ONHYIRIUIT-NON

RC 18601 (81407) 12/21/92
Computer Science 44 pages

Research Report

Changing Division by a Constant to Multiplication
in Two’s-complement Arithmetic

Henry S. Warren, Jr.

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for
publication. It has been issued.as a Research Report for early dissemination of its contents and will be distributed
outside of IBM up to one year after the date indicated at the top of this page. In view of the transfer of copyright to
the outside publisher, its distribution outside of IBM prior to publication should be limited toc peer communications
and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royalties).

Research Division
Almaden <« T.J. Watson * Tokyo ¢ Zurich

Changing Division by a Constant to Multiplication
in Two’s-complement Arithmetic

Henry S. Warren, Jr.

IBM Research
T. J. Watson Research Center
Yorktown Heights, NY 10588

Abstract: This report gives proofs that on a two’s complement computer, signed
and unsigned integer division by any constant can be replaced by a multiplication
by another constant and a few other instructions. Algorithms are given for com-
puting the multiplier corresponding to a given divisor.

CONTENTS

INtroduction 1
Integer division, 1
Assembly language notation e 2
Signed division by a power of two 3
Prolmivseies . ;o5 s c6 c/6s E@ 5 H5 65 965 556 $M8 EMA S §HA 688 308 63 10 4
Some examples 5
Divide By three s sai5 56 sins 50 smses sms 68 553 5HIEE S5 64 5 60 § §5 85 5
Divide by five 6
Divide by seven 7
Signed division by divisors =2 oo o 8
TDRRICORIIN ; i i96 us ¥56 80 FHIRE P63 68 651 URT@E 08 Db Bwd ol o 9
Proof that the algorithm is feasible 10
Proof that the product is correct 11
Signed division by divisors < -2 e, 15
For which divisors is m(—d) # —m(d)? 16
Incorporation into a compiler oo 18
Miscellaneous topics 21
UnIQUENESS o e 21
The:divisorswith the best DIOPramMs . zu cox swsws vms «% #%5 58 § 64 8 86 & 22
Ungigned viSlon .5 ;o5 snv08 60803 b8 smd EHI@s 4002 08 Fo s bals UMS B3 50 25
Unsigned divide by three 25
Unsigned divide by seven 25
Unsigned division by divisors > 1 27
Thealgorithin (ugsigned) - : o cvsws 58 s@s 2596 95 $@5 §5 105 G5 8 852 55 56 28
Proof that the algorithm is feasible (unsigned) 28
Proof that the product is correct (unsigned) 29
Incorporation into a compiler (unsigned), 30
Miscellaneous topics (unsigned) 32
The divisors with the best programs (unsigned) 32
Using signed in place of unsigned multiply, and the reverse 32
A simpler algorithm {Unsigned) . .o s cme vmumn sms ws smaws pms smn v 33
Related WoOrkh i oup cn vws cmumn o8 ¢ 5 o508 56 84 f wi vm e 4gs e 2w g 35
References v wmie mm e e e w o a e n s e 37
Appendix A Sample Magic Numbers 38

CONTENTS v

List of Illustrations

vi

Computing the magic number for signed division
Computing the magic number for unsigned division
Simplified algorithm for computing the magic number, unsigned division

Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Introduction

According to programming lore, the quotient of an integer » divided by another
integer d can be obtained by multiplying # by a sort of reciprocal of d, namely 2¥/d,
and then extracting the leftmost W bits of the 2W-bit product. Here W is the word
(register) size of the machine; typically W =32 (bits). The observation follows from
the identity

nld = (2% |d)n)[2%.

But to use this, 2¥/d must be rounded to a W-bit integer. Thus it is an approximation
method and the multiplier is limited to W bits of accuracy. One has good cause to
wonder: Does this method really work? For all divisors? For both signed and
unsigned division?

The answer to these questions is “yes,” subject to the minor restrictions that 4 # 0
and, for signed division, d # t 1, and provided we add a few elementary instructions
(shifts and adds) in many cases. For most computers, the number of additional
instructions ranges from two to four for signed division, and from about one to four
for unsigned division. Thus the transformation is useful on machines for which the
fixed-point divide time exceeds the fixed-point multiply time by about four cycles or
more.

In the following material we first consider signed division by a positive divisor in
some detail. Then we sketch the derivations and proofs for signed division by a nega-
tive divisor, and for unsigned division.

Integer division

By “signed division” of integers we mean the form of division that 1s almost uni-
versally used in high level languages and computer instruction sets. It might be called
“truncating” division because the result is obtained by discarding the fractional digits
from the rational number n/d. If we denote this form of signed division by n+d, then it
satisfies

(—n)+d=n+(—d)=—(n+d) for d+0.

Care must be exercised when applying this to transform programs, because if » or d is
the maximum negative number, — n or — & cannot be represented in W bits. The oper-
ation (—2¥-1)/(— 1) is an overflow (the result cannot be expressed as a signed quan-
tity in two’s-complement notation), and on most machines the result is undefined or
the operation is suppressed.

Signed integer division is related to ordinary rational division by
n+d= |nld], if d#0,nd >0, (1a)
n+d= [njd], if d+0,nd<0. (1b)

Unsigned integer division, i.e. division in which both n and 4 are interpreted as
unsigned integers, satisfies (1a).

” Introduction 1

Assembly language notation

To illustrate machine code, we use the instructions shown below. The leftmost
operand is the target register.

abs rt,ra Absolute value

add rt,ra,rb Add, rt « (ra) + (rb)

addze rt,ra rt « (ra) + carry

11 rt,x' xxx' Load immediate; rt « x'xxx' (could be
a load from storage)

mulhs rt,ra,rb Multiply high signed, rt ¢ high-order

half of (ra)x(rb), with operands
interpreted as signed integers

mulhu rt,ra,rb Multiply high unsigned, rt « high-order
half of (ra)x(rb), with operands
interpreted as unsigned integers

muli rt,ra,i Multiply immediate

srai rt,ra,i Shift right algebraic immediate (sign-fill)
sri rt,ra,i Shift right immediate (0-fi11)

sub rt,ra,rb Subtract, rt « (ra) - (rb)

xor rt,ra,rb Exclusive OR

On many machines, the multiply high instructions would be the machine’s multiply
instruction that gives a double-length product, followed if necessary by an instruction
to move the high-order half from some special-purpose register to a general register.
Only the high-order half of the product is needed for the methods described here. We
need signed multiply for signed division, and unsigned multiply for unsigned division.

2 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Signed division by a power of two

Although not the main subject of this paper, let us quickly dispense with (signed)
division by a power of two. The following branch-free' code sets q=n+2* for
1 <k <31 (Hop), on a 32-bit machine.

srai t,n,k-1 # Form the number

sri t,t,32-k # 2%*k - 1 if n < 0, else 0,
add q,n,t # Add it to n,

srai q,q,k # and shift right.

(Proof omitted). If k=1 (so that the divisor is two), the first instruction is not neces-
sary. The case k=31 does not make too much sense, because the number 2% is not
representable in the machine, but nevertheless the code does produce the correct result
in that case (which is g=—1if n = — 2% and ¢ = 0 for all other »).

The methods to be given are correct for divisors that are a power of two, but the
code produced is not as good as that shown above (it will contain a multiply).

The IBM RISC System/6000 has an unusual device for speeding up division by a
power of two (GGS). The shift right algebraic instructions set the machine’s carry bit if
the number being shifted is negative and one or more 1-bits are shifted out. That
machine also has an instruction for adding the carry bit to a register, which we denote
addze. This allows division by any (positive) power of two to be done in two
instructions: :

srai gq,n,k # Shift (n) right k positions.
addze q,q # Add in carry.

I We prefer branch-free code, on the presumption that branches take more than one fixed-point cycle on
average, and branch-free code is often advantageous from the standpoint of compiler optimizations.

Signed division by a power of two 3

Preliminaries

The proofs herein use the following elementary properties of arithmetic, which are
not proved here.

Theorem 1. For », d integers, d > 0,

5112242] w [4]-| 2240

Ifd<0:

4] [2=4=0] wt [2]- | 22eeL |

Theorem 2. For x real, 4 an integer # 0:
LlxJ/d) = |x/d] and [[x]/d] = [x/d].

