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Abstract

A modern manufacturing network, consisting of multiple manufacturing facilities
and several external vendors, can be modeled as a multi-stage, capacitated, assembly
system. We study one such model assuming centralized control and stochastic end-
product demands.

Our analysis and approach is based on a concept of shorifall. First, we provide in-
tuition and a clear algorithmic description for computing the optimal base-stock levels
for an uncapacitated system. Second, an algorithm for optimal base stock level for a
single stage capacitated system is derived. Third, using the proof technique for the
single stage and the intuition for the uncapacitated multi-stage systems, we develop a
heuristic algorithm for computing base-stock levels for multi-stage capacitated systems.
Finally, test cases and computational results are presented for both the uncapacitated
and capacitated models and the algorithms are used to analyze the control policies.

Key Words: Capacitated inventory systems, optimal base-stock policies, assembly
systems.



1 Introduction

A modern manufacturing network consists of multiple manufacturing facilities and several
external vendors. The various components and subassemblies that go into the end product
are supplied by the different manufacturing facilities distributed geographically, very often
crossing country boundaries. The overall manufacturing cost and flexibility depend on
many variables including the uncertainty in demand, the uncertainty in the supply of raw
components, capacity limitations, lead times of resupply and transportation costs. In order
to improve the overall manufacturing cost and efficiency, it is essential to understand the
interrelationships between the cost structure, uncertainty in demand, required service levels
and capacity limitations. Models that can describe the above mentioned interrelations are
helpful in choosing between alternative control policies. In this paper, we study one such
model and provide computational algorithms for it.

Several authors have developed different models that may be employed to analyze the

above mentioned problem. We may broadly classify such models into three categories.

1. Finite horizon planning models such as the models in Bitran et al.(1981), Escudero

apd Kamesam (1992) and others.

2. Infinite horizon inventory control models such as the model and literature survey

presented in the rest of this paper.
3. Simulation models that model a given business process and management policies.

Although simulation models play an important role, by themselves they cannot provide
the insight necessary to set inventory control policies. It is possible, however, to develop
a computational procedure that uses Infinitesimal Perturbation Analysis (IPA) derivative
during a simulation to find a good set of parameters for a broad class of policies (see
Glasserman and Tayur (1992ab)). However, analytic models are necessary to generate
alternative and approximate control policies quickly, which can then be assessed or refined
through simulation.

To our knowledge, there is no analytic algorithm (heuristic or exact) that provides
solutions to multi-stage capacitated assembly systems with stochastic end-item demand.
Motivated by a real application, we study centralized control policies for such a system. Our

basic model is a periodic-review, continuous-demand, multi-echelon system with (possibly)
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limited production capacity at each stage. Stochastic demands arrive at the lowest stage.
Holding and back order costs are linear; there are no fixed ordering costs. The system
operates under a base-stock policy. ! Under a base-stock péhcy, the operation of each
node is determined by a target level of inventory. As demands deplete inventories, each
node .produces goods to restore inventories to their target levels. When production capacity
is limited, it may take several periods of production to offset demand in a single period.
Our analysis is based on a concept of shortfall. Shortfall, at any stage, is defined as the
difference between the echelon base stock level and the echelon inventory. A base-stock
policy attempts to reduce the shortfall to zero, while never driving it below zero. We note
that shortfalls occur for two reasons — non zero lead times and finite capacity.

The contributions of this paper are as follows. First, we define the concept of a shortfall
- process and intuitively interpret existing results for uncapacitated inventory models and
give a clear algorithmic description; this provides a basis for developing algorithms for
capacitated systems. Second, we develop a closed form solution for a capacitated single stage
inventory system. Third, we provide an algorithm for multi-stage capacitated assemibly
systems. Finally, we apply these algorithms to several test cases and derive some insight

from the computational results.

1.1 Literature Review

Clark and Scarf (1960) developed a periodic review inventory control model for a serial
‘system without setup costs. By using a discounted cost framework, they established that an
order up to policy at each node is indeed optimal. Federgruen and Zipkin (1984) and Zipkin
(1984) extended these results further. Muckstadt et al. (1984) conducted a computational
study using the Clark and Scarf model. A continuous review version of the Clark and Scarf
model is studied by De Bodt and Graves (1985). Schmidt and Nahmias (1985) present
an in depth analysis of an assembly structure with only two inputs, again by using the
discounted cost framework. Rosling (1989) showed that under some initial conditions, an
assembly system can be reduced to a serial system with modified lead times so that the

results of Clark and Scarf (1960) may be applied to this equivalent serial system.

'We do not claim that base-stock policies are optimal in the general setting; however, their simplicity
makes them attractive. Also, for high-volume products with reasonably long intervals between ordering

opportunities, orders are placed every period and (s,S5) policies reduce to base-stock policies.



Cohen and Lee (1988) described a model of a production and distribution network in
which manufacturing is modelled by a single node. Their work uses the earlier results of
Karmarkar(1987) and Zipkin(1986). It also differs from much of the earlier work in an
important way in that decentralized control is assumed and the model itself is a framework
that combines separate models of production and distribution. Cohen and Moon (1990)

present a supply chain planning model that can be used to study production scale and

SCOpe economics.

Lee, Billington and Carter (1991) present a model for supply chain management which
assumes decentralized control at each node in the manufacturing network, controlled by
periodic review ofder up to inventory policies. Once the service levels are set for each
node, the overall relationships between cost and service can be obtained by applying this

model. Although capacity considerations are not addressed, they allow for uncertainty in

the supplier lead times.

The literature on inventory control systems and production-distribution systems is ex-
tensive and hence we limit our review to the work that is closely related to the theme of this
paper. Similarly, there is a vast body of literature on single location production-inventory

systems (addressing many aspects of interest) that is not reviewed here.

The Clark and Scarf model and many of its extensions, including Rosling (1989) ana-
lyze the model within a discounted cost framework. These results are fairly involved and
further, the computational procedures are not easy to describe or program. Langenhoff and
Zijm(1989) on the other hand analyze the assembly system inventory control problem in
an average cost framework. This analysis leads to an exact decomposition of the assembly
system into several single location problems. Even this decomposition is not easy to handle,
but Van Houtum and Zijm (1990) describe computational approximations that lead to a
simplified computational procedure. Our analysis of the multi-echelon production-inventory

system is based on the analysis of Rosling (1989) and Langenhoff and Zijm (1989).

Rosling (1989) (extending Clark and Scarf 1960) has shown that under the cost condi-
tions stated above along with the backlogging and some other minor assumptions, an order
up to (or base stock) policy is optimal for uncapacitated assembly systems with stationary
demand. It is well known that order up to policies are optimal for uncapacitated single
stage systems with non-stationary demand (Karlin and Iglehart 1960). The same is true for

capacitated single stage systems with stationary demand (Federgruen and Zipkin 1986a);



however, no algorithm was provided by these authors. As mentioned earlier, in section 3
we will describe an algorithm to compute the critical order up to number, Results of this
type hold for more general cost structures and for some demand distributions (Karlin 1960),

and under discounted cost criteria (Rosling 1989, Federgruen and Zipkin 1986b, Karlin and
Iglehart 1960, Clark and Scarf 1960).

1.2  Summary of Paper

The organization of this paper is as follows. In section 2, we begin with a clear definition of
the problem and assumptions. A brief summary of the relevant results from Rosling (1989)
and Langenhoff and Zijm (1989) are presented along with a clear algorithmic description
of the computational procedures. In section 3, we extend the results of section 2 to a
system with a single capacitated node. Section 4 further extends the results of section
3 to capacitated multi-stage systems. The models of sections 2, 3 and 4 are applied to
the analysis of several test cases. These computational results are presented in section 5.
Section 6 concludes by suggesting some directions for further research. B

For easy reference, all the algorithms described in this paper are summarized below.

* Algorithm 1. Given a set of base-stock levels, describes how to operate an uncapac-

itated assembly system.

e Algorithm 2. Gives a generic method to compute the optimal order up to levels for

uncapacitated serial systems.

* Algorithm 3. Computes the optimal base-stock levels for an uncapacitated serial

system.

o Algorithm 4. Computes Type-1 and Type-2 service obtained, given a set of base-

stock levels.

e Algorithm 5. Approximates any distribution by a weighted erlang, or a hyper-

exponential distribution.

