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Abstract

Object-oriented applications may contain data members
that can be removed from the application without af-
fecting program behavior. Such “dead” data members
may occur due to unused functionality in class libraries,
or due to the programmer losing track of member us-
age as the application changes over time. We present
a simple and efficient algorithm for detecting dead data
members in C++ applications. This algorithm has been
implemented using a prototype version of the IBM Visu-
alAge C++ compiler, and applied to a number of realistic
benchmark programs ranging from 600 to 58,000 lines
of code. For the non-trivial benchmarks, we found that
up to 27.3% of the data members in the benchmarks are
dead (average 12.5%), and that up to 11.6% of the object
space of these applications may be occupied by dead data
members at run-time (average 4.4%).

1 Introduction

Object-oriented applications may contain data members
(instance variables) that can be removed from the appli-
cation without affecting program behavior. Such “dead”
data members may occur for several reasons:

� When an application uses a class library, it typically
uses only part of the library’s functionality. Certain
members may be accessed only from the unused
parts.

� The expected use of a class at design time may differ
from the actual use of that class at coding time.

� Programmers may lose track of which members
are used, due to the growing complexity of an ap-
plication and its class hierarchy as the application
changes over time.

This paper presents a simple and efficient algorithm that
performs a whole-program analysis of a C++ application
and identifies dead data members. The algorithm has

been implemented in the context of the IBM VisualAge
C++ compiler (version 4.0) [18], and has been applied to
a set of medium-sized C++ applications ranging from 600
to 58,000 lines of code. For the non-trivial benchmarks,
we found that up to 27.3% of the data members can be
identified as dead, and that up to 11.6% of the object
space is occupied by dead data members at run-time. On
the average, we found that 12.5% of the data members
are dead, and that 4.4% of object space is occupied by
dead data members.

Elimination of unused data members is interesting
from an optimization perspective because it reduces
the amount of memory consumed by an application.
An application’s execution time may also be reduced,
through reduced object creation/destruction time, and
caching/paging effects. The detection of dead data mem-
bers may also be useful in an integrated development en-
vironment, by providing feedback to the programmer, or
by filtering out unimportantartifacts from an application.

The remainder of this paper is organized as follows.
In Section 2, we define what it means for a data member
to be live or dead. Section 3 presents our algorithm for
detecting dead data members. Section 4 evaluates the
algorithm on a set of medium size benchmarks. Sec-
tion 5 presents related work and Section 6 presents our
conclusions and future work.

2 Defining Liveness and Deadness

In the remainder of this paper, we will use the following
intuitive definitions of “liveness” and “deadness” of data
members. We call a data member m live if there is an
object o in the program that contains m such that the
value of m in o may affect the program’s observable
behavior (i.e., output or return value). If there is no such
object o, we call m dead.

Note that, according to this definition, data members
that are only accessed from unreachable code are classi-
fied as dead. More interestingly, data members that are
assigned a value that is subsequently never used in the
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class N f
public: int mn1; /* live: accessed and observable */

int mn2; /* dead: not accessed */
g;
class A f
public: virtual int f()f return ma1; g;

int ma1; /* live: accessed and observable */
int ma2; /* dead: not accessed */
int ma3; /* dead: accessed but not observable */

g;
class B : public A f
public: virtual int f()f return mb1; g;

int mb1; /* dead: accessed from unreachable code */
N mb2; /* live: accessed and observable */
int mb3; /* dead: accessed, but not observable */
int mb4; /* live: accessed and observable */

g;
class C : public A f
public: virtual int f()f return mc1; g;

int mc1; /* dead: accessed from unreachable code */
g;

int foo(int *x)f return (*x) + 1; g
int main()f

A a; B b; C c; A *ap;
a.ma3 = b.mb3 + 1;
int i = 10;
if (i < 20)f ap = &a; g else f ap = &b; g
return ap->f() + b.mb2.mn1 + foo(&b.mb4);

g

Figure 1: Example program.

program are classified as dead as well. We are particu-
larly interested in detecting situations of this kind, since
in real-life C++ programs, data members are typically
initialized with a value in a constructor. Otherwise, the
initialization of data members would lead to liveness,
and very few dead data members would be dead.

