RC 21164(94592)24APR97 Computer Science/Mathematics

Research Report

Reengineering Class Hierarchies Using Concept Analysis

Gregor Snelting
Technische Universitat Braunschweig
Abteilung Softwaretechnologie
Bultenweg 88
D-38106 Braunschweig, Germany
snel ti ng@ ps. cs. tu-bs. de

Frank Tip
IBM T.J. Watson Research Center
PO. Box 704

Yorktown Heights, NY 10598
ti p@vatson.ibm com

= Research Divison _ _
== Almaden - Austin - Beijing - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE Thisreport has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publica-
tion. It has beenissued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution
outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only
by reprintsor legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center [Publications
16-220 ykt] PO. Box 218, Yorktown Heights, NY 10598. email reports@us.ibm.com

Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Reengineering Class HierarchiesUsing Concept Analysis

Gregor Snelting
Technische Universitat Braunschweig
Abteilung Softwaretechnologie
Billtenweg 88, D-38106 Braunschweig, Germany
snel ti ng@ ps. cs.tu-bs. de

Abstract

The design of a class hierarchy may be imperfect. For example, a
class C may contain amember m not accessedin any C-instance,
an indication that m could be eliminated, or moved into a derived
class. Furthermore, different subsets of s members may be ac-
cessed from different C-instances, indicating that it might be ap-
propriate to split C' into multiple classes. We present a framework
for detecting and remediating such design problems, which is based
on concept analysis. Our method analyzes a class hierarchy along
with a set of applications that use it, and constructs a lattice that
provides valuableinsightsinto the usage of the classhierarchy ina
specific context. We show how a restructured class hierarchy can
be generated from the lattice, and how the lattice can serve as a
formal basisfor interactive tools for redesigning and restructuring
classhierarchies.

1 Introduction

Designing a class hierarchy is hard, becauseit is not aways pos-
sible to anticipate how a hierarchy will be used by an application.
Thisis especialy the case when aclass hierarchy is developed asa
library, and designed independently from the applications that use
it. Ongoing maintenance, in particular ad-hoc extensions of the
hierarchy, will further increase the system’s entropy. As typical
examples of inconsistenciesthat may arise, one might think of:

¢ A class C' may contain amember m not accessedin any C-
instance, an indication that . may be removed, or moved
into a derived class.

¢ Different instances of a given class C' may access different
subsets of C”s members, an indication that it might be ap-
propriateto split C' into multiple classes.

In this paper, we present a method for analyzing the usage of
a class hierarchy based on concept analysis [27]. Our approach
comprisesthe following steps. First, atable is constructed that pre-
cisely reflects the usage of a class hierarchy. In particular, the ta-
ble makes explicit relationships between the types of variables, and
class members such as “the type of =z must be a base class of the
type of y”, and “member = must occur in a base class of the type

Anidentical version of this paper appears as a technical report of
the TechnischeUniversitat Braunschweig.

Frank Tip
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, USA
ti p@vatson.i bmcom

of variable z” are encoded in the table. From the table, a concept
lattice is derived, which factors out information that variables or
members have in common. We will show how the concept lattice
can provide valuable insight into the design of the class hierarchy,
and how it can serve asabasisfor automated or interactive restruc-
turing tools for class hierarchies. The examples presented in this
paper are written in C++, but our approach is applicable to other
object-oriented languagesas well.

Our method can analyzeaclasshierarchy along with any number
of programsthat useit, and provide the user with either acombined
view reflecting the usage of the hierarchy by the entire set of pro-
grams, or with individual views that clarify how each application
usesthe hierarchy. Analyzing aclass hierarchy without any accom-
panying applicationsis al so possible, and can be useful to study the
internal dependencesinside class definitions.

