexity. bined effect and interplay of these phenomena that provides
Similar recognition experiments were also performed with

the bgLM2. As, it was a perfect “test-set” conditions matthe 9traine_d after word-tokenization, handling word-compoigd stutters,

. . . self-repairs on large text corpora that may be well repregime of the test-
LM, it provided us a flavor of the accuracies that can bgngitions
achieved with the low perplexity and possibly higher-order %or details, please see [22]
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the improvement. However, the use of the MLP transformexdformation and the fepstrum’s complementary AM modula-
features[16], [17], [22] is not as straight-forward as ttadrting tion spectrum information. This resulted in a phoneme recog
of the HMM-GMM systems. MLP training requires framenition accuracy improvement of absolé% over the MFCC
level labels for the entire training set which becomes athmi features on al.5Hr SWB test-set. We further performed
tion for the larger train sets which are not labeled at thenfra word recognition experiments on the same test-set and showe
level. Several researchers have proposed using a Viterdedo that the fepstrum+MFCC concatenated feature provided an
alignment of the training set to obtain the frame level latgli absolute improvement df.6 — 3.5% over the MFCC system.
of the train-set which pre-requisites an existing acousticlel Most importantly, this accuracy improvement was obtained
for that speech data-set. In constrast to this, HMM-GMM sy®y a simple concatenation of the fepstrum features with
tem do not require the frame level labeling and can be traindte MFCC, without requiring the subsequent HMM-GMM
with plain word level transcriptions. Given the word-levetecognizer architecture to be changed at all. Therefore in
transcriptions, the Baum-Welch (EM) algorithm finds thdestacertain way, it may offer greater flexibility as compared to
occupation probabilities required to train the HMM-GMMthe MLP transformed feature extraction techniques[16T],[1
system[43]. This offers greater flexibility, especiallytiaining [22]. This is due to the fact that MLP training requires a feam
acoustic models for the new acoustic environments, ddta-sabeled training data. Now, the frame-labeled training data
and languages. Additionally HMM-GMM systems are easilige obtained if a prior acoustic model exists for the training
amenable to the various adaptation algorithms such as theta, and by performing a forced Viterbi alignment. However
MLLR[42] and VTLN[41]. Therefore, in this background,if the frame-level segmentation is not highly accutitehe
we believe that the proposed setup where the concatenadeduracy improvement may not be possible.
(fepstrum+MFCC) HMM-GMM system provides an absolute The proposed fepstrum feature, which only requires a
improvement of2.5% over the MFCC HMM-GMM baseline simple concatenation with the MFCC feature, and can be
may be a useful result as it provides the improvement whilesed conventionally, with the plain word level orthographi
retaining the relative simplicity of the parameter tramiand transcriptions may offer a simpler and useful alternativelev
adaptability of the HMM-GMM systems. Further, if the frameproviding an accuracy improvement af5 — 3.5% absolute
level labeling is available, fepstrum features too, can Bé°M over the MFCC features. Therefore, they can be integrated
transformed and used in concatenation with the MFCC to trasimd used with the existing HMM-GMM LVCSR recognition
the subsequent HMM-GMM system. This was evaluated #ystems without much overhead. Indeed, if the frame level
[22], where the MLP transformed fepstrum features (in comabeling of the train-set is available, fepstrum features t
catenation with the MFCC) resulted in a phoneme recogniti@an be used to obtain the MLP transformed fepstrum feature,
accuracy of76.6% and77.6% on the TIMIT core test-set andwhich then, can be inputed to the subsequent HMM-GMM
complete test-set respectively, making them one of the bggktem. This configuration has been evaluated on the TIMIT
reported phoneme recognition accuratiem the TIMIT task. dataset in [22] resulting in positive gains.
Our future work will focus on fepstrum evaluation along
V. SUMMARY with the MLLR and VTLN adaptations on the SWB word
In this paper, we presented a principledn-parametric 'ecognition task. We will further develop our LVCSR decoder

technique for the AM-FM decomposition of the speech signa®®1abling it to use higher-order LMs.

using the analytic signals in the time domain. We have shown

that the previous techniques in the Iiterature[14], [13]6][ REFERENCES
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