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Fepstrum Features: Design and Application to
Conversational Speech Recognition

Vivek Tyagi, Member, IEEE

Abstract—In this paper, we present the Fepstrum features
– a principled approach to estimate the modulation spectrum
of the speech signals using the Hilbert envelopes in a non-
parametric way. The importance of the modulation spectrum
as a feature in the automatic speech recognition (ASR) has
long been established by several researchers in the past two-
three decades. However, traditionally, in the speech recognition
literature the modulation spectrum features have been extracted
as the DCT/DFT of the log Mel filter’s energies over 10 − 15
frames. These Mel-filter energies are in-turn computed through
short term spectrum (with 20 − 30ms long primary window).
We show, that this approach leads to a crude approximation of
the modulation spectrum in the Mel-filter bands. Further, we
show that the log of a particular Mel-Filter’s Hilbert envelope
(obtained over a primary analysis window of 100ms) leads
to a principled amplitude modulation (AM) signal estimate in
that band. Lower DCT coefficients (in the range 0 − 25Hz)
of the AM signal leads to the fepstrum features. To assess
the effectiveness of thefepstrum features, we have performed
conversational telephony speech (CTS) recognition experiments
on the Switchboard (SWB) corpus using a recently developed
LVCSR library (IBM IrlTK). Our experiments indicate that
the fepstrum features in simple concatenation with the short-
term spectral envelope features (MFCC) provide upto 2.5%
absolute improvement in phoneme recognition accuracy and upto
2.5% − 3.5% absolute word recognition accuracy improvement
on a 1.5Hr SWB test set with a 2, 300 words vocabulary. We
also provide the details of our IrlTK LVCSR acoustic modeling
library.

EDICS: SPE-ANLS,SPE-RECO,SPE-LVCR

I. I NTRODUCTION

Amplitude Modulation (AM) is a very efficient and simple
technique in the electronic communication systems for the
transmission of the “information bearing” base-band signals
over a carrier signal (usually a monochromatic sinusoid)[46].
It has been in use for over a century now owing to its
simple mathematical characterization when the carrier signal
is a single sinusoid as it leads to a simple demodulation
scheme at the receiver end. While the original AM formulation
with sinusoidal carriers was done in the field of electronic
communication systems[46], it turns out that the natural base-
band signals such as speech and music can also be faithfully
represented by a sum of low frequency modulators which
modulate higher frequency carriers[1], [4], [5], [6], [7],[8],
[11]. In this case, however, the carriers are not monochromatic
sinusoids but are non-zero finite band-width carriers whose
central frequencies also change over time.

Several studies have shown that the amplitude modulators
(AM) of a speech signal are very important for the speech

V. Tyagi is with IBM India Research Lab, New Delhi (email:
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perception[4], [5], [6], [7]. For example, when the AM signals
of a speech signal are replaced by the envelopes of constant
magnitude, speech becomes unintelligible. However, speech
remains highly intelligible when the AM signals are preserved,
but the carriers are replaced by the white noise. Therefore,
amplitude modulator or equivalently its modulation spectrum
(spectrum of the AM signal) has been an area of great interest
for the speech recognition and speech processing/filtering. Any
modulation analysis technique entails separation of a broad-
band signal (such as speech, music) into several narrow-band
frequency sub-bands followed by the amplitude modulation
and frequency modulation (AM-FM) decomposition in the
corresponding sub-band. Several such methods are described
in literature[13], [14], [15], [16], [18], [23], [25], but the
details of how a signal is separated into sub-bands, and how
a sub-band is decomposed into a carrier and modulator vary
from the author to author. Most of these techniques define
and extract the modulation spectrum in a slightly ad-hoc
manner. For instance, several researchers have extracted the
speech modulation spectrum by computing a discrete Fourier
transform (DFT)/DCT of the Mel or critical band spectral
energy trajectories, where each sample of the trajectory has
been obtained through a short-term spectrum (followed by the
Mel filtering) over20 − 30ms long windows. An illustration
of this is provided in Fig.1. There are two major limitations
of such techniques. First, they implicitly assumes that within
each Mel or critical band, the amplitude modulation (AM)
signal remains constant throughout the duration of the primary
window length that is typically20 − 30ms long. Second,
instead of modeling the constantly and slowly changing am-
plitude modulation signal in each band, they mostly model the
spurious and abrupt modulation frequency changes that occur
due to the frame shifting of10ms.
Furthermore, these techniques only provide feature extraction
for the speech recognition and therefore do not concern
themselves with the carrier signal extraction and/or signal
filtering and signal reconstruction which would have required
a more principled approach.

In the recent past, several researchers, notably Atlas, Schim-
mel, Sukitannon [8], [9], [10], [11] and Kumaresan and
Rao[1], [2], [3] have been developing a unified and formal
study of the modulation analysis and filtering systems from
a signal processing perspective and not just the modulation
feature extraction for the speech recognition. In particular,
Atlas, Janssen and Schimmel have argued for the need for a
“coherent” AM-FM decomposition[8], [9] in order to achieve
meaningful and artifact-free modulation filtering. Margoset.
al[13] have proposed the use of the Teager-energy operator for
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the AM-FM demodulation of the speech signals.
In a series of papers, Kumaresan and Rao have developed an

auto-regressive parametric technique to decompose a speech
signal into several narrow-bands followed by a principled AM-
FM decomposition in each sub-band[1], [2], [3]. They show
that the analytic signal of a speech signal can be modeled as
a conventional pole-zero model in the time domain, just as
the spectral envelope of speech and several other signals are
modeled by an all-pole model in the frequency domain[44],
[45]. Through a series of simplifications, they show that the
AM signal can be estimated by solving for the linear prediction
(LP) equations, though in the frequency domain, much in the
same way as the classical LP spectral envelope[44], [45] of a
speech signal is estimated by solving for the linear prediction
equations in the time domain. Therefore Kumaresan et. al.
have also termed their technique as linear prediction in spectral
domain (LPSD). Following up with their work Athineos et
al. [23], [24] have used the dual of the linear prediction in
the spectral domain to improve upon the TRAP[16] features.
However, as is well known, any all-pole model suffers from
two major limitations[12],

• A suitable model order of the all-pole filter has to be
empirically chosen to estimate the envelope of the under-
lying signal. Further, the model order may change from
frame to frame as the underlying speech signal’s char-
acteristics change. However, in practice, a fixed model
order is chosen while we clearly realize that it may be
sub-optimal.

