RC 14674 (#65767) 6/5/89
Computer Science 18 pages

Research Report

User Interface Management Systems:

Survey and Assessment -
RESEARCH { 147 /2

Peter Y. F. Wu

IBM Research Division 89 JUN26 P1:12
T.J. Watson Research Center
Yorktown Heights, N.Y. 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted il accepted for publication. It has been issued as a Research
Report for early dissemination of its contents and will be distributed outside of IBM up to one year after the IBM publication date. In view of the transfer of
copyright te the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sperific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties].

== Research Division
TE Almaden « T.J. Watson ¢ Tokyo « Zurich

([
i




Researh Report

User Interface Management Systems:
Survey and Assessment

Peter Y.F. Wu

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

Vnet: PWU at YKTVMH
May 22, 1989



User Interface Management Systems: Survey and Assessment

Peter Y.F. Wu
IBM T.J. Watson Research Center

ABSTRACT

The term User Interface Management System (UIMS), coined in 1982, referred to
a software strategy for dialogue control in computer-user interaction. The strategy
attempted to separate specification of dialogue sequences from application develop-
ment. The concept spawned much further work, intended to generalize the strategy
to other applications. Many UIMSs were since reported in the literature, and mean-
ing of the term UIMS was also changing, from a strategy for application develop-
ment to an integrated system of tools for user interface (Ul) design. The paper
gives a historical account. The intended separation of dialogue control sequencing
from application development is hardly successful in any general sense. The func-
tional distinctions between dialogue control and application program are still very
much unclear. Yet UIMS work has made an impact in our views toward application
development. We recognized the role of Ul design, for which most programmers
were not trained. Since the requirements for Ul are often inherently fuzzy, the only
reliable test for Ul quality is in testing by end-users. There is evidently the need for
application development to be user oriented: to build Ul software around the user,
and to test early Ul prototypes by end-users to support iterative re-design. Much of
UIMS work therefore concentrated in the Ul design tools, and the integration of Ul
design into application development. The paper adopts a classification of UIMSs
by the tools for Ul design, and presents a survey.



INTRODUCTION

The advent of interactive graphics [Sutherland 63] has brought new possibilities to
computer-user interface (or simply user interface, or Ul). The potential for higher
quality and more usable Ul is obvious, but the problem of constructing Ul software
also becomes greater at the same time. The cost for software production is of-
ten unexpectedly high, and statistics reported that Ul software takes a substantial
share of that heavy cost [Sutton 78]. At least in part due to its graphical and asyn-
chronous real-time nature, software for interactive graphical Ul is complicated. On
the other hand, application programmers often are not good Ul designers. Software
engineering techniques such as requirements analysis do not seem to apply very
well to Ul software design and development. We often need the feedback from end-
users testing with prototypes. Quick prototyping and flexibility in iterative design
and development are much more effective. The need for a novel approach and new
techniques for Ul software is evident.

User interface management system, (or UIMS), was a term first used in 1982, as
the title of a paper in the SIGGRAPH conference [Kasik 82]. UIMS referred to a
software strategy for dialogue control in Ul. The strategy separated specification of
dialogue sequences from application development. In 1983, Eurographic Seminars
held a workshop on UIMS in Seeheim, West Germany [Pfaff 85], and enthusiastic
discussions ensued. Envisioned to be the mediating system between application and
end-user, UIMS intended to separate Ul functions from the application program.
Much of the work attempted to sketch out practicable UIMS architectures. In the
years following, many UIMSs were reported. But along with the development, the
meaning of the term UIMS was also changing. UIMS now commonly refers to a
collection of software tools integrated into a system for Ul design and development,
and the operation of Ul software. In recognizing the role of Ul design, UIMS
work has resulted in changes in the environment to facilitate new approaches to
application software development.

This paper presents a historical account of the development of UIMS work. As
a commentary, the paper discusses the implications of the UIMS approach to ap-
plication software development. It uses a software layer model to characterize the
run-time application environment, and sorts some terminologies involved. Based on
how the Ul designer’s tools and the environment for Ul design, the paper presents
a classification of UIMSs and comments on the range of functionalities supported
in the end-user's interface. The classification reported here is built upon previous
work in [Green 86] and [Myers 89]. In conclusion, the paper also suggests that the
future for application development will necessarily be the integration of different
tools and environments.



