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Preface

Several exponential (in terms of logp) lower bounds are obtained on
the degrees and orders of

e polynomials;
e algebraic functions;
e Boolean functions;

e linear recurring sequences

coinciding with values of the discrete logarithm modulo a prime p at
sufficiently many points (the number of points can be as little as p'/2+¢).
These functions are considered over the residue ring modulo p and over
the residue ring modulo an arbitrary divisor d of p — 1. The case of
d = 2 is of special interest since it corresponds to the representation
of the rightmost bit of the discrete logarithm and defines whether the
argument is a quadratic residue. These results are used to obtain lower
bounds on the parallel complexity of computing the discrete logarithm.

The method is based on bounds of character sums and numbers of
solutions of some polynomial equations.

Similar results are obtained for breaking the Diffie-Hellman cryptosys-
tem. Several other applications of the method are indicated as well.




Part 1

Preliminaries



Chapter 1

Introduction

In the first part of this work we consider various representations and
approximations of the discrete logarithm via some other functions over
finite fields such as polynomials and their combinations with €Xpo-
nential functions (linear recurring sequences, basically) and algebraic
functions (i.e., via functions f(X) satisfying a polynomial equation
F (X, f(X)) = 0 over a finite field).

The aforementioned functions form a basic set of ‘easily computable’
functions, at least when they are of small degree or order. For poly-
nomials this is obvious. For linear recurring sequences one can use a
kind of repeated squaring like for computing a single exponential func-
tion. For algebraic functions it is justified by recent progress in solving
polynomial equations over finite fields and finding points on algebraic
curves [12, 37]. So, the principal motivation of this work is to show that
none of such simple representations of the discrete logarithm holds. In
some cases we also show that the polynomials involved contain suffi-
ciently many monomials. Moreover, here we deal with partial represen-

tations, those are representations which hold only for some subsets of
the set of all possible values of the argument of the discrete logarithm.

Such results lead to lower bounds on the parallel complexity of comput-
ing the discrete logarithm in several different computational models.

Here we consider the case of prime fields. Respectively, we use the
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language of congruences modulo a prime p rather than finite fields.

Let us fix a primitive root ¢ modulo a prime number p > 3 and denote
by ind z the discrete logarithm (or indez) of z with ged(z,p) = 1, that
is the smallest non-negative integer u with g* =z (mod p). Thus the
discrete logarithm defines a bijective mapping from the group of units
of the residue ring modulo p, from the set {1,...,p — 1} essentially,
onto the set {0,1,...,p — 2}. Hence one can ask about polynomial
representation of this mapping that is a polynomial f(X) € Z[X] of
degree at most p — 1 such that

indz = f(z) (mod p), z=1,...,p— 1.

Our argument z ‘lives’ in the residue ring modulo p, this is why we
consider congruences modulo p. On the other hand, the function ind z
resembles the logarithmic function in the residue ring modulo p — 1.
Thus studying polynomial and other approximations modulo p — 1 is
another natural question which we also address in this work.

It has been shown in [30] that the polynomial

f@)= -1+ 5+ —1)"2* (mod p) (1.1)
k=1

1s the unique interpolation polynomial of the discrete logarithm modulo
p. We note that this polynomial is of very large degree and is dense
(that is, it contains p — 2 monomials).

Here we show that these two properties are preserved even for partial
representations and approximations of the discrete logarithm. More
precisely, for many practical purposes it would be enough to have a
simple polynomial representation of the discrete logarithm for almost
all z = 1,...,p — 1 rather than for all of them. We show that even
such a polynomial must be of high degree and contain many non-zero
coefficients. That result is quite simple and completely elementary.
Then using more involved arguments we consider

e approximation on small intervals [N + 1, N + H];

e approximation on very sparse sets;
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® approximation on random sets;

e piecewise approximation
The approximating function can be

e a polynomial;

a Boolean function;

an algebraic function;

e a linear recurring sequence.
Respectively, the aforementioned approximations are studied

e over the residue ring modulo p (to which the argument of ind z
belongs);

e over the residue ring modulo p — 1 (where the behaviour of ind z
resembles the behaviour of log z);

e over the r-dimensional Boolean cube where r is the bit length of
p (if we consider the argument z and the value ind z as sequences
of bits);

e over fields of real and complex numbers (if we consider the argu-
ment z and the value ind z as real numbers).

In particular, our results provide a non-trivial lower bound of the form
Q(p'/*log™" p) for the linear complexity [32] of the discrete logarithm
modulo any divisor d > 1 of p — 1. The question on the non-linear
complexity is dealt with as well.

In fact for a small divisor d of p — 1, the residue of ind z modulo d
can be found in d*/?10g®" p Boolean operations. Thus the sequential
complexity of this question is known to be polynomial. The results of
this work provide some insight on its parallel complexity.

The case d = 2 corresponds to the studying the rightmost bit of ind z.
This bit is of special interest of course since its parity determines
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whether z is a quadratic residue. Using estimates of character sums
we obtain a lower bound of order p'/4 on the number of monomials of
a Boolean function on bits of z computing the rightmost bit of ind z.
We apply it to obtain the lower bound Q(loglogp) on the depth of
Boolean circuits deciding whether z is quadratic residue or not. This
automatically implies the same lower bound on the parallel complexity
of computing the discrete logarithm as well as on the complexity of
irreducibility testing of polynomials over IF,,.

Our result supplements some of the results of [9, 11] about arithmetic
circuits (over IF,) deciding whether z € IF, is a quadratic residue or
not. Those papers are based on the observation that this question is
equivalent to computation of values of the polynomial z(¢=1)/2 Here, in
the same fashion, we use our bound on the degree of Boolean functions
giving the values of the rightmost bit of ind z.

We also estimate from below some other characteristic of such func-
tions which in turn gives a lower bound on their PRAM complexity,
that is, the complexity on a parallel random access machine with un-
limited number of all-powerful processors. More precisely, we consider
the modification which is known as CREW (concurrent read, exclusive
write) PRAM. Such a machine has an infinite shared memory and each
cell of which an hold an integer number and such that simultaneous
reads of a single cell by several processors are permitted, but simulta-
neous writes are not [33, 45].

We remark that several results about complexity of bits of the discrete
logarithm have been already obtained but all of them are based on
some unproven assumptions. Also they mainly concern the discrete
logarithm modulo a product of two primes rather than the classical
discrete logarithm modulo a prime. A good outline of such results can
be found in [16].

Then, we show that the same considerations are applicable to some
questions related to the Diffie-Hellman cryptosystem [6] based on the
discrete logarithm. This question is studied over arbitrary finite fields.

We apply our results to obtain a linear lower bound for the depth of
randomized arithmetic circuits over IF, breaking this cryptosystem. We
show that the depth of such circuit is of order logg at least. Thus it
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cannot be done in parallel logarithmic time (loglogg)®®). This holds
for probabilistic circuits giving the correct answers for very sparse sets
of values of the argument. Moreover, we show that even probabilistic
verification whether given u,v € IF, satisfy u = g%, v = g% cannot be
done in parallel logarithmic time.

The aforementioned result concerns arithmetic model of computation
when each element of IF, is considered as a whole without access to
its bits. Then, over IFs» we also deal with the Boolean model of com-
putation. We assume that each element u € IFyn is given by a binary
vector u = (uy,...,u,) containing the ‘coordinates’ of « in some fixed
basis of IFa» over IF;. Then we give a lower bound of the degree of
Boolean functions expressing the coordinates of g** via the coordinates
of g°. The bound is rather weak but still provides some non-trivial re-
sults about parallel Boolean complexity of breaking the Diffie-Hellman
cryptosystem. For example it cannot be done by a Boolean circuit of
constant depth. Unfortunately, this method does not work for other
finite fields.

Nevertheless, using a new and very general approach developed in
Chapter 8 to estimate the complexity of functions over IF,, we obtain
the lower bound (0.25 + o(1))loglogp on the CREW PRAM complex-
ity of breaking the Diffie-Hellman cryptosystem modulo a prime p.
This lower bound (as well as several others) is doubly logarithmic in
terms of the field size, so it does not rule out the possibility that the
question belongs to the complexity class NC but at least shows that it
cannot be done ‘superquickly’ even with unlimited parallelism.

Several lower bounds are also known on the complexity of determinis-
tic [31] and probabilistic [36] sequential algorithms to compute discrete
logarithms. However the results and approach of those papers are quite
different from those of the present work.

It could also be relevant to mention the papers (3, 4] where complexit
of finding of some small portion bits of the Diffie-Hellman transforma-
tion (over a prime field IF,) is considered and is shown to be expected
polynomial time equivalent to the whole problem of breaking the Diffie—
Hellman cryptosystem.

In the papers [2, 27] it is demonstrated that under certain conditions,

21EL
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breaking the Diffie-Hellman cryptosystem is polynomial time equiva-
lent (in the Boolean model of computation) to computing the discrete
logarithm.

Several more interesting result about parallel complexity of comput-
ing discrete logarithms modulo p, can be found in [42]. It should be
mentioned that in that paper more general Boolean circuits are used
(with unlimited fan-in), thus the obtained there upper bounds cannot
unfortunately be compared with our lower bounds.

We apply our method to derive quite a general estimate showing that
for any non-linear and non-constant function modulo sufficiently large
prime p its arithmetic and Boolean depths cannot be smaller than
0.124loglog p simultaneously. Although many results showing that if
one of those depths is small then the other one is not too large are
readily available [11], estimates of the type which we obtain here seem
to be unknown before.

These results provide the background for the aforementioned lower
bound on the complexity of breaking the Diffie-Hellman cryptosystem
modulo p.

Finally we show that several other related questions about permutation
polynomials, powers, Zech’s logarithm, primitive root testing and some
special Boolean functions can be dealt with along the same lines.

Our method is based on such classical tools of the theory of finite fields
as:

e bounds for the number of solutions of equations and congruences;

e bounds for various character sums.

Estimates of exponential sums are also used in [13] in a similar way.

We also use some standard facts and notions of the theory of finite
fields which one can easily find in [25].

In obtaining the lower bounds on the depth of circuits in Theorem 5.2
our arguments are quite close to those of [9, 10, 11] (see also given
there references to other works). However, it seems that in the proof
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of Theorem 7.7 some new arguments appear. We also use several other
notions and results of the complexity theory [33, 45].

Throughout this work, for a polynomial f over a ring R, wt f denotes its
weight, which is defined as the total number of its non-zero coefficients.

We also use the notation
e(z) = exp(2miz),

and use log z to denote the logarithm in base 2.

e
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Chapter 2

Auxiliary Results

Here we colleclt some lemmas we will need afterwards.

Let (u(z)) be a linear recurring sequence of order n over a field IK, that
is

w(r+n) =cpau(z+n—1)+... 4+ cou(z), z=12,..., (2.1)

where $(T) = T™ — ¢, T ! — ... — ¢p € K[T] with ¢y # 0 is called
the characteristic polynomzal.

It is useful to recall that such a sequence can be uniquely represented

in the form
m

u(z) = 3. N file) (2.2)

=1
where Ay, ..., Am are the roots of ¥(7") with multiplicities k;,. .., ky,
respectively, and fi(X),..., fm(X) are polynomials (over an algebraic
extension of IK) of degrees at most k; —1, ..., k,, — 1, respectively. The
inverse statement is also true: any sequence having a representation of
—theform(2.2)-is-a linear recurring sequence of order n =m+deg f; +
...+ deg fm.
In particular a polynomial f(X) € Z[X] of degree n satisfies a linear
recurrent equation of order n + 1

flz+n+1)= i(—l)“"‘ (n'}:l) flz+ k) (2.3)

k=0

11
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with characteristic polynomial 4(T') = (T — 1)"*.

Lemma 2.1. Let (u(z)) be a linear recurring sequence of order n sai-
isfying an equation of the form (2.1) over a field K with ¢y # 0 and let
u(z) # 0 for at least one integer z > 1. Then for any integer H > 1
there are at least |H/n| values of z =1,..., H with u(z) # 0.

Proof. 1t is obvious that if n consecutive values
u(z)=...=ulz+n-1)=0

then all further values u(z + n),u(z +n+1),... are zeros as well.

Moreover, using the fact that ¢y # 0 one easily derives that all previous

values u(z — 1),u(z — 2),... are zeros as well. So among every n
consecutive terms of the sequence there is at least one non-zero term
and the bound follows. O

The following lemma is based on very similar elementary considerations.

Lemma 2.2. Let f(X) € IF,[X] be a non-zero polynomial with deg f <
g—2and wtf =t > 1. Then there are at least (¢ — 1)/t values of
z € IF, with f(z) # 0.

Proof. Noticing that f(g%) = f(g**9!), we see that the number N of
z=0,...,9—2 with f(g%) # 0 is ¢ times less than the number T of
pairs (,%), y=0,...¢—2,i=0,...,t — 1, with f(g*™) # 0. Using
properties of Vandermonde matrices one can easily see that for any
y=0,...,4—2, f(g***) # 0 for at least one i = 0,...,t — 1. Thus
tN =T > g—1 and the estimate follows. D

The next four statements are slightly more general forms of the Weil
bound than it is usually known. They are combinations of a partial
case of the result of Example 12 of Appendix 5 of [46] and the standard
method of estimating of incomplete sums via complete ones [5, 17, 44].
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The method is based on the identity (see Exercise 11.b to Chapter 3
of [44])

M-1 ;
: _J 0, iful0 (mod M)
2, &(2miou/M) = { M, fu=0 (mod M). (2.4)
and the inequality (see Exercise 11.c to Chapter 3 of [44])
M-1| H+N
Yo I X e(2micy/M)| < M(In M +1) (2.5)
c=0 |y=H+1

which hold for any integers M > 1 and u.

We present a proof only the last Lemma; the other three can be ob-
tained similarly (and apparently can be found in the literature as well).

Lemma 2.3. For any non-trivial multiplicative character X modulo p
of order d and any n > 1 integers cq, ¢y, . . . , Cn Which are not all divisible
by d the bound

N+H
2 X (z"“(al.’c =+ bl)cl wrmie (anx + bn)ﬂn)

z=N+1

< (n+1)p*logp

holds for any integers N and H < p and any linear forms a;z + b; with
ai,b; # 0 and b;/a; # bj/a; (mod p), i,j=1...,n,i# ;.

Lemma 2.4. For any non-trivial multiplicative character X modulo p
and any polynomial f(X) € Z[X] of degree n = deg f > 1, the bound

< np*?logp

jfr_x_(z)p (:@_)

z=N-+1 p

holds for any integers N and H < p.