• At the location of the poles, the all-pole envelope
(whether in the time or frequency domain) becomes
undefined as it takes the undefined form of1

0 . Further, due
to the fixed numerical accuracy of the digital computers,
this fraction (all-pole envelope) evaluates to a random
high number in the vicinity of the pole. This fact has
been well described by Murthi and Rao[12] where they
propose the use of a minimum variance distortion-less
spectrum (MVDR) instead of the all-pole model based
LP spectrum to alleviate this problem.

Therefore, in this paper, we extend the approach of Ku-
maresan et al. by estimating the AM signal in each sub-band.
However, unlike their work, we will estimate the AM signals
in a non-parametricway, without using the LP equations in
the spectral domain which may suffer from the above listed
limitations. We propose an algorithm to perform the AM-
FM demodulation of the speech signal in the time domain.
As the AM-FM signal model is defined in time domain1, a
demodulation in time domain leads to conceptual clarity and
a better understanding of the relationships between various
signal sub-components.

In this paper, we denote the well studied pole-zero (LP)
models that are used for modeling the short-term spectrum[44],
[45] of a signal, by“F-PZ” . Lately, Kumaresan and Rao[1],
[2], [3] have proposed to model analytic signals[1] using the
pole-zero models in the temporal domain (denoted byT-PZ to

1x(t) = a(t)cos(
R t

0
2πf(t)dt), herex(t) is a narrow band-pass filtered

speech signal where,a(t) is the corresponding AM signal andf(t) is the
corresponding FM signal

distinguish them from theF-PZ).
An inherent advantage of working with the analytic signal is
that it elegantly allows the decomposition of an arbitrary signal
(possibly non-stationary) into its amplitude modulation (AM)
and frequency modulation (FM) signals. We make extensive
use of T-PZ representation in this paper. For the sake of
completeness and clarity, we will describe and prove several
interesting time-frequency dualities for the analytic signals.
These properties are then used to develop “meaningful” AM-
FM decomposition of the speech signal in a non-parametric
way.

We have termed this approach to extract the AM signal and
its modulation spectrum, as thefepstrum. We later show in
the paper that thefepstrumis a signal processing dual of the
well-known quantityreal cepstrum. Furthermore, we evaluate
the efficacy of the fepstrum features on the large vocabulary
speech recognition experiments based on the Switchboard
(SWB) conversational telephony speech (CTS) corpus. At the
IBM India Research Lab (IRL), we have developed a C++
based LVCSR acoustic modeling library (IrlTK) and a beam
pruned, time synchronous, Viterbi LVCSR recognizer that
uses the IrlTK trained acoustic models on the70Hr of the
Switchboard data. Our LVCSR recognition results indicate
that the fepstrum feature, in simple concatenation with the
short term spectral envelope features (MFCC), provides upto
2.5%−3.5% absolute word recognition accuracy improvement
on a1.5Hr SWB test set. We attribute this improvement to the
complementary information present in the fepstrum features.
While MFCC provides short term spectral envelope feature
that is well localized over20 − 30ms of the speech signal,
fepstrum feature provides principled modulation spectrumof
the slowly moving AM signal in each Mel-band, over100ms
of the speech signal.

This remainder of this paper is organized as follows. In
section II, we describe the use of pole-zero models to represent
the speech analytic signal in the time domain and show its
factorization in terms of the AM and FM signals of each sub-
band. In section III, we describe a non-parametric technique to
estimate the modulation spectrum of the AM signals in each
sub-band and term it asfepstrum. In section IV we describe
our Switchboard (SWB) experimental setup, a new LVCSR
acoustic modeling library (IrlTK) followed by the detailed
experimental results. Finally, we summarize our findings in
section V.

II. POLE-ZERO MODELS IN THE TEMPORAL DOMAIN

Traditionally, the pole-zero transfer functions have been
used to approximate a discrete time frequency response which
is inherently periodic with a period of2π. Voelcker and
Kumaresan have used the T-PZ to approximate analytic signals
in the temporal domain. We recall that given a real periodic2

signalx(t) with period T seconds, its analytic versions(t) is
given by,

s(t) = x(t) + jx̂(t) (1)

2This is not a limitation as in short-time Fourier analysis, we implicitly
make the signal periodic with the base period equal to theT second long
windowed segment.
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Time as frame index

Short−time Mel−frequency spectral envelope features

 X(1) X(2) X(3) X(4) X(5)

Mel−Frequency
   bin ’k’

A DFT/DCT over a few frames, for a fixed Mel/Linear frequency bin yields 
a crude approximation of the modulation spectrum of that frequency bin.

Fig. 1. An approximate AM demodulation technique.

where x̂(t) denotes the Hilbert transform ofx(t). If x(t) is
band-limited, then so iss(t). Moreover s(t) has non-zero
spectrum for only positive frequencies. Therefores(t) can
be expressed in terms of a finite number of Fourier series
coefficients at positive frequencies.

s(t) = ejωtt

M∑

k=0

akejkΩt (2)

whereωt is an arbitrary frequency translation,Ω = 2π/T and
M is sufficiently large. Noting thats(t) is a polynomial, it
can be factored in terms of T-PZ as follows,

s(t) = a0e
jωtt

P∏

i=1

(1 − pie
jΩt)

Q
∏

l=1

(1 − qle
jΩt) (3)

whereP +Q = M andpi andql are the complex roots, inside
and outside the unit circle respectively. We note that this is a
unit circle in the time domain,ejΩt, t ∈ [0, T ], Ω = 2π

T
. More

generally, if s(t) is not band-limited, it can be represented using
poles and zeros.

s(t) = a0e
jωtt

∏P
i=1(1 − pie

jΩt)
∏U

i=1(1 − uiejΩt)

Q
∏

l=1

(1 − qle
jΩt) (4)

where,pi andqi are the zeros inside and outside the unit circle
respectively. The polesui are guaranteed to be inside the unit
circle as proved in the following lemma.

