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Abstract

Message transfer unit (MTU) reassembly schemes in modern op-
erating systems cause I/O performance degradation when MTU
sizes are larger than the architecture�s page size.  This can happen
with emerging network technologies, such as Asynchronous Trans-
fer Mode (ATM), where MTUs can be 64 KB or greater.  Tradi-
tional solutions either reassemble using memory copy or preallocate
contiguous memory; these, however, lack speed or consume excess
resources, respectively.  This paper presents an alternate scheme
called Virtual Memory MTU Reassembly (VMMR) which reas-
sembles non-contiguous pages through virtual memory remapping.
VMMR allows hardware/software interfaces to efficiently DMA
large MTUs in hardware pages and remap them to a contiguous
address space.  Studies done on a PowerPC 601 show that this
method can outperform memcopy by one to two orders of magni-
tude (the maximum VMMR bandwidth is 14.7 Gbits/sec).  High-
performance multimedia applications, such as video on demand
and video conferencing, can greatly benefit from such a perfor-
mance boost.

1.  Introduction

Emerging network technologies, such as Asynchronous Trans-
fer Mode (ATM), have been the focus of manufacturing efforts
aimed at producing fully integrated, high-performance solutions
[1].  Chipsets like the IDT77201 NICStAR� [6], for example,
support segmentation and reassembly of ATM cells, hardware
checksumming, and DMA protocols that specify sequential cell
placement in predefined, possibly discontiguous, hardware pages.
The latter feature eliminates the need for an operating system (OS)
to copy data between host memory and a network card during data
transmissions, yielding what is known as a zero-copy interface.

For a small message transfer unit (MTU � also known as a maxi-
mum transfer unit or a hardware layer protocol data unit � PDU),
this DMA approach offers substantial performance gains.  Many
modern networks, however, have been defined to support large MTU
sizes.  The ATM specification, for example, allows MTUs up to 64
KB in length [1].  FDDI calls for MTUs of 4,352 bytes, and IP over
ATM requires 9,180 bytes [13].  When large MTUs are streamed
into a receiver�s memory on an architecture with small page sizes,
overall I/O performance can actually drop.  This is because the OS
needs to concatenate and reassemble pages belonging to an MTU
before it can send it up to the protocol stack for additional process-

ing.  Systems that implement reassembly using copy semantics suffer
the most since they require an additional slow memory copy
(memcopy) at the device driver level.

General issues involving memory-to-memory copies [5] and
network-to-memory copies [3] have been known to represent a sig-
nificant portion of the overhead associated with network data trans-
port services.  Much of the literature, however, has tended to con-
centrate on maximizing buffer reassembly performance at the pro-
tocol layers, where messages (MTUs) are combined into an appli-
cation data unit, or ADU.  MTU reassembly has, on the other hand,
received far less attention.  A widely adopted ad-hoc solution is to
copy each fragmented MTU into a separate, pre-allocated, con-
tiguous, MTU-sized buffer.  This method is not only wasteful in
terms of memory usage and CPU time, but also slow.  Using a
similar strategy, Traw and Smith studied data movement from a
fast ATM card they designed to system and user spaces in the AU-
RORA Testbed environment [2].  Their resource inefficient tech-
nique required a kernel pre-allocation of two 64 KB contiguous
pinned buffers.  One of the inevitable findings of that research was
that overall bandwidth was highly dependent on data copy perfor-
mance.

Virtual memory remapping has become a logical solution to the
copy problem.  It is an attractive scheme because the system �moves�
data by altering page table entries rather than performing physical
copies [4].  Tzou and Anderson measured the impact of remapping
virtual addresses in message passing environments [11].  Their study
showed that the use of buffers and preallocated virtual and physi-
cal address regions limited VM remapping performance gains over
data copy.  As a result, the authors suggested limiting generalized
use of the virtual address space by mapping communications buff-
ers to a fixed virtual address range shared by all processes.  This
solution is not general enough, however, for use in fast, next gen-
eration communications systems.  Other papers, such as [12], pro-
vide similar performance observations but only offer additional non-
generalized buffer-based solutions.

Druschel and Peterson recently proposed another such technique
known as fbufs, or fast buffers, to mitigate VM remapping expenses
[12].  Fbufs are allocated by the operating system from a shared
memory pool and sent to device drivers or applications for incom-
ing and outgoing data.  The buffers are allocated and reused in
such a way so as to minimize TLB and cache flushes, memory
management unit (MMU) updates, and protection domain traversal
overheads.  An implementation of fbufs in Solaris by Thadani and
Khalidi showed that network throughput improved by more than
40% and CPU utilization dropped by more than 20% [10].



