NUNUHLHLATING

RC 20962 (92834) 08/28/1997
Computer Sciences/Mathematics

IBM Research Report

Trace-driven performance exploration of a
PowerPC 601 OLTP workload on wide
superscalar processors

Jaime H. Moreno, Mayan Moudgill, John-David Wellman,

Pradip Bose, Louise Trevillyan
{jmoreno, mayan, wellman, bose, louise}@watson.ibm.com,

IBM T.J. Watson Research Center

P.O.Box 218
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE
This repori has been submitied for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been

issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright 1o the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited 1o peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

Research Division
Almaden e Austin @ China e Haifa e Tokyo e T.J. Watson ® Zurich

Trace-driven performance exploration of a PowerPC 601
OLTP workload on wide superscalar processors

Jaime H. Moreno, Mayan Moudgill, John-David Wellman,
Pradip Bose, Louise Trevillyan
{imorenc | mayan | wellman | bose | louisel@watson.ibm.com

IBM T.J. Watson Research Center
PO. Box 218
Yorktown Heights, NY 10598

Abstract

We investigate the potential performance of PowerPC-based wide superscalar processors on a standard on-line
transaction processing (OLTP) workload, using an instruction and data reference trace as input. We explore
instruction-level parallelism as a function of the width of the processor, branch prediction accuracy, size of
cache memory, and policy for issuing instructions for execution. Performance factors are identified from the
perspective of instruction retivement, highlighting the degradation contributed by different sources. The
sensitivity to selected microarchitecture features is also studied. Stmulation results validate common wisdon
regarding the degrading effects of the memory subsystem, regardiess of the width of the processor. The data also
show that, for the workload and processor organizations comsidered, (1) dispatching more than eight
instructions per cycle provides diminishing performance improvement; and (2) performance gains arising
front out-of-order instruction issue increase with the processor width.

1. Introduction

Contemporary high-performance general-purpose
microprocessors are classified as superscalar engines
because of their ability to process more than one instruc-
tion at a time. Many such processors issue instructions
out-of-order, that is, in an order that differs from the
order in which instructions appear in the program.
Moreover, most superscalar processors also support
speculative execution, wherein instructions that appear
after a conditional branch operation (either in the fall-
through path or in the branch target path) are 1ssued for
execution before the branch is resolved, based on a pre-
diction of the branch outcome [1}.

An important field of contemporary computing corre-
sponds to data-intensive applications, such as transac-
tion processing, file servers, and data mining.
Collectively, these are referred to as commercial applica-
tions because they were originally used mostly by com-
mercial enterprises. Several standard benchmarks have
been developed in this field, with the objective of serv-
ing as good indicators of system performance for specific
segments of the commercial market. For example, the
TPC-C benchmark is intended to simulate an order-entry
environment with a mix of read-only and update-inten-
sive transactions [2].

Processor features such as those described above make
microarchitectures increasingly complex. Superscalar,
out-of-order instruction issue and speculation are only

some of a large domain of design options. This complex-
ity raises questions regarding the potential performance
benefits obtained from the features. Since the interaction
among microarchitecture features 1s often counterintui-
tive, early, accurate, and timely modeling are required to
ensure proper design trade-offs [3-4]. In other words, the
benefits of various microarchitecture features should be
quantified properly so that those leading to effective and
efficient implementations can be identified [5]. More-
over, the benefits of such features differ among the van-
ous areas of application; for example, the characteristics
of commercial applications differ dramatically from
those of numeric-intensive or CPU-intensive ones, mak-
ing it necessary to understand the effects of commercial
workloads on processor performance [6-7].

Much work is constantly reported on the evaluation of
microarchitecture features. Usually, such reports study
the benefits of a specific new proposal instead of evaluat-
ing the impact of a variety of features. Moreover, most of
the literature addresses the impact of microarchitecture
features on numeric-intensive or CPU-intensive bench-
marks, such as the SPEC suite [8]. Few reported studies
address the impact on commercial applications [6-7],
among other reasons due to the difficulty in obtaining
suitable test inputs (in terms of size and representative-
ness) that can be use for such investigations. As a result,
there is a need for data from the systematic exploration
of microarchitecture features with commercial work-
loads; results from such an exploration will be helpful in

understanding the processor characteristics most ade-
quate for that area.

In this report, we investigate the potential perfor-
mance of PowerPC-based wide superscalar processors
on a standard on-line transaction processing (OLTT)
benchmark, using a PowerPC 601 instruction and data
reference trace as the workload. We first summarize the
characteristics of our exploration approach, then
describe the features of the processor model used in the
exploration, followed by the configurations explored
and the results from the experimentation. Such results
include the average cycles per instruction (CPI) obtained
in each configuration, details on degradation factors that
limit performance, and sensitivity to some selected
microarchitecture features

The simulation results reported here show that
delays due to misses encountered in caches and transla-
tion look-aside buffers are an important limiting factor,
thereby validating common wisdom regarding the
degrading effects of the memory subsystem on this
workload; such behavior is encountered regardless of
the width of the processor.

Furthermore, for the trace and processor organizations
considered, the simulation data show that increasing the
processor dispatch width to eight operations per cycle is
advantageous whereas wider organizations provide
diminishing performance improvement. For example,
doubling the features of an out-of-order processor whose
dispatch width is four by doubling the number of units
and the various widths, while preserving the size of
caches and prediction accuracy, produces about 20%
overall performance improvement. Doubling also the
size of the caches in the same configuration produces an
additional 10% improvement.

In addition, the simulation results also indicate that
wider processors achieve larger performance gains when
instructions are 1ssued out-of-order. For example, dou-
bling the features of a processor as in the paragraph
above increases the performance advantage of out-of-
order issuing of instructions over in-order from 15 to
30%.

2. Exploration methodology

Our objective is the development of an understanding
of limits and potentials of highly-concurrent superscalar
processors on a standard OLTP benchmark. The experi-
ments described in this report do not attempt to obtain
accurate results for any specific implementation, but
instead determine performance trends among some of
the many variables involved. Furthermore, the processor
model used in the exploration makes some assumptions
or implements certain features which could be regarded
as too aggressive or too conservative for current or next-
generation technology, depending on the specific point-

»a

of-view, Moreover, we do not address issues such as
clock cycle time or variations in the processor organiza-
tion (other than number of pipeline stages, number of
units, and so on), and assume them constant for all the
configurations. Consequently, the importance of the
results obtained in this study is not the magnitude of the
values but the trends among those values.

As many other efforts towards studying/predicting
the performance of new microprocessors, this explora-
tion uses trace-driven simulation [3]|6]. The standard
OLTP workload is represented by an execution trace
which contains 172 million instructions plus data
addresses, and includes instructions executed mn user
and kernel address spaces. Other features of the input
trace are summarized in Table 1. The vahidity of this trace
as a representative characterization of the original work-
load 1s analyzed in [9].

Table 1: Characteristics of input trace

7 of branch instructions 18.9
% of branches taken 46.3
% of instructions in kernel space 23.6
% of memory access nstructions 34.8
% of load /store multiple instructions 1.6
% of string instructions 1.4
% of load /store with update instructions 1.7
average block size (instructions.} 53

We explore instruction-level parallelism as a function
of

e the policy for issuing instructions;

« the width of the processor;

 the accuracy of the branch predictor; and
» the size of a two-level cache memory

We construct 48 configurations within the exploration
space defined by these orthogonal dimensions, ranging
from idealized values that illustrate the extreme of some
dimension (such as infinite cache or perfect branch pre-
diction), to values that appear achievable with current or
next generation technology (such as 64KB first level
caches and 2MB second level). In addition, we explore
the sensitiveness of selected configurations to some
microarchitecture features.

We use cycles per instruction (CPl) as the performance
metric, which corresponds to the average number of pro-
cessor cycles required to execute an instruction. Conse-
quently, a lower CPI value represents better performance
than a higher value. The meaningfulness of using CPI as
a performance metric, as opposed to its inverse instruc-
tions-per-cycle (IPC), 1s discussed in [10]. The minimal CPI
for a given processor organization is the inverse of the

peak IPC attainable; such peak value is usually obtained
from the maximum number of instructions which can be
retired in one cycle. The minimal sustained CPI over the
course of execution of a program is determined by the
minimum IPC bandwidth in the overall processor organi-
zation. For example, if the processor dispatch bandwidth is
4 instructions per cycle, and the retirement bandwidth is 5,
the best case sustained IPC is 4, not 5, even though the
peak IPC achievable in an instantaneous sense is 5.