Corollary. For q, b real, b # 0, d an integer # O:

L5 1] =[5) e []5 1] =551
Theorem 3. For n, 4 integers, d # 0, and x real,

[&+x] = %] iro<x<|L| and [ZL4x]=[L] if—|%|<x50.

In the theorems below, rem(n, d) denotes the remainder of » divided by d. For
negative d, it is defined by rem(n, — d) = rem(n, d). We do not use rem(n, d) with n < 0.
Thus for our use, the remainder is always nonnegative.

Theorem 4. Forn>0,d 0,

(a) (b)

__J2rem(n,d) or _)2rem(n,d)+1 or
rem(2n, d) = {Zrem(n, d)—|d, and rem(2n+1,d) = {2rem(n, d)—|d + 1.

(whichever value is greater than or equal to zero and less than |d|).
Theorem 5. Forn>0,d+# 0,

rem(2n, 2d) = 2rem(n, d).

Theorems 4 and 5 are easily proved from the basic definition of remainder, i.e. that for
some integer ¢ it satisfies

n=gqd+ rem(n,d), with 0<rem(n,d) <|d|

provided n >0 and d+# 0 (n and 4 can be non-integers, but we will use these theorems
only for integers).

4 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Some examples

Let us consider a few specific examples for a 32-bit machine. These serve as a
sort of warm-up exercise for the main proof in the following section, and they illustrate
the code that will be generated by the general method.

We denote registers as follows:
n - the input number (numerator)

M - loaded with a "magic number"
t - a work register

g - will contain the quotient

r - will contain the remainder

Divide by three

1i M,x'55555556' # Load magic number, (2**32+2)/3.
mulhs q,M,n # q = floor(M*n/2**32).

sri t,n,31 # Add 1 to q if

add g,q,t # n is negative.

muli t,q,3 # Compute remainder from

sub r,n,t #r=n-q*3.

Proof. The multiply cannot overflow, as the product of two 32-bit numbers can always
be represented in 64 bits. The mulhs gives the leftmost 32 bits of the 64-bit product.
This is equivalent to dividing the 64-bit product by 2% and taking the “floor” of the
result, and this is true whether the product is positive or negative. Thus, for n > 0 the
above code computes

2242 n | n 2n

q—_ 3 231J—[3+3.231J'
Now n < 2%, because 2*' — 1 is the largest representable positive number. Hence the
“error” term 2n{3-2* is less than 1/3 (and is nonnegative), so by Theorem 3 we have
g = |n{3], which is the desired result (1a).

For n <0, there is an addition of one to the quotient. Hence the code computes

={____..232+2.. n J_%_l:[232n+2n+3'232J="232n+2n+11

3 374 527

where we have used Theorem 1. Hence

n 2n+1
= " 3 T 3.932]
For—-2%<n< -1,
1 1 2n+1 1
—_3'+ 3.932 = 3.932 - 3932

The error term is nonpositive and greater than — 1/3, so by Theorem 3 ¢ = [n/3],
which is the desired result (1b).

Some examples S

This establishes that the quotient is correct. That the remainder is correct follows
easily from the fact that the remainder must satisfy

n=gqd+r,

the multiplication by three cannot overflow (because — 2%/3 < ¢ < (2% — 1)/3), and the
subtract cannot overflow because the result must be in the range — 2 to + 2.

The muli can be done with two add's, if that gives an improvement in execution
time.

The above code can be implemented on the IBM RISC System/6000 by using a
load from storage for the /i, moving the sri back to just after the load, to cover the
one-cycle load delay, and using the mul instruction for the multiply, disregarding the
low-order 32 bits of the product that are placed in the MQ register. The mu/ instruc-
tion takes five cycles, giving a total time of eight cycles to compute the quotient. For
comparison, the divide instruction on that machine takes 19 cycles, which together with
the load immediate of three takes 20 cycles.

To compute the remainder on the IBM RISC System/6000, the above code takes
11 cycles (using two add's for the muli), as compared to 21 using the machine’s divide
(the extra cycle is to move the remainder from the MQ to a general purpose register).

Divide by five

For division by five, we would like to use the same code as for division by three,
except with a multiplier of (22 + 4)/5. Unfortunately, the error term is then too large;
the result is off by one for about 1/5 of the values of n > 2% in magnitude. However,
we can use a multiplier of (2% + 3)/5 and add a shift right algebraic instruction. The
code 1s:

11 M,x'66666667" # Load magic number, (2**33+3)/5.
#q

mulhs q,M,n = floor(M*n/2**32).
srai q,q,1

sri t,n,31 # Add 1 to q if

add q,q,t # n is negative.

muli t,q,5 # Compute remainder from
sub r,n,t #r=n- q*s.

Proof. The mulhs produces the leftmost 32 bits of the 64-bit product, and then the
code shifts this right by one position, algebraically. This is equivalent to dividing the
product by 2% and then taking the “floor” of the result. Thus for n > 0 the code com-
putes

|54)

For 0 < n < 2%, the error term 3n/5:2% 1s nonnegative and less than 1/5, so by Theorem

3, g= |n/5].
For n <0, the above code computes

6 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

e JEEE

The error term is nonpositive and greater than — 1/5, so g = [n/5].
That the remainder is correct follows as in the case of division by three.
The muli can be done with a shift left of two and an add.

Divide by seven

For dividing by seven we have a new problem. Multipliers of (2% + 3)/7 and
(2% + 6)/7 give error terms that are too large. A multiplier of (2% + 5)/7 would work,
but it’s too large to represent in a 32-bit signed word. We can multiply by this large
number by multiplying by (2* + 5)/7 — 2*? (a negative number), and then correcting the
product by inserting an add. The code is:

11 M,x'92492493"' # Load magic number, (2**34+5)/7 - 2**32.

mulhs q,M,n # q = floor(M*n/2**32).

add q,qg,n # q = floor(M*n/2**32) + n.
srai q,q,2 # q = floor(q/4).

sri t,n,31 # Add 1 to q if

add q,q,t # n is negative.

muli t,q,7 # Compute remainder from
sub r,n,t #r=n-q*/.

Proof. It is important to note that the instruction “add g,g,n” above cannot overflow.
This is because g and » have opposite signs, due to the multiplication by a negative
number. Therefore this “computer arithmetic” addition is the same as real number
addition. Hence for n = 0 the above code computes

jm 1.(].('24;-_5_232)#,' +")/4J _ H 234n+5n—7.72-§232n+7-232n JI4J
| F+=2)

where we have used the corollary of Theorem 2.

Il

For 0 <n< 2%, the error term 5n/7-2% is nonnegative and less than 1/7, so
q=[n/7].
For n <0, the above code computes

q=[([(£7ii_2”>—2"7j +”)/4J +1= [%+ 5;;41]

The error term is nonpositive and greater than — 1/7, so g = [n/7].
The muli can be done with a shift left of three and a subtract.

Some examples 7

Signed division by divisors > 2

At this point the reader may wonder if other divisors present other problems. We
will see in this section that they do not: the three examples given illustrate the only
cases that arise (for d = 2).

Given a word size W >3 and a divisor d,2 <d < 2%-!, we wish to find the least
integer m and integer p such that

el e w
__”;T"J+1=I—-%.‘ for -2 '<n< -1, (26)

with0<m<2¥andp=> W.

The reason we want the least integer m is that a smaller multiplier may give a
smaller shift amount (possibly zero) or may yield code similar to the “divide by five”
example, rather than the “divide by seven” example. We must have m < 2% — | so the
code has no more instructions than that of the “divide by seven” example (i.e we can
handle a multiplier in the range 2%-! to 2¥ — 1 by means of the add that was inserted
in the “divide by seven” example, but we would rather not deal with larger multipliers).
We must have p > W because the generated code extracts the left half of the product
mn, which is equivalent to shifting right W positions. Thus the total right shift is W or
more positions. -

There is a distinction between the multiplier m and the “magic number,” denoted
M. The magic number is the value used in the multiply instruction. It is given by

M=dm if 0sm<2""1,
m=3%, 8T Emadd.
Since (2b) must hold for n=—d, | —md|2?] + 1 =—1, or

md
o 1. (3)

Let n, be the largest (positive) value of » such that rem(n,d)=d— 1. n. exists
because one possibility is n,=d — 1. It can be calculated from n,= [2¥-!/d]d—1 =
2W-1 _— rem(2¥-!,d) — 1. n. is one of the highest 4 admissible values of n, so

p LA Y S L (4a)

and clearly
n2d—1. _ (4b)

Since (2a) must hold for n = n,,

8 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

» d da
or
izge_< ncj 1
Combining this with (3):
%<m<%nc:;1 . (5)

Since m is to be the least integer satisfying (5), it is the next integer greater than
2/d, i.e.