A HISTORICAL ACCOUNT

Although high quality Ul is very much conceivable, and in many cases realized, the
general question of how to build high quality Ul does not have an easy answer.
Around the beginning of 1980's, when graphics standards are being developed,
the question concerning human-computer interaction and how to handle it was
catching attention. The term UIMS, coined in 1982, referred to a software strategy
to separate dialogue specification from application development. Later on many
attempted to generalize the strategy; UIMS then was conceived to be a system
mediating between the user and the application program. Much work tried to draft
out an architectural model for the UIMS. Since 1985, hosts of different UIMSs were
reported in the literature. We will trace out the brief history of development of
UIMSs here: Table 1 presents in chronological order the events and the UIMSs
disseminated in the literature, with a brief remark on each one. This however is
hardly an exhaustive list; we have selected those which we deem representative. The
following will comment on the development and then discuss on the implication of
the UIMS approach to application software development.

An Early Bird in 1968

Early in the 60's after the introduction of interactive computer graphics by the
Sketchpad project [Sutherland 63], Newman foresaw the need of tools for Ul soft-
ware development. He modelled computer-user interaction by a finite state automa-
ton and implemented a system which he called the Reaction Handler [Newman 68].
The system provides a graphical editor for the Ul designer to construct a state
transition diagram. The run-time system interprets the information from the state
transition diagram to control the interactive operation of the application program.
The Reaction Handler was probably the first UIMS, and interestingly, was dated
long before the inception of the term.

The Few UIMSs in 1982-83

The term UIMS was coined in 1982. In the paper entitled ” A User Interface Manage-
ment System,” Kasik described a framework for developing engineering applications
with highly interactive graphics called TIGER [Kasik 82]. The UIMS refers to the
software system which handles user interaction. The system comprises two major
components. First, a special purpose programming language allows detailed spec-
ification of dialogue sequences. A pre-processor compiles the dialogue sequences
into a formatted menu file for use at run-time. Second, at run-time system, an
interpreter generates systems of menus (according to the formatted menu file) to
provide user control to invoke appropriate application procedures. Kasik explained




that the strategy was similar to that of a data base management system (DBMS),
in which the functions of a schema as to data would be similar to that of a di-
alogue sequence specification as to user interaction. The approach separated the
specification of dialogue sequences from the application program.

Developed at the University of Toronto, Menulay and MakeMenu were both tools
of an integrated system for Ul design and development. The strategy is quite
different from that of the TIGER UIMS. The system is for Ul designers who are
not programmers. Menulay provides an interactive graphical environment for the
designer to make up networks of menus and keep the information in Ul specification
files. MakeMenu can then take the Ul specification and generate the Ul software
in C code, to be compiled and linked with the application program. At run-time, a
table-driven support system controls the user interaction [Buxton 83].

The Syngraph UIMS was developed as part of the Automated Human Interfaces
project at Arizona State University. Syngraph adopted yet another approach. The
model for user interaction is decomposed into semantic, syntactic, and lexical ley-
els, much like a formal language. Hence the Ul software is a a parser for#the
language of computer-user interaction. The U] designer prepares the Ul description
in an extended version of Backus-Naur form (BNF), and Syngraph generates the Ul
software in Pascal code from the Ul description. An interaction techniques library
supports the run-time system. At the lexical level of the grammar specification,
terminals refer to the primitive interaction techniques in the library [Olsen 83]. "

1983 Seeheim Workshop on UIMS

November 1983, the Eurographic Seminars held a workshop on UIMS in Seeheim,
West Germany [Pfaff 85]. Much enthusiastic effort attempted to sketch out an
architectural model for the UIMS, which was conceived to be a system mediating
between the user and the application program [Strubbe 85]. Figure 1 depicts the
conceived UIMS model [Green 85a]. Such a model is based on a concept of dialogue
independence, that the software managing dialogue with the user would be loosely
coupled with the application program. However, the functional distinctions between
dialogue and application were unclear. Indeed, some examined the premises in
the concept of dialogue independence and stated that "the UIMS cannot be as
isolated from the application semantics as had originally been presumed [Tanner
85].” Despite the controversy, the following years witnessed the development of
many UIMSs.

There was a time of silent working on UIMSs the year after the 1983 Seeheim work-
shop. But in the following years, many UIMSs were reported. In 1985, most of the




systems reported were language-based, ranging from declarative languages (Cousin
[Hayes 85], Domain/Dialog [Schulert 85]) for Ul specification to detailed event-
based programming (Squeak [Cardelli 85]). Grins [Olsen 85] is grammar based, but
comes with a graphical editor for Ul specification. Perhaps more remarkable was
the work of U of Alberta UIMS [Green 85b]; using three different lanugage models
for Ul specification, he showed that the three models, state transition diagrams,
context free grammars, and event-based languages were progressively more flexible
in expressive power but more difficult to use [Green 86].