Lemma 2.5. For any polynomials f(X), g(X) € Z|X) with

deg f +degg=n
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and such that the rational function h(X) = f(X)/g(X) is neither a
constant nor a linear function modulo p, the bound

N+H hiz
> (2
s=N+1 p
g(z)#0 (mod p)

< np**logp

holds for any integers N and H < p.

Lemma 2.6. For any non-trivial multiplicative character x of IF, of

order d and any n > 1 integers ¢y, c1,. .., cn which are not all divisible
by d the bound

hiﬂ X (f[(a»fg" + bf)“)

z=N+1 =0

< (n+1)g*logg

holds for any integers N and H < ¢ — 1 and any linear forms a;z + b;
with a;,b; # 0 and b;/a; # b;/a; (mod p), 4,5=0...,n,i#j.

Proof. From (2.4) we obtain

N+H n
_§ X (_]_I(a»,-yz - bi)‘")

1 g-2 n _ g—2 N+H
=—3x (H (aig® + b:-)“‘) > 2 Wle(z-y)
q z=0 \i=0 c=0 y=N+1
1 g—-2g-2 n N+H
~ = X (H(a;-g* s bi)“) ¥(@) 3 (—cy),
q =0 z=0 i=0 y=N+1

where

b(z)=e (mq"_‘” 1)

is a primitive multiplicative character of IF,. Therefore y is some power

of 1,

where the exponent e satisfies

1<e<g-2  ged(e,g—1)=(g—1)/d.
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Applying the Weil bound in the form of Theorem 5.41 of [25] we obtain

Il

§¢ (g’°g(aef ¥ b.-)“*)

= |29 (-’b"c ﬁ(as‘l‘ + b.-)“‘)‘

zeF, q =0

:z;: X (E(aigz & bi)c‘) ¥(g™)

< (n+1)g"”

(one easily verifies that the condition of that theorem is satisfied). Tak-
ing into account that

In(g—1)+1<1logg

for ¢ > 2, from (2.5) we derive the desired bound. O

For a sequence of H points

I'= (’To,m- ‘e 7N-1,z)f=1

of the N-dimensional unit cube denote by Ar its discrepancy. That is

Tr(B) I
Ar = su ——= — |B||,
r BE[G’I;]N i |B|

where Tr(B) is the number of points of the sequence I which hit the
box

B = [By, ] x ... % [ﬁN-l:aN—ll C [B:a]™:
and the supremum is taken over all such boxes.

__For an integer vector a = (ag,...,an_;) € Z~ we denote

lall = oy lod,  r(2) =TT max{jad, 1}

We need the Koksma-Sziisz inequality which we present in the following
form [20, 43].



16 Don Coppersmith & Igor Shparlinski

Lemma 2.7. There ezist an absolute constant C > 0 such that for any
integer L > 1 the bound

1 1 1
Ar < CV (— += Y -
L Hyjajcr (@)

H N-1
Z e (27{'1 Z aﬂj,,)
j=0

=1

where the sum is taken over all integer vectors
a= (aﬁa"'!aN—l) € ZN
with [|a|| < L, holds.

We remark that the sequence I hits any box
B = [Bo, ag] X ... X [Bn-1,n-1] C [0, I]N

of size |B| > Ar.

To apply this lemma we will also need the following statement.

Lemma 2.8. Let f(X) € Z[X] be a polynomial whose degree satisfies
p > deg f > 3, and whose leading coefficient does not vanish modulo p.
Suppose that integers s and m satisfy the inequality

s(m+1) < logp.

Let L=2'—-1andey=0,e;=2% i=1,...,m. Then for any vector
a € Z™", with 0 < ||a|| < L the linear combination

F(X) =3 a:f(X +e)

1=0

15 neither a constant nor a linear function modulo p.

Proof. Without loss of generality we may assume that a,, # 0. Let
n=degf and f(X) = ¢, X"+ ¢;_1 X" 1 + ...+ ¢y. Then the leading
coefficient of F' equals
m
Co=ca) @,

=0
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and the second leading coefficient of F((X) equals

m m
Cn-1 = ncy E ai€; + Cpy—1 z a;.
i=0 =0
By the condition of the theorem we have ¢, # 0 (mod p). Hence if
C, = 0 then

m

> a;=0 (mod p)

i=0
and s
Cn-1 =ncp Y_aie; (mod p).
=0

One easily verifies that

m m
> aie| <LY e <p,
i=0 i=1
and that o i
Za,-ei zem—LZei>0.
=0 i=1
Therefore A,_; # 0 (mod p), thus F is of degree at least n — 1 > 2
modulo p. O

Finally we need a similar result for rational functions.

Lemma 2.9. Let f(X), g(X) € Z[X] be polynomials such that the ra-
tional function h(X) = f(X)/g(X) is not a polynomial modulo p. Then
for any integer k < logp there exist at least

M>k— degg(d;gg- 1)

integers
e ), S.Si Sk, iil,_._._._,_M,_ RS

such that any non-trivial modulo p linear combination

M
H(X)= Ea,—h(X-I— €),
=0
where g =0, e; = 2%, i=1,...,M, is neither a constant nor a linear
function modulo p.



18 Don Coppersmith & Igor Shparlinski

Proof. From the condition of the theorem we conclude that g(X) is not
constant modulo p. Obviously it is enough to show that there exist at
least M integers 0 < 8; < ... < sy < k such that the polynomials
g(z+e;),i=0,..., M are pairwise relatively prime in the residue ring
modulo p.

Let A,...,An be the N < degg distinct roots of g in the algebraic
closure of Q.

Let D be the set of integers §, 0 < § < p — 1, such that
A=A =6 (mod p).

for some pair (I,7), with 1 <l <r < N.

We define the 2-adic order ord 6 of integer § as the largest power of 2
which divides 4, i.e., ord , = v if and only if

p=0 (mod2¥), p#O0 (mod2"?)

and put
T ={ords6 : 6§ € D}

We define the sequence sy,...,s) by the relation
{s1,...,sm}={1,...,k}\T
It is obvious that if
A=A =2%-2% (mod p)

or
A=A =2% (mod p)

for some pair (I,7), with 1 <! < r < N, and some pair (i,5) with

6=2%—-2% (mod p)

or
6=2% (mod p)
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for some § € D. Because k < logp these congruences imply that
6=2%—2%

or
p=2%

which is impossible because of the choice of the sequence s;,. .., s),.

Thus the corresponding polynomials g(z + €;), : = 0,..., M, are pair-
wise relatively prime in the residue ring modulo p. It is easy to see that
M>k-|T|>2k—N(N-1)/2. O

Following [45], for a Boolean function B(Uy,...,U,) we define the crit-
ical complezity which is also known as sensitivity o(B) as the largest
integer s < r such that there is a binary vector z = (zy,...,z,) for
which B(z) # B(z")) for s values of 4, 1 < i < r, where z() is the vec-
tor obtained from z by flipping its ith coordinate. In other words, (B)
is the maximum, over all binary vectors z = (z;,...,z,), of the number
of points y on the unit Hamming sphere around z with B(y) # B(z).

This function gives a lower bound for several other complexity charac-
teristics of B, see [33] or Chapter 13 of [45]. In particular, the relation
between the sensitivity and the CREW PRAM complexity of a Boolean
function is given by the following inequality which is essentially Theo-
rem 4.7 of [33].

Lemma 2.10. For the CREW PRAM complezity of any Boolean func-
tion B the inequality

CREW PRAM(B) > 0.5logo(B) + O(1)

“holds. - - - o



20

Don Coppersmith € Igor Shparlinski



Part 11

A pproximation and
Complexity of the Discrete
Logarithm
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Chapter 3

Approximation of the
Discrete Logarithm Modulo

p

Here we show that polynomials and algebraic functions approximating
the discrete logarithm modulo p on sufficiently large sets must be of
sufficiently large degree, in fact exponentially large (in terms of log p).

We start with a rather simple statement.
Theorem 3.1. Let f(X) € Z[X] be a polynomial of degree n = deg f
and of weight t = wt f such that
indz = f(z) (mod p), z €S, (3.1)
foraset S C{l,...,p—1} of cardinality |S|=p—1—s. Then
n>p—2-—2s, t>(—-1)/(2s+1)—1.

P}-oof Let R be the set of z € {1,...,p— 1} for which both
indz = f(z) (modp) and indgz = f(gz) (mod D).

Then |R| > p—1-2(p—1—|S|) = p—1—2s. We have, ind g7 = 1+ind z
ifz# g% (mod p). Hence

flgz)=indgz=1+indz =1+ f(z) (mod p)

23
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for z € R with z # gP~? (mod p). Therefore the polynomial h(X) =
f(gX)—f(X)—1 has at least | R|—1 zeros modulo p and is not identical
to zero modulo p (because h(0) = —1). Thus n > degh > |R| — 1.

Also, if f contains { = wt f monomials then h contains wth < ¢t + 1
monomials. Because we are dealing with z # 0 (mod p), we may
assume that deg f < p — 2. Applying Lemma 2.2 we see that p — 1 —
(|JR|—1) > (p—1)/(t+1) and the desired result follows. O

In particular, if s = o(p) then deg f ~ p and wt f — o0.

Certainly, for any S one can satisfy (3.1) with a polynomial f of degree
degf<|S|—-1=p—2-s.

Theorem 3.1 is non-trivial if the set S is dense enough, |S| > p/2.
The next result is applicable to quite sparse sets S beginning with
S| ~ (2p)*2.

Theorem 3.2. Let p > 3 and let f(X) € Z[X] be a polynomial of
degree n = deg f such that

indz = f(z) (mod p), z €S,
forasetSC{l,...,p—1}. Then

151(1S] = 1)
"7

Proof. Let us consider the following set
D={a=zy' (modp), 2<a<p-1, z,y€ S}

Trivially |[D| < p-—2.

On the other hand, obviously there is @ € D such that there are at least
|S|(|S| — 1)/|D| representations a = zy~! (mod p), z,y € S. Select
this a and let R be the set of z € {1,...,p — 1} for which both

indz = f(z) (mod p) and indar = f(az) (mod p).
We see that |R| > |S|(|S|—1)/(p — 2).
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Also, we have, indaz = inda + ind z or indaz = inda + ind z -p+1.
Hence either

f(az) =indezr = inda+indz = inda+ f(z) (mod D)
or
f(az) =indaz =inda+indz —p+1= l+inde+ f(z) (mod p)

for € R. Therefore at least one of the polynomials A, (X )= f(aX) -
f(X) —inda and hy(X) = f(aX) — f(X) — inda — 1 has at least
|R|/2 zeros modulo p. Because of our choice of D neither of these
polynomials is identical to zero modulo p. Indeed, &, (0) = —inda Z 0
(mod p) since @ # 1, and hy(0) = —inda — 1 % 0 (mod p) since
0<inde <p-—2. Thus n > |R|/2 and the desired result follows. [J

Certainly, for any S one can satisfy (8.1) with a unique polynomial f
of degree deg f < |S| — 1. Now we show that for a randomly selected
set S that degree cannot be smaller. In particular, with probability
1 —o(1) we have deg f = |S| — 1 for that polynomial.

Theorem 3.3. Let S be a set of m random elements picked uniformly
from {1,...,p —1}. Then the probability Pi(p, m) that there ezists a
polynomial f(X) € Z[X] of degree

degf<m—k
and such that

indz = f(z) (modp), =z€S,

satis_ﬁes the bound
2m

Pi(p,m) < (—)m.

p—1

Proof. We say that a set T is satisfied by a polynomial f(X) € Z[X)] if
the condition of the theorem is fulfilled for this pair (T, f). Accordingly
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we say that a set T' is maximally satisfied by a polynomial f(X) € Z[X]
if it is satisfied by this polynomial but any superset of T is not.
Suppose there are N various sets S; C {1,...,p—1},i=1,...,N,
that are maximally satisfied by polynomials f; of degree at most n =
m — k — 1. In particular, polynomials f;, i = 1,..., N are pairwise
distinct.

Therefore, [S;NS;| < n,1 < i< j < N, otherwise we would have
fi = f; being the unique polynomial on the intersection S; N S;. Thus,

> Yis ¥ 15("‘1)- (32)

i=1 TCS, TC{1,mp-1} n+1
|T|j=n+1 |Tl=n+1

From Theorem 3.2 we see that |S;| < (2n(p — 1))*/2.

For an (n+ 1)-element set T C {1,...,p— 1}, denote by fr the unique
polynomial of degree at most n such that T is satisfied by this polyno-

mial. Also, denote by Ry the set which is maximally satisfied by fr.
Then,

= ] 2y

Y (P~ i 3 (e 8- 2

Pk(p,’ m) — ( ) ( )
Timns1 \R+1 rEeCa; k

=1 -1 N
1
(n+1 k g TEZS.' TQSZQS.'
IT|=n+1 |S|=m

_ (p=1\T'(p-n-2 'li 1Sil \ (1Sil = n—1
— \n+1 k o \n+1 k
‘We have, |

(p—n—2‘1(|s,-|-n-1 < (1S1=n-1\*
k k - p—n-—2
k k/2
25 =)
p—1) — \p—-1

Substituting this in the the previous inequality and using (3.2) we derive
the results. O

IA
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Selecting k = 1 we obtain that if m = o(p), for almost all sets of size
m the smallest degree of the polynomial which they satisfy is of degree
m-—1.

Now we show that over intervals of length H > p'/?*¢ polynomial
approximation of the discrete logarithm requires polynomials of large
degree.

Theorem3.4. Let 0 < N < N+ H < p—1 and let f(X) € Z[X] be
a polynomial of degree n = deg f > 1 such that

indz = f(z)+6; (modp), N+1<z<N+H,

where the ‘error’ vector (6z)f:f+1 s of Ly-norm at most

N+H
Y |6 < AHp

z=N+1
with 0 < A < 0.5771. Then

H

-1
n > (1 —2n(A+p )) m

Proof. For any real o we have

le(a) — 1| = 2|sin7wal| < 27|al.

Therefore
N+H indz — N+H
Y e (m_m_im).) =!Y. e(iz-) > H-2rAH. (3.3)
z=N-+1 p o . z=N+1 & e T
We also have
indz indz indz 1
0< - = <=
p=1 p plp-1) p
thus

2T

>

{ (indz) (inda:)
6 l—— |=~@% <
p p—1
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o[22

is a non-trivial multiplicative character modulo p, from Lemma 2.4 we

Recalling that

derive
Nf”e(indm—f(z)) < |5 X(x)e(-ﬂw_)) o 2H
z=N+1 p z=N+1 p

< np'?logp+ 2—@
b
Therefore H —2nAH < np'/?log p+ 27 H/p and the bound follows. 0O

In particular, ifindz = f(z) (mod p)forasetS C {N+1,..., N+H}
of cardinality |S| = H — s then we can put A = s/H. However in this
particular case some improvement is possible.