2 +d- 2,
o ;em(d) . 6

Combining this with the right half of (5) and simplifying gives:

2 > n(d— rem(?, d)). =

The algorithm

Thus the algorithm to find the magic number M and the shift amount s from 4 is
to first compute n, and then solve (7) for p by trying successively larger values. If
p< W, set p=W (the theorem below shows that this value of p also satisfies (7)).
When the smallest p > W satisfying (7) is found, m is calculated from (6). This is the
smallest possible value of m, because we found the smallest acceptable p, and from (5)
clearly smaller values of p yield smaller values of m. Finally, s=p— W and M 1s
simply a reinterpretation of m as a signed integer (which is how the mulhs instruction
interprets it).

Forcing p to be at least W is justified by the following:

Theorem 6. If (7) is true for some value of p then it is true for all larger values of p.

Proof. Suppose (7) is true for p = pp. Multiplying (7) by two gives
0% S n(2d — 2rem(27, d)).
From Theorem 4(a), rem(270+!, d) > 2rem(2m, d) — d. Combining,

20t sy (2d — (rem(20t ', d) + d)), or
W+l n{d— rem(2P0 L a).

Therefore (7) is true for p = po + 1, and hence for all larger values.

Thus one could solve (7) by a binary search, although a simple linear search
(starting with p= W) is probably preferable, because usually 4 is small, and small
values of d give small values of p.

Signed division by divisors > 2 9

Proof that the algorithm is feasible

We must show that (7) always has a solution and that 0 < m < 2%. (It is not nec-
essary to show that p > W, because that is forced).

We will show that (7) always has a solution by getting an upper bound on p. As
a matter of general interest we also derive a lower bound under the assumption that p
is not forced to be at least . To get these bounds on p, observe that for any positive

integer x, there is a power of two greater than x and less than or equal to 2x. Hence
from (7),

nJd m.rem(Zp, d) < 2P < 2n(d —rem(2?, d)).
Since 0 < rem(2», d)y<d— 1,
n+1<2’<2nd. (8)
From inequalities (4), n. > max(2¥-!'—d,d—1). The lines fi(d)=2%"'—4d and
fi(d)=d—1 cross at d=(2¥-'4+1)/2. Hence n, > (2¥-'—1)/2. Since n. is an integer,
n. =2 2%-2 Since n,,d <2%¥-!'—1, (8) becomes
271 <22 - 1)

or

W-l<p<g2W-2 (9)
The lower bound p= W — 1 can occur, e.g. for W =32, d= 3, but in that case we set
p=W.

If p is not forced to equal W, then from (5) and (8),

n.+1 2nd n.+1
o <m< 7 n,

Using (4b):

d—1+1
d

<m<2n.+1)
Since n. < 2¥-!'— 1 (4a),
2sm<2¥ -1

If p is forced to equal W, then from (5),

Since 2<d<2¥-'—1and n. = 2%¥-2

10 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

il - <2W a5 1
2W—‘[_l m 2 2W_,_2]

J<m<2P " 4 1.

Hence in either case m is within limits for the code schema illustrated by the “divide by
seven” example.

Proof that the product is correct

We must show that if p and m are calculated from (7) and (6), then (2a) and (2b)
are satisfied.

Equation (6) and inequality (7) are easily seen to imply (5). (In the case that p is
forced to be equal to W, (7) still holds, as shown by Theorem 6). In what follows we
consider separately the following five ranges of values of a:

0<n<ne,
n+l<n<n+d-1,
—nEnE— 1
-n,—d+1<n<-n—1, and
n=-—n,—d.

From (5), since m is an integer:

2P ¥+ 1)—1
7 e T T

<m<
dn,

Multiplying by n/2?, for n = 0 this becomes

mn Fnan,+1)—n

%S P 2pdnc , SO0 that
(&=
5= 12 s |5+ 50)

ForO0<n<n, 0 < (2»— 1)n/2rdn. < 1/d, so by Theorem 3,

2*-1
[&+ 5 = 2],

(4

Hence (2a) is satisfied in this case (0 < n < n,).
For n > n,, n is limited to the range

n+l<n<n+d-1, (10)
because n > n.+d contradicts the choice of n. as the largest value of » such that

rem(n,, d) = d — 1 (alternatively, from (4a), n > n. + 4 implies n > 2¥-1).
From (5), for n =0,

Signed division by divisors > 2 11

n mn n+ 1 (n—n)(n,+1)
7 < > < T+ m . (11)

From (10), 1<n—n.<d—1, so

0<

(n—nc)(nc+l)sd—l n.+ 1
dn, d R,

Since n, > d — 1 (4b) and (n. + 1)/n. has its maximum when #n, has its minimum,

(n—n)(n, + 1) “ d—1 d—141
dn, d d—1

In (11), the term (n.+ 1)/d is an integer. The term (n — n.)(n. + 1)/dn. 1s less than or
equal to one. Therefore (11) becomes

s snst

For all n in the range (10), [n/d] =(n.+ 1)/d. Hence (2a) is satisfied in this case

For n <0, from (5) we have, since m is an integer,

2‘D+1_S 2pnc+1'

R AT

Multiplying by n/2#, for n < 0 this becomes

n n.+1 n _n
LR — i e
d N = 2w T d

241
2P

or

{%n”;l J+15[%§-J+1s{i2p+l J+1.

Using Theorem 1:

I—n(nc+ll’;dnc+l Toug L%J p1 n(2P+1;p;2Pd+1 4

12 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

(n.+ 1)+ 1 2
[P] o | 1< [2550

Since n + 1 <0, the right inequality can be weakened, giving

[Gta s[5 s g] (12

For—n.<n<-—1,

_”c+lS n+1 <

dn, dn, Y, T
1 n+1
7 < "y < 0.

Hence by Theorem 3,

[+ 1=

¢

so that (2b) is satisfied in this case (—n, <n<—1).
For n < — n,, n is limited to the range

—n—d<n<—n,—1. (13)

(From (4a), n < — n. — d implies that n < — 2¥-!, which is impossible). Performing ele-
mentary algebraic manipulation of the left comparand of (12) gives

[—nc—l Llatndm 1)+ 1 1 o \-_”."_”_

— s[5 ug

For—n—d+1<n<—n—1,

—d+1 1 + +1)+1 = [+ 1)+ 1
(-d+ Do+l 1 _ (4mdnt D+l —(ret D L
dn, d

dn dn, ~ dn

¢ (A

The ratio (n. + 1)/n. 1s a maximum when #, is a minimum, i.e. n.=d — 1. Therefore

(—d+1)d—-1+1) L (n+n)n.+1)+1

A=) Tan, = an, < U @z
o2 (n+n)n+1)+1 <o
dn,

From (14), since (— n, — 1)/d is an integer and the quantity added to it is between
0 and —1,

Signed division by divisors = 2 13

For nin the range —n,—d+1<n< —n.— 1,

[2]- -1
d d '
Hence |[mn/2] + 1 = [n/d], i.e. (2b) is satisfied.
The last case, n=—n,—d, can occur only for certain values of . From (4a),
—n.—d<—2%"1 soif n takes on this value, we must have n=—n,—d = —2%-! and

hence n,=2%-'—d. Therefore rem(2¥-',d)=rem(n.+d, d)=d—1 (ie. d divides
2¥-14 1),

For this case (n= —n.—d), (7) has the solution p = W — 1 (the smallest possible
value of p), because for p = W — 1,

nid—rem(2®, d)) = 2% ' — d)(d — rem(2¥ 7', 4))
=P ' dd=(@=) = ¥ g 3 = P,

Then from (6),

Therefore
[+1=| _d“ ‘23::1 J+1=L:..2W;_1—1_J+1
_aW—1 AW
- [-1 T
so that (2b) is satisfied.

