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Abstract—In this work, we propose to use a statistical frame-
work that uses the cumulative acoustic signal from a roadside
installed single microphone, to classify the vehicular traffic
density state. A typical cumulative acoustic signal on a road
segment is composed of several noise signals such as the tire
noise, engine noise, engine idling noise, occasional honksand the
air turbulence noise of the multiple vehicles. The occurrence and
mixture weightings of these multiple vehicles’ noise signals are
determined by the prevalent traffic density conditions on the road
segment. For example, in a free flowing traffic, the vehicles would
typically be moving with the medium to high speeds thereby
producing mainly the tire noise and the air-turbulence noiseand
less of the engine idling noise and the honks. While for a slow
moving congested traffic, the cumulative signal will be largely
dominated by the engine idling noise and the honks; the air
turbulence and the tire noises will be inconspicuous. Further,
these various noise signals have spectral content that are very
different from each other and hence can be used to discriminate
between the different traffic density states that lead to them. In
this work, we extract the short term spectral envelope features of
the cumulative acoustic signals, and model their class-conditional
probability distributions, conditioned on one of the three broad
traffic density states namelyJammed(0-10KpH), Medium-Flow(10-
40Kph) and Free-Flow(40Kph and above) traffic. While, these
states are coarse measures of the average traffic speed, theynever-
theless, can provide useful traffic density information in the often
chaotic and non-lane driven traffic conditions of the developing
geographies where the other techniques (magnetic loop detectors)
are inapplicable. Based on these learned distributions, weuse a
Bayes classifier to classify the acoustic signal segments spanning
a duration of 5s to 30s, which resulted in a high classification
accuracy of (∼ 95%). Using a discriminative classifier such as
Support Vector Machine (SVM), resulted in further classification
accuracy gains over the Bayes classifier.

I. I NTRODUCTION

Road traffic congestion is a severe problem worldwide.
Traffic congestion has been increasing worldwide due to
the increased motorization, urbanization and the population
growth. Traffic Congestion reduces the efficiency of the trans-
portation infrastructure of a city and increases the traveltime,
fuel consumption, air pollution and leads to an increased user
frustration and fatigue.

In the developed countries, several intelligent transportation
systems (ITS) solutions have been proposed that rely on
the fact that the traffic is lane driven and multiple sensors
which generally are expensive can routinely be used. Magnetic
loop sensors, speed guns and video cameras are some of the
examples of these sensors. Currently, the most widely used
traffic sensor in the developed countries is the magnetic loop
detector [19]. However, the installation/maintenance cost of

these sensors, significantly adds to the high operational ex-
pense of these devices during their life-cycles. The associated
cost involved in the earth work during loop laying and traffic
closure further limits their widespread use. Therefore, inthe
past one decade researchers have been developing several non-
intrusive traffic monitoring technologies based on the laser,
ultrasound, radar, video and audio signals.

Video image processing seems like a natural sensing modal-
ity for the traffic. In [16] Cucchiara et. al have proposed an
approach for detecting vehicles in urban traffic scenes by the
means of rule-based reasoning on visual-data. In [17] Kamijo
et. al. have proposed a hidden Markov model (HMM) based
computer-vision technique to detect accidents and other events
such as reckless driving at the road intersections. However,
these techniques do not directly address the problem of average
speed/speed-range estimation. In [18], Coifman et. al. have
proposed an extensive feature based computer-vision technique
for the vehicle tracking. They use “corner” features of the
vehicles, which are being driven in the lanes, to track them
and then estimate the traffic parameters such as the average
speed and the volume. They obtained impressive results on the
free-way traffic, where more that80% vehicles were traveling
within the speed range of50 − 70mph (80 − 110Kph)[18].
These speeds ensured somewhat reasonable headroom between
the vehicles, which leads to good tracking as the vehicles are
not linked to each other. However, it is not clear if such a
tracking technique could still work in the chaotic andnon-
lane driven city traffic conditions with the extremely varied
speed ranges of0− 10Kph, 10− 40Kph and above40Kph.
Such traffic conditions are very common in the cities of the
developing geographies (India and South Asia) and are the
focus of this paper.

In this paper, we study the utility of the cumulative roadside
acoustic signal to estimate the traffic density classes (average
traffic speed range) on a city’s road segment. In particular,its
independence to the lighting conditions/visual occlusion, low
signal bit rate as compared to video signal and the relatively
inexpensive cost of the sensors(microphones,2 − 5$), make
audio an attractive sensing modality.

The cumulative road acoustic signal is composed of varying
mixture of several noise signals (tire noise, engine idlingnoise,
engine block noise, air-turbulence noise and the occasional
honks) and their mixture weightings in the cumulative signal
varies depending on the traffic density conditions[2]. For
example, in the free flowing traffic conditions, vehicles tend to
move with medium to high speeds and hence their cumulative
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acoustic signal is dominated by the tire noise and the air-
turbulence noise[2], [3]. Whereas, for a heavily congested
traffic, the road-side cumulative acoustic signal gets larger
contributions from the engine idling noise and the honks; the
air turbulence and the tire noises are almost negligible as none
of the vehicles can move at high speeds[2]. Interestingly, these
various noises have varied spectral contents and hence can
be used to discriminate between the various traffic density
states which contribute to them. Therefore, in this work, we
extract the spectral features of the roadside acoustic signal. We
model the class conditional probability distributions of these
feature vectors conditioned on one of the three broad traffic
density states namelyJammed, Medium Flow and Free Flow
traffic using the Gaussian Mixture Models (GMM). The GMM
parameters are trained on about2.5 hours of road-side acoustic
data that has been hand-labeled as belonging to one of the three
traffic density states. Based on these distributions, a Bayes
classifier is used for the traffic density state classification
resulting in about95% accuracy when20−30s of audio signal
evidence is presented. We further experimented with a Support
Vector Machine (SVM) radial basis function (RBF) kernel
classifier[20]. In recent10 − 15 years, SVMs have proved
to be excellent classifiers owing to their maximum margin
discriminative training[20], [21]. The classification accuracies
for our task improved further with the use of a RBF-SVM
classifier.