Theorem3.5. Let 0 < N < N+ H < p—1 and let f(X) € Z[X] be
a polynomial of degree n = deg f > 1 such that

indz = f(z) (mod p), 2E€ S,
fora set SC{N+1,...,N+H} of cardinality |S| = H — 5. Then

n>H-2s—27rH/p
~  p'?logp

Proof. We follow the same arguments as in the proof of Theorem 3.4
but instead of (3.3) we use that

fo . (inda:; f(:c)) S+ e (ind:n; f(m))

= > H-—2s

and the bound follows. O
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For example, if f(z) gives the correct value of indz for the portion
a > 0.5 of points of an interval of length H > p'/2*¢ then the degree
of f is exponentially large (in terms of logp), deg f > Cp* log™ p with
some constant C > 0.

Now, assume that we are given a piecewise polynomial approximation
of the discrete logarithm. Thus we are given m + 1 integers 0 = N; <
Ny < ... < Nps1 = p—1and m polynomials f;(X), ..., fu(X) € Z|z,
of degrees n; > 1,...,n, > 1 respectively such that

indz = f,‘(&'}) (de p), TESN [N; + 1, N,'+1], g = 1, veeym,

for a set S € {1,...,p— 1} of cardinality p— 1 — s.
We put s; = Niiy — N; — |S N [N; + 1, Ni44]|. Then i

m
Sn >
i=1

1 m

Piogy E (Ni1 — N; — 28; — 27(Niy1 — ;) /p)

(p—-1)(1-27/p)—2s _ p—2s—2r—1
> ;
p]""z lng - p]-/'z logp

In particular, if S| > ap with some a > 0.5 then
m
>_n > Cp'?log™ p,
i=1

where C > 0 is an absolute constant,.

In the following theorem we consider a possibility of representation of
the discrete logarithm via algebraic functions.

Theorem 3.6. Let F(X,Y) € Z[X,Y] be a bi-variate polynomial of

the form
t
FX,Y)= Y. X" (¥},
i=1
where 0 < n; < ... < ny < p—1 and polynomials Li(Y) € Z[y],
i=1,...,t, are of degree at most n not all identical to zero modulo p.

Assume that

F(z,indz) =0 (mod p), z€S,
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fora set S C {1,...,p— 1} of cardinality |S|=p—1—s. Then

t(n+1) > (p—1)/(s+1).

Proof. From the condition of the theorem one sees that
F(g',y) =0 (mod p), vy € R,

for aset R € {0,...,p— 2} of cardinality |R| = |S| = p—1—3s. On the
other hand, from (2.2) one finds that u(y) = F(g?,y) is a linear recur-
ring sequence of order at most ¢(n + 1). Its characteristic polynomial
has the constant term ¢y = g™ ...g™ # 0 (mod p). Moreover, be-
cause 0 < n; <mj <p—1,then g™ # g™ (modp)forl<i<j <t
Taking into account that the polynomials f;(Y), i = 1,...,¢, are not
identical to zero modulo p, we conclude that the sequence (u(y)) is not
identical to zero modulo p, either. It follows from Lemma 2.1 that

p—1 9]
-1 T
= L(n+1)J ~tn+1) 1
and the desired estimate follows. O

In particular, let D, denote the smallest degree
d = max{degy F, degy F}

of all non-zero modulo p polynomials F(X,Y) € Z[X,Y] such that
the congruence F(z,indz) =0 (mod p) holds forallz =1,...,p— 1.
Thus, D, is the degree of the discrete logarithm as an algebraic function
over IF,. For (d + 1)* coefficients of such a polynomial we obtain a
system of p — 1 homogeneous equations which has a non-zero solution
whenever (d + 1) > p. Hence together with Theorem 3.6 (setting
t=d+1,n=d, s=0) we obtain a very tight bound; namely

p?>D, > (p-1)¥2 -1,

Theorem 3.6 is non-trivial if the set |S| ~ p. The next result is appli-
cable to quite sparse sets S beginning with |S| ~ pl/2+¢.
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Theorem 3.7. Let F(X,Y) € Z[X,Y] be a non-zero modulo p > 3
polynomial of total degree n = deg F' such that

F(z,indz) =0 (mod p), z €S,
for a set SC {1,...,p—1}. Then
n > |S|(3p) .

Proof. In the proof it will be more convenient to use the language of fi-
nite fields rather than congruences. Let us consider the complete factor-
ization of F(X,Y’) over the algebraic closure of IF,, (thus all factors are
absolutely irreducible polynomials). Let ¥(X,Y") be an irreducible fac-
tor of F(X,Y), of total degree d = deg ¥, for which ¥(z,ind z) = 0 for
at least |S|d/n values of z € S. Denote this set of z by T, |T'| > |S|d/n.

As in the proof of Theorem 3.2 we select a # 1 such that there are at

least |T'|(|T'| — 1)/(p — 2) representations a = zy~!, z,y € T. Let R be
the set of z € {1,...,p — 1} for which both

¥(z,indz) =0 and ¥(ar,indaz)=0. (3.4)

We see that
S1d(S1d ~ n)

n?(p—2)
We have indaz = inda+indz or indar = inda+indz — p+ 1. Hence
either

|R| 2

V(az,indz +inda) =0

or
¥(az,indz +inda+1)=0

for z € R. Therefore at least one of the polynomials ¥(aX, X + ind a)
and ¥(aX, X +ind a+1) has at least |R|/2 zeros. We see, that inda # 0
since a # 1 and inda # —1 since 0 < inda < p— 2. Therefore, there is

b # 0 such that the system of equations

U(X,Y)=¥(aX,Y +b)=0

has at least |R|/2 solutions.
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If the polynomials ¥(X,Y) and ¥(aX,Y +b) are relatively prime then
this system has at most d? solution and we obtain
2 5, 151d(Sld - n)

@2 2n2(p—-2) -
We may assume that n < |5|/3 otherwise the bound is trivial. Then

|S|d —n > 2|S|d/3,
so that d* > S%d?/(3n?p), and the desired inequality follows.

If ¥(X,Y) and ¥(aX,Y + b) are not relatively prime, then recalling
that ¥(X,Y’) is absolutely irreducible (thus so is ¥(aX,Y + b)) we see
that ¥(aX,Y +b) = p¥(X,Y) for some constant u s 0. If

d
¥Y(X,Y)= ZX‘f,-(Y)

=0
then for each i = 0,...,n, f;(Y) divides f;(Y + b). That implies
fi(Y) = pifi(Y + b) for some constant u; # 0. If n < p (otherwise
there is nothing to prove) then this is possible only if f;(Y) is a con-
stant polynomial and g; = 1. Thus ¥(X,Y) = ¥(X) is a polynomial
in one variable. Therefore, the system (3.4) has at most d solutions.

= 1S]d(IS|d — n)
-n
B
a2 2n2(p—2)
and the desired result follows. O

It is obvious that for any S C {1,...,p — 1} there is a polynomial
F(X,Y) € Z|X,Y] of degree at most (2|S])'/? + 1 which satisfies the
condition of Theorem 3.7. Now we show that for almost all sets S this
bound is the best possible.

Theorem 3.8. Let p be sufficiently large, 0 < € < 6 < 1 and m <
p'%. Let S be a set of m random elements picked uniformly from
{1,...,p—1}. Then the probability P, s(p,m) that there ezists a poly-

nomial F(X,Y) € Z[X,Y)] of degree
deg F < [(em)” 2J -1
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and such that
F(z,indz) =0 (mod p), z €S,
satisfies the bound

Pz,ﬁ(ps m) < zmp-—(b'—e)mﬂ_

Proof. We say that a set T' is satisfied by a polynomial F(X,Y) €
Z[X,Y] if the condition of the theorem is fulfilled for this pair (T, F).
Accordingly we say that T' is maximally satisfied by a polynomial
F(X,Y) € Z|X,Y] if it is satisfied by this polynomial but any superset
of T is not.

Suppose there are NV various sets S; C {1,...,p—1},i=1,..., N, that
are maximally satisfied by polynomials Fi(X,Y) € Z[X,Y] of degree
at most n = cL-Er:m)mj — 2. In particular, polynomials F}, i = 1,...,N
are pairwise distinct modulo p, thus

N < pn+2)n+1)/2,

From Theorem 3.7 we derive |S;| < n(3p)!/2. Therefore
-1 N N m
Bt (e
FPylp. i) = < —
om = (P21 S () <5 (L
< prt2)(n+1)/2 (_____n(3p )1;2)'" < 2mpmpnt2)(n+l)/2-m/2

p—1
& 2mmm/2p(s—1)m;’2 < 2mp—{6-—£)m/2_

and the result follows. O
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Chapter 4

Approximation of the
Discrete Logarithm Modulo
p—1

In this chapter we consider various approximations and representation
of the discrete logarithm modulo a divisor d of p—1. Certainly the case
of d = 2 is of special interest because it corresponds to representation
of the rightmost bit of ind z.

Moreover, instead of polynomials we consider a much wider class of
representations via linear recurring sequences.

Theorem4.1. Let 0S N<N+H<p-—1andletd> 1 be a divisor
of p— 1. Let (u(z)) be an integer linear recurring sequence of order n
such that
indz = u(z) (mod d), zT€S,
_foraset SC{N+1,...,N+ H} of cardinality |S|=H —5s. Then
n > 2 -1
T 25+2+p%logp T

Proof. We see that for at least H —n — (n+ 1)(H — IS]) > H - (n+
1)(s+1) values of z =N +1,...,N + H,

ind(z+d)=u(z+i) (modd), i=0,...,n.

35
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Put ¢, = —1. From (2.1) we see that

Y cind(z+4) =0 (mod d). (4.1)
=0
for at least H — (n+1)(s+ 1) values of z = N+1,...,N + H. The
congruence (4.1) is equivalent to the statement that the product z%(z+
1)2...(z + n)° is a d-th power residue modulo p. Thus, for a non-
trivial character x of IF; of order d, we have

NfZH x(@®(z+1)%...(2+n)") > H-2(n+1)(s+1).

On the other hand, because ¢, = —1 Lemma 2.3 can be applied. There-
fore,
H-2(n+1)(s+1) < (n+1)p*%logp

and the result follows. O

In particular, if H > max{sp’, p!/2*¢ log p} with some fixed § > 0 then
the order of the sequence must be exponentially large, n > pf.

It is interesting to note that the lower bound does not depend on the
divisor d. In particular, selecting d = 2 we see that even the rightmost
bit of indz cannot be given by a linear recurring sequence of small
order.

In particular, using s = 0 one obtains a lower bound 2(p/?log™" p) on
the linear complezity of the discrete logarithm modulo a divisor d of
p — 1. We recall that the linear complexity of a sequence ay,...,an,
over a ring R is defined as the smallest order L of a linear recurrent
relation

a=+L=cL—la'z+L—1+~-+cﬂa'zs $=1)---:m"Ls

among elements of this sequence [32].

Also, assume that we are given a piecewise representation of the dis-
crete logarithm via linear recurring sequences, thus we are given m + 1
integers 0 = N; < N, < ... < Nmy1 = p—1, m divisors d;, ..., d,, of
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P — 1 and m linear recurring sequences (u;(z)),. .., (um(z)), of orders
ny,..., N,y respectively such that

indz = wi(z) (mod d;), z€[N;+1,Ny), i=1,...,m.

Then

m 1 m

beavias: T mmrss o i e
gning(Nuﬂ N)-m=(p-1)p log7 p—m

On the other hand, obviously
m
Y ni>m =
=1

thus
m
D mi > 0.5(p—1)"?1log™ p.
i=1

Obviously one can apply the result above to the special case of polyno-
mials.

Finally we obtain a lower bound on the length of non-linear recurrent
relation which the rightmost bit of the discrete logarithm (therefore
the discrete logarithm itself) may satisfy. Moreover, we allow the coef-
ficients to be polynomials in z rather than constants.

Theorem4.2. Let 0K N<N+H<p-1 and

ind (z + my,) = F(z,ind (z + mp), ...,ind (z + mp_;)) (mod 2),

-for all elements z € S of a set S C {N +1,...,N + H} of cardinality
|S| = H — s and a polynomial F(Xo, Xy,...,X,) € Z[Xp, X1,...,Xq]
and n+ 1 pairwise distinct modulo p integers my, ..., m,. Then

H
n > log (m) + O(loglogp).
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Proof. From the condition of the theorem we see that there does not
exist £ € S such that simultaneously

z=ind(z+mp) =...=ind (T +Ma_y) =0 (mod 2)
and
ind(z+m,)Z F, (mod 2),
where Fy = F(0,...,0). Therefore for any even z € S we have

(x(e+ma) = (~1)®) TT (x(z +me) +1) =0,

i=0
where x(z) is the quadratic character modulo p. Therefore

n—1

> (xz+ma) = (1)) [T (x(z+m) +1)=0.  (42)

z€S i=0
z=0 (mod 2)
After simple evaluation one sees that the right hand side contains one
‘main’ term with absolute value at least H/2—s5—1 and 2"*! —1 terms
of the form
£ Y x(z+5)...(z+4),

zES
=0 (mod 2)

where 0 < j; <...<jy <p-1,k <n+1 Applying Lemma 2.3 we
see that the absolute value of each such term does not exceed

> x(@+5)...(z+ 7))

zES
z=0 (mod 2)

N+H
<t 2 x(@+5)...(z+5)|+s
’E(?:?:;ld 2)
N+H
= > x((2z+71)...2z+ i)+
(N+1)/282<(N+H)/2

< s+ kp'/%logp.
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Thus from (4.2) we derive

n+1
H/2-5-1 < Z(nzl)(s+kp1/2logp)
k=1

& Qe (.s + (n+ 1)p*/? logp) ,

which implies the desired result.

39

0O

The case when the polynomial F' does not depend on the first coordi-
nate, s = 0, and m; = ¢, ¢ = 0,...,n, corresponds to the non-linear
complexity of the discrete logarithm (on the interval z = N+1,..., N+

H). Thus if H > p'/2*¢ then it is Q(logp).

The result can be extended to any divisor d of p — 1 without any diffi-

culties.
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Chapter 5

Approximation of the
Discrete Logarithm by
Boolean Functions

Here we consider bitwise approximation of the discrete logarithm given
the bit representation of the argument. Moreover, we concentrate on
the rightmost bit on indz. This question is essentially equivalent to
deciding quadratic residuosity of z.