The problem with the fbuf scheme is that it assumes the OS
communicates with �deep� adapter interface cards (i.e. entire MTUs
are buffered in card memory for subsequent transfers).  When a
complete MTU has arrived and been reassembled, a deep interface
card notifies the device driver on the receiver, which then analyzes
header information stored on the card so as to fetch an appropri-
ately sized buffer from the kernel.  In the fbuf scheme, data resid-
ing on the network card is then streamed into the contiguous buffer
and then copied to a pageable fbuf accessible to kernel and user
processes.  In next generation ATM hardware, however, MTUs are
pipelined across the network to achieve much faster throughputs
and lower latencies � the result is a thin interface (i.e. memory
efficient).  One implication is that MTUs are DMAed into physi-
cally discontiguous pages and require reassembly prior to protocol
stack processing.  This can be achieved either through hardware
support, special kernel routines, or a combination of both.

One such hardware assist is known as DVMA, or Virtual Direct
Memory Access, and it was devised at Sun Microsystems to speed
up data flow between I/O devices and memory [13].  An operating
system can program an I/O memory management unit (IOMMU)
on the DVMA controller to set up appropriate virtual to real trans-
lations so that an incoming I/O stream is automatically written to
contiguous virtual space (discontiguous physical space).  The prob-
lems with this approach are twofold.  First, the IOMMU has a fixed
number of address translation lines and can only reassemble a mes-
sage of limited size.  The STP2220BGA UltraSPARC to SBus in-
terface chip, for example, has a 16 entry IOMMU that can support
up to one megabyte of remapped data [14].  Second, DVMA re-
quires consistency between its page tables and those on the host
OS; there is significant overhead in setting up these translations
and in maintaining coherency.

In this paper, we present a software solution known as Virtual
Memory MTU Reassembly (VMMR) and show it to have a maxi-
mum bandwidth fifteen times higher than the STP2220BGA hard-
ware [14].  We claim that when large MTUs span multiple
discontiguous pages in main memory, data can be efficiently reas-
sembled on the receiver�s side of a thin adapter card using VMMR
before the MTU is sent up to higher protocol layers.  VMMR relies
on the hardware VM subsystem to remap virtual memory page point-
ers.  The hardware page table then provides the transformation be-
tween contiguous virtual addresses and discontiguous physical ad-
dresses.

The PowerPC (PPC) architecture provides a unique virtual
memory subsystem that can be used efficiently to support VMMR.
The 52-bit PPC virtual address space spans 224 256 MB segments,
each denoted by a unique software-controlled ID (VSID) [8].  The
correlation between segments and virtual addresses provides a fast,
natural mechanism for sharing information among processes.  We
suggest that, instead of creating and maintaining communication
buffers, a segment addressable by all process address spaces be
allocated as a shared pool of virtual pages used to move informa-
tion among process domains.  Note that VMMR does not require
pre-allocated buffers, as was purported to be the major reason for
performance loss in other zero-copy techniques.

A VMMR scheme using a virtual page bitmap pool has been
implemented to collect quantitative results, including a VMMR
lower bound, on a PowerPC 601.  It has proven to outperform
traditional network-to-memory or memory-to-memory data copy

by a factor of nearly 83 (14.7 Gbits/sec) in best case benchmarks.
Furthermore, VMMR can reassemble very large data sets without
additional device setup and coherency overheads, unlike hardware
solutions such as DVMA.

In the next section, we formalize the measurement techniques,
describe the execution environment, and outline the experimental
method used in this paper.  Section 3 discusses demand paging in
the PowerPC 601 architecture.  Section 4 presents results obtained
from the benchmark code used to quantify VMMR performance,
and finally, Section 5 summarizes our findings and conclusions.

2.  Experimental Framework and Environment

This section presents an outline of the research methodologies
used in this study�s performance evaluations.  To avoid limitations
due to specific implementations of any one operating system, a
simple yet powerful kernel called NAP was used to benchmark
VMMR with no OS overhead.  Operating system implementation
considerations are discussed in section 4.4.

2.1  NAP

A naked application is a program that runs on hardware without
the support of an intervening operating system.  NAP is a Naked
APplication support environment created at IBM to facilitate
PowerPC-based system software development.  It has been used in
the optimization of network interfaces, in low latency commodity
networks, and in guaranteeing quality of service at the microsec-
ond level.

NAP runs native to the PowerPC (PPC) 601, and its serial port
output interface was used to send experiment results to a file on a
receiving PC.  Although NAP provides elementary interrupt hooks
and exception handling, the code used in this research relied solely
on NAP�s bootstrap, serial output, and timer interrupt handler rou-
tines.  Since there was no underlying OS support, all experiments
ran in supervisor state as standalone processes.  This allowed time
sensitive code (e.g. benchmarks) to collect data unaffected by con-
text switch overhead.  The only variance any code running atop
NAP could experience would be due to the nonmaskable PowerPC
timer, which interrupts 18 times per second.  NAP services each
interrupt and returns to the executing process within 3 ms.  This
was tolerable since all experimental data collected in this research
were cumulative timing averages, as described in Section 2.5.