In 1986, many systems began to break out the modes of the predecessors. Jacob
extended the easy of use of state transition diagrams [Jacob 86]. Olsen in the Mike
UIMS attempted easier generation of Ul from an incomplete declarative language
specification using proper defaults [Olsen 86]. With GWUIMS, Sibert began to
build an object-oriented framework for Ul programming, intended to test different
Ul models [Sibert 86]. Hill and Myers both at the University of Toronto worked
on UIMSs to produce direct manipulation style of Ul. Hill built an elaborate event-
based programming system Sassafras [Hill 86]. The system was effective for use
but hard to learn. Myers took an entirely different approach; the Peridot system
attempted to specify direct manipulation Ul by direct manipulation, so that it can
be a Ul design tool for non-programmers. In other word, the designer demonstrates
the desired sequence of interaction and Peridot generalizes from the action taken
to produce the software to control the dialogue [Myers 86].

Panther [Helfman 87] and Control Panel Interface [Fisher 87] in 1987 both were
concerned about generating graphical Ul modelled by the control panel. When
reduced to the problem of screen space allocation, both were effective Ul program-
ming tools.

Some Higher Level UIMSs

Most of these system mentioned above dealt with the Ul software problem at a
relatively lower level of abstraction. Most provided support for Ul software at the
binding and sequencing levels. The years following saw more UIMSs intended to
provide support at the functional and conceptual levels. Most notable was the
Knowledge-Based UIMS [Foley 88b] built on a frame-based expert system which
generates Ul software from the specification of application functions. Garnet [Myers
89] which is under construction is intended to be a more comprehensive system,
in the sense that it provides supporting tools for different roles to contribute to
Ul design and its incorporation with application functions. Returning to the UIMS
problem of separation of dialogue control from the application, Garnet began to
treat the Ul design problem in the larger context of application development.




The rest of the paper goes on to a commentary, discussing the implications of the
UIMS work in application development, and a classification of UIMSs.

IMPLICATIONS OF THE UIMS APPROACH

Since 1982, UIMS work has been going on, and the meaning of UIMS also has
been changing. In the 1983 Seeheim workshop on UIMS [Pfaff 85], the UIMS was
conceived to be a mediating system between the user and the application program,
and much work attempted to draft models of the UIMS architecture. Many UIMSs
have been reported since then, and they come in different forms and varieties. The
intended separation of dialogue control from the application program did not lead
to a general solution. Despite the difficulties, the UIMS work has made an impact
on our views toward application development. In this section, we will first sort out
the roles and the terminologies to discuss the issues involved with a model for UIMS
architecture. Further, we will present a classification of UIMSs, based on the ul
design tools provided by the systems. —

ET

The Roles and The Terminologies

The UIMS approach to application development recognizes several different roles
involved. The UIMS approach recognizes these four basic roles: the application
programmer, the Ul designer, the UIMS architect, and the end-user. These are
considered different roles since they require different skills. Traditionally, the appli-
cation programmer is responsible for all these roles. By identifying these different
roles, the need for different tools for different roles becomes evident. Tools for
the Ul designer become the major thrust of the UIMS work. The term UIMS now
commonly refers to the collection of Ul design tools in an integrated system for
their use. For this reason, some researchers used the terms UIDS (Ul development
system) or UIDE (Ul development environment) instead [Hill 86, Myers 89]. We
suggest clearing up these terms here. UIMS in its restricted meaning should refer
to the run-time application environment operating the Ul; in the general sense,
UIMS may refer loosely to the entire integrated system incorporating all the tools
for different roles. On the other hand, the term UIDS (or UIDE) should refer to the
sub-system in the general UIMS, specifically the collection of Ul design tools and
the components supporting their operation. In the following, we will discuss the
run-time UIMS environment and the software components. Then we will discuss
the UIDS (that is, the Ul designer’s sub-system) and the tools for Ul design.

Models for UIMS Run-Time Archi
Conceived to be the mediating system between the user and the application pro-
gram, the UIMSs were portrayed in different models of run-time organization of




software components. The issues involved were communication and control flow
among these components. To discuss these issues, we will first introduce a model
of the software layers in the application’s run-time environment. The model should
help us clarify the level of abstraction in user interaction the UIMS is intended to
function.