We begin with an overview of the past work in the use
of audio modality for the traffic monitoring in the Section
II. We provide a description of the various noise signals in
the cumulative acoustic signal in Section III followed by their
spectral analysis and the GMM based modeling in Section IV.
Finally, the experimental setup and the classification results are
provided in Section V and the main findings are summarized
in Section VI.

II. A UDIO RELATED WORK IN TRAFFIC MONITORING

While, the use of the magnetic loops, has been the most
widely used approach for the traffic monitoring, they still
have a very high cost of installation and maintenance (several
thousands of dollars). Further they require the traffic flow to be
orderly, lane-driven and mostly homogeneous (primarily four
wheeled vehicles and multi wheeled trucks).

However, these conditions are not at all met in the de-
veloping regions such as India and South Asia/South East
Asia which typically have a highly chaotic and non-lane
driven traffic. The wide variety of vehicles from two wheeled
motorcycles to three-wheeled auto-rickshaws to four-wheeled
vehicles to multi-wheeled buses and trucks make it a highly
heterogeneous traffic which does not follow lane driving.
Therefore, the traffic monitoring is an even severe problem
in the developing countries that renders most of the above
mentioned ITS systems such as loop detectors and computer
vision based tracking techniques ineffective. In this back-
ground, roadside acoustic signal seems like a viable modality
for the traffic monitoring due to its inherent low cost of
installation and operation. Therefore, several researchers have
developed various traffic monitoring and a single vehicle
profile extraction techniques based on the audio modality.

In [12], [13] a theoretical description of a single point
source’s (single vehicle) speed estimation is provided using
wave propagation effects (Doppler frequency shifts). While
this solution is elegant and can accommodate any line of
arrival of the vehicle with respect to the microphone (assuming
the distance to the closest point of approach (CPA) is known),
the description applies only to a single vehicle’s acoustic
waveform. When several vehicles are present, the interference
of their combined acoustic waveforms will render this solution
in-applicable for their speed estimation.

In[1] the authors have extensively used the wave propaga-
tion physics of a spatial sound source (a vehicle) to estimatea
single vehicle’s speed, engine RPM, the number of cylinders
and its length and width based on its acoustical wave patterns
as the vehicle drives by the acoustic sensor. Using a dipole
source, they also account for the interference effect of the
various tires of a vehicle to arrive at a “unique” feature
vector (fingerprint) of each vehicle type (such as Ford F150,
Chevy Impala, Honda Accord, Nissan Maxima and VW Passat
etc). However their technique is applicable only when there
is single vehicle traveling on the road and its vehicle type
has to be recognized. Therefore, it cannot be applied for
the traffic density state estimation where there are multiple
vehicles traveling and producing a cumulative acoustic signal
rather than just a single vehicle’s acoustic signal.

In [15], the authors have used a combination of the smart-
phone features such as the accelerometers and a basic honk
signal detection followed by a simple Doppler frequency shift
computation to arrive at a vehicle’s speed estimate. In [11],
the authors have presented an approach for detecting a crash-
risk level using the computing power and the microphones of
mobile devices that can be used to alert the user in advance
of an approaching vehicle to avoid a crash.

Building on the work in [15], the authors in [14] have
used a simplified Doppler frequency shift rule which implicitly
assumes that the vehicle is moving in the same direction as
the straight line connecting the vehicle to a microphone. They
propose to use the vehicles’ honks acoustic signal in their
simplified Doppler frequency shift estimation. However, inthe
presence of multiple vehicles honking (either concurrently or
with significant time overlap), and the other background noises
present (cumulative engine noise, idling noise and tire noise
of several vehicles), it is not clear how the two microphones
can robustly detect a honk emitted by the same vehicle. In the
presence of multiple overlapping honks and other background
vehicular traffic noises, indeed it is a very challenging problem
to identify and extract an acoustic signal sub-component that
corresponds to the same vehicle’s honk at the two micro-
phones. In [14], the authors have used various time based
thresholds and a very basic Discrete Fourier transform (DFT)
sample energy comparison with a threshold to detect the honks
and to correspond them at the two microphones. In general,
the spectrum of a honk signal is not a pure sinusoid tone,
but instead has several harmonics in the1 − 4KHz range
with a bandwidth of about100Hz around each harmonic.
Furthermore, in the presence of the other narrow-band signals
(the other vehicles’ honk signals in the time vicinity of the
honk signal that is being sought) and the other wide-band
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noise components (the engine noise, engine idling noise and
tire noise) in the cumulative signal, it is clear that a simple
threshold based technique cannot robustly detect the same
particular honk at the two microphones which are spaced
by 30 meters. Further, their experimental setup covers traffic
condition on two very busy roads (one with a single lane one
way traffic and the other with three lanes bi-directional traffic)
with speeds between0−20Kph. At the speeds around40Kph
and60Kph and above, the probability of the vehicles honking
goes down drastically and would be even further low for the
event that the vehicles honk in a specific20 meters stretch
which lies in between the two microphones that are separated
by 30 meters. The authors in [14] call it “ the honking zone of
interest” and it is an important requirement for their algorithm.