1.1 A motivating example

Consider the example of Figure 1, which is concerned with rela-

tionships between students and professors. Figure 1(a) shows a

class hierarchy, in which a class Per son is defined that contains
a person’s nane, addr ess, and soci al Securi t yNumnber.
Classes St udent and Pr of essor are derived from Per son.
St udent s have an identification number (st udent 1 d), and a
thesis advi sor if they are graduate students. A constructor is
provided for initializing St udent s, and amethod set Advi sor

for designating a Pr of essor asan advisor. Pr of essor s have
af acul ty andawor kAddr ess, and aprofessor may hire astu-
dent asateachingassi st ant . A constructor is provided for ini-
tialization, andamethod hi r eAssi st ant forhiringaSt udent

asan assistant. Details for classesAddr ess and St ri ng are not
provided; in the subsequent analysisthese classeswill be treated as

“atomic” typesand we will not attempt to analyzethem.

Figure 1(b) and (c) show two programsthat usethe classhierar-
chy of Figure 1(a). In the first program, a student and a professor
are created, and the professor is made the student’s advisor. The
second program creates another student and professor, and here the
student is made the professor’s assistant. The exampleis certainly
not perfect C++ code, but ooks reasonable enough at first glance.

Figure 2 showsthe lattice computed by our method for the class
hierarchy and the two example programs of Figure 1. Ignoring a
number of details, the lattice may beinterpreted asfollows:

¢ The lattice elements (concepts) may be viewed as classes of
arestructured classhierarchy that precisely reflectsthe usage
of the original classhierarchy by the client programs.

¢ The ordering between |attice elements may be viewed asin-
heritance rel ationshipsin the restructured class hierarchy.

class String { /* details onitted */ };

class Address { /* details omtted */ };

enum Faculty { Mathematics, Computer Science };
class Professor; /* forward declaration */

class Person {
public:

String nane;

Addr ess address;

I ong soci al Securi t yNumber;

b5

class Student
public:
Student (String sn, Address sa, int si){
nane = sn; address = sa; studentld = si;
iE

voi d set Advi sor (Prof essor *p){
advi sor = p;

public Person {

I ong studentl d;
Prof essor *advi sor;
iy
class Professor
public:
Professor(String n, Faculty f, Address wa){
nanme = n; faculty = f;
wor kAddr ess = wa;
assistant = 0; /* default: no assistant */

public Person {

1N
voi d hireAssistant (Student *s){
assistant = s;

Faculty faculty;
Addr ess wor kAddr ess;
Student *assistant; /* either O or 1 assistants */

@)

int main(){

String slname, plnang;

Address sladdr, pladdr;

Student* sl = /* Studentl */
new Student (slnane, sladdr, 12345678);

Prof essor *pl = /* Professorl */
new Prof essor(plnane, Mat hemati cs, pladdr);

s1->set Advi sor (pl);

return O;

(b)

int main(){

String s2name, p2naneg;

Address s2addr, p2addr;

Student* s2 = /* Student2 */
new Student (s2nane, s2addr, 87654321) ;

Prof essor *p2 = /* Professor2 */
new Prof essor(p2nanme, ConputerSci ence, p2addr);

p2->hireAssi stant (s2);

return O;

(©

Figure 1: Example: relationships between students and professors. (a)
Class hierarchy for expressing associations between students and profes-
sors. (b) Example program using the class hierarchy of Figure 1(a). (c)
Another example program using the class hierarchy of Figure 1(a).

Prof essor:: hjreAssi st ant

Proefessor 2
etrityNunber

Per son: : sochal

Figure 2: Lattice for Student/Professor example after assignment propa-
gation.

e A variablev hastype C in therestructured class hierarchy if
v occursimmediately below concept C' in the lattice.

e A member m occursin class C if m appears directly above
concept C'in thelattice.

Examining the lattice of Figure 2 according to this interpretation
reveals the following interesting facts' :

e Data member Per son: : soci al SecurityNunber is
never accessed, because no variable appears below it. This
illustrates situations where subclassing is used to inherit the
functionality of aclass, but where some of that functionality
is not used.

e Data member Per son: : addr ess is only used by stu-
dents, and not by professors (for professors, the datamember
Pr of essor: : wor kAddr ess isusedinstead, perhapsbe-
cause their home addressis confidential information). This
illustrates a situation where the member of a base classis
used in some, but not all derived classes.

