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Abstract

Modelling a target attribute by other attributes in the data is perhaps the most traditional data

mining task� When there are many attributes in the data� one needs to know which of the at�

tribute�s are relevant for modelling the target� either as a group or the one feature that is most

appropriate to select within the model construction process in progress� There are many approaches

for selecting the attribute�s in machine learning� We examine various important concepts and ap�

proaches that are used for this purpose and contrast their strengths� Discretization of numeric

attributes is also discussed for its use is prevalent in many modelling techniques�

Keywords� attribute quality measures� impurity function� discretization� classi�cation� regres�

sion
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� Introduction

A precondition to any data mining is data itself� The purpose of data mining is to explore the data

and to eventually discover certain relationships� rules� correlations etc� that can give some insights

about the data and can also serve for prediction� The amount of data may be enormous� hundreds

of thousands of records� each with hundreds of parameters �features� �elds� variables� attributes�

We shall use the term� attributes� here following the common terminology in machine learning� We

are concerned with the traditional data mining task of modelling a target attribute in terms of the

other attributes in the data� The target attribute may be categorical �classi�cation or numeric

�regression� In order to e�ciently develop a model from the data� heuristics are needed to guide

the machine learning process which searches for an optimal model in the given family of models

the process is designed for� An important issue in guiding the search is the quality of attributes�

This has been a key concern for statistical modelling especially in the linear regression area�

Attributes may be relevant or irrelevant for the task at hand� When there are a large number

of attributes� even some relevant attributes may be redundant in the presence of other attributes�

Relevant attributes may contain useful information directly applicable to the given task by itself�

or the information may be �partially hidden among a subset of attributes� An important problem

is the selection of a reasonable subset of the available attributes so that the selected subset can

adequately explain �model the target� We mention that sometimes an attribute that is strongly

correlated with the target may not be a member of the selected subset� for a combination of

attributes in a smaller subset without it may be just as adequate� Reducing the number of attributes

from hundreds to within a few dozen� not only speeds up the learning process� but also prevents most

of the learning algorithms from getting fooled into generating an inferior model by the presence of

many irrelevant or redundant attributes� This is mainly because most practical learning algorithms

are necessarily heuristic in nature and they often are misled by the presence of many nonessential

attributes�

This paper does not deal with deriving more useful attributes from the given set �linear or other

functions of subsets of attributes� nor with searching for the telling attributes in the application

domain� These are very important problems in their own right� We will� however� discuss dis�

cretization of numeric attributes� for many models� including decision trees and rules� explain the

target in terms of intervals which are generated either during the model building process or in a

pre�processing step� Discretization is also very closely related to the attribute selection problem in

that the discretized version is the one that is used in these models �except for the arti�cial neural

networks which deal with numeric values directly�

Another kind of attribute selection takes place in the popular decision tree modelling� Here� at
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each branch of the tree� one needs to select the �best� attribute to branch on next� To accomplish

the selection task� one employs some attribute quality measure for each attribute or some goodness

measure �such as the resulting accuracy of the model on the ensemble of attributes� We shall

discuss main approaches for developing the quality measures in the next section� These measures

are described for classi�cation �rst and then extended for regression� In the subsequent sections we

examine how the measures are used for actual selection� and how discretization is done� We will

also discuss future technical challenges in the concluding section�

We shall speak of examples in the instance space described by a vector of attributesXi� i � �� ��� n

where n is the number of explanatory attributes� which are tagged with the target attribute X��

These instances are points in the n�dimensional space� As we mentioned earlier� the modelling task

is called classi�cation if the target is categorical� and regression if numeric� We shall use xr�i to

denote the value of attribute Xi of instance r� For class values we shall use C�r � xr���

Each of the attributes can be either categorical or numeric� In the former� the domain of Xi

is discrete� i�e� the values xi are from an unordered symbolic values set� fvi�� ���� vinig where ni is

the number of values of attribute Xi �for the class attribute we shall use also cl � v�l� In the

latter� the domain of the numeric attribute Xi is given by a numeric interval �mini �� maxi�� which

is considered continuous for the purpose of modelling� If an attribute takes on discrete values that

are ordered in the domain sense� it can be treated as categorical if the number of values is relatively

small� or treated as a numeric attribute� A model is a mapping function from the instance space

to the target class or target regression value�

model � X� �X� � ��� �Xn �� X�

Such mapping should be able to �explain� the target value of the training instances and should be

able to classify �predict the class or produce a regression value of new instances�

� Estimating the quality of attributes

One can not select attribute�s without �rst determining the quality of the attributes in some way

relevant to the modelling task� The quality of an attribute should re�ect the useful information

provided by that attribute� There are two major approaches to estimating the quality of an at�

tribute�
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� the quality of an attribute may be estimated by ignoring the other attributes� therefore

assuming� for the purpose of estimation� the independence of attributes� or

� the quality of an attribute may be estimated in the context of other attributes�

We could say that the former approach is myopic� but its advantage is computational e�ciency

and in practice it often su�ces� However� the latter approach� although computationally more

demanding� has a potential of discovering high order dependencies which cannot be detected by

myopic approaches�

Most approaches assign a quality measure directly to the attributes but some use indirect

measures� For this� a measure is de�ned �rst on the modelling task itself using all attributes� then

the same measure is computed excluding the attribute of interest� The di�erence is then interpreted

as the contribution of the attribute� This will be discussed in Section ��� on the cost of exclusion

approach�

��� Traditional impurity measures for classi�cation

Traditionally� the quality of an attribute in classi�cation is de�ned in terms of the purity of classes

of training instances� We say that a set of instances is pure if all instances belong to the same

class and the set is maximally impure if the proportion of instances in all classes is uniform� The

impurity function I measures the impurity of a set of instances and achieves the minimum �usually

� for a pure set� and maximum for a maximally impure set� Impurity functions have their origins

in decision tree practices and are mainly used in selecting the best attribute to further split the

current node� As such� they are de�ned for categorical attributes that can take on values which is

used to branch out� �If appropriate probability density functions are known� these measures can

be extended to directly include numeric attributes� but this is not practiced� We will discuss how

the numeric attributes are handled later�

Let the attribute Xi have ni possible values� The attribute splits the set of all training instances

T with impurity I�T  into ni subsets Tj � j � ���ni� each with impurity I�Tj� The quality of

attribute q�Xi is de�ned to be the expected decrease of the impurity� i�e� the purity gain�

q�Xi � I�T �
niX
j��

�p�vij� I�Tj ��

where p�vij � P �xi � vij is the proportion �probability of the instances with the j�th value of

the attribute Xi among all the instances in the �subset being considered� Two well known and
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commonly used impurity measures are entropy� used in the ID� system and its successor C��� ����

and the gini�index� used in the CART system ���� The entropy of a set of instances with proportions

of classes p�cl � P �x� � v�l� l � ���n� is de�ned as

H�X� � �
n�X
l��

�p�cl� log� p�cl

The gini index is de�ned with

G�X� � ��
n�X
l��

p�cl
�

Using entropy H for impurity measure I in equation �� leads to the information�gain and using

G leads to the gini�gain� These measures are relatively simple to compute and work well in many

applications�

An ideal attribute should enable the exact prediction of the class from the value of the attribute�

The class attribute �X� itself is therefore an ideal attribute �but� of course� it cannot be used for

classi�cation� If the number k of values of an attribute increases� the probability that the subsets

of training instances Tj will be completely pure also increases� In an extreme case an attribute with

the number of values much larger than the number of training instances will usually have all Tj

completely pure� Such attributes will be treated by any purity gain criterion as the best� although

such attributes are useless for prediction� Namely� the reliability �probability that the new instance

with the j�th value of the attribute actually belongs to the same class as all training instances from

the subset Tj decreases if the number of training instances in Tj decreases� Therefore� the estimates

of these purity gains are unfairly biased towards apriori preferring the attributes with more values�

which we call variety bias� We will discuss approaches to neutralize �by normalization or avoid

this bias later�

Although e�cient to compute� these measures are myopic� During the estimation of one at�

tribute all other attributes are ignored� This is an unrealistic assumption which may lead to a

signi�cant underestimation of the quality of the attributes when there are strong conditional de�

pendencies� Of course� when these measures are used to select the next branching node in a decision

tree� deep in the branches� the context of other attributes above the current node are automatically

�gured in� But there is a problem near the root node where few or no other attributes� contribu�

tions are considered at all� In Section ���� we will discuss more about the decision node selection

as well as a few other myopic measures with di�erent strengths�
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��� Direct non�myopic measures for classi�cation

For many problems the values of some subset of attributes� together as a tuple� convey information

about the class while the values of an individual attribute may not� One example is when the

target is a symmetric function of some attributes� which include majority functions� An extreme

case of the symmetric function is the well known parity function� often denoted as EXOR� For

binary attributes� EXOR produces � i� the sum of the attribute values are odd� and � otherwise�

Any myopic measure including the purity gain schemes fail to recognize that the EXOR attributes

are any better against possible irrelevant attributes� for the impurity of T� and T� for every EXOR

attribute is maximal� and consequently the purity gain is zero� i�e� a single attribute conveys no

information about the class�

To overcome this problem� it is necessary to take into account the context of other attributes

when the quality of an attribute is measured� There are several approaches to include the context

into the estimate� directly as described here or indirectly using the cost of exclusion approach

described in Section ����

����� Lookahead approach

Instead of estimating the �normalized impurity gain for single attribute� one can estimate the