Given these limitations, we propose to use the entire cu-
mulative roadside acoustic signal rather than just detecting
the honk signal. In the next section, we will show, through
the spectral analysis, that the cumulative acoustic signalhas
important discriminative information present in its spectro-
temporal plane that allows us to directly build simple statistical
classifiers to classify between three broad traffic density states
that correspond to an increasing range of speeds, namely
(0, 10)kph, (10, 40)Kph and above40Kph. We denote them
asJammed, Medium-Flow, andFree-Flowtraffic density states
respectively. Some representative traffic density pictures are
shown in the Figs. 1, 2, 3.

A. The need for the traffic density measure

One of the main characteristic of the city traffic in the
developing geographies (especially South Asia/India) is that it
usually does not move in the lanes even if they are explicitly
marked on the roads. Frequent lane changing is very common
and hence a lane basedvolumemeasure (number of vehicles
passing a point of a lane per hour) does not seem like an
appropriate measure in such conditions. The entire road width,
with all the lanes combined, becomes one continuous carriage-
way. Therefore, we have decided to use the measure of traffic
density (Jammed, Medium-Flow, andFree-Flowcorresponding
to an increasing range of speeds(0, 10)Kph, (10, 40)Kph
and above40Kph respectively) instead of the two distinct
volume and speedmeasures, as has been used in some of
the traffic monitoring work in the developed geographies[18].
As can be noted from the Figs. 1, 2, 3, our measure of
traffic density captures both the measures ofspeedand road-
aggregatevolume in one measure of the traffic density. We
have also observed that thespeedandvolumemeasures are sort
of inversely related to each other and are not two independent
measures. This is especially true for the non-homogeneous and
non-lane driven traffic in the cities of South-Asia/India where
the fast moving traffic implicitly implies that the volume is
low and vice-versa. These observations led to our choice of
the above proposed traffic density class based measurements.
The experimental results in the later sections are based on this
measure.

III. CUMULATIVE ROADSIDE ACOUSTIC SIGNAL

A typical vehicle produces various noises (sounds) depend-
ing on its speed, load and its mechanical condition. In general,

the vehicle produced noises can be categorized as,

A. Engine noise:

An internal combustion engine’s noise consists of a de-
terministic harmonic train and a stochastic noise component
due to the air intake[2]. The deterministic harmonic train is
produced by the fuel combustion in the engine cylinders and
its lowest harmonic tone is the called the cylinder fire ratef0

which in turn is a function of the engine’s rounds per minute
(RPM). In summary, the engine noise varies with the speed
and the acceleration of the vehicle[1], [2]. When a vehicle is
stationary, though with its ignition on (as is often the case
in the congested traffic), it produces a distinct engine idling
noise. Whereas, a medium to fast moving vehicle produces
different engine noise due to the higher cylinder fire rate.

B. Tire noise:

This is the noise produced by a vehicle’s rolling tire as
a result of its interaction with the road surface. The tire
noise is the main source of a vehicle’s total noise at speeds
higher than50kph (kilometers per hour)[3], [4]. It has two
components: vibrational noise and air noise [4], [5]. The
vibrational noise is caused due to the contact between the tire
treads and the road surface texture and its spectral energy lies
between100Hz to 1000Hz. On the other hand the air noise is
produced due to the air being sucked in the rubber blocks of
the tire and is dominant in the frequency range of1000Hz to
3000Hz. In the direction of the vehicle’s movement, the tire
and the road surface form a geometrical structure that amplifies
the noise generated by the tire/road-surface interaction.This
effect is called thehorn effect and has a directional pattern.
This effect leads to strong tire noise components in the
range(600− 2000)Hz[5], [6]. Therefore, the tire noise which
becomes dominant in cumulative acoustic signal around and
above the speeds of50kph[3] can provide useful information
about the traffic density state.

C. Air Turbulence Noise:

As a vehicle moves at the medium to high speeds, it induces
air-turbulence. This noise is due to the air flow generated
by the boundary layer of the vehicle and is most prominent
immediately after a vehicle has driven past the microphone as
a distinctivedrive-by-noiseor whooshsound[7], [8].

D. Exhaust Noise:

This noise is produced by the entire exhaust apparatus that
connects the engine combustion compartment through exhaust
tubes to the exhaust muffler (silencer) present at the rear-end of
the vehicle. Unlike the engine noise, the exhaust noise increase
as the vehicle load increases[9].

IV. SHORT TERM SPECTRAL FEATURES AND GAUSSIAN

M IXTURE MODEL (GMM) BASED MODELING

The various traffic density states induce different cumula-
tive acoustic signals[1]. For instance, a fast moving traffic’s
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Fig. 1. TypicalFree-flowingtraffic (above40Kph) in New Delhi, India.