Out-of-order superscalar processors include the ability
to fetch and dispatch operations from a predicted path
before branches are resolved, thereby executing those
operations speculatively. Upon branch resolution and
detection of branch misprediction, the speculative opera-
tions must be cancelled and execution resumed from the
correct target address of the branch. However, there are
cases in which the effects of the speculative operations
may not be cancelled, such as a load operation which
already replaced a block in the cache, or a long latency
operation which has already been issued to a functional
unit. Modeling these effects requires the availability of
the instructions from the mispredicted path and the
memory addresses of the locations accessed by those
instructions; however, this information is not present in
the trace used as input in this studv. As a result, this
exploration does not include the effects arising from
those nstructions. However, evidence collected else-
where [11] suggests that the effects of speculative opera-
tions are not necessarily negative, since speculation may
act as a source of prefetching.

We assume that operations are classified according to
the functional unit where they are executed, as follows:
integer, memory, floating-point, and branches. Moreover,
we assume that there is an issue queue for each class of
operations. Operations are dispatched into the corre-
sponding issue queues in the order in which they appear
in the program (in-order dispatch). Two policies for
removing operations from the 1ssue queues and issuing
them for execution are explored:

= put-of-order; and
e class-order

The out-of-order policy issues each operation for execu-
tion as soon as the required operands and functional unit
are available, regardless of the order in which the opera-
tions were inserted in the issue queues. On the other
hand, the class-order policy issues the operations belong-
ing to the same class of functional unit in program order,
but allows out-of-order issuing among operations
belonging to different classes. That is, operations in the
same class are issued for execution in the order in which
they were inserted into the issue queue, but there is no
ordering imposed with respect to operations in other
issue queues. Note that this is different from an in-order
policy, wherein ordering is enforced across all classes of
functional units (i.e., in-order dispatch into a single issue
queue for all units, in-order issue from this queue). Since

class-order issuing is less restrictive than in-order issu-
ing, class-order issuing can be regarded as an upper
bound in performance for in-order issuing.”

As already stated, the experiments are trace-driven; no
prior initialization of the state of the processor is
assumed (e.g., caches and queues are assumed empty).

The experiments have been carried out using a set of
tools developed for supporting fast simulation of micro-
processor configurations [12], so that multiple microar-
chitecture variations can be explored promptly. These
tools permit throughput in excess of 100 million simu-
lated processor cycles per hour on a contemporary work-
station (such as a RS/6000 43P model 140, which has a
PowerPC 604e processor running at 166Mhz [13]).

3. Processor model

The exploration of instruction-level parallelism reported
here uses a superscalar processor model which is exten-
sively parameterized, so that it can cover a large variety
of microarchitecture features [14). Parameters include
changing the size of the various resources, the number
and latency of functional units, the number of pipeline
stages, enabling/disabling features, and so on;

An overall view of the processor model 1s depicted in
Figure 1. It consists of the following elements:

* a memory subsystem with the following components: '

- separate 2-way set-associative first level instruction
and data translation look-aside buffers (I-TLB and
D-TLB, respectively);

- 2-way set-associative second level TLB (TLB2);

- separate 4-way set-associative first level instruction
and data caches (L1-I and L1-D, respectively);

- 2-way set associative second level cache (L2);

- data cache miss queue;

- store queue;

- cast-out queue;

- L1-L2 bus; and

- main memaory.

* a load/store reorder buffer;

* an instruction prefetch unit with an associated
instruction prefetch buffer, which anticipates the
demands for blocks of instructions accessed
sequentially so that L1-I cache misses may be served
faster than accessing-the L2 cache;

a next-fetch-address/branch-prediction unit (NFA/
BP), which every cycle predicts (1) the address of the

The superscalar processor model used in this study does not
implement in-order issuing of instructions.

The size, line size, latency and miss penalty of these struc-
tures are controlled by parameters; however, the associativity
of the structures cannot be changed.

NFA/Branch
; 1-| 1—
FTLE Li=leache B Predictor
A A | P
g
&] |-Buffer ﬁ
I-Prefetch
Decode/
4 Expand
L2 cache l——
e Rename/
Dispatch
|
Main * * *
Memory *
Issue queue Issue queue Issue queue lssue gueue
Integer Load/store Float.Point Branch
Issue logic Issue logic Issue logic Issue logic
Reg. read Reg. read Reg. read Reg. read
Load/store
Cast-out units
queue | e =
L1-D cache i A
Load/store
reorder buffer % '
D-TLB Retirement -
Store ¢ queue
queue +
TLB2 Miss < Retirement
v_‘ gueue logic

Figure 1: Processor organization

next group of instructions to be fetched, and (2) the
outcome of conditional branches;

e an instruction fetch unit (I-fetch), which fetches
instructions into the instruction buffer (I-buffer);

1ssue queues for each class of functional umit, which
hold dispatched operations that are waiting either for
availability of operands and / or functional unit;

= separate multiported register files for general-purpose
registers, floating-point registers, condition code
register fields, and special-purpose registers;

= a collection of functional units, classified as integer
units, memory (load/store) units, floating-point units,
and branch units; each unit has a separate path to
place its result in the corresponding destination;

retirement queue, which holds all the operations that
have been dispatched (and perhaps even executed)
but which have not yet been completed;

« logic to decode/expand, rename/dispatch, issue, and
retire instructions, distributed across several pipeline
stages.

The processor model implements a conventional pipe-
line, as depicted 1n Figure 2. Integer operations, includ-
ing branches, traverse the pipeline in eight cycles
(stages), whereas memory operations and floating-point
operations require ten cycles. Branches are subject to
early resolution at dispatch time, as described later, but
they still traverse the pipeline as indicated in the figure,
Additional cycles are required in the case of data cache

misses and long-latency operations {such as divide,
square-root, and so on).

Instruction prefetch. Instruction prefetch uses a next-
sequenhial algorithm, as follows: requests for instructions
are presented to the instruction cache (L1-I) and instruc-
tion prefetch unit simultaneously. If the requested group
of instructions is not in the L1-I cache but is present in
the prefetch buffer, the group of instructions is trans-
ferred to the processor and the corresponding line is
transferred into the instruction cache; a prefetch request
for the next sequential cache line is sent to the L2 cache
On the other hand, if the requested group of instructions
1s neither in the L1 instruction cache nor in the prefetch
buffer, the corresponding cache line is transferred from
the L2 cache into the instruction cache, and the next
sequential line is transferred into the prefetch buffer. If a
line to be prefetched is not already in the L2 cache, the
prefetch request is ignored.

Next fetch-address and branch prediction. A next
fetch-address and branch prediction unit (NFA/BP, see
Figure 3) is used to generate a new address for accessing
the instruction cache in every cycle, and for predicting
the outcome of the conditional branches present in the
group of instructions fetched in a given cycle.

The branch prediction logic uses a branch history table
(BHT) of 2-bit saturating up /down counters [15]. Multi-
ple ports in this table are used for the simultaneous pre-
diction of all branch instructions fetched together.

S0 S1 s2 S3

| Decode/ | Rename/

Integer | Feich h
Dmraﬂun w

| ! Decode/ | Rename/

Floating Fetch | o h
operaiior _.*_L%IE_'.EIIEM.F

| | | |

1
1
I
|
Load F Decode/ | Rename/ |
operation | etch =] h Rslle I
I I f
I
i
|

S4 85 56 S7 S8 S9
Issue II;I:%FI II Exec i WB | Retire ; ! '
T 1 T 1 [|
| | [| I |
R
H:gd I EA I D-cacl’# access I we Retire J
i | ! i i
i I I I | I |
Issue Rﬂg}i i Exec i Exec i Exec i WB Retire I
1 I I

_

Figure 2: Pipeline stages

address logic

Next fetch
- Next fetch address

Branch pred.

———» Branch prediction

logic

LR
stack
—
Current
| E—
fetch address— | BTAC
g
/- BHT
Instructions

Figure 3: Next fetch address (NFA) and branch prediction units

The next-fetch-address logic chooses among the out-
put from a branch target address cache (BTAC) and the
top of a Link Register stack, as follows: if the group of
instructions just fetched contains a Branch to Link Regis-
ter instruction, and all previous branch nstruction
within the group are predicted as not-taken, then the top
of the Link Register stack is used; otherwise, the output
from the BTAC is used.”

The BTAC is four-way set associative, and contains
only the addresses of branch instructions actually taken;
if a branch is not found in the BTAC, it 1s regarded as a
branch not taken so the BTAC output 1s the address of
the block of instructions plus the size of the block. The
BTAC is updated whenever there 1s a mismatch between
the address predicted by the branch prediction logic and
the address generated by the next fetch-address logic.
There is a two-cycle delay from the generation of the
next fetch-address to the detection of the mismatch and
BTAC update, in which case the prefetched instructions
must be discarded and the prefetch started from the
address generated by the branch prediction logic (a two
cycle pipeline bubble).