Lemma 1 The T-PZ factorization of an analytic signals(t)
has all the polesui inside the unit circle.

Proof: Lets assume that there is a poler = |r|ejφ outside the
unit circle, with |r| > 1. The expansion ofs(t) will then have
a term,

A

(1 − rejΩt)
=

−A

rejΩt

1

1 − r−1e−jΩt

=
−A

rejΩt

∞∑

k=0

r−ke−jkΩt (5)

where, A is a constant. (5) implies thats(t) has non-zero
spectrum for negative frequencies. This is in contradiction to
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the fact thats(t) being an analytic signal has zero spectral
energy for negative frequencies. Hence|r| < 1.

The importance of lemma 1 will become apparent later on.
Let us now specify the dual analogues of three well known
properties which are,

• Minimum-phase: Traditionally, minimum phase is a fre-
quency domain phenomenon. A frequency response (F-
PZ) is termed minimum-phase (F-MinP) if all its poles
and zeros are inside the unit circle. Similarly, a T-PZ is
called T-MinP if all its poles and zeros are inside the unit
circle.

• All-pass: Traditionally, all-pass is a frequency domain
phenomenon. A frequency response, (F-PZ), is said to
be all-pass (F-AllP) if its magnitude is unity at all
frequencies. Similarly, a T-PZ is called T-AllP if it has
unity magnitude fort ∈ (−∞,∞).

• Causality: Traditionally, causality is a time-domain phe-
nomenon. A signalx(t) is said to be causal (T-causal) if
it is non-zero only for thet ≥ 0. Similarly, we define a
frequency response to be F-causal if it is non-zero only
for the f ≥ 0. Therefore, an analytic signal is F-causal.

With these definitions in place, we are ready to describe the
decomposition of an analytic signals(t) into its T-MinP and
T-AllP part which will lead to its AM and FM parts. Therefore,
reflecting the zerosqi inside the unit circle, we get,

s(t) = a0e
jωtt

∏P
i=1(1 − pie

jΩt)
∏U

i=1(1 − uiejΩt)

Q
∏

i=1

(1 − 1/q∗i ejΩt)

︸ ︷︷ ︸

T-MinP

(6)

×

Q
∏

i=1

(−q∗i )

Q
∏

i=1

(e−jΩt − qi)

(1 − q∗i e−jΩt)
︸ ︷︷ ︸

T-AllP

We recall the following two well-known lemmas,

Lemma 2 Given a frequency response (F-PZ)X(f)
= |X(f)|ejφ(f), its phase responseφ(f) is the Hilbert trans-
form of its log-envelopelog |X(f)|, if and only if the frequency
response is minimum phase (i.e a F-PZ with all the poles and
zeros inside the unit circle).

Lemma 3 Given a frequency response (F-PZ)X(f)
= |X(f)|ejφ(f), it is minimum phase, if and only if, its
complex cepstrum (CC)xcc(n) is causal (i.excc(n) = 0, n ∈
[−∞,−1])

The proof of above two lemmas can be found in the pages
782-783 of [45]. Using thetime-frequencyduality, we will
state and prove a dual of the lemmas (2), (3).

Lemma 4 Given an analytic T-PZ signals(t)

=
Q

P
i=1

(1−pie
jΩt)

Q

U
i=1

(1−uiejΩt)
= |s(t)|ejΨ(t), all of its poles and zeros are

within the unit-circle (i.e s(t) is T-MinP) if and only if itsphase
Ψ(t) is the Hilbert transform of its log envelopelog |s(t)|.

Proof: Let S̃(f) be the Fourier transform (FT) oflog s(t) =
log |s(t)|+ jΨ(t). We note that̃S(f) consists of spectral lines

at integral multiple ofΩ3 and hence is a discrete sequence.
Let us assume that the phaseΨ(t) is the Hilbert transform
of the log envelopelog |s(t)|. This implies thatlog s(t) is an
analytic signal and hence its FT̃S(f) is zero for negative
frequencies (i.e.̃S(f) is a discrete and F-causal sequence).
Using the duality principle we note thatlog s(−f) is the FT
of S̃(t). In fact, S̃(t) is the complex cepstrum(CC) of a signal
whose FT iss(−f). As S̃(t) has the same functional form
as S̃(f), this implies thatS̃(t) is a discrete and causal CC
sequence. Therefore in light of lemma (3), it follows that
s(−f) is minimum-phase F-PZ with all the zeros and poles
inside the unit circle. Therefore we get,

s(−f) =

∏P
i=1(1 − pie

jΩ(−f))
∏U

i=1(1 − uiejΩ(−f))

substituting t for ’-f’ we get,

s(t) =

∏P
i=1(1 − pie

jΩt)
∏U

i=1(1 − uiejΩt)
(7)

This proves that the T-PZs(t) that is T-MinP results in its
phase being the HT of its log-envelope.

Therefore, using Lemma (4),s(t) can be expressed as
follows,

s(t) = a0

Q
∏

i=1

(−q∗i )

︸ ︷︷ ︸

Ac

eα(t)+jα̂(t)
︸ ︷︷ ︸

T-MinP

ejγ(t)
︸ ︷︷ ︸

T-AllP

(8)

whereAc is a constant,α(t) is the logarithm of the absolute
magnitude of the AM signal,̂α(t) its HT andα̂(t) + γ(t) is
the phase signal and its derivative is the FM signal.

log |s(t)| = α(t) + log(Ac) (9)

(10)

As, α̂(t) can be determined from the log AM signalα(t)
4, it forms the redundant information and hence is excluded
from the FM signal. Therefore,γ′(t) is the FM (instantaneous
frequency) signal of interest, where′ denotes derivative with
respect to time.