Fig. 2. TypicalMedium-flowtraffic (10, 40)Kph in New Delhi, India.

acoustic signal, primarily consists of the tire-noise and the
air-turbulence noise. Whereas, a jammed traffic state will be
marked by mostly the engine idling noises and the occasional
honks. All these different noises have very different spectral
envelopes and hence can be used as cues to discriminate be-
tween the three traffic density states. To verify this hypothesis,
we examined the spectrogram of the different traffic state’s
cumulative acoustic signals. In Fig. 4, 5, 6, we show the
spectrogram of120s of acoustic signal, recorded at one micro-
phone installed at the roadside, for the three different traffic
density classes (states) namely,Free-Flow (above40Kph),
Medium-Flow(speeds of(10, 40)Kph) and theJammedtraffic
(speeds of(0, 10)Kph). These spectrogram clearly show the
various discriminative acoustic features that characterize these
different traffic conditions. Specifically,

• For the Free-Flowing traffic in Fig. 4, we only see the
wide-band drive-by noise and the air-turbulence noise of
the vehicles. We note that there are very few, if any,
honks. In particular, there are no honk signals in this
2 min long signal.

• In the Medium-flowtraffic (Fig. 5), we can notice some
wide-band drive-by noise, some honk signals and some
concentration of the spectral energy in the low frequency

ranges(0, 0.1) of the normalized frequency or equiva-
lently (0, 800)Hz.

• Whereas, theJammedtraffic condition in Fig. 6 has
almost no wide-band drive-by engine noise or air-
turbulence noise and is dominated by several honk sig-
nals. We note the several harmonics of the honk signals
and they range from(2, 6)KHz. Further the jammed
condition is marked by the high concentration of the
spectral energy in a very narrow and low frequency
range around(0, 0.05) in the normalized frequency or
equivalently (0, 400)Hz, which is due to the engine-
idling.

We note that the above characterization of the various traffic
density states are only indicative in nature. As will become
clear in the next sections, we do not propose to use a
rule-based technique where a certain noise type is explicitly
detected and then the classification is based on that.

A. Mel-Frequency Cepstral Coefficients (MFCC) Features

Encouraged by the presence of these several discriminat-
ing features in the spectro-temporal plane of the cumulative
acoustic signal, we decided to use the spectral envelope based
features in our statistical classifier. As is well known, the
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Fig. 3. TypicalJammedtraffic (0, 10)Kph in New Delhi, India.

Fig. 4. Spectrogram of the free-flowing traffic (above40Kph)

first 10 − 15 cepstral coefficients of a signal’s short time
spectrum, succinctly capture the smooth spectral envelope
information[29]. Over the years, Mel-Frequency cepstral co-
efficients (MFCC)[30], which are the DCT coefficients of a
Mel-filter smoothed logarithmic power spectrum, have been
applied very successfully as the acoustic features in speech
recognition[30], speaker recognition[28] and music recogni-
tion. Therefore, in this work we decided to use the MFCC
features and their first and second order time-derivatives to
characterize the spectro-temporal plane of the acoustic signals.
Unlike the speech signal, where a phoneme can change over
10ms to 50ms, the traffic density states evolve over longer
time scales. Due to the physical constraints, the traffic density
state could change from one to another (jammed to medium
flow to free flow) over at least5−30 minutes duration and not
over, say, every minute. Therefore, we decided to use the long
primary analysis windows of the typical size100− 500ms to
obtain the spectral envelope, followed by the MFCC feature
computation. The primary analysis windows were shifted by a
shift-size of50− 100ms to obtain a series of feature vectors.
This feature extraction scheme is illustrated in the Fig. 7.
Assumingx(n) to be a short-term windowed acoustic signal,
we take itsN point DFT, X(k). The acoustic signal has a

bandwidth of8KHz.

X(k) =
N−1
∑

i=0

x(i) exp (
−j2πki

N
) (1)

We then multiply the absolute magnitude of the DFT samples
by the tri-angular frequency responses of the24 Mel-filters that
have logarithmically increasing band-width[30], and cover a
frequency range of0−8KHz in our experiments. These filters
are illustrated in Fig. 8. The firstN/2 absolute magnitude DFT
samples correspond to the0−8kHz frequency range. Theith

Mel-filter bank energy (MFB(i)) is obtained as,

MFB(i) = Meli(k) × log |X(k)|, k ∈ (0, N/2) (2)

where,Meli(k) is the tri-angular shaped frequency response
of theith Mel-filter. These24 Mel-filter bank energies are then
transformed into a13 dimensional Mel Frequency Cepstral
coefficients (MFCC),cj, using a discrete Cosine transform
(DCT).

cj =

24
∑

i=1

MFB(i)

√

2

24
cos(πj

i − 0.5

24
), j ∈ (0, 12)
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Fig. 5. Spectrogram of the medium-flowing traffic ((10, 40)Kph)

Fig. 6. Spectrogram of the jammed traffic ((0, 10)Kph)

B. Gaussian Mixture Modeling

Parametric density models such as Gaussian Mixture Mod-
els (GMMs) have been very successfully used in diverse
pattern recognition problems such as speech/speaker/music
recognition[32], [33], [28] and image recognition. They owe
their success and popularity to the two important properties.
First, given the appropriate number of parameters (mixture
components) and a large number of training samples, the
GMM based density tends to converge to the true density of
the random variable (training samples) under the maximum
likelihood criterion[26], [27]. Second, there exists simple and
efficient algorithm based on the Expectation Maximization
(EM) technique[34], [35] to estimate the maximum likelihood
(ML) parameters of a GMM given the training samples.