In [9] (see also [11]) the identity

(a=1)/2 1, if z is a quadratic residue in IF,,
T = w3 3 : :
-1, if z is a quadratic non-residue in I,

has been used to obtain the lower bound Q(logg) on the depth of
arithmetic circuits over IF, deciding whether z € IF; is a quadratic
residue (the most important thing is that the degree (g—1)/2 is large).
———Here we consider Boolean circuits. It should be noted that our bound
2(loglogp) (which we prove for prime fields IF, only) on their depth
1s weaker. This actually agrees with the expectation that for this par-
ticular question Boolean circuits are exponentially more powerful than
arithmetic ones; see [11] for a discussion of this phenomenon and a
survey of relevant results.

Each Boolean function B(Xj,...,X,) we represent as a multilinear

41
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polynomial of degree n over IF, of the form

n

B(Uls“-aUr)= z z: AI':[...t'gUﬁ-"Uik E]F2[U1':'-°QU!']'

k=0 1<i1<..<@p<r
(5.1)

We consider Boolean functions producing the rightmost bit of ind x
from the bit representation of z. We also assume that all numbers
contain the same number r of bits (adding several leading zeros if nec-
essary) where r = |logp|. Thus each such function is defined on a
portion 1 < z < 2"—1 < p—1 of the complete residue system modulo

p.

Theorem 5.1. Let a Boolean function B(Uy,...,U,) of r = |log p)
Boolean variables be such that for any z, 1<z < 2" —1,

B(u 8 0, iz is a quadratic residue modulo p,
P71, if 2 ds a quadratic non-residue modulo p,

where £ = u; ... u, is the bit representation of xz. Then

wt B > 27%2pl /4 jog=1/2p _ 1,

Proof. Put t = wt B and define k by the inequalities
28> t41> 951,
For each m = 1,...,2%¥ — 1 we consider the function
Ba(Vi;..., Vo) = B(W, ..., Vop,€1,..., €2),

where m = e; ...e; is the bit representation of m. Obviously the total
number of distinct monomials in V;,...,V,_; occurring in all these
functions does not exceed t. Therefore, because of the choice of k, one
can find a non-trivial linear combination

Z cmBm(Vl,...,K_k), Cly.vuyCok_g EIFz,
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which vanishes identically.

Let x(z) be the quadratic character modulo p. From the condition of

the theorem we see,
x(@) = (~1)Bers),

Therefore, for 0 < y < 2% — 1 we have

2k—1 2k_1
I1 x(2*y + m)°m = (—1)Zmes emBm(iesdran) = 1
m=1

where y = v;...v,_; is the binary expansion of y.

Combining this result with Lemma 2.3 we get

2r-k_1  f2k_1
rr= 3 x (H (2y +m)° | < 2%p'/logp.

y=0 m=1

Hence, 2% > 27p~'/21og™'p > 0.5p'/?log™p. And finally we derive
that t + 1 > 2k-1 > 2-3/2p1/41og=1/2 i

It easy to see that the same result holds for the monomials of the form
(@a1Uy + by) ... (anU, + b,) with a;,b; = 0,1, § = 1,...,n as well. In
other words one can consider not only positive literals but negative ones
as well.

To estimate the degree of n = deg B from below we recall the asymp-
totic

< (m};’w) e

where H(y) = —vylogy — (1 — 7)log(1 — ), which holds for any fixed
7,0 <7<1/2and N — oo; see [26], Section 10.11. Then from the

~ inequality
Z (T r
< < 1
<E(0)se()

which holds for n < r/2, one can easily derive that under the condition
of Theorem 5.1
n > dlogp + o(logp), (5.2)
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where 9 = 0.041... is the root of the equation H(9) = 1/4, 0 < ¥ <
1/2.

In fact for a half of primes a better estimate can be obtained. Indeed,
suppose p = +3 (mod 8). Then 2 is a quadratic non-residue modulo
p. Hence the polynomial

F(Xl, mite ,X,._l) = B(U,Xl, it ,X,...]_) -+ B(Xl, s ,.X,-_]_, 0)

takes the value of 1 for all non-zero binary (r —1)-tuples (z, ..., Tr_1),
where as before 7 = |logp|. On the other hand, F(0,...,0) = 0.
Therefore

r—1

F(Xl,...,X,-._]_) — H(1+X,)"|"1
i=1
Thus
degB>degF=r-1 (5.3)
and

wt B > [0.5wt F] = [(2! —1)/2] = 272,

Boolean functions giving the rightmost bit of ind z for all but at most s

values of z = 1,...,2" — 1 can be considered as well. Indeed, one easily
sees that the bound of Theorem 5.1 can be modified as
t > Cmin{p"/*log™"/* p, ps'}, (5.4)

where C is an absolute constant.

If p=+3 (mod 8) then as in the proof of the bound (5.3) we obtain
that the polynomial

F(X]_,. . .,X,._l) = B(O,Xl, . .,X,-_]_) +B(X1,. .. ,X,-_]_,O)

takes the value 1 for all but at most 2s+1 binary (r—1) tuples but is not
identical to one. Applying the presented in [15] bound of R. Smolensky
which claims that if a polynomial

F(Yi,...,Yn) EFlYi,..., V)

of degree n has one zero over IF, that it has at least ¢™ ™ zeros, we
obtain
deg B > deg F = r — 1 — log(2s + 1). (5.5)
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Now we obtain a lower bound for the parallel complexity of computing
the rightmost bit of ind z by Boolean circuits.

We deal with circuits which use addition and multiplication modulo 2
as their basic operations. Certainly the circuits using more common
logical AND, OR, NOT can be simulated by such a circuit with only
a constant factor increase of the depth.

We consider Boolean circuits of depth d of the following class BC(d).

Given a sequence of bits u, ..., u,, such a circuit C € BC(d) computes
the values of some Boolean function B(uy, ..., u,) in the following way.

Each circuit C € BC(d) has one special starting level and d levels of
Boolean processors which are called gates. Levels are numbered from
0 for the starting level to d for the last level. Each level may have an
unlimited number of gates, with only one gate on the last level.

Each gate of the starting level, accepts either some constant or the value
of one of the input variables u,, ..., u, for which we want to compute
the function B.

Each gate of level k > 1 accepts two values from some gates of previous
levels, ¢, ¢,, and then computes and outputs the value of ¢, #¢,, where
# stands for one of the arithmetic operations over IF,, that is # €
{+ x}.

Finally, the gate of the last level outputs the result of the computation
C(‘ul, saey 'u,).

Theorem 5.2. Assume that there is a circuit C € BC(d) such that
gwen the bit representation u, ...u, of z it computes

ol )= 0, if  is a quadratic residue modulo D,
2 Wgen ilte) = — 1, ifz is a quadratic non-residue modulo 20—

where1 <z <2" -1, r=|logp|. Then
d > loglogp + O(1).

Proof. We can assume that the kth level has no more than 24-* gates.
Indeed the last dth level may utilize no more than 2 gates of the (d—1)th
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level, those may utilize no more than 4 gates of the (d - 2)th level and
80 on.

Now it is easy to see that the output values C(uy,...,u,) coincide with
values of some Boolean function of degree at most 2°. Applying (5.2),
we obtain the result. O

Now we show that the same method which is used in the proof of
Theorem 5.1 can be used in studying the sensitivity of the Boolean
functions deciding quadratic residuosity.

Theorem 5.3. Let a Boolean function B(U,,. ., U:) of 7 = |logp|
Boolean variables be such that for any z, 1 <z < 27 — 1,

B(uy,...,u,) = { 0, ifz is a quadratic residue modulo p,

1 1, ifz is a quadratic non-residue modulo D,
where £ = u; ... u, is the bit representation of z. Then

o(B) > 0.5r + o(r).

Proof. We put m = [‘r”zJ, k=2m+1 1= [‘r - r”zg, R =2" — k2

One sees that for any fixed i, 0<i<landanyz=0,...,R—1, the

vector (B(z + j 2"));;1 is defined. As z ranges, the vector takes on the

value of each possible binary k-tuple 7' = (t1,...,t) with multiplicity
R-1 k

N(T) =273 T] (x(z + 52°)(-1)% + 1).

z=0 j=1

After simple evaluation one finds that the sum on the left hand side
contains one ‘main’ term R2~* and 2% — 1 terms of the form

R-1
g Z'; x (@ +572)...(z+43,29),

where s < kand 1< j; <... < j, <k. Applying Lemma 2.3 we see
that each term does not exceed 2~*sp'/2log p in absolute value. Thus,

k
N(T) = R2*+0 (2-"2 (;‘) sp*/?log p)

s=1
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= R27*4+0 (kp‘f ?log p)
= R27*+O(mr2"/?) = R2™* 4 o(R27*).

It follows from probabilistic arguments that for 2* + o(2*) binary k-

tuples T' = (1, ..., %), both of the following statements are true: ty; #

t2+1 for 0.5m +o( ) va.lues ofj =1,...,m, and ty; # t5;_; for 0.5m +
o(m) values of j =1, .

That means that, whatever the (i + 1)th bit of z happens to be, if the

vector (B(z + 32‘)) —1 18 such a k-tuple T, then among the m values

B(z +j21), j = 1,...,m, about half differ from their respective

B ((z +j2** )<‘>) = B(z +j2 £2) = B (c + (2 £ 1)2).

So,
! R-1 m
20, X 1
=0 z=0 j=1

B(:Hﬂj?""'lj#B((:-{-_le"‘Fl)“))
> (1+1) (R27* + o(R27%)) (2* + 0(2%)) (0.5m + o(m))
= 0.5RIlm + o(RIm).

For every ¢, 0 <4 <[ and every j,1 < j < m, we find

R-1 271
)3 1— ¥ 1 € m2t=p(").
B(=+J‘2"+1);B=(‘:=+_fzi+l){*')) s(,)::f,w)
Therefore
i 2T-1
o 3 1>2N+0(27).
i=0 a=0
S _B(s)#B .,(l}_) ! S

Thus there exists zp, 0 < 7o < 2" — 1, with

o(B) > i 1> 0.51+ o(l) = 0.5r + o(r)

B(ag)#B(= ('))

and we are done. O
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Combining this result with Lemma 2.10 one gets the lower bound
0.5loglogp+ O(1) on the CREW PRAM complexity of B. The bound
is slightly weaker than that of Theorem 5.2 but it concerns a more
powerful (but maybe less realistic) computational model.



Chapter 6

Approximation of the
Discrete Logarithm by Real
Polynomials

Here we consider some question about approximation of the discrete
logarithm by real or complex polynomials. Unfortunately our results
are weaker that those in our previous settings.

For a complex z € C we define its ‘residue’ modulo an integer m as

(2)m = z2—m |Rz/m] — m |Sz/m] i.

Theorem 6.1. Let 0 S N <N+ H<p-1,6>05 and let f(X) €
C(X) be such that

lindz — (f(2))p-1] < 6, T€ES,

for a set S C {N +1,..., N+ H} .of ca_r&;n_alitg:r ISf = H —s. Then

deg f > min{0.5log(H/6), H/2(s + 1)} — 2.

Proof. Let n = deg f. Using the recurrent equation (2.3) as in the
proof of Theorem 4.1 we derive that for at least H — (n + 2)(s + 1)

49
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valuesof z=N+1,..., N+ H,

> (-1t (“ i

1=0

)ind (z+19)=4A; (modp-1),

where
|Az| < 2726,

Therefore, the rational function

'ﬁ{(x + i)(_l)u+l—i(n-‘f1)

=0

of degree at most 2" takes at most 2(2"*'6 + 1)) values for at least
H—-(n+2)(s+1) valuesof z = N+1,...,N + H. Therefore

H-(n+2)(s+1) < 2" (2"*1§+1) < 223§

and the result follows. O

Now we consider computing the rightmost bit of the discrete logarithm
by real polynomials (on bits of the argument).

Theorem 6.2. Let r = |logp| and let a multilinear polynomial
f(Xy,...,X,) e RIX,,..., X,]

be such that f(uy,...,u,) >0 if z is a quadratic residue modulo p and

fluy,...,u,) <0 otherwise, where z = u, ... u, is the bit representation

ofz,1<z<2 —1. Then

deg f > logr + o(log ).

Proof. Assuming that p is large enough we put m = llogr — log'/? r_|.

Let n = deg f and
2 (m
M=Z(J.

=0
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We consider all possible multilinear monomials p;(y), i =1,..., M in
¥y = (¥1,...,ym) of degree at most n, arbitrarily ordered.

For every m-dimensional binary vector y = (y1,...,¥m) € [0,1]™ we
have a representation of the form

M
f@1yee s Trom, ) = Y @) fi(2a, - .., Toy). (6.1)

=1

Let Par (y) denote the parity function, that is Par (y) = 0 if an even
number of the bits of y are 1, and Par(y) = 1 otherwise. Thus, if
n < m then one easily verifies that

Y (-nPareye =0, i=1,....M (6.2)
velom

On the other hand, as in the proofs of Theorems 5.1 and 5.3, we see
that for 0 < z < 2™ — 1 any 2™-dimensional pattern of signs occurs

gr-mo—2m +0 (Tzr/2+m)

times among the coordinates of the vector (f (xl""’I"-”y))yefﬁ.ll'“'
where z1,...,Z,_m is the bit representation of z. For p large enough
that amount is positive. In particular, there is z = z;...z,_,, with
f(z1,...,2,—,y) > 0if Par(y) = 0 and f(2y,...,Z,_s, %) < O other-
wise, for all y € [0,1]°. Thus,

Y ()PEOf o my) >0

ye[0,1]m

which contradicts (6.1) and (6.2). Hence n > m. m]

In particular, one sees that a threshold representation (corresponding
to linear polynomials) of the rightmost bit of ind z is not possible.

More generally, using the same method one can show that any expo-
nential polynomial ®(z,,...,2,) of the form

k
q)(Xli " miss X") = Zexp (Li(xlw v ny X"‘)) fi(Xl, wiva ,X,-)
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with linear forms L; and polynomials f;, i = 1,..., k with complex co-
efficients and such that ®(z;,...,2,) > 0if z = u;...u, is a quadratic
residue and ®(u;,...,u,) < 0 otherwise (thus it takes real values at
binary vectors) satisfies the inequality

g ()2

i=1 1=0

where m = |_10gr — log'/? rJ.