The BTAC is indexed by the address generated by the
next fetch-address logic in the previous cycle. The next
fetch address logic can be forced to operate under a “per-
fect prediction” mode, in which case the address gener-
ated is the same address produced the branch prediction

logic.
The Link Register stack i1s updated by all branch

instructions which have the link bit set; whenever such
an instruction is encountered, the address of the next

" Some of these features might not be realizable in practice,
due to cycle time and/or hardware limitations.

instruction is pushed into the stack. When a branch to
link register instruction 1s encountered, the value at the
top of the stack is removed and used as the predicted tar-

get.

A mispredicted branch leads to stalling the pipeline
until the branch is resolved, and resuming execution
from the target of such branch. Stalling 1s used as a sub-
stitute for pipeline flushing of operations executed spec-
ulatively (which cannot be simulated because those
operations are not present in the input trace).”

Instruction fetch. Instructions are transferred into the
instruction buffer starting from the address specified by
the NFA /BP unit. The number of instructions fetched 1n
a given cycle equals the fetch width of the processor only
if the starting address is aligned at a fetch width bound-
ary (a fetch block). Otherwise, instructions are fetched up
to the end of the fetch block (i.e., fetching does not strad-
dle fetch block boundaries neither cache line bound-
aries).

Instruction expansion, Complex PowerPC instruc-
tions (such as load/ store-multiple or string instructions),
as well as load-with-update and store instructions, are
decomposed in the decode/expand stage into multiple
primitive operations. As a consequence, the total number
of operations flowing through the processor pipeline
beyond the decode/expand stage is larger than the num-
ber of instructions in the input. All queues and buffers
other than the I-buffer contain primitive operations
* The processor model actually has the capability to take into
account the effect of speculatively executed operations if they
are present in the input trace [14]. This capability can be exer-
cised by using the micro-trace generation engine described
in [16].

(instead of PowerPC instructions); this includes the 1ssue
queues as well as the retirement queue. Multiple primi-
tive operations are generated per cycle, up to the decode
width; consequently, multiple cycles may be required to
decompose an instruction. ‘

In the rest of this report, we use the term instruction to
refer to the PowerPC instructions fetched from memory,
and the term primitive operation or just operation to refer to
the operations flowing through the pipeline after the
decode/expand stage.

Store instructions are expanded into an address gener-
ation (agen) operation and a data move (dmove) opera-
tion. Store with update instructions are expanded into
operations agen, update (i.e, an add) and dmove. Load
with update instructions are expanded into a load and an
update operation.

Complex memory instructions which explicitly indi-
cate the number of memory transfers required, such as
string immediate or load/store multiple instructions, are
decomposed into a corresponding number of primitive
operations. In contrast, complex instructions whose
number of memory transfers is run-time dependent,
such as string indexed instructions, are decomposed into
the maximum possible number of memory transfers
(worst-case condition); the resulting primitive opera-
tions include the detection of whether each of the mem-
ory transfers should be performed or not, by checking
the value of the register that determines the number of
such transfers. For example, instruction Iswx is decom-
posed into 96 primitive operations, so that the decode
stage 1s used by this instruction during 24 cycles.

The expansion ratio observed in the trace under study
1s 2.01, so that 346 million primitive operations are
retired. The results presented later regarding utilization
of processor resources are given in terms of primitive
operations; however, performance results correspond to
cycles per Power PC (non-expanded) instruction.

Register renaming,. Register from the different classes
are renamed separately. This includes general-purpose
registers, floating-point registers, condition register
fields, and special-purpose registers (such as XER fields).
Each class has its own physical register file, as well as
separate structures for keeping track of free/used regis-
ters.

Load/store reorder buffer and store queue. At the
rename/dispatch stage, the load/store reorder buffer is
checked for availability of entries for load operations.
Similarly, the store queue is checked for entries for agen/
dmove operations arising from store instructions. That is,
load and dmove operations are not dispatched unless
there is an entry available in the corresponding queue. If
such an entry 1s not available, the rename/ dispatch stage
is stalled until one becomes available.

=1

Operation issuing. Operations are issued for execu-
tion one cycle before the corresponding functional unit is
available and all the required operands are ready. Oper-
ands already available are read from the register file in
the cycle after the operation was issued, whereas oper-
ands which become ready the next cycle are received
through the bypass mechanism by the time the operation
reaches the functional unit (i.e., one cycle later). In the
case of multiple operations available for issuing, they are
selected according to the order in which they were
inserted into the issue queue (i.e., oldest first).

Operation execution. Operations issued to integer,
branch and floating-point units complete execution
within a fixed number of cycles. In contrast, memory
operations complete execution in a variable number of
cycles, due to the varying latency of memory operations
and the contention for the resources (queues, ports) to
access memory.

Memory operations. A memory operation that gener-
ates a second level TLB miss stalls all the memory units
for a specified number of cycles. Similarly, a memory
operation that does not find an entry available in the
miss queue or in the cast-out queue stalls the corre-
sponding memory unit. Cache misses lead to-placing the
memory operation in the miss queue. A dmove operation
marks the corresponding entry in the store queue as hav-
ing data available.

Writing results. Each unit has a separate write port to
the corresponding register file, so that results are written
in the register file without contention. In contrast, data
cache ports are shared among the memory units and the
cache replacement logic.

Data cache ports. Data cache ports are accessed in the
following order:

1. cache line replacement uses two ports: one for writing
the new data, and the other for (potentially) reading
the dirty line being replaced;

2. each load operation uses one port; and

3. each dmove operation (generated from a store instruc-
tion) uses one port.

Retiring operations. Operations are retired in pro-
gram order after they have placed their results in the cor-
responding destinations. In the case of dmove operations
arising from store instructions, they are retired when the
data has been sent from the store queue to the data cache
(i.e., when there is a cache port available).

Validation of the model

An important aspect in the simulation and evaluation of
processor microarchitectures is the correctness of the
model used. Given the complexity of the microarchitec-

ture features being simulated, and the non-intuitive
nteraction among those features, it is necessary to per-
form suitable validation tests.

We carried out extensive testing of the model, apply-
ing techniques similar to those used 1n testing and vali-
dation of more detalled models and actual
processors [4]. This included the generation of test vec-
tors with expected behavior and cycle count, and the
verification of their correct execution. Additional details
regarding this validation procedure are described in [17].

In addition, we performed extensive cross-checking
among the data generated by the model. Since data are
collected at different places within the model, we used
that data to verify consistency throughout the various
pipeline stages and units

4. Processor configurations evaluated
The processor configurations used in this study explore
four dimensions, as follows:

* Policy for issuing instructions: out-of-order or class-
order

= Fetch/dispatch/retire width: 4/4/6,8/8/12 or 12/12/
16 instructions per cycle.

= Size of a two-level cache memory: 64KB first level
and 2MB second level, to infinite size.

* Accuracy of the branch predictor: history table with
8192 saturating 2-bit counters [15], or perfect branch
prediction.

The values of the parameters for the configurations
explored are summarized in Table 2, wherein the charac-
ter sequence (in boldface) to the left of each parameter
value is used to compose the names identifving the con-
figurations in the results presented later. For example, a
configuration named c45tPf corresponds to a processor
with class-order issuing of operations, fetch/dispatch
width equal to 4, 64K /64K /2M cache memory, and per-
tect branch prediction. The combination of all these
parameter values leads to the 48 configurations
explored. The number of functional units, size of certain
queues and parameters that depends on the fetch/dis-
patch/ retire width of the processor are listed in Table 3.

Features of the processor which were kept the same
for all configurations are listed in Table 4 (the description
of these and other parameters is given in [14]).