Therefore, we decided to model the class-conditional prob-
ability densities of the feature vectors (MFCCs) conditioned
on the traffic density state using the Gaussian Mixture Models
(GMMs). Given a sequence of feature vectorsxT

i=1
that belong

to a particular traffic density state′j′, wherej ∈ {Jammed,
Medium-Flow, Free-Flow}, we assume the feature vectors are

independent of each other given the class (traffic density)
labels. Therefore, we have,

p(xT
i=1

|j) =
T

∏

i=1

p(xi|j) (3)

where, p(xi|j) is modeled by a GMM with′M ′ mixture
components as,

p(xi|j) =

M
∑

m=1

N (xi|µ
m
j , Σm

j ) (4)

where,N (|µ, Σ) denotes a multi-variate Gaussian density with
the mean vectorµ and the covariance matrixΣ. Standard EM
algorithm[35] is employed to estimate the mean vectorsµm

j

and the covariance matricesΣm
j of the Gaussian mixture for all

values of′j′ and′m′. Therefore, after performing the training,
one has good estimates of the class conditional probability
densities of the feature vectors conditioned on the various
classes.

C. Traffic Density State Classification using Bayes Rule

AssumexT
i=1

is the sequence of the feature vectors that we
are asked to classify as belonging to one of the traffic density
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Shift=100ms Primary window size=500ms

Cumulative roadside acoustic signal

Fig. 7. Blocking of the cumulative acoustic signal into primary windows of size=500ms and shifted by100ms to obtain a sequence of MFCC feature vectors
for an acoustic signal segment.

0−8KHz

Magnitude

1.0

24 Mel−Filters

Fig. 8. Tri-angular shaped frequency response of the24 Mel-filters covering a range of0 − 8KHz.

classes. Here′T ′ is a suitable time duration over which the
traffic density can be safely assumed to belong to one class.
As per the Bayes classification, we assign it to the class′j′0
such that it maximizes the posterior probabilityp(j0|xT

i=1
),

j0 = arg max
j

p(j|xT
i=1)

= argmax
j

p(xT
i=1

|j)p(j)

p(xT
i=1

)

(5)

Assuming equal prior probabilities and ignoring the denomina-
tor term (p(xT

i=1
)) which remains constant to all the classes,

we arrive at a decision rule directly in terms of the class-
conditional densities (p(xT

i=1
|j)); density functions that we

have already learned over the training samples,

j0 = argmax
j

p(xT
i=1

|j)

= arg max
j

T
∏

i=1

(

M
∑

m=1

N (xi|µ
m
j , Σm

j ))
(6)

Indeed, the above formalism where the GMMs are used
to model the class-conditional distributions have been used

very successfully in very diverse pattern recognition prob-
lems – ranging from speaker recognition[28] to speech
recognition[32], [33]. The basic premise remains that if the
distribution of a random variable is quasi-stationary, then it
can be well modeled by a GMM. In the case of speaker
recognition, the speech feature vectors (MFCCs) correspond
to a single speaker, and hence can be assumed to be quasi-
stationary. Similarly in speech recognition, while the entire
speech signal is non-stationary and hence is modeled by a
hidden Markov Model (HMM)[32], [33], the distribution of
each hidden state (typically a sub-state of a phoneme) is quasi-
stationary and is modeled by a GMM.

In the above discussion, we have assumed that the distri-
bution of the cumulative acoustic feature vectors (MFCCs)
given a traffic density state (Jammed, Medium-Flow or Free-
Flow) is quasi-stationary and therefore can be reasonably
modeled by a GMM of appropriate mixture components. The
appropriateness of this assumption is evaluated through the
traffic density state classification experiments that we report
in the next section.
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V. EXPERIMENTAL RESULTS

We have collected about three hours of cumulative roadside
acoustics data from the New Delhi South District area. The
data was collected from a roadside installed, omni-directional
microphone at16Khz sampling frequency. This data covered
three broad traffic density classes and was collected over
about10 data collection sessions from about6 different road
segments. The labeling of the data was done by a human
assessment of the prevailing traffic density state. We further
partitioned the data into two independent sets – one for training
the GMM parameters of the three classes (traffic density
states) and other for the classification experiments based on
the learned distributions as in (6). The training set covered
three traffic density states (classes) equally and consisted of
90 minutes of audio data. Similarly, the test set was of duration
80 minutes and covered the three classes almost equally.

MFCC features and their first and second order time
derivatives (an estimate of the modulation spectrum[31]) were
computed over a primary analysis window of varying size from
40ms to 500ms and shifted by segments of20ms to 100ms.
Our intent was to analyze the effect of the primary window
size and the shift on the classification accuracies. Four MFCC
feature sets were computed with varying configuration as noted
below.

• MFCC40: Primary window size= 40ms, shift20ms.
• MFCC100: Primary window size= 100ms, shift= 50ms.
• MFCC200: Primary window size= 200ms, shift=

100ms.
• MFCC500: Primary window size= 500ms, shift=

100ms.