The next step is to develop an algorithm that can automat-
ically achieve the decomposition as in (8). Noting that the
all-pole F-PZ as estimated using classical linear prediction
technique is guaranteed to be minimum phase, Kumaresan et.
al. used the dual of linear prediction in the spectral domain
(LPSD) [1], [2], with sufficiently high prediction order ’M’,
to derive the T-MinP signal. The T-AllP signal was obtained
as the residual signal of the LPSD.

However, it is well known that the LP technique overesti-
mates the peaks and poorly models the valley. In particular,
for values close to the poles, the all-pole model takes up an
indefinite form 1

0 [12]. However, due to the fixed numerical
accuracy of the digital computers, this fraction (all pole
envelope) evaluates to a random high number in the vicinity
of the pole leading to erroneous envelope estimate in that

3This can be seen by series expansion oflog(1 − pejΩt) =
P

∞

k=1
−pkejkΩt/k

4Due to the HT relationship between the two
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vicinity[12]. Moreover, the results are highly susceptible to
the model order ’M’ whose actual value is not known.

Therefore, in this work, we use a non-parametric technique
to estimate the AM signals. From (8), we note thatlog |s(t)| =
α(t) + log(Ac), wherelog(Ac) is a constant over the frame.
Therefore the logarithm of the absolute magnitude of the
analytic signal in each band is an estimate of the corresponding
AM signal + a constant term. In the following section, we
explain how to estimate the AM signal and its spectrum
(modulation spectrum) in each sub-band in a non-parametric
way. The corresponding FM signalγ′(t) is extracted through
homomorphic filtering and its details can be found in [20]. In
the remainder of this paper, we are only interested in the AM
signal for its use in the speech recognition as a feature vector.

III. FEPSTRUMFEATURE EXTRACTION
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Fig. 3. The AM signal derived using narrow-band filters

Fig.2 illustrates our feature extraction scheme. A wide-
band analytic speech signal s(t) (with typical bandwidth of
4KHz for telephony speech) is decomposed intoJ = 24 Mel-
frequency sub-bands5. We take the log magnitude of the Mel-
filtered analytic signal to obtain its corresponding AM signal
α(t) as following (8) we havelog |s(t)| = α(t)+ log(Ac). At
this point AM signalα(t) has the same sampling frequency
as the original speech signals(t). However, the AM signals
are slowly changing low frequency signals and hence they are
appropriately low-pass filtered and then down-sampled by a
factor of 40. Following this, their lower DCT coefficients are
retained as the feature vector. To distinguish this representation
from the previous use of the word “modulation spectrum” [14],
[15], [16], [18], [23], we have termed this representation as
fepstrum. As is well known, real cepstrum is the inverse DFT
of the log absolute magnitude spectrum of a signal. Whereas,

5The spectrum of the100ms long analytic signal is multiplied with the
triangular frequency responses of the Mel-filters, followed by the IDFT to
obtain the Mel-filtered analytic signal of the corresponding Mel-band

fepstrum is the DFT/DCT of thelog absolute magnitude of
the analytic signal. Therefore, fepstrum is a dual of the well-
known quantity: real cepstrum.

As is widely known, the adjacent frequency bands of the
speech signal are correlated with each other. And thereby,
the fepstrum of each Mel-band is also correlated with each
other. Therefore, the fepstrum features from each of the Mel
bands are concatenated together, and then de-correlated using
a Principal Component Analysis transform (PCA or KLT).
The PCA transform matrix is obtained by the SVD of the
autocorrelation matrix of the concatenated fepstrum features
from all the Mel-bands. We further reduce the dimensionality
of the PCA transformed fepstrum feature by keeping only the
coefficients corresponding to the top-few(50%) eigenvalues.
These top50% eigenvalues accounted for almost95.0% of
the total eigenvalues’ mass.

Fig. 3 shows a particular example of our non-parametric
AM signal estimation technique. First pane shows a wide-
band speech signal which is then filtered by Mel-filters of
bandwidth160Hz and104Hz respectively. Second and third
pane shows the narrow band-pass filtered speech signals and
their corresponding AM signals. We note that these AM
signals are indeed low modulation frequency signals as they
change rather slowly over time. Therefore, their lower DCT
coefficients (fepstrum) lead to their parsimonious description.
We next describe our SWB experimental setup.

IV. EXPERIMENTS AND RESULTS

A. Switchboard train-test-dev sets

In order to assess the effectiveness of the fepstrum fea-
tures, speech recognition experiments were conducted on the
Switchboard-1 (SWB) corpus[35]. SWB corpus in one of the
most important benchmarks for recognition tasks involving
the large vocabulary conversational speech (LVCSR). It is a
very challenging task notwithstanding the limitations posed
by the telephone channel, including bandwidth, transducer,
noise and echo. Fast speaking rates; poor co-articulation at the
word boundaries; a wide range of dialects, speaking styles and
accents; and the large variation in the pronunciations of the
words, all present unique problems for the recognition of such
spontaneous speech[36], [37]. Moreover, these conversations
are heavily populated with dysfluencies such as ungrammatical
pauses, stutters, laughter, repeats and self-repairs. Thevocab-
ulary is large and dominated by monosyllabic words which
are typically hard to recognize[36].

For our experiments we took about first72 hours of speech
data from SWB-1 (the data present in first10 CD-ROMs of the
SWB-1 corpus) and divided it into disjoint test, development
and train sets as follows

• Test set: Our test set consists of the first13 two-sided
conversations in the SWB-1 corpus with the conversation
id running fromSW2001 throughSW2019. It consists of
about1.5 hours of speech,900 utterances and has about
15, 500 word-tokens in it. The vocabulary size is2, 300
words.

• Dev set:consists of100 utterances that are disjoint from
the test-set and was used to tune the word insertion
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Fig. 2. The FEPSTRUM feature extraction

penalty and the bigram language model weight factor
used in the decoder for the recognition experiments.

• Train set: consists of the next70 hours of the SWB-1
corpus and consists of about700 two-sided conversations
with the conversation id running fromSW2022 through
SW2894. The train set consist of about 1 million words.