* Algorithm 6. Computes the optimal base-stock level for a single stage capacitated

model.

e Algorithm 7. Computes the first two moments of a random variable with distribution

F(z 4 C), where F(z) is known and C is a given constant.



e Algorithm 8. Computes the optimal base stock levels for a two stage serial system

with limited capacity at both stages.

e Algorithm 9. Computes base-stock levels for a capacitated assembly system.

2 Model for the Uncapacitated Assembly System

Consider a periodic review inventory control model for a production system with the fol-

lowing assumptions (Assumption 4 below will be relaxed in a later section). Each node

with a predecessor represents a sub-assembly, and nodes with no predecessor represent

components.

1.

Echelon Inventory is reviewed periodically to place orders if necessary.

. An assembly system in which each node has a unique successor (which implies a single

end product).

. There is a constant lead time between the nodes, which is an integral multiple of the

review period.

. Each node is assumed to have no capacity restriction.

. Demands occur only for the end product. These demands are assumed to be stochastic

and independent from one period to the next.

. The demands that cannot be satisfied from the stock on hand are backlogged. There is

a linear penalty cost associated with the unfilled demand. In section 3, we will define

type-1 service and type-2 service (fill rate) and address the problem of computing

them.

. There are holding costs at each node, and the echelon holding cost at each node

is positive. There are no fixed (set-up, review, or order) costs (see below) and the

variable purchasing cost is linear 2.

Our goal is to minimize the long-run average cost of operating this system, subject to the

penalty cost or a constraint on the fill rate or the type-1 service. In order to review some

2The purchasing cost will never enter the analysis because we are dealing with infinite horizon average

cost and back orders are allowed.



of the known results from the literature, we will first introduce the following definitions.

Definition 1: The Inventory position of any node is defined as (stock on hand) + (stock

on order) - (back orders).

Definition 2: The Echelon Inventory of a node in a serial or assembly system is de-
fined as all the stock on hand at that node plus the stock in transit to or on hand at any

node down stream minus the backlogs at the most down stream location.

Definition 3: The Echelon Inventory Position of a node denotes the echelon stock plus

all the material on order.

Definition 4: An order up to policy with a critical number = is one where an order of
size £ — y is placed if the (echelon) inventory (stock, or position, depending on the situa-

tion) y is such that (y < z) at the time of review. No order is placed if y > z.

Rosling (1989) has also shown that under some regularity conditions, the optimal inven-
tory control policies of the assembly system are equivalent to those of a pure serial (every

node has a unique predecessor) system. So, we adopt the following strategy to develop an

overall computational procedure.

¢ In order to minimize the long run average cost, we can restrict our attention to order

up to policies at each node in the system.

o If a type-1 service or fill rate constraint is necessary, we can proceed as follows. Com-
pute the order up to policies for a given penalty cost on back orders. Compute the
achieved fill rate. If the fill rate is not satisfactory, adjust the penalty cost and recom-
pute the optimal policies. This process may be repeated for many different values of

the penalty cost.

e If the system is capacitated, reduce it to an equivalent uncapacitated system, as

described in sections 3 and 4.

e Following Rosling (1989), convert the uncapacitated assembly system to an equivalent

uncapacitated serial system.



o Compute the order up to policies of the uncapacitated serial system as per Langenhoff
and Zijm (1989).

o Use the order up to values obtained from the equivalent serial system to operate the

assembly system by using Algorithm 1 described in section 2.1.

In order to state these computational procedures clearly, we will first introduce the following

notation.

Notation:
¢ N: the number of stages (node 1 is the end product).
¢ (a)y = max (a,0).
e P(n): the set of nodes that immediately precede node n.
e S(n): the unique successor of node n.
¢ Ly: the (constant) lead time from = to S(n), as a multiple of the review period.
o f{z): the probability density of the demand in a time period.
¢ F(z): the distribution function of the demand in a period.
o S5,: the order up to level for node n.
e d;: demand realized in period ¢.

* d;: the cumulative demand during periods t — 1,t—2,...,t — (Iy +Iy_14 ... + liv1).

2.1 Equivalence of assembly system to a serial system

Theorem 1: (Rosling (1989)):
Let My, = Ln+ Mg(y), be the cumulative lead time from node n to the end product. Re-label

the nodes in the ascending order of M,; thus, after re-labeling,
My 2> My_1>...2 M. (1)

Let
Ik = My — M. (2)



For the nodes with I = 0, collapse them into a single node, and add the respective echelon
holding costs. (This idea will be crucially used in section 4 to develop a heuristic algorithm
for capacitated systems). The assembly system with the above assumptions is equivalent
to a serial system where the lead time between nodes k 4 1 and k is lx.

Figure 1 gives examples of two assembly systems and their equivalent serial systems.

$10 $20
2 %50 4
@\® 2 ®\355 2,
$5 - / $10 2
@"‘*2‘—'—-1» @2\325
$6 4 - @ $5 3
$4@/

1a: Assembly system 2a: Assembly system

, ; : ; A 5 $5 1 $35 , $45 , 850 ,
o000+~ OO0 =0O—
$6 $11  $15  $25  $35 50

1b: Equivalent Serial system 2b: Equivalent Serial systerm

Figure 1: Equivalent Serial and Assembly Systems

The above result is stated without proof, but the proof (see Rosling(1989)) consists of the

following steps.

¢ Showing that a modified order up to policy for an assembly system is equivalent to

an order up to policy for the equivalent serial system.

o Showing that the cost function for the two systems (the original assembly, and the

corresponding serial) are identical.

¢ The stated equivalence depends on a long run balance condition as well.

Figure 2:Two Stage Assembly System



The basic intuition in collapsing an assembly system to a serial system is as follows.
Consider a two-stage assembly system with three nodes A, B and C, where at time zero
there are no units of A, B or C. Let nodes A and B feed into node C,and let Ly = Lg = 1
as shown in figure 2. If in any period, there is more of type A than of type B, these will
incur holding costs but not help in making more C’s; the extra A’s could have been ordered
later. In fact, the ordering of A must be perfectly synchronized with the ordering of B to
minimize holding excess of A. Thus, we can lump A and B as one component, and add up
the respective holding costs, and run the system as a two-stage two node serial system.

Next consider the situation where L4 = 2 with Lp = 1 with order up to levels Sp and
S4. We recognize_that in every period, B should input exactly what A had input in the
last period and no more. Thus, given the order up to values, in an assembly system, nodes
should not blindly raise the echelon inventory to their respective critical numbers; they
should also coordinate with other nodes that have the same successor. In a general N node
system, only node 1 and the node with the longest lead time should attempt to bring their

inventories to the order up to levels blindly; the others need to coordinate as in Algorithm
1 below.

begin Algorithm 1

e Input to stage N an amount to bring its echelon inventory to Sy. In any period ¢,

this amount will exactly equal the demand in the previous time period, namely , d;_1.

o For stage N — 1, if Iy_; = 0, we have Sy = Sy_1 and we input d;_;. If however,
Iy-1 > 0, then we input at stage N — 1 an amount that brings the echelon inventory
at stage N — 1 to a minimum of Sy_; and Sy — (di—1+ ...d¢—1,,_, ), that is, to the

minimum(Sy-1, Sy — &Nﬁl). This is the coordination alluded to earlier.

e Similarly, for any stage k£ > 1, we need to input an amount that brings the echelon

inventory to the minimum of (Sk, Sk+1 — d:;k, v SR— CZN—1)-
e For stage 1, we simply attempt to bring its echelon inventory up to 57.

end Algorithm 1

The above line of argument is possible because all nodes are uncapacitated, and any
amount of material desired, if available, can be input into the system in any period. Thus,

at every node the material input is the demand that has already occurred in a previous
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period. The pipeline inventories are therefore simply sums of demands that have occurred-
all independent and identically distributed—and this fact is crucially used in obtaining the
distribution of shortfalls which are then used in our algorithms to compute the order up
to values and service levels. In the presence of capacity constraints, however, this simple
argument breaks down and needs to be modified. We will construct (in section 3) an
equivalent multi-stage uncapacitated system for a capacitated single stage and use the
above intuition and procedure.

Next we define the cost functions and state results that make it possible to develop an

algorithm for uncapacitated system, based on a level by level decomposition.