All the feature vectors consisted of first13 MFCC coefficients
(including the zeroth cepstral coefficientc0, which is equiva-
lent to the log energy of the short-term signal) and their first
order and second order time derivatives computed over the10
adjoining frames. This led to a39 dimensional feature vector
per frame. We trained three GMM models, one for each of the
traffic classes on the1.5 hours of the total training data. Each
GMM was initialized as a single Gaussian and the number of
mixture components were gradually incremented in steps of2
to finally train 11 component Gaussian density for each class.
Standard EM algorithm was used for the parameter estimation.

Test set consisted of1.5 hours of data that was completely
disjoint from the training set. Our first experiment was on
the classification of a single frame of MFCC. Each frame’s
likelihood was evaluated using the GMM of the three classes
and it was assigned to the traffic density class with the highest
likelihood. Tab. I, shows the classification accuracy of a single
frame (single feature vector) based on its GMM likelihood as
computed in (6). We make a couple of observations based on
this table,

First, even on the basis of a single feature vector (T = 1),
we were able to correctly classify the traffic classes with an
accuracy in the range60−70%. This experiment supported our
hypothesis that the cumulative acoustic signal (and its MFCC
feature) does contain discriminative cues about the underlying
traffic density condition, and which are learnt by the GMM
probability distributions. As a result, it led to an accuracy in

the range60−70% (with a random decision rule, the accuracy
of correct classification for a3 class problem will be33.33%).

Second, the classification accuracy of theMedium-Flow
class is below that of both theJammedand theFree-Flow
traffic density classes. This is due to the fact the medium flow
traffic does exhibits the characteristics of both the jammedand
the free-flow traffic at different times as its average speed range
(10, 40)Kph is in between those of other two traffic classes.
This phenomenon is also evident in the spectrogram in Figs.
4, 5, 6, where the medium-flow traffic’s spectrogram exhibits
“honk-harmonics” and low frequency noise (though with much
broader bandwidth as compared to the jammed traffic). At
some instances, the medium-flow traffic also exhibits the
“drive-by-noise” that is predominantly present in the free-flow
traffic.

Third, the classification accuracy of all the three classes
increases as the primary analysis window size is increased
from 40ms to 500ms. This is due to the fact that the traffic
density class (state) is a slow changing physical process owing
to its inherent physical constraints (speeds of the vehicles are
bounded between(0, 100)kph and hence the density of the
traffic cannot change at an arbitrarily high rate). On an average,
the traffic density class (state) on a particular road segment can
be expected to change from, say, jammed to medium-flow and
medium-flow to free-flow on a time-scale of(5− 30)mins or
even higher. This is unlike the speech signals where a phoneme
(a basic classification/recognition unit) can change over(20−
80)ms time-period[30]. Therefore a primary analysis window
of size200ms or 500ms and a window shift of100ms seems
to be a reasonable choice.

A. Using multiple contiguous feature frames

So far, our classification was based on a single frame of
feature vector that at most covered100ms of the signal. As the
traffic density class could only change over the time periodsof
(5 − 30)mins or even higher, we can use significantly larger
number of contiguous feature vector frames, to perform the
classification. Therefore in our next set of experiments we used
several contiguous feature frames in the range (T = 5, 30s)
– time periods over which the traffic density class can be
safely assumed to belong to a single class. As explained in
(6), the class that maximized the likelihood of theT feature
frames, was recognized as the underlying traffic class. This
decision was then compared with the ground truth to arrive as
the classification accuracy.

In Tables II, III, IV, V, we present the classification ac-
curacy as the number feature frames were increased covering
T = 5s, 10s, 15s, 20s, 25s, 30s of the cumulative signal, while
different sizes of the primary analysis window and the shift
sizes were used. These tables show two important trends.
First, the overall accuracy improved for all the feature sets
as the observation time period (′T ′) was increased. Second,
the primary window size of200ms and 500ms with a shift
of 100ms seemed to be a good design choice for this classi-
fication task. As the observation time period′T ′ increased, it
provided us more evidence to classify the cumulative acoustic
signal and hence benefited the classification accuracy. As the
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TABLE I
SINGLE FRAME LEVEL CLASSIFICATION ACCURACIES OF THE VARIOUSTRAFFIC DENSITY CLASSES. THE PRIMARY ANALYSIS WINDOW SIZE IS VARIED

IN THE RANGE 40MS, 100MS, 200MS, 500MS WHILE THE WINDOW SHIFT SIZE IS VARIED IN THE RANGE20MS, 50MS, 100MS, 100MS RESPECTIVELY.