Software Layers

Figure 2 depicts the different software layers in the run-time environment of an
interactive application. We may consider everything beneath the application pro-
gram layer Ul software. There is in fact no clear delineation such that beyond
which level, it is or is not Ul software. When the application program interacts with
the user, information travels through all the layers of Ul software, each handling
the information at its own level of abstraction. Foley [1988a] suggested use of the
terms binding, sequencing, functional, and conceptual to describe the different lev-
els of abstraction (instead of the earlier lexical, syntactic, and semantic since they
convey unappropriately the idea of formal languages). The 1/O device drivers are
often parts of the operating system to control privileged access to the devices. The
graphics library, or the imaging model of a window system, provide primitive |/0
action units, hence at the binding level. The toolkits or widgets provide packaged
interaction techniques; they are at the sequencing level. These components support
the application environment as collections of procedures called by the software from
a high level of abstraction. The difficulty with UIMS is with the dialogue control
layer which should operate in the functional level, closely relating to the application
semantics. Thus, the software for dialogue control is traditionally embedded in
the application program, often referred to as the Ul portion of the program. The
UIMS approach attempts to separate the dialogue control functionalities from the
application program. Although this separation is hardly successful is any general
sense, the UIMS approach introduced a new style of control flow in the run-time
environment. The following section will discuss further.

Control Flow Styles

Traditionally, the application programmer treats the Ul software as packages of
interaction techniques, and the application program calls upon these packaged pro-
cedures when so desired. The user follows the lead of the application program to
interact with it. The style is thus called internal control, or application control;
figure 3 depicts the idea. External control refers to a style in which the user takes
control in the interaction. The Ul software is organized around the user and calls
upon application procedures in response to the user’s requests, as illustrated in
figure 4. To mediate between the user and the application program, most UIMSs
adopt the external model in order to control sequencing and scheduling of tasks




initiated by user interaction. Hence the style of external control is also called UIMS
control. Thus in the UIMS approach, the roles between the dialogue control layer
and the application program can be reversed. It is also possible to have a mixed
control style. While neither the Ul software nor the application program takes over-
all control, each may be in control for some of the time. The two may be coroutines,
or two communicating processes.

Ul DESIGN IN APPLICATION DEVELOPMENT

Besides a new control flow style in user-centered run-time environment, the UIMS
work has also focused on the essential role of Ul design in application development.
While recognizing the different roles involved, the UIMS approach identified the
need of tools for the Ul designer. Much of the work was in investigating new design
tools and systems integrating their use. The next section will discuss the Ul tools
provided in different UIMSs. In our terminology, this refers to the UIDS or UIDE
of the general UIMS. ‘=

The Designer’s Tools and A Taxonomy

Green [1986] presented a classification of three different models for dialogue speci-
fication. Myers [1989] introduced a classification of UIMSs by the different UIDSs
they offer. The UIDS refers to the set of tools the Ul designer may use to specify
the desired Ul for an application. Table x shows the classification of the UIMSs
alluded to in our historical account. This is largely based on Myers’ work of classi-
fication by the Ul design tools which their repesctive UIDSs offer. There are three
broad categories: language-based specification, direct graphical specification, and
automatic Ul generation. We describe each category below:

A. LANGUAGE-BASED SPECIFICATION

Most of the earlier UIDSs were language-based. The Ul designer uses a special
purpose language for Ul design specification. Such a special purpose language can
take many different forms, too:

(1) Eorms
Panther [Helfman 87] allocates screen space to different interaction functions ac-
cording to tabulated parametered specified in a form filled by the Ul designer; the

screen then models a control panel for user interaction.

(2) Menu networks
TIGER [Kasik 82] supports a hierarchy of menus, which is specified in a structured
language with sophisticated features such as aborting or skipping levels.



(3) State transition diagrams

Computer-user interaction often involves changing of one mode to another in re-
sponse to certain input action. The state transition diagram in then an effective
means to model the interactive behavior. Jacob [1985] argued for its effective use in
visual programming. The Reaction Handler [Newman 68], probably the first UIMS,
also used the state transition diagram to specify interactive behavior of applications.
We consider this a language-based specification tool since it is still essentially the
state table which characterizes the operation, but systems come with graphical
editors for Ul designers to construct and edit the state transition diagrams.

(4) Context free grammars

These systems treat interactive dialogues as formal languages. The Ul designer
specifies the legal interactions in an exteneded Backus Naur form (BNF), and a
parser generation system generates the Ul software which handles the dialogue.
These systems work very well with command dialogue model of user interaction:
they do separate dialogue sequencing from the application program, but it cannot
produce semantic feedback. Syngraph [Olsen 83] is a grammar-based system.

(5) Event languages

These are essentially programming languages for event handlers. Event languages
are explicitly designed for concurrent dialogues. However, these systems require Ul
designers to be good programmers. These tools work at a low level of abstrac-
tion and the larger systems are quite difficult to debug. Squeak [Cardelli 85] and
Sassafras [Hill 86] are both event language systems. The Univ. of Alberta UIMS
[Green 85] is also event language based, but it comes with tools to translate state
transition diagram and BNF grammar specification into event language specifica-
tion. EDGE [Kleyn 88] formulates event handling using an AND-OR graph, and
comes with a graphical tool to construct and edit the graph. It becomes a nice aid
to event language programming.