Table 2: Exploration dimensions

Issue policy Width: Fetch, Disp, Retireu

Cache size: L1-1, L1-D, L2

Branch prediction

c Class-order 4 4,4,6 64K, 64K, 2M Bp | 2048 2-bit counters
p | Out-of-order 8 8,8, 12 Lg 128K, 128K, 4M || P’ Perfect
12 12,12, 16 IL2 128K, 128K, Inf
Inf! In{, Inf, Inf

* Perfect branch prediction also implies perfect next fetch address prediction

+ Infinite cache also implies infinite TLBs

Table 3: Varying parameters for the various configurations

: 5 Pred.
Widths Units Ports Queues —— Phys. Regs.
Fetch/ : i * GPR, FPR,
dispatch Retire|| FX | FP | LS | BR ||Cache| TLB|| Issue | Retire | IBuf CCR, SPR
x
4/4 6 3 2 2 2 2 20,127 128 24 12 80, 80, 32, 64
8/8 12 6 40 160 48 24 128, 128, 64, 96
12/12 16 8 4 6 4 6 60 160 72 24 128, 128, 64, 96

* before instruction expansion
1 branch issue queue

Table 4: Other important parameters

Maximum instructions in flight 160 Size (_Jf miss and cast-out queues 8
(entries)

I-prefetch latency (cycles) 1 Size of store queue and load/ store 3
reorder buffer (entries)

I-prefetch buffer size (cache lines) 4 || Cast-out overhead (cycles) B

I-prefetch latency at prefetch hit 8 D/I-TLBs size (entries) 198

(cycles)

I-prefetch latency at L1-miss/L2-hit, 4 D/I-TLBs miss penalty (cycles) 4

after L1 reload (cycles)

BTAC size (entries) 4096 || TLB2 size (entries) 1024

Next fetch address misprediction ’ TLB2 miss penalty (cycles) 40

penalty

LR stack size 32 ||1, D, L2-cache line size (bytes) 128

Branch history table {entries) 8192 ||1, D miss penalty (cycles) 8,7

Page size (bytes) 4096 || L2-cache miss penalty (cycles) 40

5. Performance results

We now present the results obtained from this explora-
tion in terms of average cycles per instruction (CPI), and
discuss relevant aspects inferred from those results.
Table 5 lists the data obtained for all the configurations
being evaluated; each entry in the table also contains the
name assigned to the configuration, which is used in the
charts that follow.

The data from Table 5 is used in Figure 4 to depict CPI
as a function of the issue policy. The lower portion of
each bar corresponds to the CPI for the case of issuing
instructions out-of-order, whereas the top portion of
each bar represents the degradation in CPI (CPI adder)

introduced by class-order issuing of instructions. The
numbers inside the bars correspond to the value of the
CPI adder expressed as a fraction (%) of the CPI of the
corresponding out-of-order configuration. As it can be
inferred from this figure, the out-of-order configurations
consistently outperform the corresponding class-order
configurations (i.e., with same width, cache organiza-
tion, and branch predictor), the adder being larger for
wider configurations, larger caches and better branch
prediction. In the case of configurations StBp, the adder
ranges from 15 to 32%, whereas in the case of configura-

tions InfPf the adder ranges from 35 to 125%.

Table 5: Cycles per instruction (CPI) for all configurations

2048-entry 2-bit branch predictor Perfect branch prediction
Issue policy ||Width
Inf IL2 Lg St Inf L2 Lg St
Class-order (|4 c4InfBp | c4IL2Bp |c4LgBp | cd45tBp || c4InfPf | c4IL2ZPf | c4LgPf | cgStPf
0.82 1.07 1.18 1.29 0.72 0.93 1.03 1.12
8 c8InfBp | cBIL2Bp |c8LgBp |c85tBp ||cBInfPf | c8IL2Pf | cBLgPf | c8StPf
0.71 0.96 1.07 118 0.62 0.81 091 1.00
12 c12InfBp | c12IL2Bp | c12LgBp | c125tBp || c12InfPf | c12LI2Pf | c12LgPf | c125tPf
0.70 0.95 1.06 1.17 0.60 0.79 0.89 0.97
Out-of- 4 odInfBp | 04ILZBp |o04LgBp |04S5tBp ||o4InfPf | 04IL2Pf | o4LgPf | 04StPf
order 0.67 0.93 1.02 1.12 0.53 0.77 0.86 0.95
8 o8InfBp | o8IL2Bp |o08LgBp | o85tBp ||o8InfPf |o8IL2Pf |oBLgPf | o08StPf
0.44 0.71 0.81 0.91 0.31 0.56 0.65 0.75
12 012InfBp | 012IL2Bp | 012LgBp | 0125tBp || 012InfPf | 012IL2Pf | 012LgPf | 0125tPf
0.41 0.68 0.77 0.88 0.27 0.51 0.60 0.70

CPI

Issue policy

1.5

4StPf
BStPf
125tPf

&
[
-l
-

4InfPf
BInfPf
12InfPf
41L2Pf
BIL2P1
BLgPf
12LgPf

121L2Pf

[J Class-order
Ef out-of-order

Snn- o o o o o o san.
o @ @ m @ m Q
NN o™ BE B B

.‘.EE 4 4 J o w o own

¥ 5 B §F 38 T & A o

Figure 4: CPI adder due to class-order issuing of operations

Figure 5 uses similar adders to depict CPI as a func-
tion of branch prediction. The lower portion of each bar
corresponds to perfect branch prediction, whereas the
upper portion represents the adder arising from the
imperfect predictor. The numbers inside the bars indi-
cate the CPI adder expressed as a fraction (%) of the CPI
of the corresponding configuration with perfect branch
predictor. For the case of configurations with 64K/2M,
this adder ranges from 15 to 26%.

each bar corresponds to the CPI for the case of infinite
cache, which also includes infinite TLB, whereas the
upper portions represent the adders due to reducing the
size of the cache and the introduction of a finite TLB (the
fimite TLB 1s the same in all cases). The numbers inside
the bars in the figure indicate the CPl adder (expressed
as a per-cent of the infinite cache CPI) introduced when
replacing the infinite-cache/infimte-TLB by a 128K-L1/
infinite-L2 cache and two-level TLB with 128/1024

entries.
Figure 6 illustrates the effects arising from variations
in the features of the cache memory. The lower portion of
CPI Branch prediction
1.5
O Imperfect

odinf
oBinf

c4inf
cBinf
ol2inf
c4iL2
cBIL2
el2IL?
o4iL2
o8IL2

cl2inf

B perfect

ol2iL2

cdlg
cBLg
odlg
oflLg

L= " T * I, R R
i $28¢48 38
£t v © 2 o o =
) u ©

cllLg

Figure 5: CPI adder due to imperfect branch prediction

10

CPI

Cache size

1.5

c4Pf cBPf cl2Pr o4Pf oBPf ol2Pf

Ose O
B Lg B inf

c8Bp cl2Bp o4Bp oBBp clZBp

c4Bp

Figure 6: CPI adder due to cache size

Figure 6 shows that any decrease in cache size leads to
performance degradation. The CPI adder when the TLB
and data cache are made finite ranges from 29 to 92% of
the CPI of the corresponding infinite configuration.

Figure 7 depicts CPI as a function of the width of the
configurations. In this case, the lower portion of each bar
corresponds to the CPI for the widest configuration
(w=12), whereas the upper portions represent the adders
arising from the narrower widths. The numbers inside
the bars correspond to the adder arising from decreasing

the width of the processor from 8 to 4 (fetch/dispatch
from 8 to 4, retire from 12 to 6, and the number of units is
halved); this adder ranges from 10 to 71%. On the other
hand, the degradation is rather small when®the width is
decreased from 12 to 8 (fetch/dispatch width from 12 to
8, retire from 16 to 12, and fewer units). This chart indi-
cates that there are clear advantages in increasing the
processor width to fetch/dispatch 8 operations per cvcle
but not beyond, and such advantages are larger in out-
of-order processors. This behavior is found regardless of
the cache size and branch prediction accuracy.

CPI

Processor width

cinfPf
olnfPfl E
clL2Pf
olL2Pf
cLgPf
olgPf
cStPf

oStPf

cinfBp
oinfBp E
aizep
olLgBp
«StBp
oStBp

ciL2Bp

Figure 7: CPI adder due to narrower width

11

CPI

1.4

1k cd od
- il
il cB of
—.— =
sk cl2 ol.J
R
0.4 Sl
o 19
0.2 T T T T T T L T T
SBp LgBp IL2Bp infBp StPf LgPf IL2Pf InfP§

Figure 8: Cycles per instruction (CPI) for all configurations

The diminishing performance improvement seen in
Figure 7 could be attributable to two different sources:

* the instruction-level parallelsm present Imn the
instruction window under consideration is practically
exhausted with a fetch/dispatch width of 8; or

» some of the fixed resources (queues, buffers) in the
processor satu rates

Using the detailed data gathered by our simulator,
which is described later, we verified that queues are not
saturated, leading us to conclude that the limitations to
reducing the CP[value arise from the instruction-level
parallelism in the workload. This aspect is discussed in
Section 7.2.

All the data listed in Table 5 and depicted in the previ-
ous figures are summarized in Figure 8, wherein the
graph 1s divided into two sections; the left-maost section
corresponds to the imperfect branch predictor, whereas
the right-most section corresponds to perfect branch pre-
diction. The trends in CP1 discussed separately for each
dimension being explored are visible jointly in this fig-
ure. Note that the configurations with out-of-order issu-
ing of operations are always better than the class-order
configurations; moreover, out-of-order with fetch/dis-
patch width equal to 4 outperforms even the class-order
configuration with width equal to 12.