Part III

Complexity of Breaking the
Diffie-Hellman
Cryptosystem and Other
Applications
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Chapter 7

The Diffie—Hellman
Cryptosystem

Let g be a primitive root of a finite field IF, of ¢ elements. One of
the most popular public-key cryptosystems, the Diffie-Hellman cryp-
tosystem, is based on the assumption that recovering the value of g*¥
from the known values of g* and g¥ is essentially equivalent to the dis-
crete logarithm problem and therefore is hard. Here we show that even
computation g% from g“ 1s cannot be realized by a polynomial of low
degree. We remark (although it is not essential for the rest) that indeed
the general case can be reduced to this one via the identity

g(z+z,r)zg—zzg—y2 = 9223--

We note that square root extraction can be done in deterministic poly-
nomial time because a primitive root g of IF, is known [37]. It is
demonstrated in [27] that the correct square root can easily be deter-
mined (and the entire reduction can be done in O(log” ¢) arithmetic
operations in IFy).

Theorem 7.1. Let f(X) € IF4[X] be such that

¢ =f@g"), ze€S, (7.1)
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for a set S C {N+1,...,N + H} of cardinality |S| = H — s with
H<qg-1. Then
deg f > H — 25— 3.

Proof. Let R be the set of z € {N +1,...,N + H} for which both
g% = f(g®) and gtV = f(g**+1) . We see that, |[R| > H —1— 2(H —
|S|) = H — 1 - 2s. Now, for u = g* with z € R we have

flgu) = f(g°*!) = g5+ = g f(¢%) = guPf(u).

So the polynomial h(X) = gX2f(X)—f(¢X) has at least | R| zeros in IF,
and is obviously not identical to zero. Therefore |R| < degh = deg f+2
thus deg f > |[R|—2> H — 2s — 3. O

Thus, as in the case of the discrete logarithm, if s = o(H) then deg f ~
H. Also, if N =0, H = ¢ — 1, one can show that wt f > (¢ — 1)/4s.

Certainly, for any S one can satisfy (7.1) with a polynomial f of degree
degf<|S|—-1=H-s-1.

Theorem 7.1 is non-trivial if the set S is dense enough on some interval,
|S| > H/2. The next result is applicable to arbitrary quite sparse sets
S beginning with |S| ~ 2H?/3,

Theorem 7.2. Let f(X) € IF,[X] be a polynomial of degree n = deg f
such that .
9° = f(g%), T €S,

foraset SC{N+1,.... N+ H} with H< q—1. Then
n > |S|?/2H — 4H/|S| - 1.

Proof. Let us define K = |2H/|S|| and consider the K + 1 shift-sets
Si=8—-14,1=0,...,K. They all belong to the interval of length
of H + K, thus denoting R;; = S; N S;, from the inclusion-exclusion
principle we obtain

K

(E+D)IS|= 3 |Ril=2IS|- 3 |RiIS|USSi| < H+K.

0<i<j<K =0 0<i<i<K
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Therefore, there is a pair 0 < i < j < K such that
2|S| 2(H+K)
K KK+1)

For this pair we put k = j — i and let R = Ry. Then for any z € R
we have both

|Ro,j—i| = |Ri;| > > |S|/K-12>|S?/)2H - 1.

g% =f(g°) and g+’ = f(g=+k).
Therefore,
T 1 2
f(g**F) = gloh)" = g#' gthogh? = ghke gk ¢ (gm)

Thus the equation f(g*u) = gF*u2tf (u) is satisfied for each u = g* with
z € R. On the other hand, it can be reduced to the form :

g f(w) - f(gw) =0

and therefore has at most 2k + n solutions (because k > 0 the polyno-
mial on the left hand side is not identical to zero). Hence n > |R|—2K.
O

Certainly, for any S one can satisfy (7.1) with a unique polynomial f
of degree deg f < |S| — 1. Now we show that for a randomly selected
set S that degree cannot be smaller. In particular, with probability
1 —o(1) we have deg f = |S| — 1 for that polynomial.

Theorem 7.3. Let g be sufficiently large and let S be a set of m random
elements picked uniformly from {0,...,q — 2}. Then the probability
Pi(p,m) that there ezists a polynomial f(X) € IF,[X] of degree

degf<m—k

and such that
9 =f("), =z€8,
satisfies the bound

k/2 g
4m 0, ifm—k > g3,
Pk(Q1m) < (q__—i) *+ { (3q—1f3)m1 zfm s ql,’S.
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Proof. We say that a set T is satisfied by a polynomial f(X) € FF,[X]
if the condition of the theorem is fulfilled for this pair (T, f), and that
T is maximally satisfied by a polynomial f(X) € IF,[X] if it is satisfied
by this polynomial but any superset of T is not.

Suppose there are N various sets S; C {0,...,¢—2},i=1,..., N, that
are maximally satisfied by polynomials f; of degree at most n = m — k.
In particular, polynomials f;, i = 1,..., N are pairwise distinct.
Therefore, |[S; N S;| < n, 1 < i < j < N, otherwise we would have
fi = f; being the unique polynomial satisfying the intersection S; N S;.
In particular

frae 5 ao(7) aa

=1 TCS; TC{0,.ry
IT|=n+1 |Ti=n+1

Also assume that only the first M of them are of size |S | > 2ni/2(q —
1)1{2
First of all we remark that M = 0 if n > ¢*/3
Indeed, from Theorem 7.2 (with H = ¢ — 1) we see that if M # 0 then
dn(¢—1)  4(¢—-1)
T 2(g-1) 2nl/2(g-1)1/2

—1=2n-2n"%(g-1)"% -1,

It is easy to verify that the last inequality fails for n > ¢'/3.

Now we consider the case n < ¢/3. Again from Theorem 7.2 we see
that in this case |S;| < (2+0(1))¢*®,i=1,..., N. We also claim that

M
; |Si] < 2g. (7.3)
Indeed, assuming the inverse inequality, we select L < M with
2q<o= ZL:IS.-I < 2 +2¢*"
i=1
We know that the number of S; is at most

£ i i _ 2q+2¢*8
< 2gn)7 = 2fq
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By the inclusion-exclusion principle we know that

L

a2y ISl X [Sin5j|20—nLL-1)/2> (3/2+0(1))q,

i= 1<i<j<L
which is not possible for g large enough. Therefore (7.3) holds.
Now we estimate the sum

i )"‘“
W= )
g (q -1

Obviously, W = 0 for n > ¢'/3. For n < ¢'/3, from (7.3) we derive

g —d i g-1
< 3(2+0(1)"g ™A < (3q‘”“)

for n < ¢'/* (and ¢ large enough).

For (n + 1)-element set T C {0,...,q — 2} denote by fr the unique
polynomial of degree at most n such that T is satisfied by this polyno-
mial. Also, denote by Ry the set which is maximally satisfied by fr.
Now we see

=1 -1
-aem = 2 (00 L2070

|T|=n+1 TCSCRyp
|S|=m

-1 -1 N
g—1 g—n-— 2)
1
b)) () 5z 3
IT|=n+1 |5|=m

— P1+P21

where Py is the part of the sum over i = 1,..., M and P, is the part
overi=M+1,...,N. Thus

—1 -1 x
g - 1) (q -n- 2)
B = 1
1 (n + 1 k g ﬂ%‘;"a rgszgs,-
ITl=n+1 |S|=m

Y TEE )



60 Don Coppersmith & Igor Shparlinski

(1) ()< ()"
and

4 k k
(q—n—?) (lS.-|—n-—1)<(|S,-|-n—1) <(|.S‘,-|) |
k k =\"g-n—2 ] =\g=1

therefore,

We have,

if n > g3,

0,
s - { (3q-1,!3)m’ ifn< qlfs' (7'4)

=il —o\™ X
Sl et N i B > i o
n+1 i=M+1 TCS; TCSCS;
|Tl=n+1 |S|=m
-1 N
B g—n-— 2) (|S,-|—n—1)
b B ) L
|T|=n+1
k
() 5 5
- An+1 i=pa1 Tcs, \g-—1
|Tl—n+1
=i on1/2 172\ N
(q)(n(Q))Zzl_
n+ 1 q- 1 i=M+1 TCS§;
|T|=n+1
From (7.2) we derive
k/2 k/2
4n 4m
P, < < | —— : 7.5
2"(9~1) "(q-l) D)
Combining (7.4) and (7.5) we obtain the results. O

We remark that the first term dominates if k < 2m/3. Selecting k = 1
we obtain that if m = o(g), for almost all sets of size m the smallest
degree of the polynomial which they satisfy is m — 1.

Now we consider representation via algebraic functions.
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Theorem 7.4. Let F(U,V) € IF,[U, V] be a not identical to zero poly-
nomial with
degy F = n, degy F' = m.

Assume that \
F(g*,g")=0, =z€S&,

for a set S C {N+1,...,N + H} of cardinality |S| = H — s with
H<qg-1. Then

(m-+-1)(n+s+1)+§m(m+1)(m+2) >H+1

Proof. First of all we write down the polynomial F(U, V') in the form

FU,V) = S VR £(D),

=1

where f;(U) € IF,[U], i = 1,...,t, are non-zero polynomials, 0 < k; <

We see that there is a set R of cardinality at least
|R| 2 H—t+1-t(H~|S|) = H-t(s+1)+1> H—(m+1)(s+1)+1
such that for any z € R

F(g*H ¢ty =0, j=0,...,¢t—1

Therefore, for any z € R, the homogeneous system of equations

t
Z Zig2jki=+j2k;fi(gz+j) =0, j‘= 0’ e t—=1.

=1

has a non-zero solution Z; f"g"’"z, 1=1,...,t. Hence its determinant
equals zero. Thus we see that the polynomial

P G=1kir2ki(i—1) £ ¢ j—1 ¢
A(V) = det (V- RUMGD 1))
has at least |R| zeros u = g%, z € R. Now we show that A(U) is
not identical to zero. Indeed, let 7 € S, be a permutation of the set
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{0,...,t—1}. The term of A corresponding to the permutation 7 is of
degree

i

S (deg fi + 2kim(3)) = i deg f; + 221:,«(2’).

i=1 i=1
It is known that for any two sequences of non-negative numbers 0 <
a1 < ...<aand 0 < by < ... < b the sum aybrqa) + ... + asbarqy
attains its maximal value for the identity permutation and that value
is strictly greater than values corresponding to other permutations. So
A(U) is a non-zero polynomial of degree
t i m+1

degA = > degfi+2) ki(i—-1)<(m+1n+2) i(i—1)
=1

=1 =1

= (m+1)n+ 2m(m+1)(m+2),

and the result follows. O

Once again, one can see that Theorem 7.4 is quite precise. Indeed, it
is easy to see that for any m and n with (m+1)(n+1) > |S|=H —s
there is a polynomial F satisfying the conditions of the theorem.

The following result is non-trivial for sparse sets with at least H?/3+¢
elements.

Theorem 7.5. Let F(U,V) € IF,[U, V] be a not identical to zero poly-
nomial of degree n = deg F' such that

F(¢%,¢")=0, =z€S,

foraset S C{N+1,...,N+H}. Then there is an absolute effectively
computable constant C > 0 such that

n > C|S|%%/H.

Proof. For a polynomial G(U,V) € IF,|U, V] and integer k (not neces-
sarily positive) let us introduce the shift transformation

ox (G(U, V) = UT'G(g*U, g¥' U*V),
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where [ is chosen so that o (F') is a polynomial not divisible by U. One
easily verifies that
01 (0m(G)) = G1m(G).

and that
ak(GlG2) = O'k(Gl)kagz)-

In particular, if ¥(U, V) is an absolutely irreducible polynomial which
1s not a univariate polynomial (either in U or in V) then ® = ()
is absolutely irreducible as well. We also note that for an absolutely
irreducible ¥ and for k£ # 0, we have 04(¥) # c¥ for any non-zero
c € IF,. Indeed, assuming that

v
(U, V)= Z V()

=0
we would have f;(U) = cg**'U%*+! f;(g*U), for each i = 0,...,v. This
1s only possible if there is only one nonzero polynomial among the
polynomials fo(U),..., fu(U). Thus ¥(U,V) = Vhf(U), where h < v
and f(U) is a non-zero polynomial of degree at most v, which is not
possible because of our assumptions.

First of all we denote by ¢(U) and %(V') two possible univariate factors
of F(U,V).

Let us consider the complete factorization of the fraction

F(U,V)
¢(U)¥(V)

over the algebraic closure of IF, (thus all factors are absolutely irre-
ducible polynomials). Index the absolutely irreducible factors in this
fraction as ¥,;(U, V), that is,

FU,V)=¢U)y(V) ][] ¥;4(U, V),

in the following way. Two factors share the same first index if and only
if one is essentially a shift of the other:

‘I‘,‘j(U, V) = Cak(‘l’,'m)
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for some integer k and some non-zero ¢ € FF,. It follows from the two
aforementioned properties of the transformation o} that this breakup
is legitimate.

Among each family W¥;; of factors sharing a first index i, assign the
index j = 0 to that factor having minimal degree in U, and for the
other members of the family, let j denote the amount of shift, that is,

Vi; = co;(Tio)
with some non-zero ¢ € IF,.

Collect all factors ¥,;(U, V) sharing the same second index J into a
factor F;(U, V). So we have

FU,V) =] KW, V),
j€J
where J is the set of possible shifts among absolutely irreducible factors
of F' and for each F;(U,V), j € J, we have that o_;F; is a factor of Fy.

For each j € J we define the set 7; C S such that
Fj(gza‘qzz) =0, z €15

As in the proof of Theorem 7.2 we select 1 < k; < 2H/|T;| for which
both , ,

Fi(9°,9") =0 and Fj(g®**¥), g=+") = . (7.6)
hold for at least |T;|?/2H — 1 values of z. Then we see that the system
of equations

Fj(U, -V) = O'k_, (FJ(U, V)) = U',
has at least |T;|?/2H — 1 solutions.

Let F;(U,V), j € J, have degrees u; and v; in U and V, respectively.
Then the U-degree of oy, F; is at most u; + 2k;v; (its V-degree is still
v;). Now we claim that Fj is relatively prime to oi(F;) for any integer
k and j € J. Indeed, otherwise F; would have two distinct absolutely
irreducible factors ¥ and & satisfying ® = co;(¥) with some non-zero
¢ € IF, but then ® is a divisor of Fj,; rather than of Fj. Therefore,
from the Bézout's Theorem we derive the inequality

[TjI2/2H— 1 < U504 + (‘I.Lj -+ 2kjvj-)vj S 2ujvj - 2kj‘U§. (77)
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Let J; be the set of j € J with u; > kjv; and J; be the set of j € J
with u; < kjv;.