Figure 1 shows an example C++ program. The follow-
ing observations can be made about the data members in
the class hierarchy of this program:

� A::ma1 and N::mn1 are live because the accesses
to these data members affect the program’s return
value.

� A::ma2 and N::mn2 are dead, because there are
no accesses to these data members in the program.

� A::ma3 and B::mb3 are dead since the accesses
to these data members do not affect the program’s
return value.

� B::mb1 and C::mc1 are dead, because these
members are accessed in unreachable code.

� B::mb2 is live, because there is an access to
B::mb2 from which another member, N::mn1 is
accessed, which affects the program’s return value.

� B::mb4 is live because its address is taken, and
subsequently used in a way that affects the pro-
gram’s return value.

Since the definition of liveness/deadness relies on the
fact whether or not a given member access operation can
be executed or not, the problem of precisely determining
all dead data members is undecidable. Therefore, our
analysis must be a conservative one. Below, we present
an algorithm that conservatively approximates the set of
dead data members: each data member classified by the
algorithm as dead is guaranteed to be dead.

3 An Algorithm for Detecting Dead
Data Members

In essence, our algorithm classifies a data member m as
live if the value ofm is read, or the address ofm is taken.
Since the act of storing a value into a data member can-
not affect the program’s observable behavior (i.e., output
or return value) by itself, we ignore all write-accesses� .
This analysis is performed on all functions and methods
that can be transitively called from main(), thus ig-

�As an exception, data members that are volatile are marked
live if they are written to.
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noring member accesses that occur within unreachable
functions. Conservative assumptions must be made in
the presence of unsafe type casts, unions, and situations
where the source code is only partially available (e.g.,
due to library usage).

Figure 2 shows pseudo code for the algorithm, ex-
pressed as a main procedure DetectUnusedDataMem-
bers, and two auxiliary procedures ProcessStatement
and MarkAllContainedMembers. The algorithm begins
by marking all data members in all classes� as “dead”
(line 3). On line 4, each class C in the program is
marked as “not visited” (the purpose of this action will
be explained shortly). Then, a call graph of the program
is computed on line 5. We make no assumptions about
the particular method used to determine the call graph,
however, the accuracy of the call graph may have an im-
pact on the precision of the analysis [11]. On lines 6–8,
procedure ProcessStatement is invoked for each state-
ment that occurs in a function reachable from main()
in the call graph.

For a given statement s, procedure ProcessStatement
(lines 15–35) determines all data members that are read
in s, and all data members whose address is taken in
s, and marks them “live”. For each expression e in
statement s that is not a call to the delete or free
system functions� (line 18), the following actions are
performed:

� If e is a read-access of the form e�.m, function
Lookup is invoked to determine which data mem-
ber C::m is accessed, and C::m is marked “live”
(lines 19–22). Read accesses of data members using
the -> operator are treated similarly. For “address-
taken” expressions of the form &e�.m, we conser-
vatively assume that the data member may be read
through some pointer in the program if its address is
taken—we do not attempt to trace the use of such ad-
dresses. We make no assumptions about the method
used to implement Lookup; an efficient member
lookup algorithm for C++ was recently presented
in [16]. Qualified read-accesses of data members
are handled in a similar manner.

� If e is an expression of the form &Z::m (i.e., the
offset of member m within class Z is computed),
function Lookup is invoked to determine data mem-
ber C::m that is accessed, and thisC::m is marked

�This includes all data members in structs and unions, which
are defined as special cases of classes in C++ [1].

�A data member whose address is passed to the delete or free
system functions does not have to be marked as live, because these
functions do not affect the program’s observable behavior. We are
particularly interested in detecting such situations, since data members
that are pointers to objects are typically passed to delete in the
enclosing class’s destructor. Other system functions (e.g., strcpy)
that are known not to affect some of their parameters, could be treated
as a special case as well.

“live” (lines 26–28). Expressions of the form
&Z::m are typically used in conjunction with point-
ers to members, a somewhat obscure C++ feature
for indirectly accessing members from a specified
object. We do not attempt to trace where a pointer-
to-member expression is used, and simply assume
that any member whose offset is computed may be
accessed somewhere in the program.