(6) Object-oriented languages

These systems provide an object-oriented framework for Ul programming. The
framework comes with object having encapsulated interactive behavior which the
programmer can use by default, or modify thru inheritance. GWUIMS [Sibert 86]
is a system built on Franz Lisp with Flavors. Like event languages, the Ul designer
has to be a programmer.

(7) Declarative languages

A declarative language is different from a procedural language in that it specifies
what should happen instead of how it should happen. Hence, the Ul designer
does not have to worry about sequences of events in the interaction, but can be




concerned more about the semantic information related to the application. Both
Cousin [Hayes 85] and Domain/Dialog [Schulert 85] use some form or slot based
communication between the application program and the UIMS.

B. DIRECT GRAPHICAL SPECIFICATION

These systems are intended to achieve a WYSIWYG (What you see is what you
get) style of Ul design. Menulay [Buxton 83] and Grins [Olsen 85] both allow the Ul
designer to place display objects including packaged interaction techniques directly
on the presentation layout. Grins also allows specification of constraints on these
objects to handle semantic feedback. Peridot [Myers 86] furthermore allows the
designer to create new interaction techniques by demonstration. These UIDSs are
certainly much easier to use, but they are quite difficult to build. With these tools,
Ul designers do not have to be programmers at all.

C. AUTOMATIC Ul GENERATION

To alleuviate the difficulties in the detailed specification of Ul design this class of
UIDSs generates the Ul automatically from the semantic information about the
application. Control Panel Interface [Fisher 87] uses the type information of 1/0
parameters to create graphical interfaces: buttons for Boolean variables, dials for
integers, etc. The Ul designer can then modify and reorganize these gadgets onto
a control panel. Mike [Olsen 86] generates an interface from declarative proce-
dure headings in a profile file. By proper defaults, a complete specification is not
necessary. The interface generated is menu-oriented, but the Ul designer can mod-
ify it on an interactive graphical editor. Mike can even change certain commands
to operate on direct manipulation. Mickey UIMS [Olsen 89] generates an inter-
face from declarative type-extensions to Pascal, mapping onto it a predefined Ul
style. In this aspect, Mickey is similar to Mike, but Mickey has included a wider
range of descriptive facilities supported and still maintained the ease of use. Foley
[1988b] presented a Knowledge-Based UIMS which generates the Ul from a lan-
guage description call IDL (Interface Definition Language [Gibbs 86]). But since
IDL describes the functions supported by the application, we can consider this au-
tomatic Ul generation from application semantics. The UIDS therefore functions
at a fairly high level of abstraction. Furthermore, the UIDS is a knowledge-based
system. While maintaining the generated Ul consistent with the IDL description, it
can also transform a Ul design to other alternatives for subsequent selection.

A UIMS SURVEY
Table 2 presents a survey of the UIMSs listed in table 1. The column under Ul



Design Tool describes the classification based on the UIMS taxonomy already in-

troduced. The other columns include comments on other aspects related to the
UIDSs. We will discuss these below.

Level of abstraction in the Ul design tools

Another issue concerning Ul design tools is the level of abstraction the tools work
with. In other words, this relates to the basic units of meaning the Ul designer will
have to deal with. Refer to figure 2 for the model of software layers in the run-
time application environment. The UIMS approach is intended to provide support
at the functional level, to separate dialogue control from the application program.
But when we generalize the approach to view the Ul design tools, these tools only
serve in fairly limited ways. The UIDSs still very often operate at the binding or
sequencing levels of abstraction. Of the systems we studied in the survey, one
UIDS which provides support at a significantly higher level of abstraction is the
Knowledge-Based UIDS [Foley 88b].

Internal Ul description and representation

This issue refers to how the Ul design information is kept by the UIDS. Quite often
this information is kept in a format for run-time access. Pictures and icons as
well as other presentation information seem to be best kept for efficient run-time
access. Information related to interaction is more often expressed in programming
languages, general purpose or specially designed. Hence the Ul description then
may be used in compile-time to be incorporated with application programs (in the
form of header files or packaged procedures), or interpreted at run-time.

Interaction model of the Ul functions supported

Ul design is quite often biased toward a certain user interaction model which the
designer has pre-supposed. Listed in this aspect is our interpretation of the " model
of interaction” by examining the Ul functions supported by the UIMS. The state
machine model seems one easy to prepared for. Although to some extent, it is
limited, it can still support a fairly broad range of applications. Another common
observed model is the command dialogue model of interaction. More involved
interaction models and Ul functions tend to be very much application specific, and
thus become difficult to be supported by general UIDS tools.