B. LVCSR Library: IBM IrlTK

At the IBM India Research lab (IRL), we have developed a
compact C++ based LVCSR acoustic modeling library IrlTK to
estimate the maximum likelihood (ML) parameters of the hid-
den Markov model, Gaussian mixture model (HMM-GMM)
based speech recognition systems using the standard ML re-
estimation formulas[43]. IrlTK is capable of training state-
of-the-art phonetic decision tree clustered triphone models. It
builds a standard phonetic decision tree with the likelihood
gain criterion for the node splitting. One tree is built for each
of the state of the triphones that share the same middle phone
and the node splitting stops when the gain in the likelihood of
all the training samples under that node, falls below a certain
threshold[31]. Finally all the triphones at the leaf nodes of
a tree become the tied-states and their statistics are pooled
together during the HMM-GMM parameter re-estimation. The
training then proceeds with the gradual increase of the Gaus-
sian components, re-estimating the HMM-GMM parameters
in each iteration, to finally output tied-state triphone acoustic

models. These models are evaluated through the following two
decoders,

• A cross-word context dependent, beam-pruned, time-
synchronous Viterbi search basedphonetic recognizer. It
uses a tied-state triphone acoustic model and a phonetic
bigram language model and outputs a string of phonemes
corresponding to an input utterance.

• A one-pass, beam-pruned, time-synchronous, Viterbi
search basedcontinuous word recognizer (LVCSR)[33]
that uses word-internal triphone acoustic model. This
decoder creates a dynamic search graph[30] and for
simplicity uses a linear lexicon instead of a prefix tree
based lexicon[29]. However, to reduce the redundant and
expensive likelihood computation, it caches the evaluated
likelihood of each active leaf (tied-state) at the current
frame and if any other state that is tied to the same
leaf becomes active, the cached likelihood value of the
corresponding leaf is used instead of evaluating it again
which otherwise would have led to redundant compu-
tation. Appropriate data-structures are used to achieve
this effect. Token passing algorithm is used to keep the
word histories as the linked-lists[34]. At each time frame,
all those states whose accumulated likelihood upto that
time frame fall below a certain threshold value (Beam)
of the highest likelihood state, are pruned away from the
Viterbi search space and thereby they do not propagate
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new paths[30].
With these refinements, our LVCSR decoder with about′2300′

word vocabulary, a bigram language model and a′20′ com-
ponent Gaussian mixture model with′1800′ leaves or tied-
states (i.e.1800 × 20 = 36, 000 Gaussians) runs at about
6 × RT (six times real time) on the SWB test-set. However,
we note that the current instance of our LVCSR decoder is
relatively simplified as compared to the mature and long-
standing LVCSR decoders such as the HTK’sHDecode[32]
and other LVCSR decoders[29]. In particular, our present
LVCSR decoder can only handle the word-internal triphone
acoustic model and a bigram language model.

C. MFCC and Fepstrum feature extraction

SWB speech data has a bandwidth of8KHz. We have used
the standard24 Mel-frequency filterbank covering0−4KHzto
obtain the 13 dimensional Mel Frequency Cepstral Coef-
ficients (MFCC) using a primary analysis window of size
30ms and a frame-shift of10ms. Their first and second
order delta/derivative features were also computed to obtain
a composite39 dimensional MFCC feature vector which is
used throughout this paper.

For the fepstrum feature extraction, we have used a100ms
long primary window to obtain a speech segmentx(n). At a
sampling rate of8KHz, this corresponded to a800 sample
speech segmentx(n). We then obtained its800 point discrete
Fourier transform (DFT), denoted byX(k). The analytic
signals(n) of a real signalx(n) is the inverse discrete Fourier
transform (IDFT) of its positive frequency DFT (i.e. the DFT
samples of X(k) that correspond to the angular frequency range
(−π, 0) are set to zero before taking the IDFT). Therefore,
we set the last400 samples of the DFT (i.eX(k)) to zero
as they corresponded to the frequency range(−π, 0). This
way we obtained the DFT(S(k)) of the analytic signals(n)
directly. This was followed by the Mel-filterbank filtering
in the frequency domain to separate the broadband analytic
signal s(n) into 24 Mel-frequency sub-bands. The filtering
operation was done in the frequency domain that simply
involved multiplication of each of the Mel-filter’s triangular
frequency response with the DFT of the analytic signalS(k).
We performed IDFT on the filtered frequency response to
finally obtain the Mel-filtered analytic signals for each of the
24 Mel-bands. Thereafter, as per the equation (9), we took the
logarithm of the absolute magnitude of each analytic signal
in each band to obtain its AM signal. This schematic is also
illustrated in Fig. (2). At this stage, the AM signal has the same
sampling frequency as the original speech signal (8KHz). As
can be noted in the Fig. 3, the AM signals are low modulation
frequency signals. Therefore, we filtered the AM signals
through a simple40 point moving average (MA) low-pass filter
of cutoff-frequency≈ 88Hz6 and then down-sampled them by
a factor of40. We then retained its first5 DCT coefficients
(Fepstrum) that roughly correspond to[0, 25]Hz modulation
frequency range. Fepstrum sub-vector from each band were

6A ′M ′ point moving average filter’s frequency response has the first null

point atfNULL =
fs

M and the3db cutoff at fcutoff =
0.443 ∗ fs

M , where
fs is the sampling frequency.

concatenated together to form a super-vector of dimensionality
120 (5×24). As is well known, the adjacent frequency bands of
the speech signal are correlated with each other. We therefore,
performed a Principal Component Analysis (PCA) transform
on this 120 dimensional concatenated vector and retained
only the top60 coefficients that corresponded to the top60
eigenvalues. These top60 eigenvalues accounted for almost
95.0% of the total eigenvalues’ mass. At this stage, this60
dim. feature vector can be concatenated with the standard39
dimensional MFCC feature vector or can be used of its own
as a feature in a HMM-GMM based LVCSR system. We have
evaluated fepstrum features in both the configurations and they
are described next.