This completes the proof that if m and p are calculated from (6) and (7), then
equations (2) hold for all admissible values of n.

14 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Signed division by divisors < —2

Dividing by a negative constant divisor must be extremely rare, but for complete-
ness we will discuss it.

Since signed integer division satisfies n+(— d) = — (n+d), it is adequate to gen-
erate code for n+|d| and follow it with an instruction to negate the quotient. (This
does not give the correct result for d = — 2¥-!, but for this and other negative powers
of two, the code on page 3, followed by a negating instruction, may be used). It will
not do to negate the dividend, because of the possibility that it is the maximum nega-
tive number.

[t is possible, however, to avoid the negating instruction. The scheme is to
compute

= {%J ifn<0, and
g= [—-";—;’—JH if n>0.

But adding one if n > 0 is awkward (because one cannot simply use the sign bit of n),
so the code will instead add one if ¢ < 0. This is equivalent because the multiplier m is
negative (as will be seen).

The code to be generated is illustrated below for the case d = — 7.
1i M,x'6DB6DB6ED' # Load magic number, -(2**34+5)/7 + 2**32.
mulhs q,M,n # q = floor(M*n/2**32),)
sub q,q,n # q = floor(M*n/2**32) - n.
srai g,q,2 # q = floor(q/4).
sri t,q,31 # Add 1 to q if
add gq,q,t # q is negative (n is positive).
muli t,q,-7 # Compute remainder from
sub r,n,t #r=n-q*(-7).

This code 1s the same as that for division by + 7, except that it uses the negative of the
multiplier for +7, and the sri of 31 must use ¢ rather than n, as discussed above. The
subtract will not overflow because the operands have the same sign. However, this

scheme does not always work! Although the code above.-for W =32,d= — 7 is correct,
the analogous alteration of the “divide by three” code to produce code to divide by
minus three does not give the correct result for W =32, n = — 2%,

Let us look at the situation more closely.

Given a word size W >3 and a divisor d, —2¥-'<d < — 2, we wish to find the
least (in absolute value) integer m and integer p such that

[%J:[%J f‘or—2w_]$n50, and (15a)
1= [3] mrzner o

with —2¥<m<0andp=> W.

Signed division by divisors < =2 15

Proceeding similarly to the case of division by a positive divisor, let #, be the most
negative value of n such that n, = kd + | for some integer k. n,. exists because one pos-
sibility is n.=d+1. It can be calculated from n,= [(=2¥-1=1)/d]d+1 =
—2%-1+rem(2¥-' + 1,d). n.is one of the least |d| admissible values of n, so

B G TN, Ll) (16a)
and clearly
n<d+ 1. (16b)
Since (15b) must hold for n = — d, and (15a) must hold for » = n., we obtain, anal-
ogous to (5),
20 n.— 1 2P
7 R, <M< (17)

Since m is to be the greatest integer satisfying (17), it is the next integer less than 2/d,
le.

2 —d—rem(2,
m= rem2.d) (18)
d
Combining this with the left half of (17) and simplifying gives
2’ > n(d + rem(2F, d)). (19)

The proof that the algorithm suggested by (18) and (19) is feasible and that the
product is correct is similar to that for a positive divisor, and will not be repeated.
However, a difficulty arises in trying to prove that —2¥ <m <0. To prove this, con-
sider separately the cases that 4 is the negative of a power of two, or some other
number. For d=—2*% it is easy to show that n.=—2%-'+1, p=W+k—1, and
m=—2¥-1—1 (which is within range). For 4 not of the form — 2, it is straightfor-
ward to alter the earlier proof.

For which divisors is m(=d) # —m(d)?

By m(d) we mean the multiplier corresponding to a divisor d. If m(— d) = — m(d),
code for division by a negative divisor can be generated by calculating the multiplier
for |d|, negating it, and then generating code similar to that of the “divide by —7" case
illustrated above.

By comparing (19) with (7) and (18) with (6), it can be seen that if the value of n.
for — d is the negative of that for 4, then m(— d) = — m(d). Hence m(— d) # — m(d)
can occur only when the value of n, calculated for the negative divisor is the maximum
negative number, — 2¥-'. Such divisors are the negatives of the factors of 2¥-!+ 1.
These numbers are fairly rare, as illustrated by the factorings below (obtained from
Scratchpad).

16 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

95 & L1 38
2’ +1=3-715,827,883
293 41 1=13%19-43-5419-77,158,673,929

For all these factors, m(— d) # m(d). Proof sketch: for 4 >0 we have n,=2%-!'—d.
Since rem(2¥-!,d)=d— 1, (7) is satisfied by p= W —1 and hence also by p=W.
However, for d <0, we have n.= —2%-! and rem(2¥-',d) = |d| — 1. Hence (19) 1s not
satisfied for p=W — 1 nor forp= W, so p> W.

Signed division by divisors < —2 17

Incorporation into a compiler

For a compiler to change division by a constant into a multiplication, it must
compute the magic number M and the shift amount s, given a divisor 4. The straight-
forward computation is to evaluate (7) or (19) for p= W, W+ 1, ... until it is satisfied.

Then, m is calculated from (6) or (18). M is simply a reinterpretation of m as a signed
integer, and s=p— W.

The scheme described below handles positive and negative d with only a little
extra code, and it avoids double precision arithmetic.

Recall that n, 1s given by

2P vem2¥ T -1, if d>0,
n,=
=2 i rem2¥ T+ L), if d<0O,

Hence |»| can be computed from:

W1 0, if d>0,
k. +{1, if d<0,
|n| =t—1—rem(t, |d|).

The remainder must be evaluated using unsigned division, because of the magnitude of

the arguments. We have written rem(t, |[d|) rather than the equivalent rem(t, d), to
emphasize that the program must deal with two positive (and unsigned) arguments.

From (7) and (19), p can be calculated from
2’ > |n|(|d] — rem(2, |d))). (20)
and then |m| can be calculated from (c.f. (6) and (18)):

2 + |d| — rem(2, |d|)
|m| = ¥ .

(21)

Direct evaluation of rem(2», |d|) in (20) requires “long division” (dividing a 2W-bit
dividend by a W-bit divisor, giving a W-bit result), and in fact it must be unsigned long
division. However, there is a way to solve (20), and in fact to do all the calculations,
that avoids long division and can easily be implemented in a conventional HLL using
only W-bit arithmetic. However, we do need unsigned division and unsigned compar-
isons.

We can calculate rem(27, |d|) incrementally, by initializing two variables ¢ and r to
the quotient and remainder of 27 divided by |4| with p= W — 1, and then updating ¢
and r as p increases.

As the search progresses, i.e. when p is incremented by one, g and r are updated
from (see Theorem 4(a)):

18 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

q-= Z*qs

r = 2%r;

if (r >= abs(d)) {
q=9q+1;
r =r - abs(d);}

The left half of inequality (5) and the right hall of (17), together with the bounds
proved for m, imply that g = |2/|d]] < 2%, so q is representable as a W-bit unsigned
number. Also, 0 < r < |d|, so r is representable as a W-bit signed or unsigned number.
[Caution: The intermediate result 2r can exceed 2¥-!— |, so r should be unsigned and
the comparison above should also be unsigned.]

Next, calculate 6 = |d| —r. Both terms of the subtraction are representable as
W-bit unsigned integers, and the result is also (1 < § < |d|), so there is no difficulty
here.

To avoid the long multiplication of (20), rewrite it as

2P

> 4.
|72,

The quantity 27/|n,| is representable as a W-bit unsigned integer (similarly to (8), from
(20) it can be shown that 22 <2|n|'|d| and, for d=—-2%"!, n.=—2%-'41 and
p=2W -2, so that 2/|n| = 22¥-2/(2%-1— 1) <2¥ for W >3), and it is easily calcu-
lated incrementally (as p increases) in the same manner as for rem(2?, |d|). The compar-
ison should be unsigned, for the case 2/|n,| = 2%-' (which can occur, for large d).