In view of the different roles identified for the process of application development,
as well as the differences in the levels of abstraction in the supporting tools, we
suggest the future of application development will be a complex environment. The
necessity to integrate different tools for different roles is eminent. In the past five
to six years, there has been a rich development of various Ul design tools. The
next step in the coming five or six years shall see the development toward compre-

10



hensive application development environments, integrating different tools so that
programers, designers, as well as end-users can all contribute to the desired opera-
tions of application software.

CONCLUSION

We presented a historical account on UIMS work: from the inception of the term
to the evolution of its meanings, with remarks on many representative systems re-
ported in the literature. As a commentary, we discussed the issues involved in the
UIMS architectural model, and the implications of UIMS approach in application
development. The UIMS approach brought a new style of flow control to the run-
time application environment, namely, the external control model, so that software
is built around the user instead of forcing the user to following prescribed interac-
tion patterns designed by the application programmer. In recognizing the role of
Ul design in application development, UIMS work has resulted in the burgeoning of
new tools for Ul design. To clear up some terminologies, we use the term UIMS:to
refer either strictly to the external control run-time environment, or loosely to‘the
integrated system for the design, development, and operation of Ul software. The
UIDS (or UIDE) refers to the collection of Ul design tools in the UIMS. Based on a
taxonomy of UIDSs, we classified a number of UIMSs surveyed in the report, and
discussed other issues characterizing the Ul design tools of the UIMSs.

REFERENCES

Buxton, W., M.R. Lamb, D. Sherman, K.C. Smith. 1983. "Towards A Compre-
hensive User Interface Management System,” ACM Compuier Graphics, Vol.17,
No.3, (SIGGRAPH’83), pp.35-42.

Cardelli, Luca and Rob Pike. 1985. "Squeak: a Language for Communicating with
Mice,” ACM Compuier Graphics, Vol.19, No.3, (SIGGRAPH’85), pp.199-204.

Fisher, G.I. and K.I. Joy. 1987. "A Control Panel Interface for Graphics and
Image Processing Applications,” Proceedings SIGCHI4-GI'87: Human Factors in
Computing Sysiems, Toronto, Ontario, Canada, April 1987, pp.285-290.

Foley, James D. 1988. "Models and Tools for the Designers of User-Computer
Interfaces,” Report GWU-IIST-87-03, Dept of EE and CS, George Washington
University, March 1987. (Theoretical Foundations of Compuier Graphics and
CAD, R.A. Earnshaw, ed., published 1988, Springer-Verlay, pp.1121-1151.)

Foley, J., C. Gibbs, W.C. Kim and S. Kovacevic. 1988. "A Knowledge-Based
User Interface Management System,” Proceedings, CHI'88: Human Facilors In

Computer Systems, Washington, DC, May 1988, pp.67-72.

11



Gibbs, C., W.C. Kim and J. Foley. 1986. "Case Studies in the Use of IDL: Inter-
face Definition Language,” Report GWU-1IST-86-30, Dept of EE and CS, George
Washington University, Washington, DC 20052.

Green, Mark. 1985. "Report on Dialogue Specification Tools,” Proceedings of Eu-
rographic Seminars workshop on User Interface Managementi Systems, Seeheim,
West Germany, November 1983, p.9-20, published 1985 by Springer-Verlay, Pfaff,
ed., 224 pages.

Green, Mark. 1985. "The University of Alberta User Interface Management Sys-
tem,” ACM Computer Graphics, Vol.19, No.3, (SIGGRAPH'85), pp.205-213.

Mark Green. 1986. ”A Survey of Three Dialogue Models,” ACM Transactions on
Graphics, Vol.5, No.3, July 1986, pp.244-275.

Hayes, Philip J., Pedro A. Szekely and Richard A. Lerner. 1985. " Design Alterna-
tives for User Interface Management Systems Based on Experience with COUSIN,”

Proceedings CHI'85: Human Faclors in Computing Sysiems, San Francisco,
Calif., April 1985, pp.169-175.

Helfman, J.I. 1987. "Panther: A Specification System for Graphical Controls,”
Proceedings SIGCHI+GI'87: Human Factors in Computing Systems, Toronto,
Ontario, Canada, April 1987, pp.279-284.

Hill, Ralph D. 1986. "Supporting Concurrency, Communication, and Synchroniza-
tion in Human-Computer Interaction - The Sassafras UIMS,” ACM Transactions
on Graphics, Vol.5, No.3, July 1986, pp.179-210.

Jacob, Robert J.K. 1985. " A State Transition Diagram Language for Visual Pro-
gramming,” IEEE Computer (Aug'85) Vol.18, No.8, pp.51-59.