2.2  Experimental Method

Figure 1 presents a diagram of the test machine memory layout
that was selected for the execution environment.  Memory was par-
titioned into distinct caching regions belonging to supervisor space
or to page table space.  This was done to analyze VMMR and
memory copy (memcopy) performance under varying caching con-
ditions.  All addresses within these regions were initially mapped
in virtual memory in a one-to-one virtual-to-real manner.

The first four megabytes of memory, which contained bench-
mark code and NAP support routines, were configured as supervi-
sor space, with the exception of a 512 KB page table placed at the
2 MB boundary.  During benchmark initialization, an 8 KB free
page pool bitmap belonging to page table space was written to



memory at the 4 MB boundary (this is discussed in detail below).
A 64 KB supervisor space region was then reserved at the bottom
of memory for NAP�s stack.

Data pages used in the benchmarks were included in supervisor
space and placed in a memory region that varied in size from test to
test.  Data region 1, shown in Figure 1, consisted of pages filled
with word counts as illustrated.  The purpose of all tests, with the
exception of the memcopy benchmark, was to reorder these pages
in virtual memory to create a virtually contiguous region of in-
creasing word counts (i.e. to simulate an MTU reassembly).  Alter-
nately, the memcopy test timed a fast word copy given source and
destination memory addresses; during this benchmark, data region
1 was replicated in data region 2.  With approximately 60 MB of
memory left for benchmark data storage (64 MB - 4 MB of code),
the data regions� sizes were limited to 24 MB (6,144 pages) each.

VMMR performance evaluation consisted of data analysis from
four test categories.  The total caching tests measured VMMR and
memory copy times for L1 cached supervisor and page table spaces.
Kernel caching and page table caching tests, on the other hand,
collected times for L1 cached supervisor and page table spaces,
respectively.  The no caching tests ran without the assistance of
L1.  Each category, with the exception of total caching, was bro-
ken down into four distinct tests as follows.  Memcopy measured
the times the hardware required to copy a set of contiguous pages
into another contiguous block, given source and destination point-

ers.  No search benchmarked calls to the VMMR reassembly code
when a search for a free contiguous page set from a pool of virtual
pages (discussed in the next section) was not required.  Minimal
search and worst case search tests yielded MTU reassembly times
for two page pool search extremes.  In addition to the above, a
random search test was developed for the total caching category
that gave performance feedback for a simulated environment where
page pool fragmentation was modeled over time.

2.3  Virtual Page Pool Bitmap

As discussed in the introduction, the VMMR technique rear-
ranges discontiguous physical pages by manipulating virtual page
pointers in the hardware page table.  Although physical pages re-
main discontiguous in main memory, they are made contiguous in
virtual memory, and the page table provides any necessary virtual-
to-real address translation.  For the technique to work, an operat-
ing system has to maintain some pool of free contiguous virtual
pages.  We quantified VMMR performance by using an 8 KB free
page pool bitmap to represent all pages in a reserved 256 MB seg-
ment (i.e. each bit corresponds to one 4 KB page).  Available pages
in the segment are found by a search routine which looks for a set
of contiguous free bits of length m within the bitmap, where m is
the MTU size in pages.  Successful searches yield a bit number
representing some starting page within the segment; unsuccessful
searches return an error code to the caller.

Contiguity is defined as some continuous sequence of
unallocated bits within a word or across several words.  The top
half of Figure 2 illustrates contiguity within a bitmap word; the
bottom half, across multiple words.  With the exception of the ran-
dom search test, all searches begin at the most significant bit of
word 0 and proceed sequentially to its least significant bit and then
to the most significant bit of the following word in memory.  In the
random search benchmarks, searches begin at some random word
within the bitmap to minimize biasing effects due to fixed starting
locations.  In the event that the search pointer has prematurely ar-
rived at the end of the bitmap without having checked all words in
the bitmap or having found a suitable free page set, it is reset to
word 0, and the search continues as described above.

The bitmap search routine was written in assembly for improved
efficiency and uses a few instructions peculiar to the PowerPC ar-
chitecture to speed up the bitmap searches.  The algorithm consists
of an outer loop that retrieves successive words in the bitmap and
that locates possible free page set candidates, and it also contains
an inner loop that examines those candidates for contiguity as de-
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fined above.  If the bitmap is highly fragmented, the search algo-
rithm loses performance because it stays in the inner loop for long
periods trying to resolve all bit transitions it encounters.

2.4  Experimental Environment

Benchmark and VMMR code compilation were done on an IBM
POWERstation 530 running AIX 3.2.5 using the IBM Xlc 1.3 com-
piler; flags for standard optimization (-O) and for PowerPC 601
code generation (-DPPC601) were specified.  The base test ma-
chine was a PowerPC reference platform (601) [7] with 64 MB of
main memory and no L2 cache.  All benchmarks ran with address
translation enabled; we used the recommended minimum page table
size of 512 KB for a 64 MB machine.  Experimental data (timings)
were sent through the serial port to a PC and captured in files using
Procomm Plus for DOS.  The results were then filtered and ana-
lyzed using custom programs that employed the measurement tech-
niques described below.

