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Abstract

Efficient indexing in feature space is crucial for many digital library
applications. However, the efficiency of spatial indexing techniques usu-
ally deteriorates with the increase of dimensionality. A new algorithm,
Recursive Clustering with Singular Value Decomposition (RCSVD) is pro-
posed in this paper for reducing the dimensionality of the feature space.
In the proposed algorithm, singular value decomposition and clustering
techniques are applied recursively to the feature vectors until the dimen-
sions cannot be further reduced. Performance of the proposed algorithm
is evaluated based on a selected set of texture features extracted from
satellite images. We report experimental results on the tradeoff between
increased storage efficiency (due to reduced dimensionality) and reduced
search efficiency to attain the same accuracy in the context of the ubiqui-
tous nearest neighbor search operation. The results show that significant
dimension reduction can be achieved by using the proposed algorithm
without much impact on efficiency.

1 Introduction

Images and videos are captured by an increasing number of sources such as art
galleries and museums, civilian and military satellites, biomedical imaging (such
as CT, MRI, and PET), and home entertainment systems. As an example, the
instruments on the first two Earth Observing System (EOS) platforms, to be
launched in 1998 and 2000, will generate data at a rate of 281 GB/day. These
raw data generated by various EOS platforms will be processed and stored
in distributed active archive centers (DAACs) located throughout the United
States [5]. The large volume of images and videos poses a significant challenge
for data storage, data retrieval and data dissemination.

Conventional retrieval mechanism for images and videos from databases is
through indexing appropriate metadata such as the title, the location, and the
description of the image [32]. This mechanism is no longer adequate to man-
age massive databases of images and video. Recently, several image or video
database systems allowing content-based queries have been developed. These
systems index images on shape, color histogram, or texture. Application do-
mains include photographic images[14, 11, 9, 8], medical images[15, 16], art
work[10], and video clips [17, 18, 19, 20, 21]. Techniques for content-based
event selection on satellite images have also been investigated [4, 12]. These
techniques invariably require precomputing the image/video features (e.g. tex-



tures, color histogram or shape) to allow efficient indexing at the query time.
The resulting dimensions of the feature vectors computed from the images can
be potentially large. As an example, the dimensions of the feature vector com-
puted from the local color histogram of an RGB image can easily exceed 64.

One of the key requirements in content-based retrieval from large image/video
database consisting of millions of feature vectors is to efficiently index the fea-
ture vectors with high dimensionality. Several spatial indexing techniques such
as R-trees [39] can be used for performing range and nearest neighbor queries.
However, the efficiency of these techniques deteriorates rapidly as the number
of dimensions of the feature space grows, since the search space becomes in-
creasingly sparse (for a discussion of the topic, see for example [31][Chapter
1]). Thus, it is necessary to reduce the dimensionality of the search space to
improve the efficiency of the existing spatial indexing algorithms.

We can categorize the approaches to dimension reduction in two main fam-
ilies: (1) Techniques based on linear transformations, such as the Karhunen-
Loeve transform, the singular value decomposition (SVD) method, or the Prin-
cipal Component Analysis (PCA). These techniques are shown to be optimal
among all linear transformations for concentrating the information in fewer
dimensions, for a given data distribution. Therefore, KL transformation and
SVD have been widely used for dimension reduction and data compression [36].
(2) Techniques based on nonlinear transformations, such as vector quantization
[37], the transform operated by a multilayer feedforward neural network (for
an application to dimension reduction see [35],) and Kohonen self-organization
map [38]. The focus of these studies is to extract feature vectors from the
signals and images with maximal discriminating capabilities while maintaining
minimal dimensions. A recent effort in addressing this issue uses two sets of
features [40]. The first set, which consists of 120 features generated by the Ga-
bor filter, is used for defining a similarity measure. Meanwhile, a much smaller
second set, which consists of one or two features, is used for indexing. The
feature for indexing is selected based on the target texture vector.