Kasik, David J. 1982. "A User Interface Management System,” ACM Computer
Graphics, Vol.16, No.3, July 1982, pp.99-106.

Kleyn, M.F. and I. Chakravarty. 1988. "EDGE - A Graph Based Tool for Specifying
Interaction,” Proceedings of ACM Symposium on User Interface Software, Banff,
Alberta, Canada, October 1988, pp.1-14.

Myers, Brad A., and William Buxton. 1986. ”Creating Highly-Interactive and
Graphical User Interfaces,” ACM Computer Graphics, Vol.20, No.4, (SIGGRAPH'86),
pp.249-258.

Myers, Brad A. 1989. " Encapsulating Interactive Behaviors,” Proceedings of CHI'89
Conference, Austin, Texas, May 1989, pp.319-324.

Newman, William M. 1968. "A System for Interactive Graphical Programming,”
Proceedings of the AFIPS Spring Joint Computer Conference, pp.47-54.

Olsen, D.R. Jr. and E.P. Dempsey. 1983. "SYNGRAPH: A Graphical User Interface
Generator,” ACM Computer Graphics, Vol.17, No.3, (SIGGRAPH'83), pp.43-50.

Olsen, D.R. Jr. and E.P. Dempsey. 1985. "Input/Output Linkage in a User
Interface Management System,” ACM Compuler Graphics, Vol.19, No.3, (SIG-

12



GRAPH'85), pp.191-197.

Olsen, D.R. Jr. 1986. "MIKE: The Menu Interaction Kontrol Environment,” ACM
Transactins on Graphics, Vol.5, No.4, Oct’86, pp.318-344.

Olsen, D.R. Jr. 1989. "A Programming Language Basis for User Interface Man-
agement,” CHI'89 Conference Proceedings, Austin, Texas, May 1989, pp.171-176.

Pfaff, Gunther E., ed. 1985. User Interface Managemeni Sysiems, Proceed-
ings of Eurographic Seminars workshop, Seeheim, West Germany, November 1983,
Springer-Verlag, 224 pages.

Rhyne, Jim, et al. 1987. " Tools and Methodology for User Interface Development,”
Report from 1986 ACM SIGGRAPH Workshop on Software Tools for User Interface
Management, ACM Computer Graphics, Vol.21, No.2, pp.78-87, (April 87).

Schulert, Andrew J., George T. Rogers and James A. Hamilton. 1985. "ADM - A
Dialog Manager,” Proceedings CHI'85: Human Faclors in Computing Sysiems,
San Francisco, CA, April 1985, pp.177-183.

Sibert, J.L., W.D. Hurley and T.W. Bleser. 1986. "An Object-Oriented User
Interface Management System,” ACM Computer Graphics, Vol.20, No.4, (SIG-
GRAPH’86), pp.259-268

Strubbe, H.J. 1985. "Report on Role, Model, Structure and Construction of a
UIMS,” Proceedings of workshop on User Inierface Management Systems, See-
heim, Germany, Nov'83, pp.3-8, Springer-Verlag, 1985.

Sutherland, lvan E. 1963. " SketchPad: A Man-Machine Graphical Communication
System,” Proceeding, 1963 Spring Joint Computer Conference, Baltimore, Mary-
land, published by Spartan Books.

Sutton, J.A. and R.H. Sprague Jr. 1978. "A Study of Display Generation and
Management in Interactive Business Applications,” IBM Research Report RJ2392,
Nov'78, 20 pages.

Tanner, P.P. and W.A.S. Buxton. 1985. "Some Issues in Future User Interface Man-
agement System Development,” Proceedings of workshop on User Interface Man-
agement Sysiems, Nov'83, Seeheim, Germany, pp.67-79, Springer-Verlag, 1985.

13



TapLe 1. THE UIMS DEVELOPMENT CHRONOLOGY

1968

Newman. The Reaction Handler
first UIMS, based on state transition diagrams.

1982

Kasik. TIGER

language-based for menu networks.

Jun’82: Seattle, Washington.
ACM workshop on Graphical Input Interactin Techniques
- concepts of UIMS articulated.

1983

Buxton. Menulay and MakeMenu
direct graphical specification for menu networks.

Olsen. Syngraph
grammar based UIMS: dialogue specification in BNF.

Nov’83: Seeheim, West Germany.
Eurographic Seminar workshop on User Interface Management Systems
- pursuing UIMS architectural model.

1985

Hayes. Cousin
declarative Jang for UI spec, UIMS/App communicate via slots.

Schulert. ADM, Domain/Dialog
declarative lang for UI spec, programming framework.