D. Acoustic Model Training

The IrlTK library was used to train the maximum likelihood
(ML) gender independent decision-tree tied-state triphone
models. We have used ISIP’s 2001 plain orthographic word
level transcriptions of the SWB train set without any prior
frame level segmentation in terms of phonemes or words.
The IrlTK’s training routine assumes that for a given time-
frame, both the HMM (triphone) state and the Gaussian
mixture component that emitted the feature vector, are hidden
and hence performs full Forward-backward recursions[43] to
collect the required sufficient statistics for estimating the
parameters of the HMM-GMM model. While this provides
considerable flexibility in the sense that we only needed plain
word level orthographic transcriptions to train the models, it
still required us to make subtle choices. For example, our word
level orthographic transcriptions do not provide the definitive
information whether there was an inter-word silence between
a word pair. If we had a prior SWB acoustic model, we
could have had used forced Viterbi alignment to get this
information with some accuracy. However, as we were starting
from scratch and we didn’t have any prior SWB acoustic
model, we decided to uniformly use a silence between every
word pair. This transformed our word level transcriptions as
illustrated below.
Existing transcript sw202002.mfcc 5262 6164 UH
HOWEVER I D[O]- I DO I DO LIKE A A LOT OF
DIFFERENT FORMS OF MUSIC SO I SWITCH QUITE
OFTEN UM I- I THINK I LIKE UH
Modified transcript sw202002.mfcc 5262 6164
SIL UH SIL HOWEVER SIL I SIL D[O]- SIL I
SIL DO SIL I SIL DO SIL LIKE SIL A SIL A
SIL LOT SIL OF SIL DIFFERENT SIL FORMS SIL
OF SIL MUSIC SIL SO SIL I SIL SWITCH SIL
QUITE SIL OFTEN SIL UM SIL I- SIL I SIL
THINK SIL I SIL LIKE SIL UH SIL
While we realize that this may be erroneous at certain word-
pairs where there was no inter-word silence, we still decided
to take this route as it was a uniform decision7. Further,
this implicitly made our subsequent triphone transcriptions
(obtained by replacing each word by its pronunciation and

7This may have also helped as it would have partially modeled the ever-
present short-pause between the word-pairs.
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grouping adjacent three phones as a triphone) as theword-
internal triphones. The first triphone of each word had a SIL
phone as the left context phone and similarly the last triphone
of each word had a SIL as the right context phone. And, this
also resulted in considerably lower complexity in the design
of our LVCSR decoder as it implicitly had to use only the
word-internal triphones.

Three feature sets were computed,

• [MFCC:] 39 dimensional MFCC (primary window
30ms).

• [Fepstrum:]60 dimensional Fepstrum (primary window
100ms).

• [Concat. Fepstrum +MFCC:]60 dimensional fepstrum
feature concatenated with the39 dim MFCC to obtain
a 99 dimensional feature.

We first set out to train our baseline system using the39
dimensional MFCC features. We had about12, 000 triphones
in our train set. The phonetic decision-tree based state tying re-
sulted in about1, 800 tied-state models covering all the12, 000
triphones. Gaussian mixture components were gradually incre-
mented to obtain20 component GMM for each tied-state. The
recognition performance started to saturate around17 − 20
Gaussian components and hence we decided to keep the
acoustic models with20 components per state. This resulted in
about1800 × 20 = 36, 000 physical unique Gaussians in our
acoustic model. Similarly, acoustic models with approximately
1800 tied-states and20 component GMM were also trained for
the fepstrum and fepstrum+MFCC features.

E. Phoneme Recognition

Our first experiment consisted of a continuous phoneme
recognition task on the1.5Hr test-set. This was motivated
by the TIMIT phoneme recognition task[48] which is widely
used by the speech researchers to test new frontends (features)
and new acoustic modeling techniques. In fact, our initial
evaluation of the fepstrum features was on the TIMIT task
where it provided about1.5 − 2.0% absolute improvement
when concatenated with the MFCC features over the MFCC-
only baseline system[21]. However, TIMIT consists of only
about 4Hrs of total speech data and hence our present
SWB setup provided us a much larger train and test sets,
in addition to the challenging spontaneous speech phoneme
recognition task, to evaluate these features. The above trained
triphone acoustic models and a phoneme bigram language
model (trained on the phonetic transcriptions of the train-
set) were used. The continuous phoneme recognizer was the
IrlTK context dependent triphone decoder described in the
sub-section IV-B. The word insertion penalty and the LM
weight factor were tuned on the disjoint100 utterance dev-set.
In Tab I, we present the phoneme recognition accuracies of all
the three feature sets. The fepstrum-alone feature resulted in
an accuracy of49.1% as compared to the MFCC’s accuracy of
51.1%. MFCC features had a good time-localization of about
20−30ms. Whereas, the fepstrum features were estimated over
a 100ms long window and hence did not possess a good time-
localization. However, they complemented each other nicely
with the fepstrum feature providing the modulation spectrum

of each of the Mel-band in the range0−25Hz and the MFCC
providing the short-term spectral envelope information. Their
simple concatenation was able to harness this information and
provided2.5% absolute improvement over the MFCC baseline
system.

TABLE I
PHONEME RECOGNITION ACCURACY USING PHONEME BIGRAMLM ON

THE 1.5 HR TEST-SET WITH13 CONVERSATIONS SPANNING900
UTTERANCES.