2.5  Performance Metrics

All tests, with the exception of random search, collected reas-
sembly times for about eighty MTU sizes m, ranging from 1 page
(4 KB) to 6,144 pages (24 MB).  Thirty-two iterations were per-
formed per MTU size, with L1 and the TLBs flushed on each itera-
tion, and their arithmetic mean reported as the final time.

Each random search test collected reassembly times for a given
set of 3,000 randomly allocated page pool bitmaps; 32 iterations
(again with L1 and TLBs flushed on each iteration) were run per
bitmap and their times averaged to yield a final reassembly time for
that bitmap.  Output files for the random search tests were also
filtered through a program which extracted absolute maximum and
minimum times across all 96,000 iterations and which averaged
final reassembly times for bitmaps that were 40% and 10% allo-
cated (see section 4.3).  Because of the time required to run each
random search test (2 to 16 hours), only about 20 MTU sizes were
selected from the 1 to 6,144 page range.

The free page pool search algorithm uses a bitmap representa-
tion of a 256 MB segment of virtual pages reserved for benchmark
data reassembly.  Since each bitmap bit represents one 4 KB
PowerPC 601 page, there are 216 bits in the bitmap.  We define the
bitmap allocation level as follows:

O =
1R� �RI�DOORFDWHG�ELWV�LQ�ELWPDS

�� ����
�

For example, if an application uses this page pool bitmap for memory
allocation, O=���  would mean that 75% of a PPC 601 segment is
currently in use and not available to other processes.

Because NAP does not provide a floating-point library, we opted
to use a simple Fibonacci sequence random number generator that
would work well within the limits of 32-bit integer arithmetic [9]:

; ; ;� � �� �= +� � ���� � PRG ��)))))))

where 7FFFFFFF
16

 is the largest representable 32-bit integer and
; �  and ; � �  were arbitrarily set to 17 and 37, respectively.  Since
this sequence produces an even distribution of integers, the result-
ing random sample is sufficient for the scope of this research.

3.  PowerPC 601 Demand Paging

The PPC 601 uses a sophisticated address translation mecha-
nism combining paging and segmentation.  In this architecture, 32-
bit logical addresses are transposed to a 52-bit virtual address space
and subsequently converted to 32-bit physical addresses.  Sixteen
256 MB segments divide the 32-bit logical address space, and each
segment is partitioned into 216 4 KB pages.  To speed up address
translation, the memory management unit (MMU) includes two
translation lookaside buffers.  The first, a 256 entry two-way set
associative TLB, is unified (UTLB) and contains virtual to physi-
cal translations for instructions and data.  The second is a four
entry, fully associative, instruction TLB (ITLB).

When presented with a 32-bit logical address, the MMU uses
the four most significant bits LA0-LA3 (big-endian notation) to
index a 16 entry segment register table (see Figure 3) [8].  Each
entry stores, among other information�, a 24-bit virtual segment ID
(VSID).  This number, along with the next 16 logical address bits
LA4-LA19, form a 40-bit virtual page number (VPN), which is
then paired with the remaining 12-bit logical offset to yield a 52-
bit virtual address.  The ITLB, UTLB, or the operating system sup-
plied page table contains the translation from VPN to PPN, the 20-
bit physical page number.

The ITLB (instructions only) and UTLB (instructions and data)
are indexed using LA4-LA19; if either return a valid PPN, the hard-
ware translation process ends with a 32-bit physical address con-
sisting of the PPN and the 12-bit offset.  If both fail to yield a PPN,
the translation process continues with a page table search.

The PPC 601 page table is written to and updated in memory by
the operating system.  Its location in memory and its size are known
to the hardware via the Table Search Description Register (SDR1),
which is also maintained by the resident OS.  Bits 0-15 of SDR1
specify the base address of the table, which consists of a number of
page table entry (PTE) groups of eight 64-bit PTEs each.  One PTE
defines a VPN to PPN translation and includes bits that the OS can
use to facilitate its replacement policy.

Locating a PTE within the page table requires the generation of
up to two hashing functions [8].  Bits 5-23 of the VPN (the VSID)
are exclusive-ORed with bits 24-39 (the 16-bit logical page index)
to create the primary hash.  When needed, the secondary hash can
be calculated by taking the one�s complement of the primary hash.
The 19-bit hash loosely represents an index into the PTE groups of
the page table.  The previous statement is qualified because the
PPC 601 page table can vary in size from 64 KB (210 PTE groups)
to 32 MB (219 PTE groups), a variation of 29.  Bits 0-8 of the hash
are therefore ANDed with a hash table mask stored in bits 23-31 of
SDR1.  This value is then ORed with the least significant 9 bits of
the page table base address to yield a value that is used to generate
a physical address for a PTE group.