�normalized impurity gain of a subset of attributes� That is� in decision tree construction� one

selects as the current node splitter the attribute that results in the best purity gain at some

look�ahead levels down the tree� instead of just the next level� This approach can in principle

detect higher order dependencies between attributes with a potentially exponential increase of time

complexity� By guiding the lookahead depth one can control the trade�o� between the myopia and

the time complexity� Usual practice has been limited to one or two additional level lookahead�

����� Distance based concept of local context

A relatively new and promising approach is to estimate the quality of an attribute by measuring

its contribution in class discrimination in the local subspaces of the instance space� The idea is to

estimate whether the attribute is able to separate the training instances� that are very similar� i�e

that are close to each other in the instance space� By considering only neighbor instances in the

instance space we implicitly take into account the context of other attributes� In other words� we

focus on local decision boundaries separating close pairs of instances�
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To determine which instances are close to each other we need to de�ne a distance measure Drs

between two instances r and s� It is de�ned in terms of each attribute�s component distance� for

an attribute Xi� the two values� xr�i and xs�i are said to have distance drs�i as follows�

For a categorical attribute� Xi�

drs�i �

�
� if xr�i � xs�i

� if xr�i �� xs�i
��

and for a numeric attribute� Xi�

drs�i � min��jxr�i � xs�ij�ti� � ��

where ti is a threshold which is usually set at half the magnitude of the range of Xi� �It can be set

by domain knowledge� The notion is that if the values are di�erent by more than ti� the distance

is one as if categorical values were di�erent� When ti is set to the magnitude of the range itself�

this component distance is the same as the traditional measure used in the pattern recognition and

machine learning �see ��� for the rationale and elaborations on the use of ti� The instance distance

Drs can be de�ned either as Euclidean distance �root sum of squares of component distances which

is more traditional� or as Manhattan distance� as

Drs �
nX
i��

drs�i ��

The computation necessary to �nd k�nearest neighbors to a given instance r from the set of t

instances is of order t�n� because once the distances are computed� the time necessary to �nd the

k smallest among t numbers is at most of order t � log k �by maintaining an ordered heap of size

k which does not contribute to the overall complexity�

����� RELIEF family of local�context purity gain approach

An ideal attribute will be able to separate neighbor instances from di�erent classes by having

di�erent values and will have the same values for neighbor instances from the same class�

Kira and Rendell ��� proposed a novel algorithm RELIEF that implements the above idea�

Given an instance� Relief searches for its two nearest neighbors� one from the same class �called

nearest hit and the other from a di�erent class �called nearest miss� For each attribute� the

RELIEF measure counts� as contribution from these two close pairs� the nearest miss�s component

distance minus the nearest hit�s component distance� RELIEF accumulates the contributions of m

randomly selected training instances and normalizes it by m� which is a user�de�ned parameter�
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for i �� � to n do q�Xi� �� ����

for j �� � to m do

begin

randomly select an instance r�

�nd nearest hit t and nearest miss s�

for i �� � to n do

q�Xi� �� q�Xi� � �drs�i � drt�i�m�

end�

Figure � RELIEF Algorithm

Let r be an instance from a random subset T � of the training set T � with jT �j � m � jT j� Fur�

thermore� let s denote the nearest di�erent class neighbor of r �i�e� C�s �� C�r� and let t denote

the nearest same class neighbor of r �i�e C�t � C�r� The RELIEF measure for an attribute Xi

is essentially �within a constant factor of m�

q�Xi �
X
r

�drs�i � drt�i ��

Figure � provides the pseudocode of the RELIEF algorithm�

The nearest neighbor determination is done once for each r for all the attributes� hence the

computational complexity for developing the measure for all n attributes is O�m� jT j � n� which

becomes O�jT j� � n if T � � T � The myopic purity gain measures have complexity of O�jT j �

n� However� RELIEF is much less myopic and can assess the importance of highly interactive

attributes�

Kononenko ��� has shown that RELIEF�s estimates are highly related to the gini�index with

locality context� This work and the follow�on work ��� have extended and generalized RELIEF to

ReliefF to deal with noisy� incomplete and multiclass problems� It uses the same rationale� a good

attribute should be able to discriminate close pairs of di�erent class instances and� furthermore� it

is desirable to have the same value for close pairs of same class instances�

Instead of one near�hit and one near�miss� ReliefF uses k�nearest instances s from each class�

Therefore� if c is the number of classes� for each instance r ReliefF searches for k nearest hits and

k � �c� � nearest misses� and equation �� is accordingly generalized to�

q�Xi �
X
r

X
C�s���C�r�

�
P �C�s

�� P �C�r

drs�i
k

�
�
X
r

X
C�s��C�r�

drs�i
k
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where P �C is the proportion �probability of class C� ReliefF uses Manhattan distance for instance

distances as given in equation ��� A pseudo code for implementing this computation ��� has a