As an additional summary view, Figure 9 presents CPI
adders with respect to the corresponding InfPf configu-
rations (infinite cache and perfect branch prediction).
That is, Figure 9 depicts the degradation in CPI arising
from the finite parameters, for the different configura-
tions being considered; the numbers inside the chart cor-
respond to the adder expressed as a fraction (%) of the
CPI value for configuration InfPF.

Figure 10 depicts the fraction (%) of CPI improvement
(i.e., reduction in CPI) achieved by the various configu-

12

rations with respect to models with fetch/dispatch
width equal to 4, computed as

madel —basemode!

x 100

Yo improvement = PTTTET I

Figure 10a depicts the improvement with respect to con-
figuration c45tBp, whereas Figure 10b depicts the
improvement with respect to configuration 045tBp. This
figure shows an always-increasing behavior, indicating
that there 1s always a gain in increasing the features of
the processor, without any visible saturation other than
the diminishing return from increasing the processor
width.

6. Utilization of resources and pipeline stalls
in configuration 045tBp

In addition to the overall CPI achievable with a given
processor configuration, it is important to know the utih-
zation of its various resources and the sources of pipeline
stall conditions. This information is useful to explain the
trends encountered, and determine whether the
resources are being utilized properly.

Our simulation environment reports periodically
(every one million cycles) the number of instructions
that have been fetched, as well as the number of
expanded and retired operations. For example, Figure 11
illustrates the evolution of CPI in configuration 04StBp
(in terms of PowerPC instructions). As inferred from this
graph, the cumulative CPI evolves rather smoothly in
spite of drastic changes in the instantaneous value (every
1M cycles). This type of behavior is encountered even in
the case of the configurations with infinite cache and
perfect branch prediction.

In addition, our simulation environment collects
detailed aggregate information regarding the utilization

CPI

] Adder due to finite effects

1.5

dgaszio
dgasgo
dgispo
dgasz |2
dgisga
dgaspo

dg3qz)o
dg3qgoe
dgdqpo
dasqzi»
dgdqe>
dgdqp>

g dazizio
memed darieo

dazpo
dgzuzi?
dgzie?
dazie?

dguizio
dgujgo
dgjujpo
dayuizia
dgyuiga
daupa

dIST |0
jdisgo
}dISPO
ISTI2
disg?
ISP

WETI0
Jadge
}d8p0
BT
Jdd1e2
a3

MdTzie
idzige
TP
MHTTTI>
dTie?
TR

Figure 9: CPI adders due to finite effects

B

o4
&
of
e
ol2
Ly

cd
AEEREE
cf
——
cl2
e

Improvement over c45tBp

InfPf{

IL2Pf

% improvement

Iimprovement over o4StBp

% improvement

100

of

cB

el2

cl2

P Y.

Figure 10: Improvement with respect to narrow fetch/dispatch: a) over c4StBp; b) over 045tBp

13

1.5
14 F Cummulative
iy L = | M cycles slots
1.2 |
E I
ElL
0.9 -
0.8
0.7 |
0.6
22 43 64 85 106 127 148 169 190
Cycles (in millions)

Figure 11: CPI evolution in configuration 045tBp

of various resources throughout the entire workload. We
now describe this data, which are used in Section 7 to
analyze the trends encountered in Section 5

6.1 Histograms of resources” utilization

Figure 12 illustrates the utilization of the various pipe-
line stages, expressed as histograms of the number of
cycles in which groups of instructions (fetch stage) or
primitive operations (other stages) were processed
simultaneously, for configuration 045tBp. As depicted in
the figure, there is a large number of cycles wherein the
various stages are idle (zero instructions/operations
being processed). The reasons leading to the idle cycles
are analyzed in more detail later. On the other hand,
whenever there 1s activity in progress, the various stages
tend to be well utilized, as indicated by the higher bars
towards the right part of the graph (according to the
resources of configuration o4StBp, only stages Issue and
Retire may process more than four operations per cycle}.

The stages’ activity in configuration 045tBp 1s illus-
trated in more detail in Figure 13, which depicts the
number of instructions/operations processed in each
stage as a function of the size of the group in which they
were handled. In other words, Figure 13 corresponds to
Figure 12 but expressed as operations instead of cycles
(thereby excluding cycles without activity). As shown
here, most of the work 1s performed using large groups:
most instructions are fetched in groups of four, whereas
most operations are renamed in groups of four, 1ssued in
groups of three to five, and retired in groups of six.

Figure 14 illustrates the usage of the different issue
queues in configuration 045tBp, which measures the
number of primitive operations of each class dispatched
and waiting for availability of operands and/or func-

14

tional unit, where we have excluded the cycles when
these queues are empty. For the workload under consid-
eration, these queues tend to be occupied with few
entries; however, the memory issue queue stays full a
non-negligible number of cycles.”

Figure 15 depicts the usage of the retirement queue in
configuration 045tBp, as well as a view of the distribu-
tion of primitive operations in progress (operations “in-
flight”). Recall that the size of the retirement queue is 128
entries, whereas the maximum number of primitive
operations in-flight 1s 160. This figure shows that the
retirement queue has a peak at length 24 to 28, which 1s
attributable to the expansion of instructions into multi-
ple primitive operations. The distribution of entries in
the retirement queue decreases steadily towards the
queue size. On the other hand, the distribution of the
number of operations in-flight has non-negligible values
throughout the entire range, with higher values towards
few entries in the queue.

Since the operations in-flight corresponds to the oper-
ations in the retirement queue plus the instructions
which have been fetched but not yet dispatched, there
are always more operations in-flight than in the retire-
ment queue. However, this is not readily visible in the
histograms in Figure 15 because of the dynamic behavior
of the number of entries in the queues.

Figure 16 illustrates the usage in configuration 045tBp
of the instruction buffer, the store queue and the load/
store reorder buffer. This graph shows that the I-buffer
tends to be occupied by few instructions (less than 7) or

" The floating-point issue queue is not depicted because the
workload being evaluated has few floating-point instruc-
tions.

140

B Fetch
120 Rename
[1ssue
o [Retire
g 2 80
= 6
2=
U X 60
40
\ 1
0
i 2 3
Instructions/operations processed per cycle
Figure 12: Utilization of pipeline stages in configuration 04StBp
350
B Fetch
300 Rename
O Issue
250
P [J Retire
2 2 200 i
g £
E Z 150
£
100
—

| 2 3

Instructions/operations processed per cycle

4

o

Figure 13: Width of processing operations in configuration 045tBp

15

40

21 41 6l 8l 101 121 141

Entries in queue

™ FX-issq
—-6_:"..:\.-—
30 MEM-issq
B —
gz BR-_issq
Y :
Uz
10 |
0 = -
I 2 3 4 5 6 7 8 9% 10 1l 12 13)4 15 16 1T 18 19 20
Entries in queue
Figure 14: Utilization of issue queues in configuration 04StBp
7
5 In-flight
6 i
Retire-Q
5
g ¢4
< 0
2 E
U3
2
|
0

Figure 15: Retirement queue and instructions in-flight in configuration 04StBp

16

Cycles
Millions

Entries in queue

Figure 16: Usage of other queues and buffers in configuration 04StBp

by many (21 to 24). We continue mnvestigating the rea-
sons behind the peak in the range 21 to 24. In contrast,
the store queue and the load/store reorder buffer have a
decreasing trend from short to long length, although
the reorder buffer has a non-negligible value at the larg-
est entry

6.2 Pipeline stall conditions

As depicted in Figure 12, there is a large number of
cycles in which no activity takes place in the various
pipeline stages. In fact, in configuration 045tBp, stages
stay idle about 50% of all the cycles required to execute
the instructions in the trace. A portion of this behavior is
attributable to the model stalling the pipeline upon
encountering a branch misprediction (whereas an actual
processor would continue executing instructions along
the predicted path, which would be discarded later). In
addition to quantifying stalls due to misprediction, the
identification of other reasons leading to idle cycles
might be helpful to determine microarchitecture features
that can improve performance.

We study the behavior of the processor model from
the point of view of retiring instructions. That is, we
investigate the reasons why it is not possible to retire the
maximum number of operations in each cycle. For these
purposes, the simulator keeps track of operations as they
flow through the processor pipeline, and records the rea-
son (“trauma”) for an operation not making forward
progress; note that, during its flow through the pipeline,
an operation may experience more than one trauma.