Once the PTE group address is calculated, the hardware begins
a sequential search through the group for a valid PTE.  The MMU
compares the current VSID and abbreviated page index (the most
significant 6 bits of the logical page index) with the VSID and API
stored in the PTE (see the PTE blowup in Figure 3) [8].  If they

�   This section presents a general overview of the address translation mechanism in the
PowerPC 601 and assumes that block and I/O translations do not apply.  See [8] for
more information.



match, and if the PTE is marked valid and primary, the PPN is
extracted and concatenated with the 12-bit offset to yield the final
translated physical address.  If the PTE group does not contain a
matching PTE, the hardware calculates the secondary hash as de-
scribed above, repeats the masking process, and searches through
a secondary PTE group for a matching secondary PTE.  In case a
valid translation cannot be found, the hardware faults with a page
table exception and, once the OS has updated the page table, re-
peats the entire translation procedure.

The VMMR code allocates page table entries using the algo-
rithm outlined above.  In addition, benchmark caching policies are
implemented efficiently using the �I� bit in the memory/cache ac-
cess control bits (these are marked as �WIM� at the bottom of Fig-
ure 3).  The �I� bit, also known as the cache invalidate bit, controls
L1 (and L2) lookup for the PTE�s associated physical page.  All
PTEs in the no caching tests and PTEs for uncached memory re-
gions in the kernel and page table tests had this bit set.

4.  PowerPC MTU Reassembly

To determine VMMR performance benefits in the PPC 601, a
benchmark suite was run for varying caching and page pool frag-
mentation configurations.  This section elaborates on those tests
and analyzes their results.

4.1  Memory Copy vs. VMMR

The first goal of the research was to generate data comparing
the performance range of a fast memcopy with that of a sample
VMMR approach.  We decided to bias algorithm choices in favor
of memcopy, which is often used for message reassembly in most
operating systems.

The memcopy benchmark consisted of a routine that copied
anywhere from 1 to 6,144 contiguous pages (word by word) to an
alternate contiguous location in memory.  Address translation was

Fig. 3.  PowerPC 601 Address Translation [8]
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enabled during this test, with PTEs set so that all source and desti-
nation block addresses were mapped in a one-to-one virtual to real
correspondence.  Although the performance of this scheme is hard
to achieve in a memcopy implementation under UNIX, it yielded
data for a best case scenario that was used in developing objective
performance comparisons.

The design of the VMMR code was based on two factors.  First,
we wanted to develop routines, that, while not unreasonably slow,
were inefficient enough to demonstrate how a second-rate algo-
rithm could fare against a fast memcopy.  Second, and perhaps
most importantly, we wanted to write simple, easy-to-debug code.
As mentioned in Section 2.3, the final choice was a virtual page
pool bitmap, with each bit representing one page of a reserved 256
MB segment.  It should be pointed out at this time that a VMMR
scheme based on a free page pool bitmap is NOT an optimal one.
Other organizations, such as the buddy system and AVL trees [15],
are faster and more efficient.  The goal of this research is to collect
quantitative data showing how well VMMR could fare against tra-
ditional solutions; the data presented here should be used as a guide
in developing appropriate VMMR techniques suitable for some
OS and architecture combination.

In the minimal and no search tests, all bits in the free page pool
map were freed (0% allocated).  The former test measured the time
required by the search routine to find a free block of contiguous
bits at the start of the bitmap, plus the time needed to allocate ap-
propriate PTEs for VMMR.  No search, on the other hand, yielded
data for a VMMR best case.  It only measured the time required by
the search routine to allocate the same PTEs.  Thus, no search also
represents an absolute lower bound for any VMMR implementa-
tion (up to the efficiency of the allocation algorithm).

The worst case benchmark timed the bitmap search and PTE
allocation code for a bitmap with maximum fragmentation.  For an
MTU size of one page, the entire bitmap was allocated with the
exception of a single bit at the end.  For other MTU sizes, the
bitmap was written with alternating ones and zeros; a set of con-
tiguous free bits matching the MTU size was then placed at the
end.  The worst case test stressed the VM reassembly algorithms
under highly improbable conditions; the random test, discussed in
the next section, was devised to address this.

Figure 4 presents the data collected from four tests in the total
caching category.  Note, upon inspection of the memcopy and mini-
mal search curves, that there is a transition from a fivefold to near
eighty-fold increase in performance at the 1 and 6,144 MTU page
sizes, respectively.  Speedup increases with larger MTU size be-
cause the initial call to the reassembly subroutine is amortized over
many pages.  The minimal and no search tests behave as expected;
the convergence of the two data sets at the 32 page MTU size bound-
ary demonstrates how the PTE allocation time quickly dominates
over the time for a minimal search of available contiguous bits.
Note that at 6,144 pages, the maximum VMMR bandwidth for
minimal search is 14.7 Gbits/sec.  Memcopy can only claim 176.9
Mbits/sec.