�ow similar to the pseudo code for the regression case shown in section ���� The computational

complexity is the same as for basic RELIEF� The k for the k�nearest is designed to make the

measure more robust against noise and sparsity of instances� Kononenko et al� ��� report a �xed

k � �� to be reasonable for most large applications� The original RELIEF is a special case with

k � � and using Eucledean distances for nearest neighbor determination� It also uses d�rs�i instead

of just drs�i in the above equation� However� these di�erences have no signi�cant e�ect on relative

measures�

An important observation is that the ReliefF measure approximates the following di�erence of

probabilities �it is implicit that all �r�s pairs of instances are neighbors�

q�Xi � P �xr�i �� xs�ijC�s �� C�r� P �xr�i �� xs�ijC�s � C�r ��

This fact is used to extend the measure to the regression case and to show that the RELIEF family

of measures are resistant to the variety bias by self�normalizing in some sense� as will be shown

later�

����� Contextual merit �CM� measure

Hong ��� proposed another non�myopic quality measure for an attribute based on a di�erent ra�

tionale� When two di�erent class instances r and s are compared� only the attributes that have

di�erent values can help discriminate the two� Furthermore� the di�culty of separating the two

instances should be a decreasing function of the distance Drs� such as ��Drs �or e
��Drs� which is

called the contextual strength of the pair �r�s� The attributes that contribute to the distance are

to share this �obligation� in proportion to their component distances� in the context of the �xed

value settings of the attributes that do not contribute to the distance� Therefore� the contextual

merit for an attribute Xi can be de�ned as�

CM�Xi �
X
r

X
C�s���C�r�

drs�i
D�

rs

��

where r is an instance of T �or a random subset T � and s is a di�erent class k�nearest neighbor of

r in T as before� The k value is normally set at log� of the total number of training instances not

in the class of r� Alternatively� it can be a constant� say ��� as in ReliefF for large problems� The

complexity of computing the contextual merit is the same as that of ReliefF� The main di�erence is

in the notion of contextual strength� ��Drs� and the fact that it focuses on only the class separating






capability of an attribute without regard to whether it has the same value for the same class neighbor

instances� Consequently� the contextual merit CM needs to be normalized for its variety bias� but

uniquely enjoys the following desirable property�

Suppose an attribute X is classi�cation�equivalent to a set of attributes Y�� Y�� ��� Yg� that is�

whenever the g�tuple of Y s distinguishes the class� so does X � It can be shown that

max
i

CM�Yi � CM�X �
X
i

CM�Yi�

The merit ofX approaches the upper bound as the number of instances in the training set increases�

��� Cost of exclusion approaches for a non�myopic measure

Instead of estimating the quality of an attribute directly� one can �rst de�ne a measure on the

classi�cation problem with the given set of attributes� and then compare the measure with and

without the given attribute� The di�erence is then a meaningful non�myopic measure for the

attribute� since the e�ect of all attributes are considered in the process�

����� Cross�validation

Here we assume that a machine learning algorithm is available that is able to construct a classi�er

whose performance on a set of holdout test cases can be used for the estimate of the quality of the

outcome� First the classi�er performance for using the entire set of attributes is measured� The

process is repeated each time excluding one of the attributes� The quality of an attribute is then

de�ned as the di�erence between the quality of the outcome when all attributes have been used and

the quality of the outcome when the given attribute was excluded� This approach is computationally

demanding and is therefore impractical or even infeasible for some large real problems� This kind

of quality measure forms the basis for subset selection in the wrapper approach discussed later�

����� Contextual merit measure revisited

Given two neighbor instances� r and s� in two di�erent classes� we mentioned earlier that the dif�

�culty of separating them should behave like ��Drs� For a given attribute Xi� we can rewrite Drs

as the sum of drs�i and the distance from the other attributes excluding Xi� �rs��i� We have
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�rs��i � Drs � drs�i �
X
i��j

drs�j

Now the di�erence of the di�culties calculated with and without Xi is�

�

�rs��i

�
�

Drs

�
drs�i

�rs��iDrs

�
drs�i
D�

rs

Thus� the contextual merit measure is related to the cost of exclusion approach� �This observation

is due to S� Winograd� private communication� If the di�culty is estimated as e��Drs instead�

for some small constant �� one can similarly approximate the cost of exclusion as proportional to

drs�ie
��Drs � This quantity can be summed for all �r�s di�erent class neighbor pairs as an alternate

form of contextual merit instead of equation ���

��� Attribute quality measures for regression

The usual impurity measure used in regression for categorical attributes is the mean squared error

�MSE ����

MSE �
�

jT j

jT jX
r��

�xr�� � x�
� ��

where

x� �
�

jT j

jT jX
r��

xr��

is the average class value� It has been shown in ��� that there is an interesting relation between the

mean squared error and the gini�index� If the classi�cation problem with two classes is transformed

into a regression problem by labeling one class with � and the other with �� then the following is true�

gini � ��MSE�

MSE has de�ciencies similar to those of ordinary impurity measures in classi�cation� MSE�gain is

biased towards overestimating multivalued attributes which can be alleviated by normalization �see

section ���� Also� it is myopic as it ignores the rest of the attributes when estimating the quality

of a given attribute�

Many measures that are de�ned for a categorical target attribute �i�e�� classi�cation problems

can be used for regression by some appropriate discretization of the target numeric attribute� �See�

for instance� ���� This approach �rst turns the regression problem into a classi�cation problem and

then uses the resulting classi�er to compute a numeric outcome by an averaging procedure�

��



set all NdC � NdX �Xi�� NdC�dX �Xi�� q�Xi� to ��

for j �� � to m � jT �j do begin

randomly select instance r � T �

�nd k instances fsg nearest to r�

foreach s of k�nearest do begin

NdC �� NdC � jxr�� � xs��j�k�

for i �� � to n do begin

NdX �Xi� �� NdX �Xi� � drs�i�k�

NdC�dX �Xi� �� NdC�dX �Xi� � jxr�� � xs��j � drs�i�k�

end�

end�

end�

for i �� � to n do

q�Xi� �� NdC�dX �Xi��NdC � �NdX �Xi��NdC�dX �Xi���m�NdC�

Figure �� RReliefF �Regressional ReliefF Algorithm

Within the framework of the ReliefF approach� the problem of myopia can be solved for numeric

target attributes as well� The class is continuous in regression problems� therefore the �nearest

hits and misses cannot be used� Instead of requiring the exact knowledge of whether two instances

belong to the same class or not� we can introduce a kind of probability that two instances are

from di�erent classes� This probability can be modeled by the relative distance between the target

�class values of the two instances� i�e�� P �C�r �� C�s can be proportionately measured for a

given pair �r�s as jxr���xs��j� It is still not possible to estimate q�X� through equation ��� because

the information about the sign of each contributing term is missing� The key equation �� can�

however� be reformulated� so that it can be directly evaluated using the probability of two instances

belonging to di�erent classes� using Bayese rule�

q�Xi �
P �C�s �� C�rjxr�i �� xs�iP �xr�i �� xs�i

P �C�s �� C�r
�
��� P �C�s �� C�rjxr�i �� xs�iP �xr�i �� xs�i

�� P �C�s �� C�r
�


This reformulation of the key relation leads to the RReliefF algorithm given as pseudo code in

Figure �� The subscript dC stands for �di�erent class �target� and dX for �di�erent attribute

value��

The computational complexity of RReliefF is the same as RELIEF� �For further details and

application results� see ���� Similar to ReliefF� RReliefF is also largely self�normalizing against

variety bias� Again� variations on distance de�nitions discussed earlier can be used here as preferred�
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��� Approaches to counter variety bias

When an attribute has many distinct values� whether categorical or numeric� it tends to impart

more information about the target attribute� This may be reliable in some applications especially if

the data being modelled is close to the entirety of instances to begin with �such as semi�exhaustive

lab data for certain experiments� For most of real world applications� high variety attributes �in

extreme cases� these may be unique for each instance� e�g� customer names� account numbers�

etc� are unreliable as inputs to a model as was discussed in Section ���� Most of the quality

measures exhibit variety bias and� depending on the application domain� they may require some

normalization so that the measures for all attributes can be fairly compared� The RELIEF family

measures are largely immune from this bias� White and Liu �
� and Kononenko ���� analyzed the

bias problem inherent in many di�erent measures�

����� RELIEF implicitely avoids the variety bias

Recall the rationale for the RELIEF� �a good attribute should be able to discriminate close pairs

of di�erent class instances and� furthermore� it is desirable that it has the same value for close

pairs of same class instances�� The second part of this objective has the direct e�ect of lowering

the quality measure for attributes that have a large variety of values� Again� returning to the key

relation of equation ��� the following equivalent expression can be derived ��� for the case of a

categorical attribute using Beyese rule �Here we shall drop the subscripts for denoting individual

Xi and instead use generic X to denote an attribute� v to denote its distinct values� and c to denote

the distinct class values��

q�X �
X
v

P �v� � gini��gain�X ���

where

gini��gain�X �
X
v

�
P �v�P
v P �v

�
�
X
c

P �cjv�
�
�
X
c

P �c� ���

On the other hand the usual gini�gain� using equation �� is

gini�gain �
X
v

�
P �v�

X
c

P �cjv�
�
�
X
c

P �c� ���

So the major contrast between equations ��� and ��� is in the factors P �v���
P

v P �v
� of gini��

gain versus P �v � P �v��
P

v P �v of gini�gain�
P

v P �v
� in equation ��� is� of course� the
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probability that X has the same values in an arbitrary neighboring instance pair� This illustrates

why the RELIEF family of measures has a self�normalizing e�ect against variety bias� And the

above equations allow an alternate interpretation for RELIEF� namely� as a modi�ed gini�gain in

the locality context� which tends to supress the variety bias�

����� Approaches to normalization

The usual way to counter bias is to �nd another measure that has the opposit tendency� and use

it to normalize the original measure� say by dividing� Quinlan ��� makes use of the fact that the

more the variety of values attribute X has� the larger the value of its own entropy H�X� So the

entropy based purity gain is normalized by H�X in C��� tree induction� This certainly helps in

many cases� although Kononenko ���� showed that even this information�gain�ratio exhibits some

variety bias�

Recently Hong et al� ���� proposed using randomization as a basis for normalization� The idea

is to compute the expected quality measure �of your choice for a random attribute that has the

same value distribution in place of a given attribute� It has been shown that such an expected

quality measure is easily computed for purity�gain measures as well as contextual merit measure�

Once the expected random merit is computed� one can compare it to the original merit of the

attribute� either by dividing or subtracting� Since the expected measure for a randomized attribute

is computed by the same method with the same biases� such normalization tends to cancel the e�ect

of biases� especially the variety bias� It has been shown that the expected gini�gain is a function of

only the number of distinct values the attribute takes and not of the actual distribution� and hence�

for binarized attributes �equal tests or greater than tests usually used in purity�gain based tree

induction it has no relative e�ect� Information based measures also behave similarly� However�

this approach was shown to be highly e�ective for the contextual merit� In particular� this approach

normalizes the contextual merits of numeric attributes �which tend to be more in�ated so that

they can be compared fairly to the merits of categorical attributes�

The handling of variety bias is not a simple problem� Such bias is as it should be in certain

applications� i�e� it may not be a bias� Even when a measure is normalized by its randomized

counterpart� it is not clear if an attribute� that has tiny quality measure that happens to be far

greater than even tinier randomized measure� should be preferred� So� although simple division or

subtraction may work for most cases� a better understanding is necessary to properly �normalize�

the attribute quality measures for a given application domain�
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� Attribute selection

We now come to the actual selection problem� We have so far discussed some key approaches and

issues regarding how to measure the relative quality of an attribute� These measures are used for

actual selection depending on where in the modelling process the selection takes place� We will �rst

address the problem of relevant subset selection� followed by the problem of attribute selection in

the decision tree induction process�

��� Relevant subset selection

Ideally� an induction algorithm should perform better with more attributes� However� irrelevant

or redundant attributes often fool most algorithms to induce inferior models as mentioned earlier�

This problem is perhaps more acute than the fact that at least a linear increase in computation

is required to handle the �extra� nonessential attributes in the modelling process� Therefore� the

selection of a subset of essential attributes is an important part of data mining� Our interest here

is in obtaining the subset that will result in the �best model� and not in obtaining the subset that

includes attributes individually most correlated to the class�

The subset can be arrived at by successively adding an attribute� successively discarding an

attribute� or both� Various quality measures we have discussed can be used for deciding which

attribute to add or discard� For many practical modelling problems the variety bias of the measure

used should be either avoided as in ReliefF or neutralized by normalization� One of the most

important questions� to which there is no satisfactory technical solution yet� is how many attributes

should be in the selected subset� This is a matter decided by experiments in today�s practice� �Try

decreasing �increasing the number of attributes until the best performing model results�� �The

usual number of attributes for large real applications ranges from �� to ���

The reason �successive� adding or discarding is prudent has to do with the fact that all of

the quality measures assign either all relatively high values or all relatively low values to strong

attributes that happen to be highly correlated to each other �a pedagogical case would be multiple

replication of an attribute� Therefore� computing the quality measure once and selecting the top

so many attributes� or selecting those above �discarding those below a certain threshold value

would be unwise� Nevertheless� Kira and Rendell reported initial successful application of RELIEF

in just such �ltering mode�

The quality measures that are related to the cost of exclusion approach assign relatively low

values to a set of attributes that happen to be slightly di�erent from each other� for in the presence
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of the others excluding one is not very signi�cant even when they are individually very telling�

Therefore� these measures are best used in successively discarding mode� Once an attribute is

discarded� the measure is recomputed for the remaining attributes� iteratively� Of course� when

there are hundreds of attributes initially� one would try to discard some reasonable number of low

ranking attributes in each iteration� One must then check to see if some of the discard candidates

are highly correlated to each other and� if so� return the best among them before the next iteration�

John et al� ���� de�ned a disciplined trial approach of arriving at a subset called wrapper

approach� Kohavi and Sommer�eld ���� further re�ne the wrapper based subset selection by trying

for the best addition�deletion as well as some combination of these as a search step� At each step�

the choice is determined by comparing the outcome �cross validation of accuracy performance of all

such possibilities� This method is coupled with the chosen modelling technique �e�g� CART� C���

like trees� arti�cial neural networks� DNF rule induction methods� etc�� Since the wrapper method

terminates when there is no improvement� the size of the subset is automatically determined� This

optimizes in a greedy manner the subset matched to the modelling technique� at the cost of vastly

increased computation� See their papers for further references on the subset selection problem

and successful applications of this approach� A less greedy wrapper style search can be made by

employing a genetic algorithm �����

When there are too many instances in the training set� the subset selection process �including

the computation for the quality measures� often repeatedly may require too much time� One can

use sampling of the training instances to alleviate this problem� In fact� RELIEF explicitly samples

in its outer loop �see Figure �� For non�myopic measures that take O�jT j�� n computation� one

can iteratively double the sample size until the relative magnitude of the measures are stable� which

is quite e�ective in general�

��� Attribute selection for decision tree induction

Decision trees constitute a popular model family� A node test partitions the �subuniverse� itera�

tively� until the instances wihtin each part become �reasonably� pure� The problem is how to �nd

the �best� attribute to split the current node of the tree usually into two branches� The entire

instance space is the root node� initially� A node test is usually a modi�ed attribute and this tends

to increase the e�ective number of attributes �� tests and subset tests for categorical attributes

and � tests for numeric attributes� Traditionally� some chosen quality measure is computed on

these modi�ed attributes to determine which is the �best�� These include the Gini�gain for CART�

information�gain�ratio for C���� Kononenko et al� ��� have shown that in many cases using the

non�myopic ReliefF measure produced superior tree performances�
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When a � test for a numeric attribute is selected� it e�ectively discretizes the attribute by

introducing a cut point in its value range �see the section on discretization for more discussion�

Quinlan ���� recently proposed modifying C��� so that the information�gain of a � test be reduced

by log��N � ��jT j where N is the number of distinct values the test�s numeric attribute takes

on within the part being split� This modi�cation is an MDL�inspired penalty recognizing the fact

that log��N � � bits are required to specify the threshold value for the � test� which is amortized

for the number of instances in the current part being split� This also has a normalization e�ect

against variety bias� in addition to the use of gain�ratio� for numeric attributes� The proposed new

method also discards the numeric attribute from being considered for the best gain�ratio� if all of

its possible � tests have negative reduced information�gains�

The quality measures related to the cost of exclusion approach can not be directly used for node

attribute selection because the measure is in the context of all other attributes present� One can

use them� however� if there are no strong mutual correlation among the attributes present�

One of the problems with choosing the attributes for trees� especially near the root node� is that

once the choice is made and partitioning is done� a permanent decomposition of the problem has

been made� i�e� each branch part is modelled as a separate problem� Questions as to whether each

part is statistically signi�cant to support �ner models� or whether each part should be di�erent in

some other ways than just the fact that the split is made to obtain the best purity�gain� are not

addressed by traditional approaches� These issues stem from much practical experience on problems

that have many class values� probabilistic data� or a highly skewed class distribution where it has

been observed that purity�gain approaches are not consistent performers� We now examine a few

approaches that are motivated by these concerns�

Zhou and Dillon ���� proposed the symmetric � measure which is designed to be relatively free

of variety bias and handles the many�valued class attribute problem better� Their � measure can

be expressed for a generic attribute X in the same manner as in equations ������ as follows�

��X �

P
c

P
v�P �c� v

��P �c �
P

v

P
c�P �c� v

��P �v�
P

c P �c
� �
P

v P �v
�

��
P

c P �c
� �
P

v P �v
�

This can be interpreted as �the reduction in probability of prediction error resulting from knowledge

of attribute X values� relative to having no such knowledge�

Smyth and Goodman ���� used the J�measure for measuring the quality of a DNF rule� When

it is adopted for a single attribute�value situation� it can be expressed as�

J�X� v � P �v
X
c

�
P �cjv log �P �cjv�P �c

�
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This measure is a kind of reformulation of the conventional information�gain� It is non�negative

and it combines a measure of simplicity and goodness�of��t of a given rule� It can be easily veri�ed

that X
v

J�X� v � J�X � information�gain

These measures may improve on the simple purity�gain measures in terms of being statistically

more robust� but they still have the same myopia problem near the root node� i�e� neither the

locality context nor the context of other attributes present is accounted for�

Choosing an attribute near the root node is a rather serious commitment� That is why using one

of the non�myopic RELIEF family of measures tends to do better� There are several approaches that

attempt to be more strategic about the choice� �These are most e�ective near the root node� The

so called TWOing strategy ��� was developed for many�valued class attribute problems� Here one

computes the attribute quality measure �originally gini�gain in CART� but can be any reasonable

measure of attributes� not for the class itself� but for each of the two�way partitioning of the class

values into two super�class groups� The overall winning attribute tends to split the class values

into most dissimilar groups while splitting the instance space�

Fayyad and Irani ���� proposed another measure based on the idea that the class value distri�

bution in each part should be made as di�erent as possible� For binary candidate attribute tests�

each resulting part�s class value distribution �a frequency list for each class value can be treated as

a vector� and the cosine of the angle between the two part�s vectors can be computed� The greater

the angle the more di�erent the two parts are� Apte et al� ��
� pointed out that the early splitting

attribute should strategically partition the instance space according to how di�erent the decision

characteristics are in the parts� This involves computing� for each candidate attribute� the quality

measures for all other attributes in each of the parts� These are taken as vectors �measure�pro�les

for each part and the angle between these measure�pro�le vectors are computed� This approach is

most e�ective on problems that are quite heterogeneous in di�erent regions of the instance space�

such as the multiplexor problem�

� Discretization of attributes

Discretization divides the interval �mini �� maxi� of the values of the numeric attribute Xi into

a number of intervals� Each interval can then be treated as one value of a categorical attribute�

Discretization is often considered a task for a domain expert and is then used as the background

knowledge for the speci�c problem� However� often the expert is not available or unable to specify
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exact intervals� With the help of an automatic procedure the task becomes easier� All non�analytic

models are essentially expressed in terms of these discretized intervals�

Discretization of attributes can reduce the learning complexity and help to understand the de�

pendency between the attributes and the target concept� Dougherty et al� ���� compare several

techniques and observe from the many experiments that pre�discretization of numeric attributes

often leads to a better decision tree� Quinlan ���� argues for the contrary� namely� by using the

reduced information�gain approach� traditional binarization of numeric attributes within the pro�

cess of node attribute selection is better� Aside from this debate �perhaps problem dependent�

determining what intervals matter is in itself a practically useful exercise�

Some use simple minded discretization �equal interval size� equal instance population� one�

dimensional clustering� etc� which are easy to implement� but require the user to specify the

number of intervals� As they ignore the class attribute� such quick discretization methods perform

poorly in many situations� The ultimate goal is to discretize in such a way that the resulting

model would perform best� This could be achieved by some form of wrapper style search� but the

complexity would be compounded by the fact that the combination of possible discretization of all

the numeric attributes is vast� The next best approach� which is generally practiced� is to discretize

in such a way that the quality measure of the resultant discretized attribute is optimized�

Discretization is represented by a set of its interval boundary values called cut points� Each cut

point is usually a mid�point value of some consecutive pair �magnitutide�wise of distinct values of

the attribute seen in the data� For common binary tree induction� the winning test for a numeric

attribute is the � test against one winning cut point value out of all possible such candidates

�winning in the sense of the quality measure utilized� The number of candidates is therefore one

less than the number of distinct values�

To arrive at an optimal cut point set� one can employ a greedy search strategy of successively

adding an additional cut point which maximizes the quality measure of the resulting discretized

attribute� until some stopping criteria �user given or determined by some other method is met�

Many methods compared in ���� use myopic measures� Robnik and Kononenko ���� have shown

good results by using the ReliefF measure for this purpose�

The contextual merit measure can be used to obtain an optimal set of cut points as shown in

���� Here� as the near neighbors are selected for the merit contribution� the actual value pairs and

corresponding ��D�
rs value triplet� fxr�i� xs�i� ��D

�
rsg� is collected for each �r�s pair� These triplets

are interpreted as spans which would contribute to the merit score by ��D�
rs if a cut point is placed

between the two end values� A straightforward dynamic program then develops the best cut point
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sets in increasing sizes� The score attained by the cuts closely approximates the contextual merit of

the resulting discretized attribute� As the number of cut points increases� the total attained score

increases in a manner typical of an e�ciency curve� A heuristic procedure is then used to pick the

number of cut points around the knee of this curve� After the initial round of such discretization for

all numeric attributes� a few re�ning rounds are taken� where a single discretized attribute is freed

back to its numeric value� one at a time� and re�discretized keeping all other numeric attributes

with discretized values�

A challenging problem is to obtain a better understanding for how many discretized intervals

are �optimal�� As was pointed out above� it is impractical to actually try out di�erent numbers

of cut points in models and measure their performances� for even the combinations of di�erent

numbers of cuts for all numeric attributes are too numerous� let alone the combinations of actual

cut point sets�

� Conclusion

We presented principal issues and techniques in determining which attribute�s is important for

the purpose of modelling from the machine learning perspective� It has been shown that various

approaches approximate the solution either by a search or by computing some quality measure for

an attribute� Depending on how the quality measure is de�ned� a trade�o� between computational

complexity and degree of robustness is made� For some applications a fast myopic measure su�ces�

while for others non�myopic contextual quality measures are worth the increased computation�

All the quality measures that have been proposed represent an average or overall �goodness�

measure over the entire instance space� regardless of whether the measure is myopic or not� If some

attributes are �good� or important in only some region of the instance space� they may not achieve

an overall measure high enough to be selected� However� a good set of attributes may be a set of

just such attributes which together contribute to a superior model� Even a wrapper style search

would not �nd such combinations for the search is greedy by practical necessity�

Since the attribute selection ultimately determines the quality of the ensuing model as well as

the computational burden to develop it� we expect much research activity in this area�
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