¢ Nomembersareaccessedfrom parameterss andp, and from
data members advi sor and assi st ant. Thisisdueto
the fact that no operations are performed on a student’s advi-
sor, or on a professor’s assistant. Such situations are typical
of redundant, incomplete, or erroneous code and should be
examined closely.

e Class Student’s constructor does not initialize the
advi sor datamember. This can be seen from the fact that
attribute St udent : : advi sor does not appear above at-
tribute St udent : : St udent inthelattice.

e There are professors who hire assistants (Pr of essor 2),
and professors who do not hire assistants (Pr of essor 1).
This can be seen from the fact that data member
Pr of essor: : hi reAssi st ant appears above the con-
cept labeled Pr of essor 2, but not above the concept la-
beled Pr of essor 1.

e There are students with advisors (St udent 1) and students
without advisors (St udent 2). This can be seen from the
fact that data member St udent : : set Advi sor appears
above the concept labeled St udent 1, but not above the
concept labeled St udent 2.

! Thelabels St udent 1, Pr of essor 1, St udent 2, and Pr of essor 2 that ap-
pear in the lattice represent the types of the heap objects created by the example pro-
gramsat various programpoints (indicated in Figures 1(b) and (c) using comments).

One can easily imagine how the above information might be
used as the basis for restructuring the class hierarchy. One pos-
sibility would be for a tool to automatically generate restructured
source code from the information provided by the lattice, similar
to the approach taken in [25, 26]. However, from a redesign per-
spective, we believe that an interactive approach would be more
appropriate. For example, the programmer doing the restructuring
job may decidethat the datamember soci al Secur it yNunber
should be retained in the class hierarchy becauseit may be needed
later. In the interactive tool we envision, one could indicate
this by moving up in the lattice the attribute under consideration,
soci al SecurityNunber. The programmer may aso decide
that certain fine distinctions in the lattice are unnecessary. For ex-
ample, one may decide that it is not necessary to distinguish be-
tween professorsthat hire assistants, and professors that don’t. In
an interactive tool, this distinction could be removed by merging
the conceptsfor Pr of essor 1 and Pr of essor 2.

Another useful capability of an interactive tool would be to as-
sociate nameswith |attice elements. When the programmer is done
mani pulating the lattice, these names could be used as class names
in the restructured hierarchy when the restructured source code is
generated. For example, using the information provided by the
lattice, the programmer may determine that St udent objects on
whichtheset Advi sor method isinvoked are graduate students,
whereas St udent objects on which this method is not called are
undergraduates. Conseguently, he may decide to associate hames
St udent and Graduat eSt udent with the concepts labeled
St udent 2 and St udent 11, respectively.

1.2 Organization of this paper

The remainder of this paper is organized as follows. Section 2
briefly reviews the relevant parts of the theory of concept analy-
sis. In Section 3 we define the objects and attributes in our domain,
which correspond to the rows and columns of the tables. The pro-
cess of constructing tables and latticesis presentedin Section 4. In
Section 5, we discuss how the information provided by the lattice
can reveal problemsin the design of class hierarchies, and how the
lattice can be used as a basis for interactive tools for restructuring
class hierarchies. Section 6 discusses related work. Finally, con-
clusions and directions for future work are presented in Section 7.

2 Concept Analysis

Concept analysis provides a way to identify groupings of objects
that have common attributes. The mathematical foundation was
laid by Birkhoff in 1940 [3]. Birkhoff proved that for every binary
relation between certain objectsand attributes, alattice can be con-
structed that provides remarkable insight into the structure of the
original relation. Later, Wille and Ganter elaborated Birkhoff’s re-
sult and transformed it into a data analysis method [27, 6]. Since
then, it has found a variety of applications, including analysis of
software structures [8, 20, 10, 19].