� If e is an unsafe� type cast expression of the form
�T ��e��, for some type T that is not necessarily a
class (lines 29–32), the typeS of subexpression e � is
determined, and all members contained within type
S are marked “live”. We make this conservative as-
sumption because a read access to type T implies a
read-access to some member of S. The data mem-
bers of S are marked “live” by calling procedure
MarkAllContainedMembers for type S. MarkAll-
ContainedMembers (lines 36–50) marks all directly
or indirectly contained data members of a class C;
see Figure 2 for details. In order to prevent du-
plication of work, a class C is marked “visited”
if MarkAllContainedMembers is called for C, and
all actions in MarkAllContainedMembers are only
performed for classes that were not yet visited (see
line 38). All classes are initially marked “not visit-
ed” on line 4.

After processing the statements, the union constructs
in P are examined. If a union U contains at least one
data member that is marked “live”, all other members
that are directly or indirectly� contained inU are marked
“live” (lines 9–11) by calling MarkAllContainedMem-
bers. This conservative assumption is required because
the value of a live union data member might otherwise
depend on a write-access to a dead union member.

3.1 Example

We will now study how our algorithm analyzes the ex-
ample program of Figure 1. Initially, all data members
of the program are marked “dead”. If we assume that the
algorithm of [5] is used to construct a call graph, the call
graph consists of the methods A::f, B::f, and C::f
in addition to main. Analysis of the statements in the
functions in the call graph proceeds as follows:

�For the purposes of this paper, a type cast from type S to type
T is considered “unsafe” if T is a derived class of S and the object
being cast cannot be guaranteed to be a of typeT at run-time. We have
verified that all down-casts in our benchmarks are safe. In general,
unsafe type casts are unlikely to occur, but this is something the user
of the tool has to verify.

�A union construct may contain data members whose type is a
class (although there are restrictions on such classes [1]), and these
classes may contain data members, or have base classes that contain
data members.
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[1] procedure DetectUnusedDataMembers(ProgramP )
[2] begin
[3] mark all data members in P initially as “dead”;
[4] mark all classes in P initially as “not visited”;
[5] construct the call graphG of program P ;
[6] for each statement s in each function f in call graphG do
[7] call ProcessStatement(s);
[8] end for
[9] for each union constructU in P do
[10] if (at least one of the members of U is marked “live”) then
[11] call MarkAllContainedMembers(U );
[12] end if
[13] end for
[14] end;

[15] procedure ProcessStatement(Statement s)
[16] begin
[17] for each expression e in statement s do
[18] if (e is not a call to the system functions delete or free) then
[19] if (e is an expression of the form e �.m and is a read-access) or

(e is a expression of the form &e � .m) then
/* access to data member from expression. similar for -> expressions. */

[20] letX be the type of e � ;
[21] let C = Lookup(X ,m); /*m may occur in a base class ofX */
[22] mark data memberC::m “live”;
[23] else if (e is an expression of the form e � .Y ::m and is a read-access) or

(e is a expression of the form &e �.Y ::m) then
/* access to data member from expression using ‘::’ operator. similar for -> expressions. */

[24] let C = Lookup(Y ,m); /*m may occur in a base class of Y */
[25] mark data memberC::m “live”;
[26] else if (e is an expression of the form &Z::m) then

/* pointer-to-member expression. */
[27] let C = Lookup(Z,m); /*m may occur in a base class of Z */
[28] mark data memberC::m “live”;
[29] else if (e is an unsafe type cast expression of the form �T ��e ��, for some type T ) then
[30] let S be the type of e � ;
[31] call MarkAllContainedMembers(S);
[32] end if
[33] end if
[34] end for
[35] end;

[36] procedure MarkAllContainedMembers(ClassC);
[37] begin
[38] if class C was marked “not visited” then
[39] mark class C as “visited”;
[40] for each data memberm of C do
[41] mark data memberC::m “live”;
[42] if the type of data memberm is a classN then
[43] call MarkAllContainedMembers(N );
[44] end if
[45] end for
[46] for each direct base classB of C do
[47] call MarkAllContainedMembers(B);
[48] end for
[49] end if
[50] end;

Figure 2: Algorithm for detecting unused data members.
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� A::ma1, B::mb1, and C::mc1 are marked live,
because their value is is read in the return statements
of A::f, B::f, and C::f, respectively.