To compute m, we need not evaluate (21) directly (which would require long divi-
sion). Observe that

2P 4 |d| — rem(2°, |d|) 2P
== |+1=g+ 1
I gy) +1=9
The loop closure test 2¢f|n| > 6 is awkward to evaluate. The quantity 27/|n] is
available only in the form of a quotient ¢, and a remainder r,. 27/|n| may or may not
be an integer (it is an integer only for d=2%-2+1 and a few negative values of 4).
The test 2¢/|n| < 6 may be coded as

<90 (g=0 & r,=0)

The complete procedure for computing m and s from 4 is shown below, coded in the C
programming language, for W =32, There are a few places where overflow can occur,
but the correct result is obtained il overflow is ignored.

To use the results of this program, the compiler should generate the /i and mulhs
instructions, generate the add if d > 0 and m <0, or the subtract if d <0 and m > 0, and
generate the srai if s> 0. Then, the sri and [inal add must be generated.

For W =32, handling a negative divisor may be avoided by simply returning a
precomputed result for d =3 and d = 715,827,883, and using m(— &) = — m(d) for other
negative divisors. [However, that program would not be significantly shorter, if at all,
than the one given below.

Incorporation into a compiler 19

struct {int m; /* Magic number */

int s; /* and shift amount */
] mag; /* are returned here. */
magic(d)
int d; /* Must have 2 <= d <= 2#%31-1 #%/
/* or -2%%3] <= d <= -2. */
{
int p;

unsigned int ad, anc, delta, ql, rl, g2, r2, t;
unsigned int two3l = 2147483648; /* Constant, 2%%31. */

ad = abs(d);
t = two3l + ((unsigned int)d >> 31);
anc =t - 1 - t%ad; /* Absolute value of nc. */
p = 31; /* Initialize p. */
gl = two3l/anc; /* Initialize 2%%p/|nc|. */
rl = two3l - gl¥anc; /* Initialize rem(2%**p, |nc|). */
g2 = two3l/ad; /* Initialize q2 = 2¥%*%p/|d|. */
r2 = two3l - g2%ad; /* Initialize r2 = rem(2%*p, |d]|).
loop:
p=p+t1l;
gl = 2%ql; /* Update quotient and */
rl = 2%rl; /* remainder of 2**p/|nc|. */
if (rl >= anc) f{ /* (Must be an unsigned */
ql = ql + 1; /* comparison here). */
rl = rl - anc;
}
q2 = 2%q2; /* Update quotient and */
r2 = 2%r2; /* remainder of 2%%*p/|d|. */
if (r2 >= ad) { /* (Must be an unsigned */
q2 = q2 + 1; /* comparison here). ¥/
r2 = r2 - ad;
}
delta = ad - r2;

if (ql < delta || (ql == delta && rl == 0)) goto loop;

mag.m = q2 + 1; /* Give multiplier and */
if (d < 0) mag.m = -mag.m;
mag.s = p - 32; /* shift amount to caller. */

}

e

Figure 1. Computing the magic number for signed division

20

Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Miscellaneous topics

Theorem 7. The least multiplier m is odd if p is not forced to equal W.

Proof. Assume that equations (2) are satisfied with least (not forced) integer p, and m
even. Then clearly m could be divided by two and p could be decreased by one, and
equations (2) would still be satisfied. This contradicts the assumption that p is
minimal.

Uniqueness

The magic number for a given divisor is sometimes unique (e.g.,, for
W =132, d=1T), but often it is not. In fact, experiment indicates that it is usually not
unique. For example, for W =32, d= 6, there are four magic numbers:

M= 715827883 ((2*+2)/6), s=0
M= 1,431,655766 ((2**+2)/3), s=1
M =—1,431,655765 (22 +1)/3-2"%, s=2
M= —1,431,655764 (28 +4)3-2%, s=2.

However, there is the following uniqueness property:

Theorem 8. For a given divisor d, there is only one multiplier m having the minimal
value of p, if p is not forced to equal W.

Proof. First consider the case 4> 0. The difference between the upper and lower.
limits of inequality (5) is 2?/dn.. We have already proved (8) that if p is minimal, then
2¢ldn. < 2. Therefore there can be at most two values of m satisfying (5). Let m be the
smaller of these values, given by (6); then m + 1 is the other.

Let p, be the least value of p for which m + 1 satisfies the right half of (5) (p, is
not forced to equal W). Then

2P0 4 d — rem(2™, d) 2w n.+ 1
2 <=

This simplifies to:
270> n (2d — rem(2™, d)).
Dividing by 2:
2= >y (d - % rem(2%, d)).
Since rem(27, d) < 2rem(20-', d) (Theorem 4(a)),
207 > nfd - rem(2 7, d),

contradicting the assumption that p, s minimal.
The proof for 4 < 0 is similar and will not be given.

Miscellaneous topics 21

The divisors with the best programs

The program for d =3 and W = 32 is particularly short, because there is no add
or srai after the mulhs. What other divisors have this short program?

We consider only positive divisors. We wish to find integers m and p that satisfy
equations (2) on page 8, and for which p = W and 0<m < 2%¥-!. Since any integers m
and p that satisfy equations (2) must also satisfy (5), it suffices to find those divisors 4
for which (5) has a solution with p =W and 0 <m < 2%-!. All solutions of (5) with
p = W are given by

2% 4+ kd — rem(27, d)
m= p ;

k=1,2,3, ...

Combining this with the right half of (5) and simplifying gives
w i
rem(27, d) > kd — e (22)

C:

The weakest restriction on rem(2%, d) is with k=1 and », at its minimal value of 2¥-?
(see page 10). Hence we must have

rem(2¥, d)> d — 4,

1e. d divides 2% + 1, 2% 4+ 2, or 2¥ + 3.
Now let us see which of these factors actually have optimal programs.

If 4 divides 2%+ 1, then rem(2¥ d)=d— 1. Then a solution of (7) is p= W,
because the inequality becomes

2Y>n(d—(d-1)=n,
which is obviously true, because #, < 2¥-!. Then in the calculation of m we have

2 4d-(@d-1) ¥4
"= d - 4

which is less than 2%~ for d > 3 (d # 2 because d divides 2% + 1). Hence all the factors
of 2¥ + | have optimal programs.

Similarly, if 4 divides 2% + 2, then rem(2%,d) =d — 2. Again, a solution of (7) is
p = W, because the inequality becomes
2> n(d—(d—2)=2n,

which is obviously true. Then in the calculation of m we have

_2"+d—(d-2) %42
"= d T d

22 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

which exceeds 2¥-!— 1 for d=2, but which is less than or equal to 2¥%-!'—1 for
W=>3,d>3 (the case W =3 and d=3 does not occur, because 3 is not a factor of
224+ 2=10). Hence all factors of 2¥ + 2, except for 2 and the cofactor of 2, have
optimal programs. (The cofactor of 2 is (2% + 2)/2, which is not representable as a
W-bit signed integer).

If 4 divides 2% + 3, the following argument shows that 4 does not have an optimal
program. Since rem(2%, d) = d — 3, inequality (22) implies that we must have

oW
"< kd—d+ 3
for some k=1,2,3,... The weakest restriction is with k=1, so we must have
n, < 2%/(3,
From (4a), n,>2¥-! —d, or d > 2¥-! — n.. Hence it is necessary that

w w
w—1_ 2" 2
d>?2 g

Also, since 2, 3, and 4 do not divide 2% + 3, the smallest possible factor of 2% + 3
is 5. Hence the largest possible factor is (2% + 3)/5. Thus if 4 divides 2% + 3 and 4 has
an optimal program, it is necessary that
243
T

w
%(dﬁ

Taking reciprocals of this with respect to 2¥+ 3 shows that the cofactor of 4,
(2¥ + 3)/d, has the limits

2"+3 _@"+36 _ 18

< —
= il ol

For W = 5, this implies that the only possible cofactors are § and 6. For W < 3§, it is
easily verified that there are no factors of 2% + 3. Since 6 cannot be a factor of 2% + 3,
the only possibility is 5. Therefore the only possible factor of 2% + 3 that might have
an optimal program is (2% + 3)/5.

For d = (2% + 3)/5,

2W—1

2" +3
'%=L(2W+3y5J(5)_1'

For W = 4,

SO

Miscellaneous topics 23

This exceeds 2%/3, so d= (2% + 3)/5 does not have an optimal program. Since for
W < 4 there are no factors of 2%+ 3, we conclude that no factors of 2%+ 3 have
optimal programs.