Concept analysis starts with a relation, or boolean table, T' be-
tween a set of objects @ and a set of attributes .4, hence T" C
O x A. For any set of objects O C (, their set of common at-
tributes is definedas ¢(0) = {a € A | Vo € O : (0,a) € T}.
For any set of attributes A C A, their set of common objects is
T(A)={o€ O |Va€ A:(o,a) eT}.

A pair (0, A) iscaled aconceptif A = o(0) and O = 7(A).
Informally, such a concept correspondsto a maximal rectanglein
thetable T: any o € O hasall attributes in A, and al attributes
a € Afit to al objectsin O. It is important to note that con-
ceptsare invariant against row or column permutationsin thetable.
The set of al concepts of a given table forms a partial order via
(O1,A1) S (Oz,Az) — O g 0O, < A 2 As. Birkhoff

medium
large
far
moon

X | X | nomoon

Mercury

Venus

Earth

XXX X | small
XX XX | near

Mars

Jupiter X

Saturn X

X
X
Uranus X X
X
X

Neptune X

XX XXX XX

Pluto X

Figure 3: Example table and associated concept lattice.

proved that the set of concepts constitutes a complete lattice, the
concept lattice £(7"). For two elements (01, A1) and (O, Az) in
the concept lattice, their meet (01, A1) A (O2, A2) is defined as
(01 n 02, 0'(01 n 02)) and theirjoin 35(01 , A1) V (02, Az) =
(T(A1 n Az), A1 n Az)

A conceptc = (O, A) hasextent ext(c) = O andintent int(c) =
A. Inour figures, alattice element (concept) c is labeled with at-
tribute a € A, if it isthe largest concept with a in itsintent, and it
islabeled with an object o € O, if it is the smallest concept with o
in its extent. The (unique) lattice element labeled with a is denoted
u(a) = V{c € L(T) | a € int(c)}, and the (unique) lattice ele-
ment labeled with o isdenoted y(o) = A{c € L(T) | o € ext(c)}.
The following property establishes the connection between atable
and its lattice, and shows that they can be reconstructed from each
other: (0,a) € T <= v(o) < u(a). Hence, the attributes of
object o are those which appear above o, and all objects that ap-
pear below a have attribute a. Consequently, join points (suprema)
in the lattice indicate that certain objects have attributes in com-
mon, while meet points (infima) show that certain attributes fit to
common objects. In other words, join points factor out common
attributes, while meet points factor out common objects.

Figure 3 shows a table and its lattice. The element labeled far
corresponds to the maximal rectangle indicated in the table. This
element is the supremum of al elements with far in their intent:
Pluto, Jupiter, Saturn, Uranus, Neptuneare below far in thelattice,
and the table confirmsthat these planets are indeed far away.

A table and its | attice are alternate views on the same informa-
tion, serving different purposes and providing different insights.
There is yet another view: a set of implications. Let A,B C A
be two sets of attributes. We say that A implies B, iff any object
with the attributes in A also hasthe attributesin B: A —+ B «—
Vo€ O:(Va€ A: (0,a) €eT) = (Vb € B: (0,b) € T).

For B = {b1,...,bx}, A — B holdsiff A — b, forall b, € B
Implications show up in the lattice as follows. A — b holds iff
A{u(a) | @ € A} < u(b). Informally, implications between
attributes can be found along upward pathsin thelattice. In the ex-
ample of Figure 3, we havethat u(far) < p(moon), which can be
read as far — moon, or “A planet whichisfar away hasamoon”.
Another example of animplication isno moon — near, small.

Often, someimplications are known to hold a priori. Such back-
ground knowledge can easily be integrated into a given table. An
implication z — y can be enforced by adding the entriesin the =
column to the y column, and will cause u(z) < wp(y) In L(T). A
general implication A — B can be enforced by adding the inter-
section of the A columnsto all B columns. Implications between
objects can be defined (and enforced) similarly.