The focus of this paper, similar to [40], is to allow spatial indexing techniques
to be performed efficiently. To achieve this goal, we propose a new technique,
Recursive Clustering Singular Value Decomposition (RCSVD), to reduce the
dimension of the feature space in a recursive fashion. In RCSVD, SVD is applied
to the feature space first to reduce its dimensionality. One of the clustering
techniques, for instance LBG or K-means [43], is then applied to the reduced
feature space to cluster the feature space into nonoverlapping regions based on
the distribution of the feature vectors. SVD is then applied to each individual
cluster to further reduce its dimensionality. This process can be recursively



repeated until the dimensions cannot be further reduced. The effectiveness
of the proposed scheme is measured in terms of the retrieval efficiency and
accuracy of the nearest neighbor queries. The experiments are conducted on
a selected set of features extracted from satellite images. The results show
that, for a given set of images, significant dimension reduction can be achieved
without significant impact on the efficiency and accuracy.

The rest of the paper is organized as follows: Section 2 contains preliminaries
and notation. The proposed algorithm is outlined in Section 3. Section 4
describes the experimental results. The summary is given in Section 5.

2 Preliminaries

Content-based retrieval of image and video databases usually involves compar-
ing a query object (also called target object), with the objects stored in the data
repository. The search is usually based on a similarity comparison rather than
on exact match, and the retrieved results are ranked according to a similarity
indez, e.g., a metric.

The objects of an image or video database can be defined and referred to
at different abstraction levels, as described below:

1. Raw Pizels: At the lowest abstraction level, object are simply aggregations
of raw pixels from the image. Comparison at the pixel level, which is also
referred to as template matching, is very specific, and therefore is only
used when a relatively precise match is required.

2. Feature: The next higher abstraction level for representing images is at the
feature level. An image feature is a distinguishing primitive characteristics
or attribute of an image [28]. Some features such as luminance, shape
descriptor, and gray scale texture are natural as they correspond to visual
appearance of an image. Other features such as amplitude histogram,
color histogram, and spatial frequency spectra are artificial as they are
usually obtained from specific manipulations of an image. Each image in
an image archive can be segmented by using a set of n features, which
are grouped into a feature vector, into regions consisting of homogeneous
feature vectors. Similarity search in the n-dimensional feature space thus
consists of comparing the target feature vector with the feature vectors
stored in the database.

3. Semantic: This is the highest abstraction level at which a content-based
search can be performed. Semantic information from an image is usually



extracted from a pre-trained classifier or supplied through human inter-
pretation. For satellite images, this information could include the type of
land cover of a specific area such as water, forest, or urban.

In this paper, we focus on the retrieval at the feature level. The most
commonly used similarity metric when objects are represented as n-dimensional
feature vectors u and v, where u = [u1,...,u,]T and v = [vy,...,v,)7, is the
Euclidean distance between these vectors:

or, in general, the L? distance metric which is defined as

n 1/p
Dy(u,v) = (Z |u; — vi|p) , Vp € [l,00),
=1
= max|u; — v, for p = co.

The Euclidian distance is solely used in this study.

3 The RCSVD Algorithm

Clustering of feature vectors provides the opportunity for higher dimesionality
reduction than is possible when all vectors are considered. This is because
different clusters may appear "flat”, while this is not so for all data points. As
an example, Fig. 1 shows three clusters in the 3-dimensional feature space. In
this figure, cluster 1 is on the y-z plane, cluster 2 is on the x-z plane, while
cluster 3 is on the x-y plane. Apparently, the minimum number of dimensions
in order to characterize the entire data set is at least 3. However, when the
feature space is clustered and segmented into three nonoverlapped subspaces,
additional dimension reduction opportunity is possible within each cluster. For
the case of Fig. 1, each cluster can be represented by two dimensions.
Translation into uncorrelated axes, without even reducing the dimension-
mality, is beneficial from the viewpoint of attaining ”better” clusters. Applying
clustering first is of course an option, which may not be desirable because of the
high cost of clustering methods and that the cost increases with dimensionality.
If we assume that there is a total of m feature vectors and the dimension of
each feature vector is n, the cost of computing the covariance matrix is of the
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Figure 1: Intuition for dimension reduction by clustering.



order of O(mn?) multiplications. Additional computation cost is also required
to find the eigenvalues of the covaraince matrix.

The SVD followed by clustering paradigm can be applied recursively, re-
sulting in further reduction in dimensionality. A point of dimishing returns is
reached eventually, as the dimensionality cannot be reduced any further.