In summary, all the factors of 2% + 1 and of 2¥ + 2, except for 2 and (2% + 2)/2,
have optimal programs, and no other numbers do. Furthermore, the above proof
shows that algorithm magic (Figure 1 on page 20) always produces the optimal
program when it exists.

Let us consider the specific cases W = 16, 32, and 64. The relevant factorizations
are shown below.

2'% 4+ 1 = 65537 (prime) 2’4 1=641"6,700,417
38 49w 50 3% 110 33] 22 +2=2-3715827,883

2% 1+ 1=1274,177 - 67,280,421,310,721
2% +2=2-3".19-435419-77,158,673,929

Hence we have the results that for W = 16, there are 20 divisors that have optimal
programs. The ones less than 100 are 3, 6, 9, 11, 18, 22, 33, 66, and 99.

For W =32, there are six such divisors: 3, 6, 641, 6,700,417, 715,827,883, and
1,431,655,766.

For W =64, there are 126 such divisors. The ones less than 100 are 3, 6, 9, 18,
19, 27, 38, 43, 54, 57, and 86. '

24 Changing Division by a Constant to Multiplication in Two’s-complemnent Arithmetic

Unsigned division

Unsigned division by a power of two is of course implemented by a single shift
right logical instruction.

Unsigned divide by three

For a non-power of two, let us first consider unsigned division by three on a
32-bit machine. Since the dividend » can now be as large as 22 — 1, the multiplier
(2% + 2)/3 is inadequate, because the error term 2n/3-2% (see “divide by three” example
above) can exceed 1/3. However, the multiplier (2 + 1)/3 is adequate. The code is:

15 M, X' AAAAAAAB' # Load magic number, (2**33+1)/3.

muThu q,M,n # q = floor(M*n/2**32).
sri q,q,1

muli t,q,3 # Compute remainder from
sub r,n,t #r=n-qg*3.

An instruction for long unsigned multiply is required, which we show above as mulhu.
To see that the code is correct, observe that it computes

=[5 E -]

For0<n<2% 0<n/32%<1/3, so-by Theorem 3, g = |n/3].

In computing the remainder, the muli can overflow if we regard the operands as
signed numbers, but it does not overflow if we regard them and the result as unsigned.
Also the subtract cannot overflow, because the result is in the range 0 to 2, so the
remainder is correct.

Unsigned divide by seven

For unsigned division by seven on a 32-bit machine, the multipliers (23 + 3)/7,
(2® + 6)/7, and (2* + 5)/7 are all inadequate because they give too large an error term.
The multiplier (2% + 3)/7 is acceptable, but it's too large to represent in a 32-bit
unsigned word. We can multiply by this large number by multiplying by
(2% + 3)/7 — 2% and then correcting the product by inserting an add. The code is:

1i M,x'24924925'" # Load magic number, (2**35+3)/7 - 2**32,

mulhu g,M,n # q = floor(M*n/2**32).

add q,q,n # Can overflow (sets carry).
stxi q,q,3 # Shift right with carry bit.
muli t,q,7 # Compute remainder from

sub r,n,t ¢ r=n-q*7.

Here we have a problem: the add can overflow. To allow for this, we have invented
the new instruction shift right extended immediate (srxi), which treats the carry from the
add and the 32 bits of register ¢ as a single 33-bit quantity, and shifts it right with zero-
fill. On the Motorola 68000 family, this can be done with two instructions: rotate wirh
extend right one position, followed by a logical right shift of three (roxr actually uses
the X bit, but the add sets that the same as the carry bit). On most machines, it will

Unsigned division 25

take more. For example, on the IBM RISC System/6000, it takes three instructions:
clear rightmost three bits of g, add carry to g, and rotate right three positions.

With srxi implemented somehow, the code above computes:

q= [([(}i;s‘zﬂﬁJ +")/23J =[5+ -,.32"35 J

For 0 < n< 2% ,0<3n/72% < 1/7, so by Theorem 3, g = |n/7].

26 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Unsigned division by divisors > 1

Given a word size W >1 and a divisor 4,1 < d < 2%, we wish to find the least
integer m and integer p such that

l-ﬂzp"—_‘«:L%J for0<n<2¥, (23)

with0<m<2¥+!'and p > W.
In the unsigned case, the magic number M is given by

M= m, ifOSm<2W,
m——ZW. it 2 < < 2,

Since (23) must hold for n=4d, [md[2*] =1, or

"”?f’z 1. (24)

As in the signed case, let n, be the largest value of n such that rem(n, d)=d — 1.
[t can be calculated from n, = [2¥/d]d—1 = 2¥ — rem(2%,d) — 1. Then

Weden<2¥-1, (25q)
and
n>d—1. (256)

These imply that n, > 2% -1
Since (23) must hold for n=n,,

¢ e c—(d-1)
5] | %] A=Y=t

. d '
or
mn, - n.+1
2F d
Combining this with (24):
2” ? n,+1
TEm< e — (26)

Since m is to be the least integer satisfying (26), it is the next integer greater than
or equal to 2¢/d, i.e.

Unsigned division by divisors > 1 27

_2p+d—l—rem(2p—1,d) ‘

m 7 ‘ (27)
Combining this with the right half of (26) and simplifying gives:
P> n(d—1-rem? -1, d). (28)

The algorithm (unsigned)

Thus the algorithm is to find by trial and error the least p > W satisfying (28).
Then m is calculated from (27). This is the smallest possible value of m satisfying (23)
with p = W. As in the signed case, if (28) is true for some value of p then it is true for
all larger values of p. The proof is essentially the same as that of Theorem 6, except
Theorem 4(b) 1s used instead of Theorem 4(a).

Proof that the algorithm is feasible (unsigned)
We must show that (28) always has a solution and that 0 < m < 2%~

Since for any nonnegative integer x there is a power of two greater than x and
less than or equal to 2x + 1, from (28),

nd—1—rem(—1,d) < 2 < 2n(d—1—rem(?’ = 1,d)) + 1.
Since 0 < rem(7 — 1,d) < d— 1,
1< <2n(d-1)+ 1. (29)
Since n,, d < 2% — 1, this becomes
1 ¥ FIF = 1 = 2 1,

or
0<p<2W. (30)

Thus (28) always has a solution.
If p 1s not forced to equal W, then from (26) and (29):

1 2n(d—-1)+1 n.+1
47 == d e
2d -2+ 1/n
lsm<—dlc-(nc+l),

lsm<2n+1)<2%H

If p is forced to equal W, then from (26),

28 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Since 1 €£d<2¥—1 and n, > 2¥-1,

il Al oW-14 4
W _ =m< I =
2<m<2"+ 1.

Hence in either case m is within limits for the code schema illustrated by the “unsigned
divide by seven” example.

Proof that the product is correct (unsigned)

We must show that if p and m are calculated from (28) and (27), then (23) is satis-
fied.

Equation (27) and inequality (28) are easily seen to imply (26). (26) is nearly the
same as (5), and the remainder of the proof is nearly identical to that for signed divi-
sion with #n > 0 (page 11).

Unsigned division by divisors > 1 29

Incorporation into a compiler (unsigned)

There is a difficulty in implementing an algorithm based on direct evaluation of
the expressions used in this proof. Although p < 2W, which is proved above, the case
p=2W can occur (e.g., for d = 2% — 2 with W > 4). When p=2W, it is difficult to cal-
culate m, because the dividend in (27) does not fit in a 2W-bit word.

However, it can be implemented by the “incremental division and remainder”
technique of algorithm magic. The algorithm is given below, for W =32. It passes
back an indicator a, that tells whether or not to generate an add instruction. (In the
case of signed division, the caller recognizes this by m and 4 having opposite signs).

Some key points in understanding this algorithm are
¢ Unsigned overflow can occur at several places and should be ignored.
* n=2"—rem2¥, d) =1 =(2% = 1) — rem(2¥ — d, d).

* The quotient and remainder of dividing 2 by . cannot be updated in the same way
as 1s done in algorithm magic, because here the quantity 2r, can overflow. Hence
the algorithm has the test “if (rl >= nc - rl)” whereas “if (2*rl >= nc)”
would be more natural. A similar remark applies to computing the quotient and
remainder of 2> — 1 divided by 4.