Every cycle, the retirement logic attempts to retire the
maximum number of operations possible; whenever this
is not achieved, the current (most recent) “trauma” asso-
ciated to the first operation that cannot be retired is

17

recorded, tagged with the number of operations actually
retired. This information is used to build histograms and
stacks of traumas.

Note that traumas are associated with the flow of the
operations through the pipeline, not the resources in the
processor; consequently, a trauma assigned to an opera-
tion remains with that operation until a new trauma is
encountered, regardless of the state of the processor
resources. For example, an I-cache miss leads to assign-
ing that trauma to the first operation decoded from the
first instruction fetched after the miss; that trauma
remains assigned unless the operation encounters
another trauma.

Traumas recorded by the simulator records are
grouped into 27 classes, as listed in Table 6. Traumas 1
through 9 are associated to the fetch stage, whereas trau-
mas 10 through 12 are associated to the decode/expand
and rename/dispatch stages. Traumas 13 through 16 are
related to the issue stage, whereas traumas 17 through 21
are related to memory accesses. Traumas associated to
dependencies among the operations are those numbered
22 through 25. Traumas 26 and 27 are related to the store
queue and availability of cache ports for store opera-
tions, respectively. An additional trauma, not listed in
the table, corresponds to the case of “normal trauma,”
which occurs whenever an operation cannot be retired
but the operation has not been delayed in its progress
through the pipeline by any abnormal reasons; this 1s a
consequence of some stages, such as decode and dis-
patch, having lower bandwidth than the retirement
stage.

Table 6: List of traumas

Id Name Description Stage
1 | IF_NFA NFA misprediction

2 | IF_TLB1 I-TLB miss

3 |IF_TLBZ2 TLB2 instr. miss

4 |IF_L2 L2 cache instr. miss

5 |IF_L1 L1 I-cache miss Fetch
6 | IF_PREF L1-I miss, prefetch hit

7 | IF_PRED Branch misprediction

8 | IF_FULL I-buffer full

9 | IF_MISC Other reasons
10 | Decode Cannot decode instr. Decode
11 | Rename Cannot rename nstr. Rename/
12 | Dispatch Cannot dispatch instr. | dispatch
13 | FUL_FIX Too many INT ready

14 | FUL_FPU Too many FP ready fesiia
15 | FUL_MEM [Too many MEM ready

16 | FUL_BR Too many BR ready

7 | MM_OTHR | Miscellaneous reasons
18 | MM_TLBI1 D-TLB miss
19 | MM_TLB2 | TLB2 data miss Bieant y

access

20 | MM_DL2 L2 cache data miss
21 | MM_DL1 L1 D-cache miss
22 | RG_FIX Result from INT unit
23 [RG_FPU | Result from FP unit ‘;‘*3‘2::’?
24 |RG MEM | Result from MEM unit | $ P
25 | RG_BR Result from BR unit
26 | ST_DATA Store data not ready Store
27 | RET_ST Cache port unavailable | access

For example, the left-most stack in Figure 17 depicts
the distribution of cycles according to the number of
operations retired simultaneously, in configuration
045tBp. If six operations were retired every cycle, the
average CPl would be 0.34 (1x2.01/6: the expansion fac-
tor 2.01 divided by six operations). However, as dis-
cussed earlier, this CPI value cannot be achieved because
the rename/dispatch stage is limited to four primitive
operations per cycle. In fact, six operations are retired
only 16.7% of the cycles, as depicted by the lowermost
portion of the stack.

The remaining parts of the stack, from top to bottom,
depict the percentage of cycles when 0, 1, 2, etc. opera-
tions are retired simultaneously. As we have already
pointed out, there is a large number of cycles in which
no retiring activity takes place in this configuration, so
that the topmost portion of the stack accounts for over
50% of the cycles

18

The right-most stack in Figure 17 depicts an alterna-
tive view, according to the pipeline stage or unit (see
Table 6) which originated the trauma assigned to the
operation that determines the end of the group of opera-
tions retired simultaneously. As in the previous case, the
lowermost part of the stack corresponds to the case of
retiring 6 operations (the “no trauma” portion). As it can
be inferred from this figure, the largest sources of trau-
mas are the fetch stage, the memory access stage, and
dependencies among operations.

A closer examination at the sources of traumas is
shown in Figure 18 for configuration 045tBp, which indi-
cates that the most frequently encountered traumas are
those associated with accesses to the second level cache
(traumas IF_L2 and MM_DL2, for instructions and data
respectively), followed by dependencies on load opera-
tions (RG_MM) and lack of ports for retiring store opera-
tions (RET_ST), and then dependencies on integer
operations (RG_FX]). The next set of traumas are accesses
to the first-level data cache (MM_DL1), first-level
instruction cache (trauma [F_L1), and data accesses to
the second-level translation look-aside buffer
(MM_TLB2). These are followed by branch mispredic-
tion (IF_PRED) and instruction accesses to the second
level TLB (IF_TLB2).

The memory related traumas seen in Figure 18 are not
surprising. The processor model used in this investiga-
tion includes an instruction prefetch buffer but there is
no support for prefetching into L2; similarly, the model
has no support for prefetching from L2 into L1-D cache,
or for pre-updating the TLBs.

Additional information extractable from our simulator
is a correlation among the traumas recorded and the
number of unused retirement slots due to those traumas.
That is, the trauma associated to the first operation that
could not be retired in a cycle can be weighted by the
number of empty retirement slots for that cycle. For
example, Figure 19 depicts the frequency of traumas
shown in Figure 18 (for configuration 045tBp), weighted
by the number of unused retirement slots. Note that the
largest sources of traumas are the same as the ones in
Figure 18, but the ratio between the bars is larger. This
illustrates, for instance, that an L2 miss trauma 1s more
expensive than others (it leads to cycles without any
instruction being retired).

The data in Figure 19 corresponds to an approxima-
tion (worst case condition) to the actual retirement
opportunity lost. In practice, not all the unused retire-
ment slots in a given cycle are really a loss, because some
operations after a trauma may themselves be subject to a
trauma, so they could not have been retired anyway."

" We are currently modifying our simulator to provide the
actual number of operations ready to retire which follow the
first operation that cannot be retired in a given cycle.

% cycles

100
90
80
70
50
50

40 |

30
20
10

Operations retired per cycle

Figure 17: Normalized trauma stacks in configuration 045tBp:
a) number of operations retired per cycle; b) sources of traumas

% cycles

100
90
80
70

60
50
40
30
20
10

O store

[Depend.
48] Memory
Issue
Dispatch
Decode
Fetch

El Normal

M No oauma

Cycles

IF_L2
IF_LI
IF_FUL

IF_NFA
IF_TLBI
IF_TLBZ2
IF_PREF
IF_PRED

FUL_FP

IF_OTH
DECODE
RENAME
DISPTCH

FUL_FX

FUL_MM

FUL_BR

MM_OTH
MM_TLE| §
MM_TLB2
MM _DL2
MM_DLI
RG_MM

RG_BR
ST_DAT
RET_ST

Figure 18: Histogram of traumas in configuration 04StBp

200

i

2

]

w |50

F

E g

@

£ 2 100

[

g 50

=

o
0 ;
g = ™ N o= W = I W w
§3333885¢F8¢%
Z F F v w g %00«
sl L o e U Z
T £ ow Tk oW o

DISPTCH

- - =
Xt iE5EfagyzXtEE b
55’.&'5’0.|-IP-I:|:rggg'unnm
€
amaugggzr = w =

Figure 19: Histogram of traumas weighted by loss of retirement opportunity in configuration 045tBp

7. Analysis of performance trends

We now use the traumas’ data collected from our simula-
tion environment to analvze and explamn the perfor-
mance trends encountered in the configurations
explored.

7.1 Effects of second level instruction cache
in configuration 04StBp

Let us first consider the effects of the second level cache,
the most frequent trauma in configuration 04StBp (see
Figure 18). For these purposes, let us explore the traumas
for configuration 04IL2Bp, which is the same as 045tBp
but excluding eftects from L2 cache misses (infimite size
L2). The difference in CPI value for these two configura-
tions (1.12 and 0.93) is due to 33.8 million more cycles in
the case of 04StBp; however, traumas due to the second
level cache account for 46 million cycles in Figure 18
(approximately 24 million from IF_L2 and 22 million
from MM_DL2).

Figure 20 depicts the histograms of traumas for config-
urations 045tBp and 04IL2Bp, including an entry for the
number of cycles when there was no trauma (i.e., the
maximum possible number of operations was retired;
this is the last set of bars in the graph, with the label
NONE). As expected, the traumas associated to the L2
cache have disappeared in configuration o4IL2Bp, while
the relative importance of the other traumas remains
almost the same as in the case with finite L2 cache. The
frequency of several traumas has increased (e.g., IF_L1,
IF_TLB2, MM_DL1, MM_TLB2), which indicates that the
degrading effects of some L2 traumas have shifted to
other traumas. In other words, some L2 traumas either
are or precede operations that are affected by other trau-

20

mas, so that eliminating the L2 trauma makes visible the
others; this explains the difference between the 33.8 and
46 million cycles mentioned above.