System Corr % Acc % Del % Ins % Sub %
MFCC 58.0 51.1 21.9 7.0 20.0
FEP 55.8 49.1 23.8 6.7 20.4
MFCC+FEP 60.3 53.6 20.8 6.8 18.8

F. Continuous Word Recognition on SWB

While the phoneme recognition experiments do provide
useful insights in the evaluation of the new features, usually the
final goal is the continuous word recognition. Therefore, we
designed another set of experiments to evaluate the fepstrum
features for the SWB word recognition task using our LVCSR
decoder which has been described in the sub-section IV-B.
In these experiments, we have used simple bigram language
models (bgLM) trained on the raw word transcriptions of
the SWB corpus which pre-dominantly consists of incomplete
words, stuttering, self-repairs and word-compounding etc. In
particular, we did not perform any particular word tokeniza-
tion/normalization procedure. We simply used the plain raw
word level orthographic transcriptions (≈ 1.0M words) in our
train set to create a bigram LM covering a vocabulary of size
2, 300 words. These raw word transcriptions exhibited a highly
un-grammatical structure due to the presence of the stutterings,
self-repairs, word-compoundings, repetitions, vocalized noise
and laughter. Further, the topics of the conversations were
highly diverse. The bigram LM trained on about1.0M bigrams
of the train-set transcriptions, resulted in a perplexity of
PP = 1180.7 on our test-set word-transcriptions. This meant
that the average branching factor after every word was1180
words. This extremely high perplexity was due the above
mentioned factors and it clearly indicated the inadequacy of
this LM for the decoding. As the typical perplexity range of
the LMs used in the LVCSR isPP = {30, 100}, we decided
to create a “test-set” matched LM with low perplexity. To this
purpose, we interpolated the train-set bigrams (≈ 1.0M )and
the test-set bigrams (16, 000) with varying weights. We trained
two bgLMs covering a vocabulary of size2, 300 words.

• bgLM1: Used1 million train set bigrams withweight =
1 and16, 000 test-set bigrams withweight = 50.

• bgLM2: Used only the16, 000 test-set bigrams.
These LMs that are matched to the “test-set” conditions,
resulted in a perplexity of29.95 and19.12 respectively. This
meant that these were very good bigram LMs to perform
the decoding of the test-set8. While, it would have been

8As our research focus was not exactly in training high-quality LMs from
the unprocessed spontaneous speech word transcriptions, which remains an
extensive research area in its own right, we decided to perform our recognition
experiments using these “test-set” matched LMs.
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ideal to obtain a LM that would not have seen the test-set
bigrams, we believe that it was not a major limitation for
our experiments due to the following two reasons. First, our
acoustic models were indeed trained on the train-set which
was completely disjoint with the test set and the fepstrum
features, which we were evaluating, could have made their
contribution only through the acoustic likelihoods. Second,
the “test-set” matched LM was used for both the MFCC
baseline system and the proposed fepstrum+MFCC system.
Therefore, it would have helped both the systems during the
decoding, in the similar ways. Therefore, any recognition
accuracy improvement of one system over the another would
have been most likely due to the differences in the features
(front-ends) of the two systems.

In Tab. II, we show the recognition performance on the
1.5Hr test-set using the bgLM1. The word insertion penalty
and the language model weight factor used in the decoder
were tuned on the100 utterance dev-set which was disjoint
from the test-set. We note that the MFCC system provided
a word recognition accuracy of45.2% while the fepstrum
feature alone provided an accuracy of40.8%. MFCC features
have good localization property as they were computed over
a short-term window of20 − 30ms, while fepstrum features
were computed over100ms. We, then concatenated the two
features and trained an acoustic model. The composite feature
benefited from the short term spectral envelope information
in the MFCC and the AM modulation spectrum information
in the fepstrum, thereby, resulting in an accuracy of47.8%
– an improvement of2.6% absolute over the MFCC feature.
Here, we also note that our acoustic model is a relatively basic
acoustic model with ML word-internal triphones and without
VTLN[41] and MLLR[42] adaptations. Further, we have used
a simple one-pass decoder with just a bigram LM. Therefore,
our recognition accuracies are not in the60 − 65% range as
have been achieved by the long-standing speech groups[26],
[27], [28] with multiple adaptations (VTLN, MLLR) and
several pass decoding strategies with3rd−4th order LMs. It is
widely acknowledged that the LVCSR system design and build
has now reached an extremely high-level of sophistication and
complexity. On one hand, it reflects the maturity of the area
and the impressive gains that have been achieved through the
interplay of these multiple techniques. On the other hand, ithas
also partially impeded the rapid evaluation of new techniques
on the LVCSR tasks due to the sheer complexity of developing
and building these systems from the ground up. In these
experiments, while we have not been able to implement the
VTLN and MLLR adaptations, we have still endeavored to
bring them as close as possible to the full-fledged LVCSR
experiments. Therefore, our results are similar in spirit to the
SWB results reported in [38], [39], [40] where the authors
have also highlighted the ever-increasing trade-off between
the development of the novel acoustic-modeling techniques,
features and dealing with the LVCSR system development
complexity.

Similar recognition experiments were also performed with
the bgLM2. As, it was a perfect “test-set” conditions matched
LM, it provided us a flavor of the accuracies that can be
achieved with the low perplexity and possibly higher-order

TABLE II
WORD RECOGNITION ACCURACY USING BGLM1 ON THE 1.5 HR TEST-SET

WITH 13 CONVERSATIONS SPANNING900 UTTERANCES.

System Corr % Acc % Del % Ins % Sub %
MFCC 51.0 45.2 16.1 5.8 32.9
FEP 45.6 40.8 18.7 4.9 35.6
MFCC+FEP 53.2 47.8 15.3 5.4 31.5

LMs9 using the ML word-internal triphone models. The
recognition accuracies are presented in Tab. III. As expected,
we note that the recognition accuracies of all the features
improved as compared to the use of bgLM1 in Tab. II. More
importantly, the concatenation of the Fepstrum and MFCC
feature provided an accuracy improvement of3.5% absolute
over the MFCC feature. In this case, the Fepstrum+MFCC
feature had an accuracy of57.0% as compared to the MFCC’s
accuracy of53.5

TABLE III
WORD RECOGNITION ACCURACY USING BGLM2 ON THE 1.5 HR TEST-SET

WITH 13 CONVERSATIONS SPANNING OVER900 UTTERANCES.