� Since data member B::mb3 is read in main(), it
is classified as “live”,

� The expression b.mb2.mn1 in main’s return
statement reads the values of both B::mb2 and
N::mn1. Therefore, both B::mb2 and N::mn1
are marked live.

� Since the address of data member B::mb4 in ob-
ject b is taken in the return expression of main,
B::mb4 is classified as live.

Note that, although A::ma3 is accessed in main(), it is
written to, not read. Therefore, A::ma3 is not classified
as live. Due to the conservativeness of the algorithm,
three dead data members are marked “live”. B::mb3
is classified as live because it is read, even though it
does not affect the program’s return value. B::mb1 and
C::mc1 are marked live because methods B::f and
C::f are identified as reachable functions.

However, if a more accurate call graph is used, we
can achieve better results. For example, a simple
alias/points-to analysis algorithm [7, 15, 20, 17] can
determine that pointer ap never points to a C object.
This fact can be used to exclude method C::f from
the call graph, so that the reference to C::mc1 can be
disregarded, and data member C::mc1 can be marked
“dead”.

An even more ambitious approach would be to elimi-
nate dead code prior to running our algorithm. For exam-
ple, constant propagation [24] can be used to determine
that the else-branch of the if statement is unreach-
able, enabling us to remove method B::f from the call
graph, which would result in B::mb1 being classified
as “dead”. Program slicing [25, 21] may also be used to
remove useless code from an application prior to running
the algorithm.

3.2 The sizeof operator

The sizeof operator, which returns the size of an ob-
ject or type as a number of bytes, can be used in different
ways, and may or may not affect the program’s observ-
able behavior. If program behavior is affected, all data
members in the affected classes must be marked live,
otherwise the use of sizeof can be ignored. Since the
effects of sizeof cannot easily be determined automat-
ically, our approach is that the user must specify which
uses of sizeof can be ignored; by default, sizeof is
treated conservatively.

In the current set of benchmarks, sizeof is only used
for storage allocation purposes, and does not affect the

program’s observable behavior. Therefore, we do not
mark any data members as live due to use of sizeof.

3.3 Dealing with Library Usage

Situations where the source code and class hierarchy for
parts of the program are unavailable due to library usage
require special care. In general, it is not possible to
classify a data member in a library class as “dead” or
“live” unless the complete source code for the library
is available. In particular, it is not possible to classify
the data members of a library class C for which header
information and method bodies are available if we do not
have access to all library source code in which C’s data
members may be accessed.

A data member in a user class derived from a library
class can be classified, assuming that the execution of
the library code cannot result in an access to that data
member. This implies that conservative assumptions
must be made during the construction of the call graph in
the presence of libraries, since a library may make calls
to virtual methods in the user’s code; similar precau-
tions must be taken if the library calls methods indirectly
through function pointers (callbacks). Such situations
can be dealt with conservatively as follows. If a virtual
method f is defined in a library class, and f is overridden
in a class C in the application code, we assume C �� f to
be reachable. In addition, if the address of a function f
is taken in reachable code, we assume f to be reachable.

3.4 Complexity Analysis

Our algorithm requires the construction of a call graph,
and relies on an algorithm for performing member
lookup. Using the Rapid Type Analysis algorithm of
[5], a call graph can be constructed in linear time in prac-
tice [11]; for more sophisticed call graph construction
algorithms, we refer the reader to [11].

Using the member lookup algorithm of [16], all mem-
ber lookups can be computed in time O�M � �C � I��,
where C is the number of classes in the hierarchy, I the
number of inheritance relations among these classes, and
M the number of distinct member names (assuming that
the program contains no ambiguous member lookups).