2.2  Average cost analysis of a serial system

As stated earlier, let F' be the distribution function of end product demand per period
and F) represents the distribution function of the [-period cumulative demand. Since the
optimal policies will be computed in terms of echelon stocks, we need to account for all the
costs in like manner. Hence inventories present at node n or in transit between echgfon
n and echelon n — 1 are charged a holding cost at a rate of 37 h; per unit, per period.
A penalty cost p per unit per period is incurred whenever the demand for end product is
not met. Let L;(z,) represent the expected echelon holding and penalty costs, where z; is
the stock on-hand at node i. Note that order costs need not be considered because on the
average we produce what is demanded (stationary demand and no lost sales) and we are
computing the average cost. Then, similar to the familiar news-person formulae, we can

write

I

N T oo N
Lie) = 3 hﬂ/ {2y = W) dP(u) p/ (0= 21)dF(w) = 3 hnzy if21 > 0
n=1 0

1 n=2
- N
Li(z1) = pf (u—z1)dF(u) - Z hnzy if21 <0
0

n=2

Eileny = hufs ¥ B=2y. sV

The next two results are crucial to the analysis of uncapacitated serial systems.

Theorem 2: (Langenhoff and Zijm(1989)):
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Consider a policy which, at the beginning of every period, increases the echelon inventory
position of each echelon nto yn , (n = 1,2,...,N). Let DV (41,42, -+, yn) be the associated
average cost ( which is defined only on {(y1,%2," -, yn)|t1 € y2 < -+ < yn} because, the

echelon inventory position at node n cannot be less than the echelon inventory position at
node 7 — 1 ) 3 Then

D¥(y1,92,- -, yn) = Ci(m1) + -+ Cn (%1, 92, -, YN) (3)

where

Il

Cr(w) /0 La(y1 — w, )aFy, (w,)
Calvr, -1 9n) = fo (¥ — wt, )dF, (ur,)

+ f {Cn—l(yls"'iyn—zlyﬂ —T.L[n) - Cﬂ-—l(yla'"ayn—21yn—l)}dF!n(uln)
Y

n—Yn—1

Y =2, 000

Theorem 3: (Langenhoff and Zijm(1989)):
Define foreach n = 1,2,... N,

D™(y1,92, 1 ¥n) = C1(y1) + - + Ca(¥1, 92,1 Yn)- (4)
The functions D™(y1, Y2, -, Yn) are convex foralln =1,2,...,N.
As mentioned above, D (y1,93, -, yn), is defined only on {(v1,¥2,- -, yn)|t1 < vz <

- < yn} and hence we can restrict the search to this set. The following is a generic

description of an algorithm to compute the optimal echelon order up to levels.

e begin algorithm 2

1. set n « 1. Let §; « argmin,, D} (y1).

2. set n — n+1. if (n > N) stop. Let (S, -, Sp—1) minimize D™ (yq, -, yn-1).
' Let Sn — argminyn Dn(sl,' . ',Sn—lvyn)-

3Note that in our case we do not use the term inventory position, but inventory because we label stages
to include the lead time. To be clear, in our paper [; is the lead time of stage ¢ and not to stage 2. Our

entire analysis is similar to Langenhoff and Zijm(1989) but for this difference in terminology.
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3. If S, > S,_1,go to 2. Else let k > 1 be the smallest index such that S > S, .
Set §; — Sp,i=k,k+1,---,n—1. Goto 2.

¢ end algorithm 2

Theorem 4: (Langenhoff and Zijm(1989)):
Algorithm 2 yields the global minimum of D¥(y1,y2, -, yn) and the associated policy is
average cost optimal.

Most of the work in Algorithm 2 is in carrying out the one dimensional minimizations
in step 2. Theorem 2 above states that the functions D™(y1,9y2, -, ¥n) are indeed convex.
Hence it would seem that these minimizations should be straight forward. This, however,
is not the case. These functions are not easy to compute and further they are defined
only recursively (see Theorem 1). Rest of this section is devoted to describing the required
'computa.tiona.l procedures to carry out these one dimensional minimizations efficiently. The
following additional notation is needed.

Given a constant a > 0 and a random variable X with distribution function F, let F'%(z)

be defined as follows:

F*(z) F(z+a) ifz >0, (5)
Flz] = 0 ife < (6)

Also, let * denote the familiar convolution operator on two distribution functions, say F
and G. Then,

FxG(z) = fF(m — 4)dG(y). (7)

Similarly, we may define

F“*G(m):fom Flz + a — v)dG(y). (8)

In order to minimize the one dimensional convex functions in Algorithm 2 above, we
can begin by setting their partial derivatives to zero and then attempt to solve the resulting
equation. The following theorem gives the expressions for these partial derivatives of the
recursively defined cost functions D™(y1,"**,¥n)-

Theorem 5: (Van Houtum and Zijm (1991)):
Let (51,52, +,Sn—1) := argmin D™ (y1,92, **,Yn-1) for each n > 1. Then

0

gy—Dn(Sla te '1Sn—11yn) = J:(yn) fO?" Un > Sn—l

13



0

55"17"(51, ooy Sn=1:Yn) = k() for Si—1 <yn < Sk

a
éy—Dn(Sla"'rSn—lay’ﬂ):Jr(yn) for y, <5

where,

N N
B = {0+ ¥ k) +@+ X h)j(Fax % Fuaa)(v)
7=n+1 =1
and for2<k<mn,

N N
B = {~+ Y h)+@+X k)
Jj=n+l 3=1
(- ((Frp xBTS xRy 517502 0 R, )575 w By 14 (61)

Theorem 5 is the heart of the optimization routine, and the structure of J}(y) provides
us the intuition to deal with more complex cases, like the capacitated system studied in
section 3. Recall that at the end of each time period, all stages attempt to restore their
inventories to their respective base-stock levels. However, this may not always be possible:
in an uncapacitated multi-stage system, this is because of lead times between stages; in
capacitated systems, it is because of capacity restriction as well as the lead times between
sta,ges:”We call the difference between base-stock levels and the echelon inventory in any
time period as the shortfall. As we note below, expressions like ((- - ((Fy, * - % F, )4~ 5kt «

Fy,_)S%—17%k=2 4 ... [, )92750 & F} 41(S1) implicitly contain the shortfall distribution.

1. Consider the case N = 2. Then, at the end of each time period, the total inventory
in the system is Sy (because of infinite capacity). However, the inventory in stage 1
may be less than S, because the demand could not have been fully satisfied from the
material available from stage 2. This happens only when the material in the pipeline,
say Pl,, between stages 2 and 1 exceeds Sy — S1. Let Pia = (P[,— (82— 51))* denote
this excess. Then, the inventory (or backlog) in stage 1is S; — Pi3; thus the shortfall
at stage 1 is Pj. The distribution of Py is (FEZ)SZ“S‘, as what is in the pipeline
between stages 2 and 1 is exactly the sum of demands of some consecutive I time

periods.

2. Recall that if S,, < Si for some k < n (but S, > Sk_1), then we set S = Sp41 =
... = 8, (see Algorithm 2); i.e;, we lower the values of S,...,8,_1 to Sp. This
has the interpretation that stages k through n are linked with no buffer between the

14



stages. Thus, in an N stage system, having S, = ... = S implies that the costs are
such that there is no safety stock (buffer) allocated to each of the stages k,...,n, but

only as a group.

3. Following the above two observations, the expression ((---((F, * -+ * Fy, J¥~5k1 «
B, )S-1=Sk-2 4 .. -ng)sﬁ"si * F, +1(.51) denotes the probability that the shortfall in
stage 1 is less than or equal to S; if stages 1 < 7 < k — 1 have order up to levels S;

and stages k < 1 < n have an order up to value y.

4. In the equation for JJ(y) above, the term (F, * - - -x F}, 11)(y) arises because we have
51 = ...= Sn. To be clear, this is the case where all the nodes are going to have just

one order up to level, namely Sy. See item 2 above.

5. Thus, in a two stage system,

(F,)55 % By 41(S51) 1 — Prob(back order)

Il

= iype 1 service.

Similarly, the distribution of backlog is ((Fi,)%2~5t x F,11)% (), and so

Jo>(1 = ((F,)%275% % Fyy 1) (2))dz

fooo(l ~F(2))de = fill rate

= type 2 service
Similar expressions for an N stage system are derived in a following subsection.