Cardelli. Squeak
language for mice programming, eveni-based.

Olsen. Grins
constraint-based 1/0O linkage, with graphics editor for direct spec.

Green. U of Alberta UIMS
event-based: incorporated with STD, CF Grammar, and [B lang.

1986

Jacob. STD for visual programming
graphical /textual, augmented State Transition Diagrams.

Hill. Sassafras
event-based with debug/interpret aids for direct manipulation UL

Myers. Peridot
using direct manipulation to create direct manipulation UL

Olscn. Mike
use defaults for automatic generation and tools for modification.

Sibert. GWUIMS
lang based: OO programming for application development.

Nov’86: Scattle, Washinglon.
ACM Workshop on Software Tools for User Tnterface Management
- confusing terminologies.

1987

Helfman. Panther
tabular sctup for screen space function allocation.

Fisher. Control Panel Interface
automatic generation from application semantics.

1988

Foley. Knowledge Based UIMS
textual IDL, automatic generation and selection.

Kleyn. EDGE
event-based, with graphical editor using AND-OR graphs.

Oct'88: Banfl, Alberta.
ACM Symposium on User Interface Software.
- many Ul software tools.

1989

Olsen. Mickey UIMS
declarative type-extensions to Pascal language.

Myers. Garnet
comprehensive UIMS, with “interactors.”

14




FIGURE 1. MoDEL oF UIMS ARCHITRCTURE

User =

Presentation

Dialogue

Control

Application

Interface

“— Application

15



FIGURE 2. SOFTWARE LAYERS IN THE APPLICATION RUN-TIM: FENVIRONMENT

Application Program

Dialogue Control

Toolkit / Widgets

Graphics Lib / Window System

Operating System / Device Drivers

16



FIGURE 3. INTERNAL (APPLICATION) CONTROL

Application Program

User ="

UIMS modules

Graphics Support Software

FIGURE 4. EXTERNAL (UIMS) CoNTROL

UIMS in Dialogue Control

User =™

Application modules

Graphics Support Software

17



TaBLE 2. ThHe UIMS SurveEy

UIMS

UI Design Tool

Internal Description

Level of Abstraction

Model of Interaction

Reaction
Handler

TIGER

Menulay
MakeMenu

Syngraph
Cousin

Domain
Dialogue

Squeak

GRINS

U Alberta
UIMS

Visual
lang spec

Sassalras

Peridot

MIKE

GWUIMS

Panther

Control
Panel Int

K-based
UIMS

EDGE

Mickey
UTMS

Garnet.

STDs

lang for
menu networks

direct graphical spec

BNF: grammar spec

decl lang:
glot-based values

decl lang:
states/tasks grouping

event lang:
mouse programming

direct graphical spec

evenl lang,
with BNI" and STDs

Aungmented STDs

event language

direct graphical spec

decl lang: profile files

object-oriented lang

table entries

auto: type info in
application semantics

auto: from IDL
(Interface Def Lang)

event-based:
AND-OR graph editor

declarative
type-ext'ns to Pascal

comprehensive:
many tools integrated

state tables

formatted menu files

graphical layouts
and control tables

dialogue parser

decl lang:

slot-based values

decl lang: insert files,
and dialogue descript'n

proc lang: C

dialogue parser

control tables,
and C procedures

state tables

proc lang: InterLisp-D

proc lang: InterLisp-D

Ul profiles,
Pascal procedures

object-oriented
formulation

C include files
for table values

parm types,
and control
mechanisms

schemata in ART,
knowledge frames

proc lang: InterLisp-D

proc lang: Pascal

layouts, objects, and
constraints

func: interaction states

seq: menu networks

seq: menn networks
seq: dialogue parsing
func: slot-based values

seq/Munc: grouping
techniques into (asks

bind: event handling

seq: dialogne parsing

bind: event handling,
with BNT and STD

func: interaction states

bind: event handling

seq: demonstrating
interaction techniques

func: defaunlt interface
from cmd semantics

bind/seq: object-
oriented programming

func: screen space
allocation

func: screen space
allocation

func: frame-based spec
of Ul functions

bind: event handling

func/seq: type ext'ns
in Pascal

seq: objects, inter-
actors, and contraints

state machine model

menu networks

menu networks, and
graphical layont

state machine model

state machine model

state machine mndel

event-based,
async interaction

state machine maodel,
and graphical layout

event-based,
async interaction

state machine model

concurrent dialogues,
direct manipulation

direct manipulation

emd dialogue model

direct manipulation,
and others

control panel model

control panel model

emd dialogues,
direct manipulation

event-based
concurrent dialogues

cmd dialogue model

direct mainpulation

18