Assuming that the call graph and all member lookups
have been pre-computed, our algorithm requires a sin-
gle traversal of the expressions that occur in reachable
functions. All actions performed for each expression
can be performed in unit time, with the exception of
calls to procedure MarkAllContainedMembers. The to-
tal amount of time spent in all calls to this procedure
is O�C �M �, assuming that all members in all classes
are eventually visited and marked. This implies that, ex-
cluding the cost of pre-computing member lookups and
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Benchmark Description LOC Classes Data
total (used) Members

jikes IBM Java to byte code translator 58,296 268 (246) 1052
idl SunSoft IDL compiler + demo back end 30,288 85 (82) 118
npic Framework for alias analysis 22,728 198 (184) 290
lcom "L" hardware description language compiler 17,278 78 (73) 287
taldict Taligent’s synthetic dictionary benchmark 11,854 55 (13) 22
ixx IDL specification to C++ code generator 11,157 101 (81) 343
simulate Simulation class library + example 6,672 42 (27) 46
sched RS/6000 instruction timing simulator 5,712 46 (44) 186
hotwire Scriptable graphical presentation builder 5,355 37 (21) 166
deltablue Incremental dataflow constraint solver 1,250 10 (8) 23
richards Simple operating system simulator 606 12 (12) 28

Table 1: Benchmark programs used to evaluate the dead data member detection algorithm. The columns of this table show the
name of the application, a brief description of the application, the size of the application (in lines of source code), the number of
classes in the application’s class hierarchy; the number between brackets is the number of “used” classes (i.e., classes for which a
constructor is called in user code), and the number of data members that occurs in used classes, respectively.

construction of the call graph, the total cost of our algo-
rithm is O�N � �C �M ��, where N is the number of
expressions in the program.

4 Results

The algorithm of Section 3 has been implemented in the
context of the IBM VisualAge C++ compiler (version
4.0) that is currently being developed jointly by IBM
Research and IBM Toronto. We use a slightly modified
version of the Program Virtual Call Graph (PVG) algo-
rithm [4] to build a call graph of a C++ application. For
resolving member lookups, we rely directly on the infor-
mation provided by the compiler. Unfortunately, there
is no linguistic means to detect whether or not a class
occurs in a library. Therefore, we rely on the user to
indicate which classes are library classes.

We applied the dead data member detection algorithm
to a small set of medium-sized C++ benchmarks in order
to answer the following questions:

1. What percentage of data members in an application
can be determined to be dead?

2. What percentage of object space is occupied at run-
time by dead data members?

The first question is answered directly by our algorithm,
as will be discussed below in Section 4.2. The answer
to the second question is obtained by analyzing the ob-
jects created during program execution, and measuring
the amount of space in these objects occupied by dead
data members; this is done by a combination of code
instrumentation and analysis of a dynamic trace of the

execution [14]. The dynamic measurements will be dis-
cussed in Section 4.3.

4.1 Benchmark Characteristics

Table 1 shows the set of benchmark programs that were
used to evaluate the dead data member detection algo-
rithm. The columns of the table show for each bench-
mark: the name of the application, a short description,
the size (number of lines of source code), the total num-
ber of classes, and the number of “used” classes (i.e.,
classes for which a constructor call occurs in the appli-
cation), and the number of data members that occur in
used classes.

Several of these benchmarks have been studied pre-
viously in the literature for other purposes (e.g., exper-
imentation with virtual function-call elimination algo-
rithms) [5, 9, 8, 6, 12, 3]. The programs of Table 1
range from 606 to 58,296 lines of code, and contain be-
tween 10 to 268 classes, and between 22 and 1052 data
members. Some benchmarks (e.g., taldict, simu-
late, and hotwire) use class libraries that have been
developed independently from the application. Several
other benchmarks (e.g., idl, lcom, ixx, and sched)
use classes that were custom-built for the application.
The code for all of these classes is available for analysis,
and the results presented below only apply to application
code for which the full source code is available. In ad-
dition, all benchmarks rely on low-level libraries (e.g.,
iostream.h), for which the source code is unavail-
able or only partially available. In the computation of
the numbers below, classes and data members in such
libraries are ignored.

Besides being of different sizes, the benchmark pro-
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grams also cover a wide range of programming styles.
The sched benchmark, for example, is not written in
a very object-oriented style, and contains very little in-
heritance: most of the classes are structs. On the
other hand, idl is a highly object-oriented application
with a complex class hierarchy and heavy use of virtual
functions and virtual inheritance.

4.2 Static Measurements

Figure 3 shows the percentage of dead data members
in the used classes for the benchmark programs. The
percentages shown in this figure are unweighted in the
sense that they do not take into account the size of each
data member. We believe that taking the size of data
members into account for the static measurements is not
meaningful, because there is no way to take into account
statically how many times each class is instantiated. Data
members in unused classes are ignored in the computa-
tion of the percentages, since eliminating such members
does not affect the size of any objects that are created at
run-time.