The proposed RCSVD algorithm consists of the following steps:

1. Consider matrix A with m rows consisting of feature vectors with n
dimesions. Normalize (studentize) the feature vectors u by computing
(u; — )/0ou;, 1 <t < n, where %, is the sample mean, and 012‘1, is the
sample variance of the i* dimension.

2. Obtain the covariance matrix C by multiplying A by its transpose and
divide the entries of the resulting matrix by m. The trace of this matrix
is the sum of the variances or the total ”"energy”, which remains invariant
under rotation.

3. Apply principal component analysis or to C' yielding a new covariance
matrix C’ which is diagonal, i.e., the resulting features are uncorrelated
in the new axes. Since C is symmetrix; its n eigenvalues are nonnegative
Ao > A1 > ... > A, > 0. Equivalently, SVD or the Karhunen Loeve or
Hetelling transforms could be applied to A yielding he singular values,
which are the square root of the eigenvalues C (without division by m).
Both approaches provide eignenvectors to realign the feature vectors such
that the resulting dimensions are uncorrelated.

4. Use the eignenvectors to transform coordinates. Let A denote the sum
of the eigenvalues or the trace of the covarinace matrices C and C’. Let
Ty denote the fraction of energy to be reserved. Sort the nonnegtaive
eignevalues according to their magnitude and select Jy < n eigenavlues

such that
Jo—1

Jo
> i< T, > i > To. (2)
=0 =0

Retain Jy dimensions cooresponding to the eigenvalues in matix A’.

5. Cluster the vectors u’ in A’ into p clusters. Apply PCA to each indi-
vidual cluster using a different 7'y as in Step 4. Reduce the number of
dimensions.

Additional computational complexity is incurred for multi-level indexing
structure, as exemplified in the case of a nearest neighbor query. Given a target
vector (with n dimensions) obtain its N nearest neighbors in the Euclidian



space. We need to transform the axes of the original target vector using the
eigenvectors at level one and then select an appropriate subset of its dimesnions.
We next determine the cluster to which the target vector belongs and proceed
to apply the appropriate rotation and dimensionality reduction again according
to the metadata for that cluster.

Furthermore, the nearest neigbors to a point may reside in other clusters as
well as the target cluster, which is usually the cluster with the closest centroid
to the target vector. To determine which of the clusters, in addition to the
target cluster, are candidates for nearest neighbor search, we consider the hy-
persphere centered on the taget point which encompasses N nearest neighbors
located in that cluster. Other clsuters need to be coinsidered if this hyperspere
intersects with them. A search for nearest neighbors in the second cluster may
replace some of the points from the previous search. This step is repeated after
computing the radius of the new hypershere, until there are no intersections.
The distances among various clusters is recomputed to determine the ordering
in which other clusters need to be considered, if at all.

4 Performance Study

As noted in the previous section, the nearest neighbor search is used in this
paper to assess the effect of RCSVD on retrieval performance. While we have
evaluated the efficiency of nearest neighbor search using an indexing structure
due to Park and Kim [44], we are also experimenting with R-tree and other
spatial indexing techniques. Nevertheless, this paper is concerned with the
inherent efliciency of SVD and clustering methods.

As far as the reduction in indexing space is concerned, we consider a measure
which is independent of the implementation of a specific indexing technique.
This measure, volume (denoted by V), is defined as the total amount of space
in order to store the indexing information. The volume of the original feature
space, Vp, thus equals mn. The volume of the clustered feature space, is

K
V=) min; (3)
i=1

where K is the total number of clusters, m; is the number of feature vectors
in cluster ¢, and n; is the dimension in cluster . The reduction in volume by
applying the algorithm described in the previous section can then be defined
as 1 — V1/Vh. The space required for eigenvectors and selecting appropriate
features at each level tends to be small and is ignored in this study.



The reduction in the number of dimensions results in a perforamnce degra-
dation, which is defined below. Let D be the set of the feature vectors in the
database. Let A be the set of the k& nearest neighbors to a vector v. Let the
query ask for a set containing the k nearest neighbors to v, and call B the result
of the query. In general |B| > |A|, where || denotes the number of elements
of the set. Let C = A N B be the subset of the k nearest neighbors actually
retrieved by the query. It is clear that, for a fixed template vector v, the size
of C' is a non-decreasing function of the size of A.