The worst case test lags behind memcopy for MTU sizes be-
tween 2 and approximately 60 because the search algorithm may
need to resolve close to 216 bitmap transitions.  Even at the one
page MTU size, worst case results are slower than memcopy (289
ms vs. 143 ms).  This, however, is to be expected since memcopy
copies 1,024 words while worst case has to evaluate 2,047 fully
allocated words, one partially allocated word, and a pre-allocated
free bit at the end of the bitmap.  As MTU size increases (2 pages
and above), the worst case curve follows a flat plateau (where the
search time, which is roughly constant, dominates) and then rises
gradually to follow the minimal and no search curves.  In this re-
gion, the time to allocate PTEs in the page table begins to domi-
nate despite a reduction in search time.

Figure 5 shows the results of the no caching test category.  The
only noticeable difference between this group and the total cach-
ing test group is that times have uniformly risen due to the lack of
L1 caching.  The minimal and no search curves stabilize to a final
slope much faster than those in the total caching category also
because of no L1 support.  Initial and final speedups are approxi-
mately 33 and 64, respectively, as compared to 5 and 83 in the
previous case.  The initial increase in speedup is attributed to the
slow performance of L1 unassisted memcopy.  As the search algo-
rithm and reassembly code spend much time in longer loops,
VMMR loses some performance and subsequently settles to a con-
stant speedup over memcopy for MTU sizes of 16 pages and above.
One other observation appears to support these conclusions � the
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worst case curve, which is the result of a code-intensive search,
has a twelve-fold performance loss from total caching to no cach-
ing; memcopy only experiences about 60% of that slowdown.

Results of the kernel caching and the page table caching tests
were not shown because they were indistinguishable from those of
the total caching and the no caching tests, respectively.  This is
interesting because it points out that page table and bitmap ac-
cesses are not dominant factors in the benchmark timings.  The
one-to-one correspondence between kernel and total caching is to
be expected; as seen in the previous paragraph, code caching is
critical to maximizing VMMR performance.

4.2  The Random Test

 Since the worst case and no search tests represent theoretical
extremes, a more refined test was needed to get a realistic view of
the performance advantage in the VMMR approach.  In the second
part of this research, a benchmark was designed to simulate evolv-
ing fragmentation levels within the page pool bitmap.  Twenty-
three MTU size tests were run, and each test consisted of measur-
ing VMMR times for 3,000 randomly allocated bitmaps.  Thirty-
two timing iterations were run per bitmap, with their average re-
ported as the final time, for a total of 96,000 iterations per test.
Each iteration, in turn, measured the time required by the search
routine to locate a set of contiguous bits from the most significant
bit of one of 2,048 random words within the bitmap (plus the time
for appropriate PTE allocation).  As with the worst case bench-
mark, the search algorithm was always guaranteed to find a pre-
unallocated page set at the end of the bitmap.

In each MTU size test, the first thousand (of 3,000) page pool
configurations (i.e. randomly allocated maps) were obtained by
calling the random number generator described in section 2.5 500
times per map.  All bits in the map were initially marked as allo-
cated, with the exception of a pre-unallocated page set at the end.
Each call to the random number generator returned a random bit
position within the bitmap which was then marked free.  Figure 6
plots the number of allocated bits for each of the 3,000 page pool
configurations in the 16 page MTU size test; the leftmost third
shows the deallocation sequence for the first thousand configura-

tions.  Note that the process outlined above yielded maps that cov-
ered the entire allocation range; however, a fairly large number of
tests benchmarked allocation levels less than 50%.  To compensate
in the next thousand page pool configurations, all bits in the bitmap
were marked allocated (with the exception of a pre-unallocated
page set at the end), and the random number generator was in-
voked 50 times per map.  This provided a more dense coverage of
highly allocated bitmaps, as seen in the middle third of Figure 6;
the rightmost third shows additional dense coverage obtained in
the last thousand configurations by calling the number generator
25 times per map.  The overall effect of this deallocation scheme
was that the random tests returned more data points for high allo-
cation levels within the bitmap.  This was necessary to construct a
worst case curve that could be used to gauge performance of the
random tests against the worst case test.

Figure 7 shows the results of 12 of the 23 MTU size tests that
were run for the total caching case.  Each plot contains 3,000 data
points, and each point is the arithmetic mean of 32 timings.  Note
that the absolute minimum data point for some MTU size m agrees
well with m�s minimal search data point on Figure 4.  Also note
that the 50% allocation mark falls close to the 32,768 transition
line (about half the number of possible transitions); this is as ex-
pected when a random number generator is creating satisfactory
allocation maps.  Allocation levels greater than 50% see data points
returning to smaller numbers of binary transitions; as allocation
increases, small free areas are coalesced into larger allocated ones,
thus reducing the total number of transitions.