In the smallest two of the benchmarks, deltablue
and richards, no dead data members were found. For
the other benchmarks, the percentage of dead data mem-
bers varies from 3.0% to 27.3%. Not surprisingly, the
largest percentage of unused data members is found in
the programs that use class libraries: taldict, sim-
ulate, and hotwire. However, our measurements
indicate that even in applications with a custom-built
class hierarchy, the amount of redundancy can be con-
siderable.

4.3 Dynamic Measurements

Table 2 shows the relevant execution characteristics for
each of the benchmark programs. The columns in the
table show the amount of space occupied by objects
throughout program execution�, the amount of space oc-
cupied by dead data members in these objects, the max-
imum amount of space occupied by objects at a single
point in time during execution (the “high water mark”),
and the high water mark if dead data members are elimi-
nated from objects. Note that, in general, these two high
water marks may occur at different execution points.

Figure 4 shows the percentage of object space occu-
pied by dead data members at run-time for each of the
benchmarks. The figure shows two percentages for each
benchmark:

� The leftmost (lightgrey) bar indicates the number of
bytes in objects occupied by dead data members, as

�We assume that the heap allocator always allocates the exact num-
ber of bytes that is requested.

a percentage of the total number of bytes occupied
by objects.

� The rightmost (dark grey) bar indicates a percent-
age of the reduction in size of the original high
water mark, if all dead data members were to be
eliminated.

Both figures take into account the size of each data mem-
ber, as well as the number of times an object is created.

Interestingly enough, there is no strong correlation
between a high percentage of dead data members in Fig-
ure 3, and a high percentage of object space occupied by
those data members in Figure 4. Another point to note is
that, for a number of benchmarks, the high water mark
numbers are (nearly) identical to the numbers for total
object space. This situation occurs when an applica-
tion heap-allocates most objects, and does not deallocate
them until the end of program execution.

4.4 Evaluation

Although the number of benchmarks we used is relatively
small, some interesting observations can be made.

� The smallest two benchmarks, richards and
deltablue, do not contain any dead data mem-
bers. This is in line with our expectation that it is
unlikely that many dead data members will occur in
small programs.

� The benchmarks that use a class library not specif-
ically built for the application, taldict, simu-
late, and hotwire, have the highest percentage
of dead data members. This confirms our intuition
that dead data members may arise due to unused
library functionality.

� For some benchmarks with a high percentage of
dead data members, the space occupied by these
data members at run-time is relatively small. In
such cases, classes with dead data members are in-
stantiated infrequently.

� Even in applications with custom-built class hier-
archies, the amount of dead data members is non-
negligible.

� Unfortunately, we have limited data on the devel-
opment history of our benchmarks. Nevertheless,
we believe that applications that have a long main-
tenance history and/or have multiple successive or
concurrent developers could accumulate many dead
data members.

For the nine nontrivial benchmarks, the average per-
centage of dead data members is 12.5%, resulting in
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Figure 3: Percentage of dead data members detected in the benchmark programs of Table 1.

Benchmark Object Space Dead Data Member Space High Water Mark High Water Mark w/o
dead data members

jikes 2,921,490 55,112 2,232,472 2,179,730
idl 708,249 15,388 701,273 685,885
npic 115,248 5,516 24,972 23,840
lcom 2,274,956 241,435 1,652,828 1,491,048
taldict 7,080 36 7,008 6,972
ixx 551,160 29,745 299,516 269,775
simulate 54,869 41 11,585 11,544
sched 9,032,676 1,049,148 9,032,676 7,983,528
hotwire 10,780 284 10,780 10,496
deltablue 276,364 0 196,212 196,212
richards 4,880 0 4,880 4,880

Table 2: Execution characteristics of the benchmark programs of Table 1. The table shows for each benchmark: the space
occupied by objects created during execution, the space occupied by dead data members in objects created during execution, the
high water mark (i.e., maximum amount of space occupied by objects at a single point in time during execution), and the high
water mark if dead data members are eliminated from objects. All measurements are in bytes.
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an average space savings of 4.4% at run-time if these
members are removed (4.9% for the high water mark
number). Given the simplicity of the algorithm, we be-
lieve that this optimization should be incorporated in any
optimizing compiler.