6. If we could find similar expressions for a capacitated system, then the results of this

section will carry over easily; this is done in sections 3 and 4.

7. The cost of operating the system can be computed easily as also the distribution of
inventories at various stages. For example, in stage 1 of a two stage system, the
inventory in stage 1 is always between zero and S5;, and its distribution is that of

(81 — P12)". We will go into these details in subsection 2.4.2.

2.3 Algorthmic Description

Now that we have specified how to compute the partial derivatives (theorem 5), we can

make Algorithm 2 more specific. Let the penalty cost on back orders be p. (Recall that if
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a type-1 service or a fill rate requirement is specified, we can achieve the specified service
level by adjusting the penalty parameter appropriately. In the next section we will describe
a computational procedure to compute the fill rate). The following algorithm computes the

optimal echelon order up to policies 51, 8S2,...,S5N.

begin algorithm 3

1. e set p — pg.

2 e setn—1

e set 51 — v, where y; solves Fy, 41(y1) = %:—j
3. e setne—n+1

e 54,8, -++,85,_1 are known.

e setke—n
e do while (k > 2)
— compute a%D"“(Sl,-'-,S»’k_l,yﬂ)hgk_l = JE[Sk-1)
— if JP(Sk-1) > 0 set k — (k — 1); else goto 4.
e end while
N

4. e if K =1 solve for y, (F;ﬂ=t:---=|:F‘h+1)(3,r)ww

TPk

e if kK > 2 solve for y

(- ((Fp#e % Bk w By, )Se1=Si2 ok BL)YS =50 % B 4)(51)
p+ Nk
p+ XV hy

e set 5, — vy

5 e doforj=kk+1,...,n-1
— set 5 «— Sp

e end

€. e ifn< N gotostep 3 above
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end algorithm 3

Note the intuitive pattern of Algorithm 3. Given an N stage system, consider the
following N sub-systems: first sub-system contains only node 1, the second sub-system
contains nodes 1 and 2, ..., and the N'*® sub-system is the entire system. For sub-system

n, we have

Probability { (shortfall in stage 1 + demand during (I; + 1) time periods) < S; } =
P+Ef LR
p+21 hi
Thus, we find (recursively) numbers S, ..., Sy that satisfy the above relationship. We will

see that the same relationship holds in a single stage capacitated system (section 3), and

we will exploit it to solve multi-stage capacitated system (section 4).

2.4 Cost, Service Levels and Fill Rate Computation

Although the model stated above uses a penalty cost on back orders, we would like to
be able to estimate the service level achieved by the chosen echelon order up to levels
(51,52,...,5n). In the literature, service levels are computed in many different ways.
In this paper we show how to estimate service levels; the type-1 service defined as the
probability of no back order in a time period at stage 1 and the fill rate (type-2 service)

defined as
E(backorders)

ﬁll rate = W (9)

2.4.1 Type-1 Service and Fill Rate(Type-2 Service)

The following algorithm computes the type-1 service obtained for echelon order up to levels
S1,...,5y. Note that G, below is the distribution of (shortfall + pipeline stock) at node

.

begin Algorithm 4
¢ Gn(z) = Fiy(z)

o Gn-1(e) = (GN)SN=SM- % Fiy_(2)
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¢ Gn(z) = (Gny1)5m# =50 % B (2)

o Gi(z) = (G2)5~% % Fy,(a)

Type-1 Service = (G1 * F')(51).

end Algorithm 4
We recognize that the backlog distribution is (G * F')5t (z) and so

fill rate =

Joo(1 - (Gr# F)5 (z))dz
Joo(1=F(z))dz

At this point, it is worth pointing out a few subtleties in the type 1 service and fill

(10)

rate computation discussed above. The main question is, when is a demand considered
to be satisfied (or on back order). In the computation above, a demand is considered to
be satisfied if the demand is met in the same time period in which the demand occurs;
otherwise it is counted as a back order.

One variation that is of interest is as follows. We may consider a demand to be satisfied
if it is met within say, k time periods after the demand occurs. Let n' be such that E'{" I; >
k> "1l and let k' = 37 I; — k. Then,

type 1 service = (G * Fior )50 ~Sn'-1 x F(Sy). (11)

A similar analysis leads to an expression for fill rate.

A closer look at algorithms 2 and 3 reveals the following. The optimal order up to levels
are calculated by using a penalty cost on the back orders, and then the fill rate and the
type-1 service is computed as an after the fact. Computational results and further remarks

are presented in section 5.

2.4.2 Long Run Expected Average Cost

In order to compute the expected average cost, we need to find the inventories at each stage;
which can be computed from the backlog distribution discussed in the previous subsection.
Because the system is uncapacitated, the amount of echelon inventory at stage N is

always Sn. Define P;yq; as the amount of material in the pipeline between stages 1+ 1 and ¢
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in excess of S;11—S; (analogous to Pj; defined earlier). The echelon inventory (or backlog) in
stage N —11is Sy_1—Pnn—1; the distribution of Pyn_1 is (F,, )N ~58-1(2) = Gi,"_SN'l ().
Thus, the echelon inventory distribution for any stage can be recursively computed as in

Algorithm 4. In fact, the echelon inventory (or backlog) in stage n has the distribution

Snt1—5n
n+1 '

S — Pht1n where Ppi1, has a distribution G
The average echelon inventory in any stage and the backlog at stage 1 can be computed
by algorithms 5 and 6 described in the following subsections. The computation of the total

cost then is straight-forward.

2.5 Fitting an Approximate Distribution if the first Two Moments are

Known

-

Algorithm 3 is described in terms of F(z), the distribution function of the one period
demand. But in many cases, the only information available to us may be the estimates of
mean and variance. In such cases, it is a common practice to use a suitable approximation
—usually a weighted Erlang — of the unknown density. Algorithm 5 in Appendix 1 gives
such an approximation from Tijms(1986).

Note that in Algorithm 3 we repeatedly encounter random variables of the type H%(z)
where @ is a known constant and H(z) itself is a mixture of erlangs as output by Algorithm
5. We need a procedure to compute the mean and variance of such a random variable.
This computation is also required in capacitated systems. Such an algorithm (Algorithm
7) is described in Appendix 1. The optimal order up to values and the costs can then be
computed by using algorithms 5 and 7.

.3 Single Node Capacitated Model

The previous section described an algorithm that computes the optimal order up to policies
for an assembly or a serial system. Each node in the system, however, was assumed to be
uncapacitated. Determining what the optimal inventory control policy is and computing
such a policy is far more difficult when there are capacity restrictions. In this section we
will concentrate on a manufacturing system with a single capacitated node with lead time

of zero; thus, in this section, we capture only the effects due to capacity and not non zero
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leadtimes 4. Rest of the assumptions are the same as those stated at the beginning of

section 2.

Federgruen and Zipkin (1986ab) investigated a capacitated single stage system under
discounted cost and average cost criteria and showed (under a fairly general cost structure)
that a base-stock policy is optimal. However, they did not provide any algorithm to compute
the critical number or the optimal cost. We provide here an algorithm to compute the
optimal policy under the average cost criteria and our approach differs significantly from
that in Federgruen and Zipkin(1986ab). Further, we are interested here in bringing the
analysis of single-stage capacitated systems closer to uncapacitated systems, so that multi-

stage capacitated systems can be analyzed using methods similar to uncapacitated systems.

We begin by recognizing an equivalence between a dam model and the capacitated
inventory model operated by a base stock policy. This and the discussions of section 2
motivate us to analyze the inventory problem not by the traditional approach that tracks
(inventory on hand - back orders), but rather by considering the shortfall process. The
shortfall in any period here is the amount on order that has not yet been produced because

of the capacity restriction; this is not to be mistaken for the back orders that a customer

.

faces.

It also turns out that the single-stage capacitated model with an order up to value z
and capacity C can be replaced by a specially structured, uncapacitated infinite-stage model
with a lead time of one time period between stages k and k — 1 for k > 2 operated by a
specially structured order up to policy of the following type: If stage one has an order up
to level of z (based on inventory ), then stage 2 has an order up to level (based on echelon

inventory) of z+C, and stage 3 has an order up to level of 242C, and so on (see figure 3).

This observation allows us to use the results of previous sections with certain modification.

The equivalence of the inventory problem to the dam model is explained first. This
will provide us with the necessary and sufficient conditions for the stability of the system
under consideration. An algorithm that leads to an optimal solution and a computational

approach are derived in the next two subsections.