System Corr % Acc % Del % Ins % Sub %
MFCC 60.1 53.5 12.8 6.6 27.1
FEP 55.7 50.1 15.2 5.7 29.1
MFCC+FEP 62.8 57.0 12.5 5.7 24.7

In all the above experiments, the increased performance
of the concatenated Fepstrum and MFCC feature is due to
the complimentary information present in these two feature-
sets. While, the MFCC provided short term spectral envelope
information with a good time-localization of20 − 30ms, the
fepstrum provided the spectrum of the amplitude modulation
(AM) signal in each Mel-band, estimated in a principled
way. Fepstrum features were estimated over a window of size
100ms, and covered a broad0−25Hz range of the modulation
frequency.

G. Qualitative comparison with the MLP transformed features

In the recent years, multi-layer perceptron (MLP) trans-
formed features, which in concatenation with the regular
MFCC features, are input to the second-stage HMM-GMM
systems, have shown improvements over the simple MFCC
inputted HMM-GMM systems[16], [17], [22]. These improve-
ments are due to two effects. First, the complementary in-
formation present in the new features that are used to train
the first-stage MLP, gets presented in concatenation with
the MFCC, to the training of the second-stage HMM-GMM
system. This way, the second-stage HMM-GMM system can
do some soft error-correction, during its own training, of the
learned MLP outputs10. Second, MLP being a discriminative
classifier, non-linearly transforms the features to increase the
discrimination between the different phonemes. It is the com-
bined effect and interplay of these phenomena that provides

9trained after word-tokenization, handling word-compounding, stutters,
self-repairs on large text corpora that may be well representative of the test-
conditions

10for details, please see [22]
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the improvement. However, the use of the MLP transformed
features[16], [17], [22] is not as straight-forward as the training
of the HMM-GMM systems. MLP training requires frame
level labels for the entire training set which becomes a limita-
tion for the larger train sets which are not labeled at the frame
level. Several researchers have proposed using a Viterbi forced
alignment of the training set to obtain the frame level labeling
of the train-set which pre-requisites an existing acousticmodel
for that speech data-set. In constrast to this, HMM-GMM sys-
tem do not require the frame level labeling and can be trained
with plain word level transcriptions. Given the word-level
transcriptions, the Baum-Welch (EM) algorithm finds the state
occupation probabilities required to train the HMM-GMM
system[43]. This offers greater flexibility, especially intraining
acoustic models for the new acoustic environments, data-sets
and languages. Additionally HMM-GMM systems are easily
amenable to the various adaptation algorithms such as the
MLLR[42] and VTLN[41]. Therefore, in this background,
we believe that the proposed setup where the concatenated
(fepstrum+MFCC) HMM-GMM system provides an absolute
improvement of2.5% over the MFCC HMM-GMM baseline
may be a useful result as it provides the improvement while
retaining the relative simplicity of the parameter training and
adaptability of the HMM-GMM systems. Further, if the frame
level labeling is available, fepstrum features too, can be MLP
transformed and used in concatenation with the MFCC to train
the subsequent HMM-GMM system. This was evaluated in
[22], where the MLP transformed fepstrum features (in con-
catenation with the MFCC) resulted in a phoneme recognition
accuracy of76.6% and77.6% on the TIMIT core test-set and
complete test-set respectively, making them one of the best
reported phoneme recognition accuracies11 on the TIMIT task.

V. SUMMARY

In this paper, we presented a principlednon-parametric
technique for the AM-FM decomposition of the speech signals
using the analytic signals in the time domain. We have shown
that the previous techniques in the literature[14], [15], [16],
[18], [23], [25], that extract the speech modulation spectrum
by computing a discrete Fourier transform (DFT)/DCT of the
Mel or critical band spectral energy trajectories (where each
sample of the trajectory has been obtained through a short-
term spectrum over20 − 30ms long windows, followed by
Mel-filtering) have two severe limitations. First, they implicitly
assume that within each Mel or critical band, the AM signal
remains constant throughout the duration of the window length
that is typically20−30ms long. Second, instead of modeling
the continuously and slowly changing amplitude modulation
signal in each band, they mostly model the spurious and
abrupt modulation frequency changes that occur due to the
subsequent frame shifting of10ms.

These features were implemented and evaluated in the
context of the LVCSR experiments on a72Hr portion of
the Switchboard corpus using our recently developed LVCSR
library IrlTK. A simple concatenation of the fepstrum and
MFCC features benefited from the MFCC’s short term spectral

11including the deletion, insertion and substitution errors

information and the fepstrum’s complementary AM modula-
tion spectrum information. This resulted in a phoneme recog-
nition accuracy improvement of absolute2.5% over the MFCC
features on a1.5Hr SWB test-set. We further performed
word recognition experiments on the same test-set and showed
that the fepstrum+MFCC concatenated feature provided an
absolute improvement of2.6− 3.5% over the MFCC system.
Most importantly, this accuracy improvement was obtained
by a simple concatenation of the fepstrum features with
the MFCC, without requiring the subsequent HMM-GMM
recognizer architecture to be changed at all. Therefore, ina
certain way, it may offer greater flexibility as compared to
the MLP transformed feature extraction techniques[16], [17],
[22]. This is due to the fact that MLP training requires a frame-
labeled training data. Now, the frame-labeled training datacan
be obtained if a prior acoustic model exists for the training-
data, and by performing a forced Viterbi alignment. However,
if the frame-level segmentation is not highly accurate12, the
accuracy improvement may not be possible.

The proposed fepstrum feature, which only requires a
simple concatenation with the MFCC feature, and can be
used conventionally, with the plain word level orthographic
transcriptions may offer a simpler and useful alternative while
providing an accuracy improvement of2.5 − 3.5% absolute
over the MFCC features. Therefore, they can be integrated
and used with the existing HMM-GMM LVCSR recognition
systems without much overhead. Indeed, if the frame level
labeling of the train-set is available, fepstrum features too
can be used to obtain the MLP transformed fepstrum feature,
which then, can be inputed to the subsequent HMM-GMM
system. This configuration has been evaluated on the TIMIT
dataset in [22] resulting in positive gains.

Our future work will focus on fepstrum evaluation along
with the MLLR and VTLN adaptations on the SWB word
recognition task. We will further develop our LVCSR decoder
enabling it to use higher-order LMs.
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