The processor model used in this study does not have
parameters to change the associativity of the cache orga-
nization, so from these experiments we cannot conclude
whether the degradation arises from capacity or compul-
sory misses in the L2 cache. In any case, we can postulate
that any improvements in the size or associativity of this
subsystem leads to a reduction in its frequency of trau-
mas, thereby affecting the final performance.

7.2 Diminishing improvement in wider
configurations

Let us now address the diminishing performance
improvement obtained when increasing the decode/ dis-
patch width to twelve operations per cycle. This phe-
nomena was illustrated in Figure 7.

Figure 21 depicts the histograms of traumas for config-
urations 045tBp, 085tBp, and 0125tBp. This figure shows
that the frequency of traumas is basically the same for the
three configurations, with the only exception of trauma
RET_ST which corresponds to lack of ports to retire store
operations. In addition, the number of cycles when there
was no trauma differs drastically among the three cases;
this can be expected because the probability of finding as
many operations ready to retire as the retirement width
is lower for wider configurations.

In terms of the number of cycles required to process
the workload, there is a difference of approximately 35
million cycles between configurations o045tBp and
085tBp, but only 5 million cycles between configurations

35

30

B o04StBp
o4IL2Bp

Cycles
Millions

IF_L2
IF_LI

normal
IF_NFA
1F_FUL
DECODE

IF_TLBI

IF_TLB2
IF_PREF
IF_PRED
IF_OTH
RENAME
DISPTCH

FUL_MM E
FUL_BR
RG_FX
RG_FP
RG_BR f
NONE [t

FUL_FX
FUL_FP
MM_OTH
MM_TLBI F
MM_DL2 [
MM_DLI
RG_MM
ST_DAT

Figure 20: Histograms of traumas in configurations 045tBp and 04IL2Bp

085tBp and 0125tBp; these differences account for the
corresponding CPI improvements (see Table 5). From
inspecting Figure 21, it follows that trauma RET_ST
accounts for about 10 million more cycles in 045tBp than
in 08StBp, whereas there are about 20 million more
cycles associated to the no trauma condition. In contrast,
each of these factors contributes about 5 million cycles
between configurations o85tBp and 0125tBp.

The traumas data indicate that there is a bottleneck in
the data cache ports. Since configuration 045tBp has only
two memory units, there are only two cache ports. Given
the frequency of load and store instructions in the work-
load, and the higher priority assigned to load over store
operations, store operations are required to wait for the
availability of cache ports.

On the other hand, configuration 085tBp has twice as
many memory units and therefore cache ports, thereby
alleviating the bottleneck. Although further increases in
the number of memory units and ports continues
decreasing the frequency of trauma RET_ST as well as
the frequency of no traumas, these reductions are coun-
terbalanced by small increases on other factors (such as
traumas Normal, IF_PRED, RG_EX, RG_MM).

As further exploration of this topic, Figure 22 depicts
the histograms of traumas for the same configurations as
above but assuming that each one has twice as many
cache ports (these configurations are not included in
Table 5). That is, each configuration uses separate ports
for store operations, and there are as many extra ports as
the number of memory units. As it could be expected,
the effects of trauma RET_ST have almost disappeared;
however, the CPI achieved in each case is only about 1%
different from the earlier case. In other words, the effects
of trauma RET_ST have been shifted to other traumas; in

21

particular, RG_FX and RG_MM have increased in all

configurations, whereas FUL_MM has increased in con-

figuration 04StBp. X
&

These results indicate that operations affected by
trauma RET_ST closely precede operations that are
affected by register dependencies, so that retiring the
store operation makes visible the trauma in the opera-
tions that follow but does not reduce the number of
cycles required by the workload. The new traumas now
visible are mostly dependencies among operations,
which indicates that there is a substantial increase in
extraction of instruction-level parallelism (ILP) when
moving from configuration 04StBp to configuration
085tBp, but further substantial gains in ILP are not possi-
ble.

7.3 Effects of class-order issuing of
operations

Let us analyze now the effects of class-order issuing of
operations, by comparing the traumas in this case with
those arising in the case of out-of-order issue. The per-
formance degradation arising from class-order issuing
was depicted in Figure 4.

Figure 23 depicts histograms of traumas for configu-
rations 045tBp and c45tBp, that is, for configurations
with identical resources but just different issue policy. As
illustrated in the figure, the frequency of most traumas 1s
very similar, with the dramatic exception of RG_FX; in
the case of class-order issuing, trauma RG_FX is almost
four times more frequent that in the case of out-of-order
issuing. This indicates that many integer operations in
the program are independent but appear in sequential
program order, so that they are not issued in the class-

B o4stBp
08StBp
[Jol2stBp

35
30

suoiiig
s34

15713y

lva is

i ua oy

{ WKW Du

d4 oM

] X4 9d

170 WK

— 710 HH

= 7911 WM

1870 WK
HLO WKW
dand
WKW IN4
447104
X4 1nd
HOLdsIa
AMYNIY
agosaa
HLO I
AGEEL
GENERET

H J43ud 31

174
141

-zl 4l

[E-R P

=RZE]

jewou

Figure 21: Histogram of traumas for configurations 045tBp, 085tBp, and 0125tBp

B odstBp
08StBp

Ool2stBp

suol|pid
sapi)

INON
15 13
1va is
ua oM

= Y

d4 9
bERLT]
170 WKW
770 WKW

] T8IL WKW
o 18711 WKW
d HLO WH

ug N4
WW N4
FERRF]
x471In4
HDLldsla
AWVNIY
ago>saa
HLO 4l
Ind 4l

] a3dd 41

SEEELCEEL

14l

=] TT 4l
e AT NF ||

1874741
VAN dI

|ewJou

Histogram of traumas for configurations 045tBp, 085tBp, and 0125tBp

Figure 22:

with twice as many data cache ports

22

B o4s¢Bp

— [c4seBp

60

50

Suolily
sapiy

{ AINON
1 1s 13y

Lva is

Hg oy

T MW ou

d47oH

wd X4 DM

17107 WK
770 WKW
TE1L WKW
1970 WKW
HLO WKW
e ng
MWW INd
E]
X471n4
HDLds1a
AWYNIY
Iaooia
HLO dI
and 41

] aauda 41

| 43ud 41

17741
14l

e TE1L7I

a1l 41

Figure 23: Histogram of traumas for configurations 04StBp and c45tBp

B o8seBp

c8StBp

70

e o o
w o+ ™
suoljjijg
LETRY o

60

=
™~

INON
15134
iva 1is
Hg DH
WW oY
d4 oM

4 x4"ou

170 WKW
110 WKW
TE8TL WK
1970 WKW
HLO WK
ug N4

d WKW Ind

d4471n4
X47In4
HOLldSIQ
IWVYNIY
3ao>s3a
HLO 4l
RGERED

4 a3aud 41

43ud 41

(R IET

"RAE]]

i 19117

1974741

| V4ANTdI

e 1 ELLIIOU

Figure 24: Histogram of traumas for configurations 085tBp and c8StBp

order policy but they are dynamically reordered in the
out-of-order policy. Moreover, the RG_FX traumas in
configuration c¢45tBp do not mask other conflicts,
because their removal does not lead to a substantial
increase of other traumas. A similar behavior 1s found
among configurations o85tBp and cBStBp, as depicted in
Figure 24

8. Effects of microarchitecture features

We now explore the effects of some microarchitecture
features. In particular, we explore the effects of the fol-
lowing features on configurations 045tBp and 085tBp:

e lack of next-fetch-address prediction;

« lack of early branch resolution;

e double the number of instructions fetched per cycle;
» one fewer pipeline stage for load operations;

one or two additional decode stages in the pipeline;
four times larger TLBs; and

twice larger caches

Table 7 lists the CPI values as well as the relative
change with respect to the original value for each config-
uration. Removing features such as next fetch address
prediction and early branch resolution account for 3.6 to
6.6 % CPl degradation, whereas doubling the fetch
width or removing one pipeline stage for load opera-
tions accounts for about 1 to 2 % improvement. Similarly,
one additional decode stage in the pipeline leads to
about 2 % degradation, whereas two extra decode stages
imply 2.7 to 4.4 % degradation. On the other hand, mak-
ing the TLBs four times larger (i.e., 512, 4096 entries,
respectively) improves performance by 3.6 to 4.4%,
whereas a cache twice as large provides 8.9 to 11 %
improvement.