Two metrics are used to measure the performance of the proposed algorithm:

e Retrieval Efficiency, Rg, which is defined as the ratio between the total
number of feature vectors retrieved that are correct, |C| and the total
number of feature vectors retrieved,|B]:

_la
Rg = IB| (4)

e Retrieval Accuracy, R4, which is defined as the ratio between the total
number of feature vectors retrieved that are correct, |C|, and the total
number of feature vectors that are supposed to be retrieved, |A|:

_lcl
RA—|A| (5)

Clearly, as A approaches D, so do B and C. Thus, R4 approaches unity while
Rg approaches its lower bound |C|/|D].

In the special case of nearest neighbor search, we were concerned with find-
ing the N; nearest neighbors (according to Euclidian distance) to a feature
point. Since a search for N; vectors based on the transformed feature space
with reduced dimension will yield less than desired accuracy, a larger number
of points, N,, needs to be considered. The experiments are carried out for S
randomly selected vectors. During the 7** experiment, a total of N, ; vectors
are retrieved in order to locate the N, ; nearest neighbors. Assuming that there
are a total of K agreements between the retrieved vector list (of size 335, N.;)
and the target vector list (of size Y5, Ni;), the efficiency of the retrieval is
K/ Y% | N,; while the accuracy of the retrieval is K/ Y3 | Ny,.

The goal of any retrieval algorithms is to maximize the efficiency and accu-
racy simultaneously. However, this is often impossible as they do usually have
conflicting requirements.

Nine texture features from two different sets of images are extracted for this
experiment. The first set consists of 204,655 feature vectors from 55 synthetic
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Figure 2: Effective dimension as a function of the cutoff threshold.

aperture radar (SAR) images on Alaska. The second set consists of 1.5 mil-
lion feature vectors from 6 LANDSAT Multi-Spectral Scanner (MSS) images.
The texture features used in this study include fractal dimension, coarseness,
entropy, circular moran autocorrelation function, and several spatial grey-level
difference (SGLD) statistics (described in detail in [45]).

Figure 2 shows the effective number of dimensions retained as a function
of the energy cutoff threshold used in the SVD. In this figure, the number of
dimensions for both image sets grows slowly as the energy threshold increases.
In fact, three dimensions are adequate for retaining more than 95% of the
energy.

Although the retrieval accuracy monotonically increases with the cutoff
threshold, it is not possible to infer the accuracy nor efficiency from the cutoff
threshold directly. Figure 3 and 4 shows the retrieval efficiency for the first
and the second feature vector set, respectively, as a function of the number of
dimensions retained for a given minimal target accuracy. For the first image
set, the retrieval efficiency is independent of the target accuracy as the retrieval
accuracy already exceeds the target accuracy when the number of dimensions
is greater than 5. When the number of dimensions is less than 5, the retrieval
efficiency drop faster with the decrease of the dimension for higher target ac-
curacy. Apparently, less information is retained for fewer dimensions, and thus
more candidates are required to be explored in order to achieve the same ac-
curacy. The retrieval efficiency for the second image set demonstrates similar
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trend.

5 Discussion And Summary

In this paper, a new technique, Recursive Clustering Singular Value Decom-
position (RCSVD), is proposed to reduce the dimension of the feature space.
In this method, SVD is applied to the feature space first to reduce its dimen-
sionality. One of the clustering techniques such as CART or neural networks
are then applied to the reduced feature space to cluster the feature space into
overlapped or nonoverlapped regions based on the distribution of the feature
vector. SVD is then applied to each individual cluster to further reduce the
dimensionality of each cluster. This process can be applied recursively until the
dimensions cannot be further reduced. Spatial indexing techniques can then be
applied to the clustering results. The performance of spatial indexing working
in conjunction with RCSVD, however, remains to be investigated.

The effectiveness of the proposed scheme is measured in terms of the re-
trieval efficiency and accuracy of nearest neighbor queries. The experiment
is conducted on a selected set of features extracted from the satellite images.
The results show that significant dimension reduction (more than 200%) can
be achieved without much impact on the efficiency and accuracy.
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Figure 4: Efficiency as a function of the number of dimensions for image set 2.
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