*The case of non zero leadtimes is straightforward as we allow backlogging.
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3.1 The Dam Model

Dam models or storage processes, studied in Prabhu (1965), in discrete time have the
following structure. In every period there is some input to the dam (rainfall, for example)
that increases the content (in terms of height) of the dam; at the end of the period an
amount of water is released out of the dam (for irrigation, say) that is the minimum of the
water content and a maximum possible release. Significant analysis has been done on the
steady state distribution of the dam content, (random) times between the dam is empty
and (random) times to cross different levels. We will shortly show the connection between
our problem and a model in dams. We can, therefore, use many of the results from storage

processes to analyze the capacitated inventory model.

inventory = -
Wl e AR .. . SRS NP A
1 X 1 order-up-to = 45

0 X1 38 ] 3 capacity = 30
-ve inventories =back orders
25 ]\ Xpion order, not delivered
17 { : demands

10 1 4 g
B~ s 4 : production L

period h' -5 period 2 period 3 period 4 period 5

back orders

Sample Path of Inventory model
water content

danger level o150
a5 —y —————————— P = J - - -
30 - [ 4 :rainfall
/"29 { : waler release
20 | 28

cannot release more
than the water level
\
A

period 3 perioda ©| period5

0

period 1 period 2
Sample Path of Dam Model

Figure 3 : Equivalence of Inventory and Dam Models

Figure 3 shows the sample path of a typical single stage capacitated inventory system
under periodic review that is operated by a base stock policy where excess demand is
backlogged. The capacity (C) is 30, the order up to level (z) is 45 and the inventory at time
0 (Io) is 10. Let dy = 15,d3 = 9,d3 = 37,dq = 21 be the demands in the first four periods.

Figure 3 also shows the sample path of a dam that has an infinite height, a release
capability of at most C' and an initial water level of 35. Let the rainfall in the first four
periods be 15, 9, 37, and 21. The dam releases as much water as it can, and if the water

level is less than C, the dam goes empty. The equivalence of the two sample paths is straight

21



Table 1: Comparison of dam and inventory models.

Dam Model Inventory Model

Maximum release Capacity

water content amount not yet produced (shortfall)
empty dam order up to level achieved

rainfall demand

danger level crossed | back orders

forward. If Z, is the content of the dam in period n just after Ielease,r then it satisfies
Zp=(Zp-1+dn1-C)4 (12)

and if X, is the amount on order in period n that has not yet been produced, it satisfies
Xp=(Xn-1+dn1-C)y. (13)

Note that {X,,n = 1,2,...} is a Markov chain. This motivates us to study the ca-
pacitated inventory system in terms of the process X,, and provide results in terms of the
steady state distribution of X = lim,_eXn. Table 1 summarizes the equivalence between

the capacitated inventory model and the dam model.
If K(z) is the shortfall distribution in the capacitated inventory model, the main result

of this section is that Algorithm 6 yields the optimal order up to level.

begin Algorithm 6
e Step 1: Compute the distribution K(-);
o Step 2: Solve for z in (K * F)(z) = 25

p+h”

end Algorithm 6

Intuitively, we are adding two independent random variables: (1) demand in a period
and (2) the amount on order at the beginning of the period that has not yet been produced.

Penalty p is incurred if this sum crosses z and is proportional to the excess, and a holding
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cost (h) is imposed if the sum is less than z and is proportional to the amount on hand at
the end of the period. Note that K(:) does not depend on z.

It remains to compute K(-); for F' discrete or Erlang, K is known (Prabhu(1965)). For
other distibutions, in particular for a mixture of Erlangs, we give a constructive description
of K(-) in terms of F(-) and C. This same construction brings us closer to the analysis of

uncapacitated multi-stage systems.

3.2 A Special Infinite Stage Uncapacitated System

We recognize that the effect of a capacity restriction on a single stage is equivalent to a
delay in producing the amount depleted by the demands. There is a random time associated
with ‘recovering’ to a state where the on hand inventory at the beginning of a period
equals the order up to level. This effect can be mimicked by considering an infinite-stage
uncapacitated serial system that is operated in the special manner described below. The
following additional notation is used in this section.

Notation:

NyJ : random variable corresponding to the amount on order that has not yet arrived at
stage 7 in period n in a system that has a total of N stages.

NN 3 it ™ T,

Hy_1(z) : distribution of VY.

DN(z,z4+ C,...,z+ (N - 1)C) : long run average cost of operating the N-stage system

where the echelon inventory order up to levels are 2,2+ C,...,z2+ (N - 1)C.

Note that the order up to policies at all stages of the specially constructed infinite stage

system are in terms of echelon inventory.

3.2.1 Construction

Consider an infinite-stage uncapacitated serial system with a lead time of one time period
between stages k and k — 1 for k > 2 operated by a specially structured order up to policy
of the following type: If stage one has an order up to level of z (based on inventory), then
stage 2 has an order up to level (based on echelon inventory) of z+C, and stage 3 has an
order up to level of z+2C, and so on. This is shown in Figure 3. The holding cost at stage

1is h and the penalty cost for back orders at stage 1 is p. There are no holding costs at
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other stages. The system operates as follows:

o at the beginning of period n the amount on hand at stage 1 is (z —® ¥,!) while the

echelon inventory at stage j for j > 2is z4+ (j — 1)C - Y] ;

e a demand d, occurs at stage 1 causing the echelon inventory at all stages to drop by
dn;

o supply from stage 7 + 1 to stage 7 (7 > 1) is made to bring the echelon inventory level
of stage j as close to z 4+ (7 — 1)C as possible.

It is important to notice that, in any time period n, stage j 4+ 1 can supply j (for 5 > 1)
a maximum of C in this infinite-stage system, not because of any capacity restriction, but

rather because the on hand inventory at stage 7 + 1 for 7 > 1 is exactly C' at all times.

Proposition 1 In any time period, the shortfall at stage 1 in the infinite-stage uncapaci-
tated system operated by the above policy is equal to the shortfall in a capacitated single-stage

system operated by the base stock policy.

Proof At time zero, start the infinite-stage system with all the stages at their order up to
levels. If ®Y;7 is the amount on order that is yet to arrive at stage j at the beginning of

period n, it satisfies the recurrence
SFF = (PFL by =2 B (14)

where ®© 577

i is the maximum possible stock that level j + 1 can supply level 7 in period
(n—1). Since, the system is operated in the special way described above, we have for every
fixed t, Y] =Y} Vj,1. Therefore,

mHN = (240 -2V ) - 2+ (G- 1)C-"Y ) =C (15)
In particular, ®Y}! = (®Y2; + d,_1 — C); as desired.

Q.E.D.
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Figure 4b: Truncated System with N = 2

Figure 4: Specially Constructed Uncapacitated serial systems

~ We now analyze the specially constructed uncapacitated infinite stage system by consid-
ering its finite truncations, with say, N stages. Figure 4 shows the case when N=2. Recall
that the holding cost in stages k > 2 is zero. Let D¥(z,z 4+ C,...,2 4 (N — 1)C) repre-
sent the long run average cost of operating a N-stage truncated system with the specially
structured policy. Also, N = 1 is equivalent to an uncapacitated single stage system, and

the dummy stages add on additional ‘capacity’ in a monotone manner.

3.2.2 The ShortFall Distribution

We can compute the steady state distribution of Ny1 as follows.

Byl = 1
PMNYN-1<z) = P(demand < C +1)
= F(C +2z)
= FC(z)

PNYN-2<z) = P(demand < (C+z - el
= P(demand + YNl < (C +2))
= (F°+ F)°(a)
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PY €2} = [ F9a BV PP... PO}

HN._l(:E)

It is clear that for an N + 1 truncation we simply replace Hy_1(z) with Hy(z). In
general, Hy(z) = (Hy_1 * F)c(:c). Thus, NY?! are monotone in N as previously stated.
This also implies that K can be approximated by Hy(z) for sufficiently large N. The
computational work to do so is similar to those needed to compute S} in Algorithm 3

(step 4 for k > 2). As stated earlier, this is accomplished for the case when F is a mixture
of Erlangs by Algorithm 7.