For an MTU size of one page, the plot remains flat for all tested
allocation levels.  This is because the search algorithm has no prob-
lem locating a free bit.  As the MTU length increases from 2 to 4
pages, allocation levels from 50% to 95% give the search algo-
rithm trouble in locating an appropriately sized free area.  This
trend continues at 6 pages; here, however, the onset of a behavior
present in all remaining plots is visible.  For allocation levels of
85% and above, the time needed to find a 6-bit string of free bits
drops.  By an MTU size of 16 pages, this effect is fully apparent.
When bitmaps are more than 50% allocated, fragmentation drops
because of string coalescing, and performance improves because
the bitmap search algorithm requires less time in the inner loop.
This effect dominates for MTUs longer than 5 pages.  At 16 pages
and beyond, the bottom half of the plot appears to be lifted by the
upper half so that by 256 pages, the two fall in line.  This outcome
points out that the rise in time associated with increasingly difficult
searches due to rising fragmentation follows the same trend (albeit
in an opposite direction) as the time savings that is gained from
decreasing fragmentation due to string coalescing.  At the 256 page
mark, this relationship is fixed; for increasingly larger MTUs, the
curve remains unchanged except that it rises uniformly in time.

4.3  Performance Comparisons

Three data sets were extracted from the random benchmarks.
As mentioned in Section 2.5, a program was used to filter out the
absolute maximum and minimum times for each MTU size.  Also,
all iterations that fell in the 40% (±1%) and 10% (±1%) allocation
levels were averaged and plotted per message size.  The former
range was selected because it represented the lowest percentile curve
(in 10% increments) that outperformed memcopy for all MTUFig. 6.  Page Pool Configurations

0

10000

20000

30000

40000

50000

60000

65536

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

B
it

s
A

ll
o

c
a

te
d

in
P

a
g

e
P

o
o

l
B

it
m

a
p

Page Pool Configuration (16 Page MTU Size Test)



10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 2-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 1-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 4-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 6-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 16-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 64-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

8 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 256-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

10 us

20 us

40 us

100 us

200 us

400 us

1 ms

2 ms

4 ms

10 ms

20 ms

4096 8192 16384 32768 65535

C
o

n
c
a
te

n
a
ti
o

n
ti
m

e

Number of Binary Transitions in Bitmap

VM Mapped 4096-Page Concatenation (Total Caching)

4-6% Allocated
9-11%

14-16%
19-21%
24-26%
29-31%
39-41%
49-51%
59-61%
69-71%
74-76%
79-81%
84-86%
89-91%
94-96%

Fig. 7.  Random Test Results



Fig. 8.  Total Caching vs. Selected Random Tests

lengths.  The latter range was chosen to gauge low VMMR usage
(again in 10% increments) against heavy bitmap use (50% alloca-
tion or more).  The results are shown overlaid with the total cach-
ing data in Figure 8.  Two important observations can be inferred
from this plot.  First, absolute maximum times from the random
studies are significantly better than the timings collected from the
worst case test; however, for MTUs ranging from 2 to 32 pages,
memcopy still holds a performance advantage over the VMMR
bitmap implementation.  Secondly, if the virtual page pool bitmap
is 40% allocated or better, VMMR always outperforms standard
memcopy.  For those applications that do not need more than 102
MB (40% of a 256 MB segment) of buffer space, the VMMR tech-
nique, as it has been presented so far, can be extremely useful in
maximizing overall network performance.

We can optimize the VMMR bitmap implementation, however,
to provide one to two orders-of-magnitude performance improve-
ment over memcopy by simply assuming that all VMMR data is of
the same size.  Therefore, each bit in the bitmap no longer repre-
sents a single 4 KB page, but rather a set of pre-concatenated pages
of length equal to that of the message requiring reassembly.  All
random test results will then resemble those of the one page MTU

plot shown in Figure 7 (shifted in concatenation time by some MTU-
size dependent amount) with all data points falling along the mini-
mal search curve in Figure 4.  This happens because the optimized
algorithm only needs to search for one bit in the map; PTE alloca-
tion time per MTU size remains the same, however, thus contribut-
ing to the time shift.  If certain ranges of MTUs are required, this
optimized VMMR bitmap technique could be generalized to handle
multiple appropriately sized maps.  Note that, unlike reassembly
solutions which force a communications card to DMA data into a
preallocated contiguous buffer in physical memory, the optimized
VMMR scheme does preallocation in virtual memory and allows
data to be DMAed into noncontiguous physical pages.