Traffic Class MFCC40 MFCC100 MFCC200 MFCC500
Jammed 61.9 69.1 70.92 73.3
Medium-Flow 52.0 58.6 62.6 63.9
Free-Flow 58.2 66.0 69.30 71.4

TABLE II
CLASSIFICATION ACCURACIES OF THE VARIOUS TRAFFIC CLASSES BASED ON MULTIPLE CONTIGUOUS FRAMES COVERING

T = 5s, 10s, 15s, 20s, 25s, 30s OF THE CUMULATIVE ACOUSTIC SIGNAL. FEATURE: MFCC40 (PRIMARY WINDOW=40ms, SHIFT=20ms)

Traffic Class T=5s T=10s T=15s T=20s T=25s T=30s
Jammed 91.8 95.3 96.5 97.4 99.9 100.0
Medium-Flow 79.1 85.8 88.9 91.1 92.9 94.4
Free-Flow 77.8 87.9 92.7 94.1 94.6 95.6

TABLE III
CLASSIFICATION ACCURACIES OF THE VARIOUS TRAFFIC CLASSES BASED ON MULTIPLE CONTIGUOUS FRAMES COVERING

T = 5s, 10s, 15s, 20s, 25s, 30s OF THE CUMULATIVE ACOUSTIC SIGNAL. FEATURE: MFCC100 (PRIMARY WINDOW=100ms, SHIFT=50ms)

Traffic Class T=5s T=10s T=15s T=20s T=25s T=30s
Jammed 95.8 97.5 99.5 100.0 100.0 100.0
Medium-Flow 79.4 85.9 88.0 91.4 92.4 95.9
Free-Flow 88.8 95.9 97.9 98.3 98.7 99.4

TABLE IV
CLASSIFICATION ACCURACIES OF THE VARIOUS TRAFFIC CLASSES BASED ON MULTIPLE CONTIGUOUS FRAMES COVERING

T = 5s, 10s, 15s, 20s, 25s, 30s OF THE CUMULATIVE ACOUSTIC SIGNAL. FEATURE: MFCC200 (PRIMARY WINDOW=200ms, SHIFT=100ms)

Traffic Class T=5s T=10s T=15s T=20s T=25s T=30s
Jammed 96.1 99.0 100.0 100.0 100.0 100.0
Medium-Flow 81.3 88.0 91.3 93.6 96.2 96.8
Free-Flow 89.5 95.0 96.5 97.2 97.8 97.8

traffic density condition can only change over the time periods
of 5 − 30mins or even higher, an observation time period of
T = 30s that results in highest classification accuracies, was
still a fairly quick response time.

B. SVM based classification

While Bayes rule is the optimal classifier in terms of
minimizing the error rates, its optimality depends on the
availability of the “true” estimate of the class-conditional
distributions as in (6). In practice, the “true” distributions are
never known and we only estimate them using a family of
distributions (for example GMMs). On the other hand, Support
Vector Machines (SVM) are discriminative classifiers that do
not require the knowledge of the class-conditional distributions
– they only focus on the classification. They project the data
in a high dimensional space, where the classification problem
may be linearly separable and then find the linear hyperplanes
that separate the various classes with a high margin[20], [21].
Therefore, they have proved to be excellent classifiers for di-
verse pattern recognition applications such as handwritten digit
recognition[22], object detection[23], speaker recognition[24]
and many others. In particular, a non-linear SVM projects the
′d′ dimensional input featurexi (MFCC in this case) to some
high dimensional spaceH, through a non-linear transformΦ.

Φ : Rd 7→ H (7)

It then seeks a hyperplane (which is normal to the weight
vector ′w′) in the high-dimensional spaceH such that, the
margin 1

|w|
between the two classes (labeled byyi = +1,−1)

is maximized[20], [21] and the following constraints are met.

w.Φ(xi) + b ≥ +1 for yi = +1

w.Φ(xi) + b ≤ −1 for yi = −1

and minimize||w||2

The is easily extended for the multi-class problems[20]. The
above minimization problem is a quadratic program with
constraints and its solution involves only the dot productsbe-
tween the transformed features taking the formΦ(xi).Φ(xj).
And, these dot products can be efficiently found using kernel
functions, without even explicitly knowing the transformation
Φ(.)[20], [21]. This so-calledkernel-tricksignificantly simpli-
fies the training procedure and brings down the computational
requirements[20], [21]. It has been shown that the optimal
weight vector can be expressed as[20],

w =

Nsv
∑

k=1

αkykΦ(sk) (8)

where,si are the so-called′N ′

sv support vectors, andαi their
coefficients – all values found during the optimization phase
(training). In the test phase, a test vectorx is assigned to one
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TABLE V
CLASSIFICATION ACCURACIES OF THE VARIOUS TRAFFIC CLASSES BASED ON MULTIPLE CONTIGUOUS FRAMES COVERING

T = 5s, 10s, 15s, 20s, 25s, 30s OF THE CUMULATIVE ACOUSTIC SIGNAL. FEATURE: MFCC500 (PRIMARY WINDOW=500ms, SHIFT=100ms)

Traffic Class T=5s T=10s T=15s T=20s T=25s T=30s
Jammed 95.4 98.1 99.7 100.0 100.0 100.0
Medium-Flow 81.0 89.7 93.1 95.6 96.6 97.7
Free-Flow 90.1 96.4 98.3 98.5 98.8 100.0

TABLE VI
SINGLE FRAME LEVEL CLASSIFICATION ACCURACIES OF THE VARIOUSTRAFFIC DENSITY CLASSES USINGSVM. THE GMM-BAYES CLASSIFIER

ACCURACIES ARE ALSO PRESENTED FOR COMPARISON. THE FEATURE WINDOW SIZE IS500ms.