3.2.3 Cost Function

To obtain the cost function for the truncated system, let Gy_1(u) be the distribution of (on
hand inventory - back orders)) at stage 1 in a N-truncated serial system. The cost function
is simply the expected value of the standard news person problem, the expectation taken

over the amount of stock at stage 1. We assume here that F(.) is continuous.
DV(z,24C,...,24+ (N -1)C) = Jo (R [3(u— z)dF(z)
+p [ (2 - v)dK(z))dGn_1(uw)
+ Loolp 57 (2 = w)dF(2))dGN1(v)

Making a change of variables, and rewriting the cost function in terms of ¥¥! allows us
to use the monotone convergence theorem. Thus,
DN(z,24C,...,24+ (N -1)C) = Jor (R 574z — u— 2)dF(z)
+p[2u(z = (2 - v))dK (z))dHy -1(u)
+ 7 +HN-1(0)(h [ (2 - 2)dF(2)
+p [ (¢ - 2)dK(z))

By definition, YY1 > 0 as. for all N. If a limit exists, it must satisfy H(z) =
(Hoo* F)°(z) and Hoo(00) = 1. If the expected demand in a period is less than C, the limit
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does exist because the dam model is stable under this condition. The uniqueness follows
from Prabhu (1965). That the cost functions converge to the true cost function now follows
from the monotone convergence theorem (Durett (1991)). To prevent the possibility of some
mass "disappearing” to infinity, and hence have a cost of infinity, we can enforce that the
convergence VY1 1 ®Y¥1 be tight, namely that there exists a function g(z) > 0, g(z) — o
as |z| — oo so that limsup,_ [g(z)dH,(z) < oo ( or simply assume that the second
moment of ®Y? is finite).

Thus, the cost of operating a capacitated system with an order up to policy with critical

number z is given by

B®(z,2% Cpuoay) JE (R fE(z - u— 2)dF(z)
9 [2, (% ~ (2~ u))dF(z))dHoo(u)
12 (p (2 - (2 - w))dF(2))dHoo(w)
+Hoo(0)(h (2 — ).

That D*(z,z+ C,...) is a convex function of z can be verified easily. This will help

find the global optimum. Differentiating once, we have

/0 :((h Fp)F(z - ) — p)dHao(w) + [P p 2 dF(2)dHe +Hoo(0)(F(2)(p+h) 1)
= (p+ h)(Ho * F)(2) — p;

‘the second derivative is positive as ( Hoo* K )(z) is a distribution function. Thus, to compute
the optimal value of z, we need to solve (p+ h)(He * K)(2) —p = 0. Note that if 2, is the
optimal solution to the N truncated problem (where an order up to policy is optimal, as
can be verified easily), we have 2§ < ... <z} ... < 2z}, < 00, implying that due to capacity
restrictions, the base stock has increased. A straight forward argument will also show that
if C; > C; where C;,1 = 1,2 are capacities of two systems facing the same demand and

cost structure, system 1 will have a lower (no greater) critical number. Note that K(-) =

Hoal).

3.3 Computing Order up to policies for the Single Stage System

In order to compute the optimal policy with algorithm 6, we first need to compute the

shortfall distribution K(.). In some cases, it is possible to get a closed form expression for
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Example 1: If the demand is ezponentially distributed with mean rate A (F(u) = 1 —
e 2 u > 0) and the capacity is C, then the shortfall distribution is given by

K(z) = 1-¢e%C0) (z>0, AC >1) (16)
where 6 is the largest positive Toot of the equation
8 = X—de (6+C) (17)

Thus, the optimal order up to policy has a critical number z*, and is obtained by solving

(K x F)(z*) = z%ﬁ : (18)

In general, we cannot hope to find K(.) exactly and need to find an approximation.
We expect that for some reasonable n, H,(-) is approximately K(:). Suppose we had a
procedure that provided us with the first two moments of FC(-), where F(-) is a weighted
erlang as output by Algorithm 5. Then we can approximate FC(.) by weighted erlangs
using Algorithm 5, and recursively find Hp(-). In fact, the same procedure can be used

to find moments of Fl‘z"_s“l as required in the algorithms for uncapacitated systems.

Algorithm 7 in Appendix 1 provides us with the first two moments of FC if F is weighted

erlang.

4 Capacitated Model for a Multi-Stage System

This section will first present the extensions of section 3 to serial systems; the extension to
assembly systems follows naturally. Let C*,i=1,... N, be the capacities for the N stages.
These are all real stages. Let z;,2 = 1,..., N be the echelon order up to levels. As before,

we reserve 9; for the optimal values of the z;.

4.1 Preliminary Observations

To orient oneself, first consider a system which has C¥ < oo and all other C* = oo, as
shown in figure 9 below. We can now replace the Nth node by an infinite series of dummy

nodes, all uncapacitated, as in section 3. The results of sections 2 and 3 now imply that this
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multi-stage system can be solved by methods of section 2 with one modification: replace
Gn(-) = FY() with Gn(-) = Ky % F¥(-). Note that Kn(-) is the unique distribution

function that solves

(Kn * F)°" (2) = Kn(z) (19)

and represents the shortfall at stage N due to finite capacity. To be clear, Algorithm 3 is
unchanged but for the last computation (i.e of Sy) where we include Ky in the shortfall

distribution.

Unfortunately, other capacitated cases are not amenable to such straightforward analy-
sis. However, some conclusions about optimal base-stock levels can still be drawn in special
cases of multi-stage capacitated systems. The next result shows that if capacities increase
with the stage index, then it is never optimal to hold more safety stock between each pair

of stages than the downstream stage can use in a single period:

Proposition 2 Suppose C! < C?< ... <CN. I S;;1 - S5, >C,,Vi=1,...,N — 1, then

reducing each S;1; — S§; to C?, leaving S; fixed, decreases costs.

Suppose now that the capacity levels are subject to control, possibly within a range of
values. For example, it might be possible to physically re-allocate capacity from one stage
to another, or else a stage may modify its policy, choosing a maximum production level less
than its capacity. This has the same effect as changing some C*. The following result gives

a necessary condition for a set of optimal capacity levels.

Proposition 3 An optimal (C1,..., C’N) satisfies C**! < C*,1=1,..., N. More precisely,
given any set of (C1,...,CN), if C**! > C* then replacing C**! with C* does not increase

costs.

The above propositions are stated here without proofs but the proofs can be found in

Glasserman and Tayur(1992b).
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order order order order
uplo =z Upto =2z, Uplo=2y, uplo =z,
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order order order order order order
upto:zN+CN uplo:zN+CN upto = Z upto=2zy )  UPIO=2Z 5 upto =2z,

Serail System where all nodes are uncapacitated

Figure 9: Equivalent Capacitated and Uncapacitated Systems

4.2 A Two-Stage Serial System with Limited Capacity in Each Stage

In general, the capacities and the order up to values interact in an intricate manner. We
consider a two-stage system, where both the stages are capacitated, with a lead time of
one between the two stages to illustrate the complexity (figure 10). The extension to an
N stage capacitated system follows directly. As in the case of a single stage capacitated
system, each of the two nodes here can be replaced by an infinite sequence of dummy nodes,
all uncapacitated, whose order up to levels differ from their downstream stage by exactly
.

This leads to an assembly system, infinitely long, but uncapacitated. Thus, we have a
sequence of order up to values along one branch of the assembly: 2z; + CY, ...,z + (k —
1)C1,..., and a sequence of order up to values: z3,...,29+ C%,..., 20+ (I - 1)C? ... along
the the other branch. These branches meet at stage 1 which has order up to level z;, as

shown in figure 10b.
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10d : Uncapacitated serial system for Algorithm 8b

OO0 —D—

22+2C2 ZZ+ C2 22 Z +I\Cj 21

10e : Uncapacitated serial system for Algorithm 8¢
Figure 10: Equivalent Capacitated and Uncapacitated Systems

Now, following the arguments of Algorithm 1, the assembly system of figure 10b can
be converted to a serial system. To do this, however, we first need the values for z; and z,.
We, therefore, start with some initial guess values for z; and z;. These initial values of z;
and zp are then modified iteratively. In the process of iteratively improving the values of
z1 and zz, we need to contend with several distinct cases. In each case, the uncapacitated
assembly (figure 10b) is converted to a different serial system (figure 10c, 10d or 10e ).

The following cases arise.