Construction of concept lattices and implication bases has typ-
ical time complexity O(r®) for an n x n table, but can be ex-
ponential in the worst case. If arow or column is added to ata-
ble, the lattice for the original table is a sublattice of the lattice
for the extended table. There is much more to say about concept
lattices, their structure theory, and related algorithms and method-
ology. Davey and Priestley’s book [5] contains a chapter on ele-
mentary concept analysis. Ganter and Wille [6] treat the topic in
depth.

3 Objects and Attributes

Roughly speaking, the objectsand attributesin our domain are vari-
ables and class members, respectively, and the table that will be
constructedin Section 4 identifiesfor each variable which members
must be included in its type. Before we can define the objects and
attributes more precisely, we need to introduce some terminol ogy.
In what follows, P denotesa program containing a class hierarchy,
or acollection of programsthat share a class hierarchy. Further, v,
w, ... denote the variables in P whose type is aclass, and p, g,
... thevariablesin P whosetypeis apointer to aclass (references
can be treated similarly, and will be ignored in the present paper).
Expressionsaredenoted by z, v, Wewill henceforth use“vari-
ables’ to refer to variables as well as parameters. In the definitions
that follow, TypeOf(P, =) denotesthe type of expressionz in P.
The objects of our domain are the program variables through
which the class hierarchy is accessed. Variables whose type is
(pointer to) built-in can be ignored becausethe class hierarchy can
only be accessed through variableswhosetypeis class-related (i.e.,
variables whose type is a class, or a pointer to a class). Defini-
tion 3.1 below defines sets of variables ClassVars and ClassPtr-
Vars whose type is a class, and a pointer to a class, respectively.
Note that ClassPirVars includes implicitly declared t hi s point-
ers of methods. In order to distinguish between t hi s pointers of
different methods, we will henceforth refer to thet hi s pointer of
method A::f () by thefully qualified nameof its method, i.e., A::f .

Definition 3.1 Let P be a program. Then, we define the set of
class-typedvariablesand the set of pointer-to-class-typedvariables
asfollows:

ClassVar{ P) £
{v| wvisavariablein P, TypeOf(P,v) = C,
for someclassCin P }

ClassPtrVary P) £
{p| pisavariablein P, TypeOf(P,xp) = C,
for someclassC inP }

2 We will usudly write ay,...
{a1,...,an} = {b1,..., bm}.

,8n — bi,..., b, instead of

The attributes of our domain are class members. Following the
definitions of [25, 26], we will distinguish between definitions and
declarations of members. We define these terms as follows: The
definition of a member comprises amember’s signature (interface)
as well as the executable code in its body, whereas the declara-
tion of a member only representsits signature. Thisdistinction is
needed for accurately modeling virtual method calls. Consider a
cal to avirtual method f from a pointer p. In this case, only the
declaration of f needsto becontainedin p’stypein order to beable
to invoke f; the body of f does not need to be statically visible to
p*. Naturally, adefinition of # must be visible to the object that p
pointsto at run-time, so that the dynamic dispatch can be executed
correctly.

Definition 3.2 (shown below) defines sets MemberDclg P) and
MemberDefP) of member declarations and member definitions
in P. We distinguish between declarations and definitions of vir-
tual methods for the reasons stated above. For nonvirtual meth-
ods, making this distinction is not necessary because the full def-
inition of a nonvirtual method must always be statically visible to
the caller. Therefore, nonvirtual methods are modeled using defini-
tions only. Data members are model ed as decl arationsbecausethey
havenot hi s pointer from which other members can be accessed.
We will shortly discusshow class-typed data members (which be-
have like variables because other members can be accessed from
them) are modeled.