5 Related Work

Agesen and Ungar [2] describe an algorithm for the Self
language that eliminates unused slots from objects (a
slot corresponds to either a data member or a method).
This algorithm computes, for each message send (method
call) that may be executed, a set of slots that is needed
to preserve that send’s behavior, and produces a source
file in which redundant slots have been eliminated. In
spirit, this work is very closely related to ours, although
the details of the languages under consideration are very
different. Self is a dynamically typed language without
an explicit class hierarchy in which objects are obtained
by cloning other objects. In statically typed languages
such as C++, objects are created by instantiating classes.
In addition, C++ is a much larger language than Self with
a number of features that require special attention when
determining dead instance variables.

In the context of C++, previous research has focused
on the issue of determiningand eliminating unused meth-
ods, and the usefulness of these optimizations has been
demonstrated [5, 19].

The work described in the present paper was motivated
in part by previous work for removing unused data mem-
bers and inheritance relations from C++ class hierarchies
[22, 23]. Class hierarchy slicing [22] is capable of elimi-
nating unused inheritance relations in addition to classes,
data members and methods. For the example program of
Figure 1, class hierarchy slicing would be able to elim-
inate the unnecessary inheritance relation between class
C and class A. This would result in the elimination of the
A-subobject that contains data member ma1 from object
c. Class hierarchy slicing relies on alias/points-to infor-
mation [7, 15, 20, 17] to resolve the potential receivers
of virtual method calls. Class hierarchy specialization
[23] is capable of making finer distinctions than class
hierarchy slicing by constructing a new class hierarchy
in which variables that previously had the same type X
may obtain different types. As a result, data members
may be excluded from certain X-objects while being re-
tained in other X-objects. Like class hierarchy slicing,
class hierarchy specialization requires alias/points-to in-
formation. Class hierarchy specialization is also capable
of simplifying complex inheritance structures, in partic-
ular eliminating virtual inheritance. Virtual inheritance
is typically implemented by using indirections in objects,
which increase member access time, and which may in-

crease object size, depending on the object model that is
used. Unfortunately, neither class hierarchy slicing nor
class hierarchy specialization have been implemented
yet. It would be interesting to compare the results of
these algorithms to the results presented in this paper.

Live variable analysis is a data flow analysis technique
for determining if the value of a variable along any path is
read before it is re-written [10]. This analysis is typically
used to eliminate redundant writes: if a write to a vari-
able is never read, then the write can be removed. The
analysis described in this paper operates in a completely
different domain, the removal of dead components from
objects, and requires no flow-analysis.

In their study of abstract models of memory manage-
ment, Morrisett et al. [13] provide a semantic definition
of reachable garbage that is similar in spirit to our no-
tion of liveness. Specifically, they observe that certain
reachable heap-values cannot affect program behavior.
Based on this observation, Morrisett et al. propose a
type-inference algorithm that infers a type for each heap
location; if an unconstrained type variable is inferred,
that location can be replaced by an arbitrary value (i.e.,
“collected”). Our analysis for finding data members that
are accessed (reachable) but dead is trivial: A data mem-
ber is dead if it is only written to. We consider the combi-
nation of our algorithm with more advanced techniques
for eliminating useless code (e.g., program slicing) a
promising direction for future work.

6 Conclusions

We have presented a simple and efficient algorithm for
detecting dead data members in C++ applications. This
algorithm can be used as the basis for a space optimiza-
tion performed by an optimizing compiler, or as a com-
ponent of a program maintenance/understanding tool.

The algorithm has been evaluated using a set of realis-
tic benchmark programs ranging from 600 to 58,000 lines
of code. We found that in the nontrivial benchmarks, up
to 27.3% of data members is dead, and that up to 11.6%
of the object space of these applications may be occu-
pied by dead data members at run-time. On the average,
12.5% of the data members are dead, and 4.4% of object
space is occupied by dead data members. Evaluation of
these measurements is in agreement with our belief that
the use of selected parts of a general class library may
give rise to redundant data members in objects.
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