B0 and 540 >z
1=¢C? and n4+C' < 2
: C'>C% and z+ Gl <z
n G o 102

9 o w »

i.e; the first three cases correspond to C! > C?. Algorithm 8 describes how to find Sy and
S, in each case.

begin algorithm 8

i e start with initial guess values z; and 2.
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2.

e A

: C1 > C? and 21 + C! > 2z

— In this case, one sequence of order up to values will always dominate the

other. We need to consider the sequence that has the lower values. This
implies that we need to consider a serial system with order up to values:
z1,29,22 + C?, 23 + 2C% .., as shown in figure 10c. This case can be solved
by the algorithms described in sections 2 and 3.

begin algorithm 8a

P+ ho
Froallhy = L%
b41(51) P+ h1+ ho
Kox FY2~Stw B 0(§) = —P
(K2 F) 1,+1(51) o B L

end algorithm 8a
Note that Ky(-) satisfies (Ko * F)C° (2) = Ko(z).
if S5 < 81 4 C!, we are done; return.

if 3 > S14C!, S; and S, are the new guess values of z; and z;. go to step

3 (case B) or step 4 (case C) as appropriate.

: O =2 amd 21+ O < 29

This case can be solved by considering a serial system whose order up to
values have the the sequence: 21,21 +C?, 21 +2C? ... (see figure 10d), which
is equivalent to a single stage capacitated system. So Algorithm 5 can be
used with C = C? as the capacity. We have:
begin algorithm 8b
(K1« F)C % By a(§1) = ——r

- p+ h1+ hy
end algorithm 8b
Ki() = (K1 F)'().

set S5 = S1 4+ C?; return.

:Cl>C%and 21 +C! < 2

with the initial values z; and z; (from Algorithm 8a or otherwise), find k&

such that

z1 + (k- l)C1 <z+ (k- 2)C2 and z; + kC? > 2o + (k- l)CQ. (20)
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— consider a serial system with the sequence 21,214+ C?,.. .21 +(k—1)C, 20 +
(k—1)C?, 29+ (k)C?,.. . (see figure 8e). This leads to the following algorithm:
begin algorithm 8c

P+ hy
B8] = emaata
1+1(51) 2+t Pa
o ((Kg % FYS2=S51=(6=1)(C?=CY) . ;€' PYC' u Ry (Sy) = —P
(...((K2x F) ) )¥ * By 41(51) P

end algorithm 8c
K»(-) satisfies (Kg* F)%(z) = Ka(z). F occurs (k—1) times in the second
equation of Algorithm 8c.

— if the values S; and S, satisfy equation (20), we are done; return.

— else find a new value of k that satisfies equation (20) for the new values of
S1 and S; and rerun Algorithm 8c. Repeat until the assumption of k is

consistent with 57 and §3; return.

5. e D:Cl < C?

— The method of analysis here is similar to the case C1 > C?. Note that
Proposition 3 should be appropriately used here; in fact, we may reduce C?

to equal C! and use cases A or B above. We will skip the details.

end algorithm 8

A numerical example illustrating the algorithm is presented in section 5.3 below.

4.3 The General Capacitated Assembly System

A similar approach to the one above leads to the algorithm for an N stage capacitated
assembly system.

begin algorithm 9

1. First convert the N stage capacitated assembly problem to an uncapacitated assembly
problem. This is done by replacing all capacitated nodes by an infinite sequence of

uncapacitated nodes.
2. Guess values for zq,...,2zN.
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3. Next, following Algorithm 1, create a serial system. Solve the resulting serial problem
that is uncapacitated but for the highest node. If the optimal solution obtained
satisfies the same serial structure as obtained by the guess of z1,..., 2y, go to step 4.

If not, use the optimal values obtained as a guess for z,..., 2y and go to step 3.
4. Output the solution obtained as the required order up to values.

end algorithm 9

5 Computational Results

We have developea a software implementation of all the algorithms described in the previ-
ous sections. These algorithms were then applied to the inventory analysis of several test

problems. Computational results with these test problems are summarized in this section.

5.1 Uncapacitated Serial system: Test Case 1

lead time =4 leadtime =2 leadtime =5 lead time =3
g - i - - ol
demand
— — e ‘1 > -
mean = 10.0

cv = 04
5a : Serail Uncapacitated system

lead time =14

-
demand
—_— e ——
mean = 10.0

cv = 04

5b : Single Node with Lead Time = Sum of Lead Times in 5a.

Figure 5: Uncapacitated Test Case 1

Test case 1 (see figure 5) is a serial assembly system. Fixing the demand distribution
parameters as shown in figure 5 and setting the fill rate requirement to 0.95, we have
computed the echelon order up to levels by varying the Echelon costs, as shown in table 3.
Although echelon inventory levels did not vary as much as we expected, it is interesting to

note that as the added cost of down stream stages decreased, more of the inventory buffer
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4 3 2 1 4 3 2 1
Echelon Costs Echelon Order up to Exp. Cost

30 100 200 330 | 192.0 140.0 120 62.4 34518.1
65 165 265 330 | 186.5 140.0 123 68.6 41343.6
80 160 245 330 | 185.6 142.0 124 66.5 40914.8
150 250 300 330 | 182.0 1446 131 75.0 48950.6

Table 2: Sensitivity of Echelon Inventories to Echelon Costs

in the system is moved to the down stream stages. Although the echelon inventory levels
did not very too sharply, there is a significant change in the expected cost of operating the
system as the added cost of the down stream stages decreased and the added cost of the

upstream stages increased. fas

Next, replace the serial system in figure 5a by a system with a single node, but with
the same total lead time as shown in figure 5b. Note that this has the effect of forcing all
safety stock to be held in the form of the end item. With an echelon cost of § 330 and fill
rate = 0.95, (same as the echelon cost and fill rate for the end item in the serial system ba.
we find that the echelon order up to level = 167.2. We note that this is smaller than the

echelon up to level of stage 4 for all the test cases shown in table 3.

The computational results thus far, give us an insight into the sensitivity of the echelon
inventory levels to changes in echelon costs. In the next test case, we test the sensitivity of

the inventory cost to required service levels and demand variability.

5.2 Uncapacitated Assembly system: Test Case 2

Test Case 2 describes a representative part of a real manufacturing network that produces
complex electronic assemblies. The manufacturing network and the problem data are as

shown in figure 6.
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s

5357M

%
g‘% the arrows are the bill of material gty ) 24 module

Part No. Part Type Mig. Lead Time
location (weeks)

1 end item 1 2
2 card asm. 2 4
3 card asm. 2 5
4 card asm 2 4
1 card asm 2 4
& module 3 10
7 card 4 3
8 module 5 9
] module L} 10
10 module 5 15
11 card 4 3
12 module 5 1
13 module 3 10
14 module 3 10
15 module 3 10
16 module 5 ]
17 module 3 1
18 card 4 3
19 module 5 10
20 module 5 10
21 module 5 14
22 module 5 13
2 module 5 13
3 12

25 module 3 12

Figure 6 : A Manufacturing Network

In this manufacturing system, semiconductor chip modules and electronic cards are

assembled together to produce four subassemblies, which together with other miscellaneous

parts (not shown here) are assembled to make the final assembly ( the end product ). The

manufacturing in this case is physically distributed across 5 different manufacturing plants.

The lead times shown in figure 6 are adjusted to account for the transit times between

locations as well. It is to be noted that the lead times for the semiconductor modules are

very long.

We made several runs with algorithm 2 to compute the optimal echelon order up to

levels and the related costs for a specified fill rate. The cost/service trade-off curves at

various levels of demand variability were obtained and the results are summarized in figure

7. The following comments are in order.

e The manufacturing network described in figure 6 is not an assembly network (note

that part numbers 14 and 15 do not have a unique successor). We replicated the nodes

14 and 15 to overcome this difficulty.

e The unit costs of all the parts have to be appropriately scaled to account for the bill

of material quantities shown in figure 6. This problem will be more complicated if the
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lead times are not deterministic.

o The costs shown in figure 7 are the inventory asset value and they do not include the

back order penalty costs.

Cost($mil.) Cost($mil.)
40 40
ev=0.1 (demand filled in the same period) v=0.1 (demand filled within one period)
/3 ||
ov=0,2 cv=0.2
e~ / -e- 5
ov=0.4 / =0.4
35 f{ o a @] apsnsunanas 35 c\'lmﬁ. .................................................... Y N
ov=1.0 / ov=1.0 /
O Lo /!