The data listed in Table 7 indicate that, individually,
most of these features do not provide a dramatic advan-
tage in performance; instead, each feature helps by a
small factor, making necessary to incorporate several of
them for a more substantial performance gain. Among
the features explored, larger caches and early branch res-
olution are the most effective ones, whereas one addi-
tional decode stage might not be too detrimental.

9. Concluding remarks

We have investigated the potential performance of Pow-
erPC-based wide superscalar processors on a standard
OLTP workload, using a PowerPC 601 instruction and
data reference trace containing 172 million instructions.
We have explored instruction-level parallelism as a func-
tion of the policy for issuing instructions, the processor
width, the size of the cache memory, and the branch pre-
dictor. We have studied factors that limit increasing per-
formance in wide processors (ie., factors limiting the
reduction of the average number of cycles required per
instruction, CPI), from the perspective of retiring opera-

24

Table 7: Effects of some microarchitecture features

045tB 085tBp
Feature o, 7
CPI CP1 i
change change

Original 1.12 - || 091 -
No NFA predictor 1.16 -3.6 || 0.95 4.4
No early branchreso- || 5 15| 84 ||087 | «4e
lution
Double I-fetch band-
width 1.10 1.8 || 0.90 1.1
One fewer ;}rc]e n 11 09 || 0.89 29
load operations
One additional decode 114 18l 093 25
stage
Two additional decode 115 271 0s g
stages
Larger TLBs (4x) 1.08 3.6 || 0.87 4.4
Larger caches (2x} 102 89 || 0.81 11.0

tions. The analysis has been carried out through the use
of stacks and histograms indicating the performance
degradation (with respect to more ideal cases) contrib-
uted by different sources. We have also explored the sen-
sitivity of two configurations to selected
microarchitecture features.

The simulation results have shown that, on the work-
load and processor organizations considered, 1ssuing
operations 1n class-order in narrower configurations
with finite caches and branch predictor leads to a 15 to
307 degradation with respect to issuing them out-of-
order. This degradation can increase up to 125%, for the
case of wider processors with infinite caches and perfect
branch prediction. In other words, the degradation aris-
ing from the class-order issue policy becomes more
severe as other features of the processor improve. More-
over, since class-order 1s less restrictive than in-order
issuing, the degradation can be expected to be even more
severe when using a fully in-order policy, though our
environment does not have the ability to quantity such
degradation exactly.

The simulation results also show that a branch predic-
tion table with 8192 2-bit counters degrades performance
with respect to a perfect predictor in the range from 18 to
26% in smaller out-of-order implementations; such a
degradation may increase up to 54% for wider configu-
rations with infinite caches. This suggests that branch
prediction improvements are more useful for improving
performance in the case of wider out-of-order configura-
tions.

Moreover, the results indicate that a processor dis-
patch width of eight operations per cycle is advanta-
geous, whereas wider organizations provide
diminishing performance improvement. This saturating
effect arises from the availability of instruction-level par-
allelism 1n the workload, not from limitations in the pro-
cessor pipeline. In fact, the results indicate that pipeline
resources do not get overloaded or saturated.

Consequently, as inferred from Table 5, doubling the
features of a processor whose dispatch width is four by
doubling the number of units and the various widths,
while preserving the size of caches and prediction accu-
racy, produces approximately 20% overall performance
improvement. Doubling also the size of the caches pro-
duces an additional 10% improvement. Further enhance-
ments in cache size and branch prediction accuracy can
increase these factors even further. The overall possible
gain from the wider implementation, infinite caches and
perfect branch prediction can decrease CPl from 1.12
down to (.31.

Data collected from the simulations indicate that, in
general, the activity in the processor on the workload
considered tends to be in bursts. There are many cycles
of almost total inactivity in the various stages, but there
also are many cycles in which the stages are fully busy.

As it could be expected, one of the bottlenecks to
higher performance 1s found in the memory subsystem,
In particular in delays when misses are encountered in
the cache and the translation look-aside buffer, thereby
validating common wisdom regarding the effects of
memory on OLTP workloads.

The exploration of performance sensitivity to selected
microarchitecture features shows that the various fea-
tures contribute to overall performance, but the
improvement associated with each of the features is
rather small (in the range from 1 to 5%). The most sensi-
tive features are the size of the cache memory, as already
demonstrated by the other data, and the early resolution
of branches (at the dispatch stage).

The experimentation described in this report has been
carried-out using a set of tools developed with the objec-
tive of supporting exploration of microarchitecture fea-
tures, by providing the ability to modify a reasonably
large set of parameters. In addition, these tools allow
simulating in excess of 100 million processor cycles per
hour. The combination of these two features, parameter-
ization and speed, has enabled the extensive exploration
of microarchitecture features. The data reported here are
just a small sample of the entire exploration space made
possible by the tools.

25

Acknowledgments

We thank Eric Kronstadt, Al Chang, Dan Prener, and
Dave Meltzer, for their contributions and support to this
work. In addition, we thank Charles Moore for his sug-
gestions to analyze performance from the perspective of
retiring instructions and the generation of the traumas-
based histograms and stacks, and Mary Masher for pro-
viding the trace used in the experiments

References

[1]]. Hennessy and D. Patterson, Computer Architectre
- A Quantitative Approach, 2nd edition, Morgan
Kaufmann Publishers, Inc., San Francisco, CA,
1996.

Transaction Processing Performance Council
(TPC), TPC Benchmark C, Standard Specification,
1993.

Fast simulation of computer architectures, T. Conte
and C. Gimare, Eds., Kluwer Academic Publishers,
Boston, MA, 1995,

P. Bose, Performance analysis and verification of super-
scalar processors, Research Report RC-20094, IBM
Thomas]. Watson Research Center, Yorktown
Heights, NY, June 1995.

S. Palacharla, N. Jouppi, and]. Smith, “Complex-
ity-effective superscalar processors,” Proceedings of
the 24th Amnual International Symposium on Com-
puter Architecture, Denver, Colorado, pp.206-218,
June 1997.

M. Franklin, W. Alexander, R. Jauhari, AM.G.
Maynard, B. Olszewski, “Commercial workload
performance in the IBM POWER2 RISC System/
6000 Processor,” IBM Journal of Research and Devel-
opment, Vol. 38, No. 5, pp. 555-561, September 1994.
R.J. Eickemeyer, RE. Johnson, S.R. Kunkel, M.
Squillante, S. Liu, “Evaluation of multithreaded
uniprocessors for commercial application environ-
ments,” Proceedings of the 23th Annual International
Symposium on Computer Architecture, Philadelphia,
Pennsylvania, pp.203-212, May 1996.

Standard Performance Evaluation Corporation,
SPEC95 Benchmark Suite, August 1995,

M. Mosher, “Validation of a PowerPC 601 TPC-C
instruction and data reference trace,” IBM Austin,
March 1996 (internal report).

P. Emma, “Understanding some simple perfor-
mance limits,” to be published in IBM Journal of
Research and Development, May /June 1997.

J. Moreno, M. Moudgill,].D. Wellman, P. Bose, L.
Trevillyan, “Performance exploration of PowerPC-
based wide superscalar processors,” Research
Report (in preparation), IBM Thomas]. Watson
Research Center, Yorktown Heights, NY.

J. Moreno, M. Moudgill,].D. Wellman, “The MET: a
microarchitecture exploration toolset,” Research
Report (in preparation), IBM Thomas]. Watson
Research Center, Yorktown Heights, NY.

(2]

13]

[4]

(5]

6]

(7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

IBM Corporation, R5/6000 43P Model 140, Order
No. G2217015, 1996.

M. Moudgill,]. Moreno, “Turandot: a wide-issue
superscalar processor model for microarchitecture
exploration,” Research Report (in preparation),
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY.

J. E. Smith, “A study of branch prediction strate-
gies,” Proceedings of the 8th International Symposium
on Computer Architecture, pp. 443-458, May 1981.

26

[16]

[17]

J.D. Wellman, “Aria: a micro-tracing engine,”
Research Report (in preparation), IBM Thomas
]. Watson Research Center, Yorktown Heights, NY.
P Bose, L. Trevillvan, “Validation of a wide-issue
superscalar processor model,” Research Report {in
preparation), IBM Thomas]. Watson Research Cen-
ter, Yorktown Heights, NY.

Copies may be requested from:

IBM Thomas J. Watson Research Center
Publications Office, 16-220

Post Office Box 218

Yorktown Heights, NY 10598

Some reports are available via the
Cyberjournal on the WWW.
http://www.watson.ibm.com:8080