* 0<06<d—1,so0disrepresentable as a 32-bit unsigned number.
e m=2+d—1—remZ—1,d)ld= | -1)d| +1 =g+ 1.

* The subtraction of 2% when the multiplier m exceeds 2% — 1 is not explicit in the
program; it occurs if the computation of ¢; overflows..

* The “add” indicator, magu.a, cannot be set by a straightforward comparison of m
to 2%, or of ¢, to 2% — 1, because of overflow. Instead, the program tests g, before
overflow can occur. If g, ever gets as large as 2% — |, so that m will be greater
than or equal to 2%, then magu.a is set equal to one. If ¢, stays below 2*2 — |, then
magu.a is left at its initial value of zero.

* Inequality (28) is equivalent to 2¢/n. > 0.

* The loop test needs the condition “p < 64” because without it, overflow of ¢
would cause the program to loop too many times, giving incorrect results.

30 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

struct {unsigned int M; /* Magic number, ¥/

int a; /* "add" indicator, */
int s; /* and shift amount */
] magu; /* are returned here. */
magicu(d)
unsigned int d; /* Must have 1 <= d <= 2%%32-1. #*/
{
int p;
unsigned int nec, gql, rl, q2, r2, delta;
magu.a = 0; /* Initialize "add" indicator. */
nc = =1 - (-d)%d;
p = 31; /* Initialize p. */
gl = 0x80000000/nc; /* Initialize 2%%*p/nc. */
rl = 0x80000000 - gl*nc; /* Initialize rem(2**p, nc). */
q2 = Ox7fffffff/d; /* Initialize q2 = (2%%p - 1)/d. */
r2 = Ox7£f£ffffff - q2%*d; /* Initialize r2 = rem(2%%p - 1, d). */
loop:
p=p+t1;
if (rl >= nc - rl) | /* Update quotient and */
gl = 2*%ql + 1; /* remainder of 2%*p/nc. */
rl = 2%rl - nc;}
else {
ql = 2%ql;
rl = 2%rl;}

if (r2 + 1 >=d - r2) { /* Update quotient and */

/* remainder of (2%*p - 1)/d. */
if (q2 >= Ox7fffffff) magu.a = 1;
q2 = 2%q2 + 1; '
r2 = 2%r2 + 1 - d;}

else {
if (g2 >= 0x80000000) magu.a = 1;
q2 = 2%q2;
r2 = 2%r2 + 1;}

delta =d - 1 - r2;

if (p < 64 && (ql < delta || (gql==delta && rl==0))) goto loop;

magu.M = q2 + 1; /* Give magic number and */
magu.s = p - 32; /* shift amount to caller */

}

/* (magu.a was set above). */

Figure 2. Computing the magic number for unsigned division

Incorporation into a compiler (unsigned)

31

Miscellaneous topics (unsigned)

Theorem 7u. The least multiplier m is odd if p is not forced to equal W.

Theorem 8u. For a given divisor 4, there is only one multiplier m having the minimal
value of p, if p is not forced to equal W.

The proofs of these theorems follow very closely the corresponding proofs for signed
division.

The divisors with the best programs (unsigned)

For unsigned division, to find the divisors (if any) with optimal programs of two
instructions to obtain the quotient (/i, mulhu), an analysis may be done similar to that
of the signed case (see page 22). The result is that such divisors are the factors of 2%
or 2¥ + 1, except for d = 1. For the common word sizes, this leaves very few nontrivial
divisors that have optimal programs for unsigned division. For W =16, there are
none. For W =32, there are only two: 641 and 6,700,417. For W = 64, again there are
only two: 274,177 and 67,280,421,310,721.

The case d=2% k=1,2,.., deserves special mention. In this case, algorithm
magicu produces p = W (forced), m=2%-* This is the minimal value of m, but it is
not the minimal value of M. Better code results if p = W + k is used, if sufficient sim-
plifications are done. Then, m=2%, M =0, a=1, and s=+4. The generated code
involves a multiplication by zero and can be simplified to a single shift right k instruc-
tion. As a practical matter, divisors that are a power of two would probably be
special-cased without using magicu. [This phenomenon does not occur for signed divi-
sion, because for signed division m cannot be a power of two. Proof: For d > 0, ine-
qualities (4b) and (5) imply that d — 1 < 2?/m <d. Therefore 2?/m > 1 and 2*/m cannot
be an integer. For d <0, the result follows similarly from (16b) and (17).]

For unsigned division, the code when m > 2% is considerably worse than that
when m < 2%, if srxi is hard to implement. Hence it is of interest to have some idea of
how often the large multipliers arise. For W =32, among the numbers less than 100,
there are 31 “bad” divisors: 1, 7, 14, 19, 21, 27, 28, 31, 35, 37, 38, 39, 42, 45, 53, 54,
55, 56, 57, 62, 63, 70, 73, 74, 76, 78, 84, 90, 91, 95, and 97.

Using signed in place of unsigned multiply, and the reverse

If your machine does not have mulhu, but it does have mulhs (or signed long mul-
tiplication), there 1s a trick (M&S) that might make our method of doing unsigned divi-
sion by a constant still useful.

To get unsigned multiplication from signed, let x and y denote the two unsigned
W-bit numbers being multiplied. Then the machine, when it does signed multipli-
cation, interprets x correctly if its most significant bit x, is zero, but it interprets it as
x — 2% if the most significant bit is one. Operand y is interpreted similarly, so the
machine forms the product

(x = 2%x0)y — 2%p0) = xy — 2% (g + yox) + 22 P xpp.

32 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

To get the desired result xy, we must add to this the quantity 2¥(xy + yx) — 22¥xy0.
Since the maximum value of xy is less than 22%, we can perform the additions modulo
2%, which means that we can safely ignore the last term.

By implementing the term xg with shift right algebraic 31 and and, mulhu can be
implemented with mulhs and six additional simple, branch-free, instructions. But a
further simplification is possible. Since the compiler can test the most significant bit of
the magic number, it can generate code such as the following for the operation
“mulhu q,m,n,” where t denotes a temporary register.

mo =0 mo =1
mulhs q,m,n mulhs q,m,n
srai t,n,31 srai t,n,31
and t,t,m and t,t,m
add q,q,t add t,t,n
add q,q,t

Accounting for the other instructions used with mulhu, this uses a total of six to eight
instructions to obtain the quotient of unsigned division by a constant, on a machine
that does not have unsigned multiply.

This trick may be inverted, to get mulhs in terms of mulhu. The code is the same
as that above except the mulhs is changed to mulhu and the final add in each column is
changed to subtract.

A simpler algorithm (unsigned)

Dropping the requirement that the magic number be minimal yields a simpler
algorithm. In place of (28) we can use

2 >2%(d -1 — rem(?* — 1, d)). (31)

and then use (27) to compute m, as before.

It should be clear that this algorithm is formally correct (i.e. that the value of m
computed does satisfy equation (23)), because its only difference from the previous
algorithm is to compute a value of p that, for some values of 4, is unnecessarily large.
It can be proved that the value of m computed from (31) and (27) is less than 2%+
We omit the proof and simply give the algorithm below.

Alverson gives a much simpler algorithm, discussed on page 35, but it gives some-
what large values for m. The point of algorithm magicu2 below is that it nearly always
gives the minimal value for m when 4 <2%-!, For W =32, the smallest divisor for
which magicu2 does not give the minimal multiplier is 4 = 102,807, for which magicu
calculates m = 2,737,896,999, and magicu2 calculates m = 5,475,793,997.

There is an analog of magicu2 for signed division by positive divisors, but it does
not work out very well for signed division by arbitrary divisors.