81.0 86.0 80.0 95.0 99.0 81.0 86.0 90.0 95.0 99.0
Fill Rate Fill Rate

Figure 7 : Cost-Service Tradeoff Curves

We can make a number of remarks by comparing the different curves presented in Figure

If the coefficient of variation is low, then the inventory cost curves are relatively flat
as the fill rate increases from 80% to 95% . This is partly explained by the fact that the
demand variance and hence the safety stock is low. But the main reason for these relatively
flat curves is the fact that the resupply lead times in figure 6 are very high and hence the
pipeline stock dominates the total inventory whenever the demand variability is low. This
process, however, is reversed if the demand variability is high as evidenced by the case
where coefficient of variation is 1.0. In all cases, the slope of the curve increased sharply
for fill rates higher than 0.95. This is to be expected.

The cost/service trade off curves were computed by measuring the fill rate for demand
filled with in the same period and demand filled within one time period. These fill rates

were computed as explained in section 2.4. The trade-off curves for demand filled within
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one period are systematically below the corresponding curves when demand is to be filled
in the same period. The shape of the curves curves, however, remained the same. This
phenomenon deserves an explanation. Recall that algorithm 3 works with a penalty cost
and not with a fill rate constraint. The fill rates shown in figure 7 were obtained by the
algorithms described in section 2.4. When we change the fill rate definition from immediate
fill to fill within one time period, we expected to see some of the safety stock shift from the
end item to the subassembly stage. This, however, does not happen with the algorithms

described in section 2.

Figure 8 shows a further break down of the total inventories. All the inventories are
grouped into inventories of end item (1), sub assemblies ( part numbers 2,3,4 and 5), cards
( part numbers 7, 11 and 18) and modules ( all the rest). It is worth noting that the safety
stocks of the long lead time parts ( the modules ) increased fairly slowly as the demand
variability increased. This can be explained by the stationarity of the demand distribution.
Also, at high levels of demand variability, most of the safety stock is in the form of end

items and sub assemblies.

l?;v Cost {gv._lCosl

($mil.) mil.)

r Demand Filled In the Same Period Yr Demand Filled within One Period
16 (fill rate = 0.95) 161 (fill rate = 0.95)

15 151

14| ipeline al | EEE Dpeine

o | sty q |

@ = N W B OO N @0 ©

Cv=.1 Cv=.2 CV=.4 Cv=1.0
Coefficient of Variation in Demand

Figure 8 : Inventory Profile Analysis for the Manufacturing Network in Figure 6
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Capacity 55 60 65 70 75 80 85
0 0.0035 | 0.0063 | 0.0085 | 0.010 | 0.012 | 0.013 | 0.014
i 233.72 | 109.36 | 68.20 47.84 | 35.79 | 27.88 | 22.33
o? 11685.4 | 5468.1 | 3410.06 | 2392.0 | 1789.4 | 1394.1 | 1116.9

Table 3: Roots (6) of equation (22); Means (/i) and Variances o2 of shortfall when rate =
0.02.

serv. level | capacity | 55 60 65 70 75 80 85

0.8
S1 437 | 287 | 235 | 209 | 195 | 195 | 195
Sa 492 | 347 | 300 | 279 | 267 | 257 | 249
Cost 7001 | 5345 | 4749 | 4486 | 4316 | 4204 | 4124 i
0.9

Sy 519 | 354 | 295 | 268 | 252 | 242 | 242
S 574 | 414 | 360 | 338 | 327 | 321 | 312
Cost | 8634 | 6664 | 5943 | 5653 | 5492 | 5387 | 5297

Table 4: Order up to levels and Costs for a two-stage system.

5.3 Systems with Limited Capacity

Computational results for a two-stage system with equal capacities and exponential demand
with rate 0.02 (A) are presented below. The holding costs are h; = 20 and hy = 10. Rather
than have a penalty cost, we placed a type-1 service requirement of 0.8 and 0.9 respectively.
To find the equivalent penalty cost p, we simply use type-1 service = m. 6 is the root
of the equation in example 1 of section 3. In table 3, 4 and o2 represent the mean and
variance of the shortfall distribution. Table 4 shows the order up to values as we change

capacities as well as the type-1 service levels.

The basic observations, as expected, are the following.

1. The optimal costs drop off sharply first as capacities increase, and then level off.
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2. The order up to values follow a similar pattern as the optimal costs.
3. Increasing service level increases costs and order up to levels.

The following relationship between capacity and order up to levels can be seen in the
computational results obtained. Note that in this example, because C! = C?, we have
K1() = K3(). Thus, we would first use Algorithm 8a to find S; and Sy. If §; < §) + C?,
we are done. If S, > S1 + C1, we would use Algorithm 8b to find S; and then simply set
Sy = S1 + C'. Because C! = C?, we do not use Algorithm 8c here.

1. At low capacities, the difference between the order up to levels (S; — 51) is exactly
the capacity.- This means that the holding cost in stage 2 is such that if capacity at
stage one was larger, we would keep more material between stages 2 and 1. In this

range of capacities, therefore, we would use Algorithm 8b.
2. As capacity increases, S; — S1 drops below C'. Here, we use Algorithm 8a.

3. As the service level is increased, the relationship S, — S; = C! continues to hold for

higher values of C*.

It can be easily verified that if hs is reduced, keeping other parameters the same, then the
relationship S, — §1 = C*! will continue to hold for higher values of Gt
Other insights obtained in capacitated models with larger number of stages are similar

to those described in Glasserman and Tayur (1992a).

6 Conclusions and Research Directions

We address the problem of inventory control in multi-stage production-distribution systems.
This paper emphasizes the computational algorithms that are required for the above men-
tioned analysis. Besides providing the necessary algorithms, they are also applied to the
analysis of several example test problems. The computational results of section 5 provide
much insight into the behavior of these control policies.

Using a shortfall process, we explained the algorithm for uncapacitated systems. Ex-
tending this intuition, we provided algorithms for capacitated systems. These algorithms

for the capacitated case offer a promising start although much work still remains to be
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done in this area. Extensions to problems with nonstationary demand and or decentralized
inventory control are of great practical importance.
Acknowledgements : The first author would like to express his thanks to Dr. A.

Clark for bringing references 18 and 26 to his attention.
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A Appendix 1

In this Appendix, we describe two approximation algorithms that are needed for Algorithm
3 and others as well. Let x and ¢? be the mean and variance of a random variable X with

unknown density function f(z). Let

o variance
o =
mean

Algorithm 5 gives us a two moment approximation scheme (see Tijms (1986)).

begin algorithm 5

1. if ( cv? > 1) then

e approximate f(z) by {qz\;e“)‘lm +(1- q))\ge‘)‘z"”'} , where

_ 2 502—0.5
* M= mean ! (cv +1)
¢ ')‘2 ~ ‘mean

_ A1!A2-mean-1!
B g So—m

2. elge
e choose k s.t. S ¥ g k—l—
K1 k=2 =N k k—1_—Az

e approximate f(z { A—(-k—2)—,—— + (1 - )A—(kl—),} , where

_ kxcv? — 1 /k(14cv? )—k2cv?
&= 1+cv?
® s ubd

mean

end algorithm 5

Algorithm 7 computes the first two moments of FC, where F(.) is a weighted Erlang.
To be clear, we will assume that if cv? of F is less than 1, it is approximated by a mixture
of an Erlang (k) and an Erlang (k — 1); if the cv? of F is greater than 1, then it is approxi-
mated by a hyper-exponential, as in Algorithm 5 above. Let u; ,c and u, ,c be the first
two moments of FC. The quantities ), A1, A2, ¢, k have the same meaning as in Algorithm
5.

begin algorithm 7
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o cv? <1,

iz = qA(k—1,1,C)+ (1 - g)A(k,AC)
pogoc = qB(k—1,),C)+ (1 - q)B(k,A,C)

where

A, C) = —C(1-Gror(C)) + 2(1 ~Gy(0))

BkAC) = Y1 -Gina)) - Z2(1- Gua(e)) + BN 1 _ 6, 0))
where

k-1 1

e (AC)

Gk(C) = 1- E € AC%
=0 '

Mae = 3RS

‘F"2,mc = A_g )\—2

end algorithm 7
end Appendix 1.
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