Traffic Class SVM GMM-Bayes
Jammed 73.0 73.3
Medium-Flow 80.7 63.9
Free-Flow 77.5 71.4

TABLE VII
SVM CLASSIFICATION ACCURACIES OF THE VARIOUS TRAFFIC CLASSES BASED ON MULTIPLE CONTIGUOUS FRAMES COVERING

T = 5s, 10s, 15s, 20s, 25s, 30s OF THE CUMULATIVE ACOUSTIC SIGNAL. FEATURE: MFCC500 (PRIMARY WINDOW=500ms, SHIFT=100ms)

Traffic Class T=5s T=10s T=15s T=20s T=25s T=30s
Jammed 95.0 97.7 98.9 99.5 100.0 100.0
Medium-Flow 96.1 98.5 99.0 99.4 99.9 100.0
Free-Flow 93.5 97.8 99.0 99.6 99.8 100.0

of the two classes depending on the sign of′f(x)′,

f(x) =

Nsv
∑

k=1

αkykΦ(sk).Φ(x) + b

=

Nsv
∑

k=1

αkykK(sk, x) + b

where K(sk, x) = Φ(sk).Φ(x) directly computes the dot
product between the transformed featuresΦ(sk) andΦ(x).

In our experiments, we have used a radial basis function
(RBF) kernel based SVM to perform the above classification
task. The training and the test sets are the same as in the GMM
based Bayes classifier in the subsection IV-C. The RBF kernel
function used is,

K(xi, xj) = exp (−0.5(xi − xj)
2) (9)

where,xi, xj are the feature vectors andK(xi, xj) is their
dot-product in some high dimensional space as determined by
the choice of the RBF kernel function. In general, the RBF
kernel functions provide good classification performance and
hence we have used them in these experiments. The LibSVM
library[25] was used for training the SVM parameters and for
testing. Tab. VI, shows the classification accuracy of a single
frame (single feature vector) based on the SVM classifier for
the MFCC500 feature which was one of the best performing
feature for the Bayes classifier. As can be noted from this
table, the SVM classifier achieved better performance than
the GMM-Bayes classifier. We then, used multiple contiguous
feature vectors over the time span (T = 5, 30s). Unlike the
GMM-Bayes classifier which provided a likelihood for each
feature vector (time frame) as in (6), RBF-SVM classifier only
provided the class label (one out of three classes) to which
it assigned a feature vectorxt. Therefore, we used a simple

voting technique to arrive at a single class label for all the
contiguous feature vectors that spannedT = (5, 30)s of the
cumulative acoustic signal. The classification accuraciesare
in Tab. VII. We note two important trends from this table.
First, the SVM classification accuracies are higher than GMM-
Bayes accuracies with the same MFCC500 features as in Tab.
V. Second, SVM provides particularly better accuracy for
the medium-flowclass. This could be due to the better inter-
class discrimination provided by the SVM in a non-linear and
higher-dimensional space as determined by the RBF kernel in
(9).

In summary, both the GMM-Bayes classifier and the SVM
provided high accuracies while looking at the acoustic ev-
idence of the order20 − 30s, with the SVM providing
additional gains over the GMM-Bayes classifier. In terms
of computational complexity, GMM-Bayes classifier may be
preferable over the SVM as in the latter case the test-phase
computational expense is directly proportional to the number
of support vectors. The number of support vectors in the above
experiments wereNsv = 25113 out of a total ofN = 51822
training vectors. In comparison the GMM-Bayes complexity is
limited by the number of Gaussian components in the mixture,
which in this case, was11 components per class.

VI. CONCLUSION

We have presented a simple technique that uses the dis-
criminant information present in the MFCC features of the
cumulative roadside acoustic signal, to classify the traffic
density state (Jammed, Medium-Flow, Free-Flow) that is most
likely to have produced it. As this technique uses simple omni-
directional microphones (installed on the outer side of a street),
its cost of installation and operation is significantly lower
as compared to other techniques such as the magnetic loop
detectors[19]. And, unlike the computer vision and tracking
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based traffic monitoring techniques[16], [18], [17], the pro-
posed technique is independent of the lighting conditions and
the visual occlusion problem. Therefore, it works reasonably
well even in the chaotic andnon-lanetraffic conditions that
are very common in the developing regions (South Asia/South
east Asia). As has been noted in [14], [15], honks are very
commonplace in the traffic of the developing regions. Their
usage is subtly ingrained within the driving culture of the
developing countries (especially India, South Asia) wherethe
drivers use it partly as a “safety measure” to “announce” their
presence. However, unlike the techniques in [14], [15], which
require robust and accurate detection of the honk signals,
followed by the Doppler frequency shift estimation to arrive
at the average speeds, our proposed technique is not based on
the honk detection. We instead, extract the distinctive acoustic
signatures of the various traffic density classes, which are
characterized by the multiple types of noises induced by the
vehicles, and may or may not include the honks.

In this background, our technique provides several advan-
tages in terms of the low cost and high accuracy operation
for a three class traffic density classification; (Jammed:(0 −
10Kph), Medium-flow:(10− 40Kph) andFree-Flow: (40−
100Kph)). However, we note that unlike the techniques such
as the radar guns and a single vehicle profile extraction[1],
[12], [13], the proposed technique cannot provide a very fine-
grained average speed estimation. Nevertheless, we believe
that this may not be a limitation for the traffic congestion
monitoring in the developing regions. In such conditions, we
are not interested in the precise average speeds of the traffic,
but rather in its broad range of the average speeds – a quantity
well captured by our three broad traffic density classes.
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