For j € J; we have
|T5[*/2H < 4ujv; +1 < 5ujv; < 5(deg F;)?.
Therefore
n2 Y degF; > (10H)™? ¥ |Ty|. (7.8)
JEN jed
Let us turn to J,. We notice that
u; > |j]v;. (7.9)

Indeed, assume that ¥;o(U, V) is an absolutely irreducible divisor of
Fo(U, V) such that ¥y;(U, V) is a divisor of F;(U, V). Assume that

V= degv ‘lfiﬂ = degv ‘I’,‘j, w= degU ‘I’,‘g(U, V), U= degU "Ilt'j(U, V)

One remarks that the coefficient of V° in Wy(U, V) is a polynomial in
U of some degree 0 < r < w, and the coefficient of V* is a polynomial
in U of some degree 0 < s < w. The first polynomial is not 0 because
otherwise W;, would be divisible by V; the second one is not zero be-
cause the V'-degree of F;(U,V) is v. Let I be the power of U in the
definition of ;. We have

! < min{r, s+ 2jv}.
On the other hand,

u > max{r — I, s + 2jv — I}.

~ If j > 0 than we see that
u28+2jv—12s+2jv—r>2jv—r > 2v—w.
If 7 < 0 than

u2r—=12>2r—2jv—52>-2jv— s> —2jv — w.
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From our selection of ¥;, we also see u > w. Combining these inequal-
ities we derive u > |j|v and (7.9) follows.

Then, for § € J, we have
|T;1*/2H < 4k;v} +1 < 5k,0} < 10HV?/|Tj|.

Hence
v 2 2072\ T;P2H,  jed

From this and (7.9) we derive

n>) degFi2> Y u;> Y lilv; > 20721 Y |5 |52,
J€J2 3€d2 JEJ, jET2

If 0 € J; we can include T into the sum by:
deg Fy > vp > 2072 H YTy P2,
thus obtaining

n > 20727 Y max{|j], 1Ty,
JjeJ2

One verifies that

1/3 2/3
2 1Tl = | 2 max{]jl, 1}‘2) (Zmax{m 1}|T3-|3f2)

JEJ2 jEJ2 j€J2

and )

oo
Y max{|jl, 1}2<1+2Y ;=142 <5
€Tz =1 6

Therefore

(10H)" ('Z IT; |) : (7.10)

€Js

The univariate factors ¢ and 1 are easier to treat. The set 7, of z € S
for which ¢(g®) = 0 is of cardinality

IT,| < deg ¢ < n. (7.11)
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The set T, of z € S for which %(g®) = 0 satisfies the inequality
|To| = O(Hg ™ deg ) = O(nHq™"/?), (7.12)

which follows from the general bound of [22] on the number of solutions
of polynomial congruences over an incomplete residue system.Indeed
in our case we have up to deg® congruences of the form z? = indwv
(mod ¢ — 1) for each solution v of the equation ¥ (v) = 0. Taking into
account that

Jjen JEJ2

max{|T,,|, Tl 22150 22 ITJ'I} 2 |S]/4
from (7.8), (7.10), (7.11), and (7.12) we derive the result. D

It is obvious that for any S C {0,...,¢ — 2} there is a polynomial
F(U,V) € TFy[U, V] of degree at most (2|S|)!/? which satisfies the con-
dition of Theorem 7.5. Now we show that for almost all sets S this
bound is the best possible, to within a multiplicative constant.

Theorem 7.6. Let q be sufficiently large, 0 < € < 26/3, 6 < 1 and
m < ¢'7% Let S be ¢ set of m random elements picked uniformly
from {0,...,q—2}. Then the probability P, s(p,m) that there ezists a
polynomual F(U, V') € IF4[U, V] of degree

deg F < L(sm)mJ -1

and such that ;
F(¢%,¢%) =0, €S

satisfies the bound

P, 5(g,m) < ¢™q~/3—</m

where ¢ > 0 15 an absolute constant.

Proof. We say that a set T is satisfied by a polynomial F(U,V) €
IF,[U, V] if the condition of the theorem is fulfilled for this pair (T, F),
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and that T is maximally satisfied by a polynomial F(U,V) € IF,[U, V]
if it is satisfied by this polynomial but any superset of T is not.

Suppose there are N various sets S; C {0,...,¢—2},i=1,..., N, that
are maximally satisfied by polynomials F;(U, V) € IF,[U, V] of degree
at most n = (em)mJ — 2. In particular, polynomials F;, i =1,..., N
are pairwise distinct, thus

N< qfﬂ+2}(u+1)f2‘
From Theorem 7.5 we derive |S;| = O (( q)% 3) Therefore

(=) £(3)<5G2)

q (n+2) n+1)}’2(cn2;’3 —1;‘3)

Pi(p,m)

o™ nm/a q(n+2)(ﬂ+1}/2 m/3

¢ mm/S (e/2-1/3)m

Mg (#/3-¢/2m

IA A IA A

with some constant ¢ > 0. )

Now we obtain a lower bound on the parallel complexity of breaking
the Diffie-Hellman cryptosystem by probabilistic branching arithmetic
cercusts. In fact the method above allows to obtain a lower bound for
a weaker question about verifying whether ind v = ind ?u for a given
u,v € IF;. Moreover, it is enough to require that such a circuit works
correctly on a very small portion of the input.

We consider the following class PAC,(d) of circuits of depth d over IF,.

Each circuit C € PAC,(d) has one special starting level and d levels
of arithmetic processors which are called gates. Levels are numbered
from O for the starting level to d for the last level. Each level may have
an unlimited number of gates, with only one gate on the last level.

Each gate of the starting level, accept either some constant or the
value of one of two variables u,v € IF, for which we want to verify that
ind v = ind %u.
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Each gate of level d — 1 > k > 1 accepts 4 values from some gates of
previous levels, ¢y, ¢,, ¢3, ¢4 and one special branching value v which
is either some value computed on a previous level or the value of a
random variable taking values 0 and 1 with probability 1/2.

Then it computes and outputs the value of ¢, #, if ¥ # 0 and ¢s#¢,
otherwise, where # stands for one of the arithmetic operations over IF,
that is # € {+, —, X, /} (not necessary the same each time).

The gate of the last levels accepts only one value ¥ (which is either some
value computed on a previous level or the value of a random variable
taking values 0 and 1 with probability 1/2) and outputs C(u,v) = YES
if Y = 0 and C(u,v) = NO otherwise.

Theorem 7.7. Let v, 6 > 0 be constants such that
(1—7)6 >2/3.

Assume that there is a circuit C € PAC,(d) such that given u = g°,
v = g%, uv € I, for every element = from some set S C {N +
L,...,N+H}, 1< H<g-1, of cardinality |S| > H? it outputs YES
with probability

Pr(C(¢*, ¢™') = YES] > |S|7,

and for any u,v € IF, such that there is no z € {0,...,¢ — 2} with
u=g% v=g* it outputs NO with probability 1. Then

d > C(7,6)log H,

where the constant C(v,8) > 0 depends on v and 6 only.

- P:r:oof. We can assume that the kth level has no more than 59-* gates.
Indeed the last dth level may utilize no more than 5 gates of the (d—1)th
level, those may utilize no more than 25 gates of the (d—2)th level and
80 on.

Let ¥ = (d,...,7;) be the vector of random variables used by the
circuit €. Obviously ! does not exceed the total number of gates,
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that is I = O(5%). For each fixed vector 4 = (4,,..., ¥;) we obtain a
deterministic circuit Cp.

Let R(Y) be the set of z € S such that given u = g%, and v = ¢g%° |
Cy works correctly, Cg(u,v) = YES. Therefore, there is 9, € {0,1}}
for which Cy, produces the correct result for at least |S|'= values of
z€S.

We define the sequence of sets R, ..., Ry recursively. We put R, =
R(¥;). Assume that the set R;_; has already been defined, 2 <7 < d.
We define R; as the set of z € R;_, for which ¥(g*, g’z) # 0 for all non-
constant functions % defining branching on the ith level. Obviously, for
u € R;_; all such functions %(V, U) of the ith level are rational functions
in V and U of degree at most 2°-1. It follows from Theorem 7.5 that
the number of z € R,_; C S for which such a function vanishes is at
most O(2%/*H?%/3). Therefore

|Ri_i| > |Ri| + O(5%-*2%/3 g2/3),

Taking into account that because of our selection of 9, |R1| > |S|t—
we find that

|Ra| > [S|'™" + O(5¢H?*3) > 0.5|8|*~7
if
d < logg(|SI*"H=3) < ((1 — 7)6 - 2/3)logs H

and H is large enough (otherwise there is nothing to prove). So, there
are at least 0.5S|'~7 values of z € S for which the circuit works without
branching and outputs the correct answer. We note that the function
¥ of the last level cannot be a constant, thus this is a non-constant
rational function of degree at most 2¢-! having at least |Ry| zeros.
From Theorem 7.5 we find

2971 > 0.3|Ry|[H*3 > 0.3H(1-"6-2/3

and the claim follows. O

Certainly the constant C(v, ) can be explicitly evaluated.
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Also, we see that if H > exp ((logg)?) with some £ > 0 then the depth
cannot be polynomial in loglogg.

The bounds above are related to the arithmetic model of computation.
Generally speaking, this model seems more powerful than the Boolean
model (in some situations it is), but there is no proof that this is really
the case for our particular situation. Moreover, as a dual question
computing powers in parallel (over finite fields of small characteristic)
shows in some cases the Boolean model is exponentially more powerful
than the arithmetic model [9, 10]. Generally, obtaining non-trivial lower
bounds for the Boolean model of computation is an interesting (and
probably very hard) open question.

As the very first step, below we derive a lower bounds on the degree of
Boolean functions giving the binary coordinate vector of g** € IFy with
respect to some fixed basis of IFy- over IF, from the binary coordinate
vector of g* € IFyr. As before, each Boolean function B(U, . .. , Uy) we
consider as a multilinear polynomial over IF, of the form (5.1).

We also fix a basis wi,...,w, of IFy over IF,.

Theorem 7.8. Let Boolean functions B;(Uy,...,U,), i = 1,... , 7, be
such that

2

g = wlBl(ula"-:ur)+---+err(u1:-"1ur):

where
9" =wiug + ... + Wty

for at least 2" — 1 — s values of z € F3.. Then

max deg B; > r — log(2s + 3).

1<i<r

Proof. Denote by
Tr(2)=z+22+244+...+27

the trace of z € IFyr to IF, and let 9;,...,9, be the dual basis to
Wi, ..., Wy, see [25]. That is Tr (Yw;) =1 if i = j and Tr (Yiw;) = 0 if
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i # j, 1 < 14,7 < r. Therefore,

u= iw,"I‘.r (19‘1-‘.).

=1

Thus from the condition of the theorem we obtain

¢ = S wBi (T (8%, ...., Tt (8,4%))

=1

for at least 2" — 1 — s values of z € IF;.. Let us consider the polynomial

f(U) = iw,-B,— (TJ.' (ﬂlU), ... ,TI'(T.?,-U)) .

=1

One sees, that after the reduction of all exponents modulo 2" — 1 the
new polynomial h(U) contains exponents which are integer numbers
with at most n non-zero bits, where

n = max deg B;.
1<i<r

Therefore, the largest of such exponents is degh <27 -2 "

As in the proof of Theorem 7.1 we obtain that the polynomial ¥(U) =
gU?h(U) — h(gU) has at least 2" —1— 25 zeros over IFo and is of degree
at most deg ¥ < 2" —2""" 4 2. To finish the proof it is enough to show
that ¥(U) is a non-zero polynomial.

First of all we note, that A(U) is a non-zero polynomial. Indeed, h(g®) =
9’2 #£0,2€ 8.

Let E denote the set of exponents of h(U), E # @. Hence, if ¥ (U)
Is identical to zero then E = F+2 (mod 2" — 1). However the last
property means that £ = E+2m  (mod 2" —1) for any integer m, thus
E=1{0,1,...,2" — 2}. Therefore, degh=2"-2thusn>r—1. 0O

An analogue of Theorems 5.2 and 7.7 can be obtained as well (for
deterministic Boolean circuits). Using Theorem 7.8 one can show that
for any o < 1 there is a constant C > 0 such that any deterministic
branching Boolean circuit computing the coordinates of ¢g*° from the
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coordinates of g* € IFy- for all but at most 2°" values of £ = 0,...,2"=2
must be of depth at least C'logr.

We note that there are several distinct natural interpretations of the
Boolean model of computation over IFpr. The model we use here (re-
lated to coordinates with respect to a fixed basis of IFy- over IF;) has
also been studied in [7].

Now we demonstrate how a lower bound on the Boolean complexity
of breaking the Diffie-Hellman cryptosystem modulo a prime P can be
derived from the general lower bound of Theorem 8.1 of Chapter 8.

Theorem 7.9. Let p be a prime and let r = llogp| + 1. Assume
that a Boolean function B(Uy,...,U,, Vi,..., Vi) of 2r Boolean vari-
ables is such that for any = and y, 1 < z,y < p—1, the value
B(uy, ..., up1,...,v,) equals the second leftmost bit of the smallest
non-negative residue of g* modulo p, where t = indzindy and z =
Ur...u, and y = vy,...,v, are the bit representations ofz and y. Then
there exists an absolute constant ¢ > 0 such that the bound
o(B) > er/?

holds.

Proof. Select y = g° (mod p). Then the function B gives the second
leftmost bit of the the smallest non-negative residue of z°. Applying
Theorem 8.1 below we derive the result. O

Using Theorem 7.9 and Lemma 2.10 we derive that the CREW PRAM
complexity CREW PRAM (DH,) of breaking the Difie-Hellman Ccryp-
tosystem modulo a prime p satisfies the inequality |

CREW PRAM (DH,) > 0.25loglog p + o(loglog p).
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Chapter 8

Trade-off Between the
Boolean and Arithmetic
Depths of Modulo p
Functions

For a polynomial f(X) € Z[X] we consider Boolean functions produc-
ing the second leftmost bit of the smallest non-negative residues of f(z)
modulo p from the bit representation of z and obtain lower bound on
their sensitivity (see Chapter 5 for the definition of this notion). Then
a similar but a weaker bound is obtained for the sensitivity of Boolean
functions producing the second leftmost bit of rational functions mod-
ulo p.

We apply these results to show that at least one of arithmetic and
Boolean depths of any non-linear function modulo p is large enough.

_As before, we assume that all arguments z contain the same number—

r of bits (adding several leading zeros if necessary) where r = |logp].
Thus, as before, each such function is defined on a portion 1 < z <
2" — 1 < p—1 of the complete residue system modulo p. Moreover, we
assume that the values of functions are all contain the same number
r+1 bits. Certainly the leftmost bit could be zero for almost all values
(if say p = 2"+ 1 is a Fermat number). This is why the second leftmost

75
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bit is much more convenient to work with.