Figure 9 shows the random test results redone using the opti-
mized VMMR bitmap technique with a map optimized for 16 page
MTUs.  Note that the curve resembles the flat one page MTU plot
in Figure 7 but is offset by the time required to allocate the VMMR
PTEs in the hardware page table.  Interpolated results of an opti-
mized VMMR bitmap worst case are overlaid with the unoptimized
total caching results in Figure 10.  These numbers were obtained
by partitioning minimal search (total caching category) reassem-
bly times, per MTU size, into bitmap search times and PTE alloca-
tion times.  The first numbers were then divided by their corre-
sponding MTU page sizes (the optimized VMMR bitmap length is
a scaled version of the original 8 KB bitmap) and added to their
PTE allocation times.  Note from Figure 10 that, despite optimiza-
tion, memcopy still outperforms worst case VMMR at the one page
MTU size.  This reaffirms previous statements noting that a bitmap
solution is not an ideal one for VMMR; organizations employing
hashing or binary searches will generally always outperform the
linear search algorithm described in this paper.  Future VMMR
studies, then, should concentrate on finding optimal page pool or-
ganizations for popular OS and architecture combinations.

4.4  Operating System Implementation Considerations

The results presented thus far were taken from a software envi-
ronment based on the NAP kernel; certain design considerations
should be taken into account during development of a VMMR
scheme for an operating system.  These include the following:
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1. Since the VMMR segment is shared among user processes,
security mechanisms protecting data from unauthorized users are
warranted.

2. After MTU reassembly, a vector of N continuous virtual ad-
dresses is used to access the newly translated physical pages.  There-
fore, the communications API does not have to invoke special pro-
tocols to implement a true zero copy.  In cases where data copy is
required (e.g. copy-on-write), standard copy calls should invoke
bcopy (continuous byte copy) for improved efficiency.

3. The creation of a virtually reassembled MTU is done in the
kernel, so no VM lock operations are needed.  Once the MTU has
been reassembled, updates to the page table are short enough to be
performed in an uninterruptible manner and do not have to be
guarded by VM locks as well.

4. VMMR is fully integrated with the VM hardware and soft-
ware subsystems and is compatible with kernel performance opti-
mizations such as lazy evaluation and copy-on-write.

5. Page wiring can be avoided by removing I/O pages from the
kernel�s free page list; this prevents the swapper from removing or
replacing them during and after data transfers.

6. VMMR can also enhance performance of distributed sys-
tems, such as:

Multimedia servers.  These systems often receive large mes-
sages from several different sources.  Traditional buffering sys-
tems like those mentioned in the introduction are difficult to man-
age in such cases.

Network of Workstations (NOW).  This system requires very
fast user-to-user communications in order to synchronize processes
running on different machines.

5.  Summary and Conclusions

This paper studies the feasibility of reassembling MTUs using
existing virtual memory hardware.  A Virtual Memory MTU Reas-
sembly (VMMR) method is compared to an aggressive memory
copy (memcopy) benchmark to characterize and evaluate VMMR
for use in the PowerPC architecture.  We found that VMMR is
nearly one to two orders of magnitude faster (up to 14.7 Gbits/sec
for a message size of 6,144 pages) than a standard memcopy call
(176.9 Mbits/sec).

The studies of Section 4.1 show that in a best case scenario,
VMMR offers a performance improvement over memcopy of ap-
proximately 5x (28 ms vs. 143 ms) and 83x (13.1 ms vs. 1.09 s) for
MTU sizes of 1 (4 KB) and 6,144 (24 MB) pages, respectively.
Since the VMMR implementation used in this research (bitmap
based free page pool) linearizes its search for available address
areas, we also examined a worst case scenario and found the tech-
nique to be slower than memcopy for MTU sizes of 1 to 64 pages.
Experimental results for L1 cached and non-cached environments
showed that both VMMR and memcopy experience significant
performance improvements in a cached system, as expected.

Section 4.4 demonstrated that a VMMR bitmap implementa-
tion is sensitive to the amount of time required to search a bitmap
pool of free addresses for some contiguous block of virtual memory.
To quantify this sensitivity in typical operating environments, we
examined reassembly times when the virtual page pool bitmap was
randomly allocated.  The non-intuitive results of Figures 7 and 8
show that VMMR is guaranteed to outperform memcopy as long

as the bitmap is less than 40% allocated.  In Section 4.5, we dis-
cussed how a VMMR bitmap implementation�s performance can
be further improved if the messages requiring reassembly are fixed
in size.  Typical designs could include bitmaps of sizes categorized
as tiny, small, medium, large, and huge that correspond to page
sizes of 1, 4, 16, 64, and 256, respectively.

We will incorporate VMMR in future work to reassemble MTUs
transmitted from a modern, high-performance ATM network inter-
face (see [16] for details).  Digital video conferencing using 30 fps
transmission can take advantage of such a technique.  In this sys-
tem, each digitally encoded frame can be contained within a single
MTU for transport across the network.  The network interface hard-
ware then streams the MTU into system memory in multiple,
discontiguous hardware pages.  Each frame is subsequently reas-
sembled at the transport layer interface using VMMR.
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