Miscellaneous topics (unsigned) i3

struct {unsigned int M; /* Magic number, */

int a; /* "add" indicator, */
int s; /* and shift amount */
} magu; /* are returned here. */
magicu2(d)
unsigned int d; /* Must have 1 <= d <= 2#%%32-1, */
{
int p;

magu.a = 0; /* Initialize "add" indicator. */
p = 31; /* Initialize p. */
q = O0x7fffffff/d; /* Initialize q = (2%*p - 1)/d. */
r = Ox7fffffff - q*d; /* Initialize r = rem(2%*%p - 1, d).
loop:
p=p+ 1
if (p == 32) p32 = 1; /* Set p32 = 2%%(p-32). */
else p32 = 2%p32;
if (r+1>d - 1) { /* Update quotient and */
/* remainder of (2%*p - 1)/d. */
if (q >= O0x7fffffff) magu.a = 1;
q = 2%q + 1;
r=2%r + 1 - d;}
else {
if (q >= 0x80000000) magu.a = 1;
q = 2%q;
r = 2% + 1;}
delta =d - 1 - r;
if (p < 64 && p32 < delta) goto loop;
magu.M = q + 1; /* Give magic number and */
magu.s = p - 32; /* shift amount to caller */

}

unsigned int p32, q, r, delta;

/* (magu.a was set above). */

*/

Figure 3. Simplified algonithm for computing the magic number, unsigned division

34

Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

Related Work

The method described here has been in use in the AIX XL family of compilers for
the IBM RISC System/6000 since their introduction in 1990. Only signed division is
turned into multiplication, and only for a few small divisors and their multiples by a
power of two. The magic number and shift amount are determined by table lookup,
because the compiler developers (including the present writer) did not then know that
this method works for all divisors, and that the program for computing the magic
number is fairly simple. The lookup argument is the divisor reduced by dividing it by
2% where k is the number of trailing zeros in the divisor. The shift amount found in the
table is then increased by k.

This procedure, incidently, does not always give minimal magic numbers. The
smallest positive divisor lor which it fails in this respect for W =32 1s d = 334,972. for
which it computes m = 3,361,176,179 and s = 18. However, the minimal magic
number for d = 334,972 is m = 840,294,045, with s = 16. The procedure also [(ails to
give the minimal magic number for 4 = — 6. In both these cases, output code quality is
affected.

Alverson (Alv) is the first known to the author to state that the method described
here works with complete accuracy for all divisors. Using our notation, his method for
unsigned integer division by 4 is to set the shift amount p= W + [log.d], and the
multiplier m = [2/d], and then do the division by n+d = |mn/2?] (i.e. multiply and
shift right). He proves that the multiplier 1 is less than 2¥+!, and that the method gets
the exact quotient for all # expressible in W bits.

Alverson’s method is a simpler variation of ours in that it doesn’t require trial and
error to determine p, and is thus more suitable for building in hardware, which is his
primary interest. However, his multiplier m is always greater than or equal to 2%, and
thus for the software application always gives the code illustrated by the “divide by
seven” example (i.e. always has the add and srxi instructions). Since most small divi-
sors can be handled with a multiplier less than 2%, it seems worthwhile to look for

these cases.

For signed division, Alverson suggests finding the multiplier for |d| and a
wordlength of W — 1 (then 2%-! < m < 2¥), multiplying the dividend by it, and negating
the result if the operands have opposite signs. (The multiplier must be such that it
gives the correct result when the dividend is 2%-!, the absolute value of the maximum
negative number). It seems possible that this suggestion might give better code than
what has been given here in the case that the multiplier m > 2%. Applying it to signed
division by seven gives the following code, where we have used the relation —x =X + |
to avoid a branch:

abs an,n

1i M,x'92492493" # Load magic number, (2**34+5)/7.
mulhu q,M,an # q = floor(M*an/2**32).

sri g,q,2

srai t,n,31 # These three instructions

Xor q,q,t # negate q if n is

sub q,q,t # negative.

This is not quite as good as the code we gave for signed division by seven (six
instructions), but it would be useful on a machine that has abs and mulhu but not
mulhs.

Related Work a5

Magenheimer et a/ (MPPZ) consider doing integer division by a constant by
means of

5ol

where z is a power of two, a= |z/d], and b=a+ rem(z,d)— 1. This is close to our
method; we choose a different value for a and have b= 0. Thus our method would be
expected to usually result in fewer instructions, particularly since the addition in an + b
must be done in double precision (it adds a 2W-bit number to a number that is W + 1
or fewer bits in length). However, this method might yield better code on some
machines if the multiplier of our method is greater than or equal to 2% (so that we need
the add and the srxi), and the multiplier of the (MPPZ) method is less than 2%. This
occurs for d=7. For this case, both methods require six instructions on the IBM
RISC System/6000.

(MPPZ) considers doing the multiply by a sequence of shifts and adds, and they
point out that the periodicity sometimes found in the binary representation of the mul-
tiplier is helpful here. However, these instructions must operate on 2W¥-bit operands,
and hence this transformation would be useful only on machines that have a very slow
or nonexistent multiply instruction for producing the high-order part of the product.

Grappel (Gra) gives a method for doing unsigned division by a constant that is
the same as the (MPPZ) method with z fixed at 2¥. This method suffers from accuracy
problems; it works for many small divisors but only a small percentage of large ones.
For W = 16, among the first 20 integers it works for 4 = 2, 3, 4, §, 6, 8, 10, 12, 14, 15,
16, 17, and 20.

36 Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

References

(Alv)

(GGS)

(Gra)

(Hop)

(MPPZ)

(M&S)

Alverson, Robert. Integer Division Using Reciprocals. In Proceedings
IEEE [0th Symposium on Computer Arithmetic, June 26-28, 1991,
Grenoble, France, pages 186-190.

Gregoire, Dennis G., Groves, Randall D., and Schmookler, Martin S.
Single Cycle Merge/Logic Unit, US Patent No. 4,903,228, February 20,
1990,

Grappel, Robert D. Optimizing Integer Division by a Constant
Divisor. Dr. Dobb’s Journal, February 1991, pages 80-84.

Hopkins, Martin E., informal communication.

Magenheimer, Daniel J., Peters, Liz, Pettis, Kari, and Zuras, Dan.
Integer Multiplication and Division on the HP Precision Architecture.
In Proceedings of the Second International Conference on Architectural
Support for Programming Languages and Operating Systems, April 1987,
pages 90-99.

Markstein, Peter W., and Stephenson, Christopher J., Multiplying
Unsigned Integers in a Two's-Complement Computer, IBM Research
Report RC 5402 (May 6, 1975). They attribute this result (actually the
inverse of it) to Burks, Goldstine, and von Neumann, 1946.

Related Work 37

Appendix A Sample Magic Numbers

Table 1. Some magic numbers for W = 32
signed unsigned
d M (hex) s M (hex) a s
=5 99999999 1
-3 55555555 1
- 2k| JFFFFFFF | k-1
1 - = 0 1 0
2k | 80000001 | k-1| 232-k | o] o
3 55555556 0 AAAAAAAB 0 o}
5 | 66666667 1 CCcccccep | o 2
6 | 2AAAAAAB 0 AAAAAAAB | © 2
7 92492493 2 24924925 1 3
9 | 38E38E39 1 38E38E39 | 0 1
10 66666667 2 CCCCCCCD 0 3
11 2E8BA2E9 1 BA2E8BA3 0 3
12 | 2AAAAAAB 1 AAAAAAAB | O 3
25 51EB851F 3 51EB851F 0 3
125 10624DD3 3 10624DD3 0 3
Table 2. Some magic numbers for W = 64
signed unsigned
d M (hex) s M (hex) a]
-5 9999999999999999 1
-3 5555555555555555 1
— ok 7FFFFFFFFFFFFFFF k-1
1 & - 0 1 0
2k 8000000000000001 E-1 264 — k 0 0
3 5555555555555556 0 AAAAAAAAAAAAAAAB 0 1
5 6666666666666667 1 CCCCCceeeeeceeeep 0 2
6 2AAAAAAAAAAAAAAB 0 AAAAAAAAAAAAAAAB 0 2
7 4924924924924925 1 2492492492492493 1 3
9 1C71C71C71C71C72 0 E38E38E38E38E38F 0 3
10 6666666666666667 2 CCCCCCCcCccceccceeD 0 3
11 2EB8BA2E8BA2E8BA3 1 2E8BA2EBBA2ESBA3 0 1
12 2AAAAAAAAAAAAAAB 1 AAAAAAAAAAAAAAAB 0 3
25 A3D70A3D70A3D70B 4 47AE147AE147AE1S 1 5
125 20C49BA5SE353F7CF 4 0624DD2F1A9FBE77 1 7

38

Changing Division by a Constant to Multiplication in Two’s-complement Arithmetic