Theorem 8.1. Suppose that f(X) € Z[X] is a polynomial of degree
deg f > 8 with a non vanishing modulo p leading coefficient. Let r =
|log p] and let a Boolean function B(U, ..., U, ) be such that for any «,
0<z<2 -1, B(uy,...,u,) equals the second leftmost bit of the the
smallest non-negative residue of f(z) modulo p where z = Uy i By £8
the bit representation of z. For any € > 0 there is a constant c(e) >0
depending on € only such that if

degf S 2(1-—:}r/2

then the bound
o(B) > c(e)ri/?

holds.

Proof. Let n = deg f. We define

k=|r/2-lgn—r'log’r|, s=[k|, m= [lo;QCJ |

where C is the constant of Lemma 2.7.

We remark that
s(m+1)<k<r

for p large enough and that
m > c(e)r'/?
for some constant c(¢) > 0 depending on ¢ only.

We claim that it is enough to prove that there exists z, 0 < £ < 27— 1,
such that the fractional parts

{f(‘«”‘z)} i

p p

3

and

r—2 k 81 r—1
2 S{f(2:z:+2)}<2
p P b
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Indeed from these inequalities one sees that the second leftmost bit
of the smallest non-negative residue of f(2*z) modulo p is 0 and the
second leftmost bit of the smallest non-negative residue of f(2*z + 24)
modulo p is 1 for i = 1,...,m. Hence the existence of such z implies
that o(B) > m which yields the required estimate.

To proof that such z exists we show that the discrepancy A of the
sequence

e

of 2"~* points of the (m+ 1)-dimensional unit cube satisfies the inequal-
ity
2,._2 m+1
A< ( ) :
D

Let us put L = 2° — 1. From Lemmas 2.5, 2.8 and 2.7 we derive that
the discrepancy of this sequence satisfies

1
Cm+12—a+0(1) + n2k—r+0(m)p1/2 ].ng Z

o<iiaf<z 7(2)

A

IA

< 9—m+0(1)+n2k—r[2+0{m)rm+2
= g-m+0(1) o 2-r‘/2 log? r4+-O(mlogr) < g—m-1

2,—-2 m+1
Jo K
p
provided that p is large enough. Therefore the claimed z exits and the
desired result follows. O

Theorem 8.2. Suppose that f(X)/g(X) € Z[X] is a rational function
which is not a polynomial modulo p,

n = max{deg f, deg g} < 0.6r'/2,

where r = [logp|. Let a Boolean function B(Uy,...,U,) be such that
for any z, 0 < z < 2" — 1, with g(z) # 0 (mod p), Bltigyavuytly)
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equals the second leftmost bit of the smallest non-negative residue of
h(z) modulo p where £ = u, ... u, is the bit representation of z. Then
the bound

o(B) 2 :

2 i’gf =+ O(T)

holds.

Proof. Without loss of generality we assume that p is large enough. We
proceed as in the proof of Theorem 8.1.

We define

k=lr/a), m=|T-r7.

It is easy to verify that
m<k—-n(n-1)/2,

thus we can select the first m elements s, . . ., s,, of the sequence defined
in Lemma 2.9 and put

eg =0, g=2% i=1,...,m.

For g(z) # 0 (mod p) we denote by h(z) the smallest non-negative
residue of f(z)/g(z) modulo p.

Denote by X the set of z, 0 < z < 27~% — 1 for which
m
[[9(2*z+€)# 0 (mod p).
=0
Obviously 2" — (m+ 1)n < | X| < 27—*.
We claim that it is enough to prove that there exists z € X such that

) o=

3

r—2 k . r—1
2 S{h(z:::-w:,)}(:)
p P p
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Indeed from these inequalities one sees that the second leftmost bit
of h(2*z) modulo p is 0 and the second leftmost bit of h(2%z + 2%)
modulo p is 1 for ¢ = 1,...,m. Hence the existence of such z implies
that o(B) > m which yields the required estimate.

To proof that such z exists we show that there following system of
congruences discrepancy A of the sequence

h(2*z + &) =bi+yi— 2z (mod p), i=0,...,m,
where by =273, b; =272+ 273 {=1,...,m, has a solution with
ze€X, 0<y,z<273-1 i=0,...,m.

For the number T of such solutions we have
1 27-3-1

T = pm+1 z Z
z€EX Yo+ ym=0
ZQsen2m=0
X z e(zw(h(2k1+6i)—bt"y;+zi) /P):
lal<-1)/2  \i=0
where a = (ag, ...,am) € Z™* runs through all p™*! integer (m + 1)-
dimensional vectors with
lval = X la;| < (p—1)/2.

Making the summation over a external and separating the term corre-
sponding to the zero vector we obtain

T — |Xj2m 9=y

< p,jﬂ )3 Ze(iagh(2k$+eg]/p)|

o<jaj<(p-1)/2 lzex  \i=0

9-—

X

ﬁ 2’5’ ¢ (i a-s'yi/P)

=0 y;i=0 i=0
From Lemmas 2.5 and 2.9 we obtain that

e (i a;h(2Fz + e,v)/p) ‘ <n(m+1)p?logp+ n(m+1)

zeX 1=0
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(the last term takes care about the values which are not in X and are
not poles of the rational function in the exponent either). Therefore

IT_ lXFQz(mH)(r-S) —m-l,

2
2n(m + 1)p*?logp

pm+1

I zrfl (Z asyt/p)

=0 yi=0 1=0

o<jals(p-1)/2
(p-1)/2 2r-3

Z Z e(a;y;/p)

t=0g;=—(p-1)/2 =0
2) m+1

2
2n(m + 1)p'/%logp |

2r-3_1

> ef(ay/p)

y=0

m+1
D a=0

_ 2n(m +1)p'2logp (pﬁ

Taking into account that

o
£

= p2‘r—3

E

1273

Y e(ay/p)

y=0

we derive
|T |X|22(m+1)(r 3) —m— lr < 2n(m+1)2(m+1)(r 3) uzlogp

Hence
T 2 2(m+1)(r—3) Q,

where

IX|2(m+1](r—3)p—m—1 _ 2n(m x3 1) 1/2 logp

9r=3

— 2f—k+0(1} (
P
> 2r—k—4m+0(1) _ 2r/2+0(logr)

2r,{'2+4r1ﬁ+0(1) _ 2f_z’2+0[logr) >0

O
I

m+1
) e 21‘[?4—0{105 r)

provided that p is large enough.

Therefore the claimed z exits and the desired result follows. 0O
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Now let us consider the class BC(d) of Boolean circuits of depth d which
has been defined in Chapter 5 and the class AC,(d) of arithmetic cir-
cuits of depth d which is defined quite analogously with only difference
that the gates of the starting level accept either constants or the value
of the input variable z, and each gate of level k > 1 accepts two values
from some gates of previous levels, ¢;, ¢, and then computes and out-
puts the value of ¢;#¢@,, where # stands for an arithmetic operatlon
modulo p, that is, # € {+,—, X, /}.

We also consider the class DFAC,(d) of division free arithmetic circuits
of depth d we make use addition, subtraction or multiplication modulo
p only.

We define modulo p functions as functions taking values in the range
0< f(z)<p—1forany z=0,...,2" — 1.

For a modulo p function f one can define its Boolean depth Dg(f)
as the smallest d for which there exist r + 1 circuits C; € BC(d),
j=1,...,7+1, such that the binary vector

(Colunye oo t)yee s Craatay or3)),  0<z <21,

gives the bit representation of f(z), where £ = wu;...u, is the bit
representation of z, r = |logp].

Accordingly, for a modulo p function f one can define its arithmetic
depth D4(f) as the smallest d for which there exists a circuit C €
AC,(d) such that

flz) = C(=z), 022" -1,

Theorem 8.3. Suppose that a modulo p function h is neither a con-
stant_nor_a linear function_modulo_p. Then the bound

max{D4(h), Dg(h)} > 0.125logr + o(log )

holds.

Proof. Assume that D4(h) < 0.4logr.
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Then h is given by a rational function of f(X)/g(X) € FFp(X) with

n = max{deg f, deg g} < 2P4V) < r2/5,

If this is a ‘proper’ rational function (i.e., not a polynomial) then we
apply Theorem 8.2 and we derive that the sensitivity of any Boolean
function B coinciding with the second leftmost bit of h(z) is Q(r).
Hence, from Lemma 2.10 we derive

Dp(f) > CREW PRAM (B) > 0.5logr + o(logr).

If this function is a polynomial of degree n > 3 we apply Theorem 8.1
we derive that the sensitivity of any Boolean function B coinciding with
the second leftmost bit of f(z) is Q(r!/?). Hence, from Lemma 2.10 we
derive

Dg(f) > CREW PRAM (B) > 0.25logr + o(log ).

If this function is a polynomial of degree n = 2, then we note that
ho(X) = h(h(X)) is a polynomial over IF, of degree deg h = 4. There-
fore, we have the inequality

Dp(h) > 0.5Dp(ho) > 0.1251ogr + o(log ),

which finishes the proof. O

In the partial case of the modular inversion f(X)=1/X (modp) a
result similar to Theorem 8.3 has been obtained in [13].

For division free arithmetic a stronger bound can be obtained.

For a modulo p function f one can define its division-free arithmetic
depth Dpra(f) as the smallest d for which there exists a circuit C €
DFAC,(d) such that

flz)= Clz); 0<z<2 -1
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Theorem 8.4. Suppose that a modulo p function f is neither a con-
stant nor a linear function modulo p. Then for any ¢ > 0 and suffi-
ciently large p at least one of the bounds

Dpra(f) 2 (0.5—¢)r

or
Dgp(f) > (0.125 — ¢) logr.

holds.

Proof. Assume that Dpp4(f) < (0.5 —g)r/2.
Let n > 2 be the degree of f as a polynomial over IF,. Obviously

n < 2Ppralf) < ol1-2e)r/2

provided that p is large enough.

If n > 3 then from Theorem 8.1 we derive that the sensitivity of any
Boolean function B coinciding with the second leftmost bit of f(z) is
Q(r'/?). Hence, from Lemma 2.10 we derive

Dg(f) > CREW PRAM (B) > 0.25logr + o(logr).

If n = 2, then we note that fo(X) = f(f(X)) is of degree deg f, = 4.
Therefore, we have the inequality

Dpra(f) 2 0.5Dpra(f,) > 0.1251log T + o(log ),

which finishes the proof. O
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Chapter 9

Permutation Polynomials,
Powers, Zech’s Logarithm,
Primitive Root Testing and
Symmetric Boolean
Functions

Let f(X) € IF,[X] be a non-linear permutation polynomial (that is
the mapping £ — f(z) is bijective on IF;). One can also consider
the inverse mapping h(f(z)) = z, which obviously is also bijective
and as any mapping over IF, is given by some polynomial h(X) €
IFy[X]. It is mentioned in [29], Problem 10, that apparently both of
these polynomials cannot be of small degree. Here we show that this is
really the case.

- Theorem 9.1. Let f(X),h(X) € F,[X] be two permutation polyno-
muals of degrees deg f = n and degh = m which generate relatively
inverse mappings. If max{n, m} > 1 then nm > q.

Proof. We see that h (f(z)) = z for z € IFy[X]. Therefore the polyno-
mial A (f(X)) — X is of degree nm > 1 and has at least g zeros. O
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Now we consider polynomial approximations of powers z¢ in finite
fields.

Theorem 9.2. Let d be an integer with0 < d < g — 1 and let f(X) e
IFy[X] be a polynomial of degree n such that f(X) # anX™. Assume
that

f(z) = =¢, z €S,

Jor a set S CIF,. Then

(18] —1)?
T 2(¢g-1)

Proof. Let T > |S| — 1 denote the number of solutions of the equation
f(z) = 2% z € IF;. It is enough to show that T < (2n(g — 1))'/2

Obviously, T2 is the number of solutions of the system of equations
flz)=2% fy)=1v*, =zyeF;
which after the substitution y = zz reduces to the equivalent system
flz)=12% f(z2) = (z2), z,z € IF.

From here we derive f(zz) = zf(z). For those values of z for which
the polynomial F,(X) = f(Xz) — z¢f(X) is not identical to zero there
are at most n corresponding values of z; for others z there are at most
¢ — 1 corresponding values of . Thus, T? < (g — 1)n+ (¢ — 1)Q, where
@ is the number of z € IF; such that F,(X) is identical to zero. Taking
into account that f(X) contains at least two non-zero monomials, say
an X" and amX™, 6,0, # 0, 0 < m < n, we find then this is possible
only if 2™ = 2% and 2" = 2%. In particular, 2™ = 2*; therefore Q < n
and the result follows. O

The polynomial f(X) = X shows that the condition f(X) # a, X" is
necessary. Indeed, we have z = z(¢+1)/2 for any quadratic residue z.

Let g be a primitive root of IF,. For z € {0,...,g—2}, Zech's logarithm
Z(z) is defined by the relation

@ =g 41, 0<Z(z)<qg-2
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if g # —1 and Z(z) = 0if g = —1. (When ¢ is odd we will have
9°=-1lifz=(g—1)/2; when ¢ is even, ¢* = -1 if z = 0.)

Theorem 9.3. Let -1 < N < N+H < g-2 and letd > 1 be a divisor
of g— 1. Let (u(z)) be an integer linear recurring sequence of order n
such that
Z(z) = u(z) (mod d), z €S,
foraset SC{N+1,...,N+ H} of cardinality |S|= H — s. Then
n> i -1
T 2s+4+¢2logg

Proof. We see that for at least H —n— (n+1)(H - |S]) = (n+1) >
H-(n+1)(s+2) valuesofc=N+1,..., N+ H,

Z(z+i)=u(z+1i) (mod d), $ =030
and '
go= £ —1, i=0,...,n.
Put ¢, = —1. From (2.1) we see that
n
> cZ(z+1)=0 (mod d). (9.1)
i=0
for at least H — (n+1)(s+2) valuesof z = N+1,...,N+ H. The
congruence (4.1) is equivalent to the statement that the product
@124 DR

is a d-th power residue modulo p. Thus, for a non-trivial character x
of IFy, of order d, we have

l

z“ X ((gz o} l)cn(gz-H e 1)c1 L. (gz'-{-n _|__ 1)1’-‘«)
z=N+1

| N+H |

> H-2(n+1)(s+2).

On the other hand, because ¢, = —1 Lemma 2.6 can be applied. There-

fore,
H-2(n+1)(s+2) < (n+1)¢"*logg

and the result follows. 0O
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Now we obtain an analogue of Theorem 5.3 for Boolean functions de-
ciding if a given number is a primitive root modulo p.

Theorem 9.4. Let a Boolean function B(Uy,...,U,) of r = |logp|
Boolean variables be such that foranyz, 1<z <2" -1,

B( ) = 0, if T is not a primitive root modulo p,
Yo%) =11, ifz is a primitive root modulo p,

where T = uy ... u, is the bit representation of z. Then

o(B) > 0.257 + o(r).

Proof. We put
= [0 25r — rlog~1/? J

It is easy to see that the theorem will be proved if we to show that
there exist y, 1 < y < 2"7% such that 2%y is a primitive root modulo
pbut 2"y + 2 i = 0,...,k — 1 are quadratic residues. Indeed in this
case o(B) > k.

Quite similar to the Exercise 12.c to Chapter 6 of [44] one obtain that
the number N of such y can be expressed as

N=Y 2Sf:?t_kff(lﬂ{ 2ky+2‘)g e (Xind (2*y)/d)

dlp-1 y=1 i=0

where u(m) is the M6bius function, x(z) is the quadratic character
modulo p.

For each divisor d of p — 1 the inner sum contains d2* character sums

of the form
o=k m

> T x(2ky + 2%)e (/\ind (2"y)/d) ,

y=1 i=0

where 0 <m <k—-1,0<j <...< jn < 2% The sum correspond-
ing to m = 0 equals 2"~*, to others Lemma 2.3 can be applied thus
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each of them does not exceed (k -+ 1)p'/?log p. Therefore

_ M r—k kp..1/2
N_dlg_jl oig (27 + 0(d2*kp'2 log p)) .

Let ¢(m) denote the Euler function and let v(k) denote the number of
prime divisors of m. We make use of the following known identities

_ p(d) _ p(m)
2 lu@=2"(m), Y Ry

dim djm m

see Sections 2.b and 4.b to Chapter 2 of [44], which yield the bound

2"p(p—1 "
e _"——‘g(up )+O(2""’ Up!’ log? p).

From the following well known estimates

k- _ log k
o O (loglogk), v(k) =0 ( )

loglog k
which holds for k£ > 3. Therefore,

N> 2?—2k+0(loglog r) _ 21‘{2+O(rﬂogr} >0

provided that p is large enough. O

As in Chapter 5 one may apply the result of Theorem 9.4 to obtain
the lower bound 0.5logp + O(1) on the CREW PRAM complexity of
primitive root testing modulo p. '

There are also some applications of the method of this work to con-
s-truct—ing—sy—mmet-ric--Boolean—functions-which—cann'ot—be1m‘5roxi:Tated - =
by polynomials of small degree; see the paper [1], for example, which
demonstrates how to use such functions for obtaining non-trivial lower
bounds of the computational complexity theory.

First of all we fix a normal basis
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of IFpr over IF, (see [25, 37]) and identify the Boolean cube {0,1}" and
IF,- as follows

(Z1,--,2,) €{0,1} e z=ziw+...+ 2,07 € Fyr.
Taking into account the identity
2

s gr-1 2__ 2 or
r = (nw+...+z,w =nw'+...4+ Tpw

r=1
= ZIWw+ m1w2 + ...+ z,_1w2

we see that any symmetric Boolean function B(zy,...,z,) satisfies the
functional equation B(z) = B(z?) over IFo». Thus if a polynomial
f(X) € TPy [ X] coincides with B(z) for at least 2" — s values of z € IFy-
then f(z) = f(z?) for at least 2" — 2s points, thus 2deg f > 27 — 2s
and deg f > 27! — g,



Chapter 10

Some Remarks,
Generalizations and Open
Questions

In this work we considered the discrete logarithm over prime fields
only. This is because there is an obvious bijective mapping between the
residue ring Z/(p—1) and the multiplicative group IF;, sending z to z+1
forz € {0,1,...,p—2} = Z/(p—1). ForZ/(g—1) and IF;, where ¢ = p’
is a prime power a similar map also exists [30] (via p-adic expansions
and representation of elements of IF, with respect to some fixed basis).
Another way is to consider representations of the discrete logarithm via
multivariate functions (on coordinates of its argument). In both cases
many details become quite messy. Nevertheless, apparently many of
the results of this work can be extended onto arbitrary finite fields IF,.

One can see that Theorems 3.1, 3.2, 7.1 and 7.2 can easily be extended

to rational functions (with somewhere stronger bounds than those fol-

lowing from more general Theorems 3.6, 3.7, 7.4 and 7.5).

We mention that using the same ‘symmetrization’ trick which is used
in the proof of Theorem 8.2 one can replace p'/?logp by p'/? in Theo-
rems 3.4, 3.5, 4.1, 5.1 and 9.3 with slightly worse constants (the con-
stants of this work are not the best possible anyway). We use it for
Theorem 8.2 because it leads to the estimate of o(B) which is of cor-
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rect order (obviously o(B) < r). In a very general form this trick is
described in [5].

Moreover, using the improvements of the Weil bound from [23, 28]
(concerning the case of quadratic characters only) one can show that the
linear complexity of the discrete logarithm modulo 2 is at least 2p1/2 4
O(1). Certainly, other bounds of complete and incomplete character
sums with polynomials can be useful as well. For instance, some new
(but fairly weak) results can be extracted from [40).

Also, instead of Lemma 2.4 one could use a more general estimate of [34]
of character sums with algebraic functions (including rational functions
of course). That would allow to generalize Theorems 3.4 and 3.5 to the
case of approximation by algebraic and rational functions.

As we have mentioned, one can obtain the upper bound deg f < |S| -
1 on the smallest possible degrees of polynomials involved in Theo-
rems 3.1, 3.2, 3.5, 7.1 and 7.2. Moreover, Theorems 3.3 and 7.3 show
that this bound is precise for almost all sets.

Question 10.1. Find examples of sets S for which the aforementioned
trivial upper bound can be improved.

Unfortunately, a modulo p — 1 analogue of the explicit representa-
tion (1.1) is not known. Theorem 4.1 provides the bound Q(p*?log™ p)
on the degree of such a polynomial (in fact the logarithmic term can
be omitted) while one should expect it to be of order p.

Question 10.2. Obtain an explicit expression for a polynomial f(X) €
Z[X] of the smallest degree such that

indz = f(z) (modp-—1), z=1,....,p~1

In this work we have been dealing with representations of the discrete
logarithm modulo p and modulo a divisor d of p — 1. Representations
of the modulo p discrete logarithm in the residue ring modulo another
integer M # p are of interest as well.
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Question 10.8. Obtain analogues of the results above for congruences

of the form
indz = f(z) (mod M), z €S,

with an arbitrary integer M, some ‘simple’ functions f(X) and various
sets S C {1,...,p—1}.

If M > p—1 then the value of ind z can be recovered unambiguously. If
M < p—1 then the complete recovering is not possible but it still can -
provide some useful information about ind z (that is what we actually
want to avoid). For example, if M = 2* then such a representation gives
us k rightmost bits of ind z. The case k = 1 is covered by Theorem 4.1
and its improvement for k£ > 1 would be very interesting.

The case when M is prime can possibly be handled along the same
lines as we use in this work but if M is composite some additional
considerations are required. Indeed, although analogues of our auxiliary
results (bounds for the number of zeros [21, 22], bounds of character
sum (18, 39, 41] , etc.) are known modulo an arbitrary composite M as
well, they are essentially weaker and, respectively, lead to much weaker
statements. Nevertheless apparently this question can be approached
at least for some interesting values of M like M = 2*.

Along with Boolean functions covered by Theorem 5.1 one can also
consider the Boolean function

0, ifindz<(p-3)/2,

B(ul,...,u,)={ 1, ifindz>(p—1)/2 (10.1)

where £ = u;...u, is the bit representation of z, 1 < z < 2" — ‘4
r = [logp]. This function has to do with first bits of indz. The
method of the proof of Theorem 5.1 can be applied to this function but

produces-a rather-weak result-(the lower bound-Q(log p) for the number ——

of terms and no non-trivial bound on the degree).

Question 10.4. Obtain a non-trivial lower bound on the degree of a
Boolean function satisfying (10.1).

A randomized version of Theorem 5.1 would be of interest as well.
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Question 10.5. Obtain a non-trivial lower bound on the degree of a
Boolean function B(Uj,...,U,,V4,...,V,) such that for any z, 1 <
2 =1,

B(uy,..., %, 1,...,%,) =indz (mod 2),

where £ = u;...u, is the bit representation of z, 7 = |logp], for at
least &2’ binary vectors (vy,...,v,) with some constant o > 0.5.

The most important case is apparently s = 7o),

Theorem 5.2 provides the lower bound Q(loglogp) on the depth of
a straight-line deterministic Boolean circuit solving the discrete loga-
rithm problem modulo p.

Question 10.6. Obtain analogues of Theorem 5.2 for branching and ran-
domized Boolean circuits.

In this work we have arithmetic and Boolean circuits with bounded
fan-in (that is, the number arguments each gate can accept). The
same method enables us to consider circuits with unbounded fan-in
with respect to addition (over IF, for arithmetic circuits and modulo 2
for Boolean circuits) and to get trade-off results between the size and
the depth of such circuits. Such circuits are of interest and have been
considered in the literature [8]. On the other hand, circuits with totally
unbounded fan-in are, apparently, more difficult to study.

Question 10.7. Obtain analogues of Theorems 5.2 and 7.7 for circuits
with unbounded fan-in.

One of the possible ways of doing that is using the Lemma 1 of [35]
which claims that for any I > 0 the product F = f,...fnx of any
number N of multilinear polynomials

fi L= IF2[U1"‘ *9 Ur]

of degree at most d there is a polynomial f of degree at most Id which
disagree with F at at most 2"~ points of IF;. The only missing link
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in answering Question 10.7 is obtaining a good generalization of the
bound (5.2) to Boolean functions giving the rightmost bit of ind x for all
but at most s valuesof z = 1,...,2"—1. Unfortunately the bounds (5.4)
and (5.5) are not strong enough for that purpose. For example they
get trivial if s is of order p.

We remark that in [42], for any positive a, probabilistic Boolean circuits
with unbounded fan-in of depth

D = O(log lcagz"'+2 p+log 10g3 P),

B logp
S =exp (O (loglog“;p))

are constructed for computing discrete logarithms modulo p.

and of size

Results of Chapter 6 are rather weak. Probably they can be improved
in several particular cases.

Question 10.8. Improve Theorem 6.1 for above for reals polynomials
f(X) € R[X] reals satisfying the inequality

lindz — f(z)| < 1/2, Z€S,

for various sets S C {1,...,p— 1}.

One can also consider more general than in Theorem 6.2 multivariate
functions on bits of z.

Question 10.9. Obtain lower bounds on the degree of a rational function
f(X1,..., X;) € R(Xy,...,X,) such that f(uy,...,u,) > 0ifzis a
-quadratic-residue-modulo-p-and—f(uy;+~us)-<-0-otherwise; where—

T = uj...u is the bit representation of z, 1<z < 2" -1, r = llogp].

Here we have considered representations and approximations via poly-
nomials and algebraic functions of a given degree n or containing a given
number ¢ of monomials and shown that for n or ¢ small enough such
representations and approximations are impossible. The motivating
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idea was to show that the discrete logarithm cannot be represented or
even approximated by such easily computable functions. On the other
hand, there is one more very interesting class of functions which are also
easy to compute, thus extensions of our ‘impossibility’ results on these
functions would be very important. We mean functions of low additive
complexity. Those are functions which can be represented using a given
number of the +-symbols (and any number of multiplications). We do
not give a precise definition of additive complexity but just mention that
a polynomial is of additive complexity ¢ if there is it can be written down
with at most ¢ signs +. Say, the polynomials f(X) = (X+1)*—(X+2)™
and F(X,Y)= (Y +1D¥X - 1)™+ (Y — 1)™(X + 1)* are of additive
complexity 3 and 5 respectively but neither of low degree nor sparse (for
k and m large enough). It is easy to see that using repeated squaring
their values can be computed very quickly at any point.

To fulfill this program one needs to answer the following question.

Question 10.10. Obtain a non-trivial upper bound for the number of
zeros of polynomials of additive complexity ¢ over IF,,.

As the very first step to such a general bound one can try to estimate
the number of zeros of functions of the shape

i
flX)= Z ai(X +b;)™ € T [X].

i=1
We note that over fields of zero characteristic such bounds are well
known [19, 24] and have already produced a large number of results
on computational complexity of various classes of functions [14]. For
example, using those bounds and the presented here method, one can
easily obtain lower bound on the additive complexity of real polyno-
mials f(X) € R[X] or F(X,Y) € R[X,Y] for which indz = f(z)
or F(z,indz) = 0, € S for various sets S € {0,...,p — 1}. Over
finite field the situation is more complicated, for example the polyno-
mial zP~1)/2 — 1 has (p— 1)/2 zeros thus some extra conditions should
be imposed.

Question 10.11. Extend Theorem 8.1 to the case of quadratic modulo
p polynomials f(X) € Z[X].
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In particular, it would lead to a more direct treatment of the case of
quadratic polynomials in Theorems 8.3 and 8.4 and to their possible
improvements. We note that for the partial case f(X) = X? it is
done in [38] (for the rightmost bit) but that method does not work for
quadratic functions with ‘large’ leading coefficients.

The constants 0.6 and 1/16 in Theorem 8.2 are not the best possible
ones but we still don’t know how to get a nontrivial result for rational
functions of degree of order greater than r!/2.

Question 10.12. Extend Theorem 8.2 to the case of rational functions
of larger degree, say of order 2°" with some o > 0.

Such a result would immediate lead to an improvement of Theorem 8.3.
In particular we believe that the result similar to that of Theorem 8.4
holds for general arithmetic circuits modulo P, not necessary division
free ones. The main obstacle is obtaining a better version of Lemma 2.9.

Question 10.18. Extend Theorems 8.1 and 8.2 to the case of functions
modulo an arbitrary integer M.

There are two classes of moduli M for which this question is especially
interesting. The first one is the class of moduli of the form M —
2% which corresponds to the ‘computer’ arithmetic. The second one
is the class of square-free moduli M having only small prime divisor
(of order log®® M, say). The latter class is interesting because those
moduli admit a very efficient parallel algorithms relying on the Chinese
Reminder Theorem. Thus for such moduli there are good chances to
match upper and lower bound of complexity of various functions. For
example, in [13] this was done for the modular inversion.

Finally we mention that many of the results of this work can be gener-
alized to the discrete logarithm and the Diffie~-Hellman cryptosystem
over elliptic curves.
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