Definition 3.2 Let P be a program. Then, we define the set of
member declarationsand member definitions as follows:

MemberDclg(P) &
{ dcl(C::m) | misadatamember or virtual method
inclassC}
MemberDefs(P) £
{ def(C::m) | misavirtual or nonvirtual method
inclassC}

Example: Figure 4 shows a program P, that will be used as a
running example. For P, we have:

ClassVar{P1) = {a,b,c}

ClassPtrvargP.) = {ap, A:f, Axg, B:g, C:f }

MemberDcl{P1) = { dcl(A:f), dcl(A:g), dcl(A:x),
dcl(B::g), dcl(B::y), dcl(C::f),
del(C::z) }

MemberDef(P1) = { def(A:f), def(A:q), def(B::g),
def(C:f) }

We conclude this section with a brief discussion of the treat-
ment of class-related data members (i.e., data members whose
typeis class-related), such as St udent : : advi sor in Figure 1.
Like data members of built-in types, class-related data members
can be accessed from variables and are therefore modeled as at-
tributes. However, since other members may be accessed from a
class-related data member, such data members play an alternate
role as objects as well. For a data member C' :: m whose type
is D in the original hierarchy, its “attribute interpretation” deter-
mines in which objects m is contained and will affect the restruc-
turing of type C' later on, whereasits “object interpretation” deter-
mines how the type D of m will be restructured. The definitions
of the subsequent sections that are concerned with variables apply
to class-related data members aswell, and for conveniencewe will
henceforth assumetheterm “variable’ to include class-rel ated data
membersaswell.

3Our objective s to identify the smallest possible set of member declarationsand
definitionsthat must be includedin the type of any variable. Including the definition of
f in*xp’stypemay lead to theincorporationof membersthat are otherwise not needed
(in particular, members accessed from f’st hi s pointer).

class A {

publi c:
virtual int f(){ return g(); };
virtual int g(){ return x; };
int x;

class B : public A {

publi c:

virtual int g(){ returny; }
int vy;
class C: public B {
publi c:

virtual int f(){ return g() + z; };
int z;
I3
int main(){

A a; Bb; Cc;

A *ap;

if (...) {ap=2&a; }

else {if (...) {ap=28&b; }
else { ap = &c; } }

ap->f();

return O;

Figure 4. Exampleprogram P .

4 Table and Lattice Construction

This section describes how tables and lattices are constructed. Re-
call that the purpose of the table is to record for each variable the
set of membersthat are used. A few auxiliary definitionswill pre-
sented first, in Section 4.1.

4.1 Auxiliary definitions

For each variable v in ClassPtrVar{P) we will need a conserva-
tive approximation of the variablesin ClassVarqP) variables that
v may point to. Any of severa existing algorithms [4, 15, 22, 18])
can be used to compute this information, and we do not make as-
sumptions about the particular algorithm used to compute points-to
information. Definition 4.1 expresses the information supplied by
some points-to analysisalgorithm asaset PointsTo(), which con-
tainsapair {p, v} for each pointer p that may point to aclass-typed
variable v.

Definition 4.1 Let P be a program. Then, the points-to informa-
tion for P is defined as follows:

PointsTo(P) £ { (p,v) | p € ClassPtrVar(P),
v € ClassVard P),
p maypointtov }

Example: We will use the following points-to information for
program P;. Recall that X :: f denotesthet hi s pointer of method
X:f().

PointsTo(P1) = {
{(ap, a}, {ap,b), (ap,c), (A:f,a}, (A:f b},
(C::f ,c), (A:g,a), (B:g,b), (B:g,c)}

Note that the following simple algorithm suffices to compute the
information of Example4.1: for each pointer p of type X, assume
that it may point to any object of type Y, suchthat (i) Y = X or
Y isaclasstransitively derived from X, and (ii) if pisthet hi s
pointer of a virtual method C'::m, no overriding definitions of m
arevisibleinclassY.

We will use the following terminology for function and method
cals. A direct cal is any cal to a function or a nonvirtual
method, or an invocation of a virtual method from a variable in
ClassVarP). Anindirect call isan invocation of avirtual method
from avariablein ClassPtrVargP) (requiring adynamic dispatch).

4.2 Table entries for member access operations

Table T has a row for each element of ClassVaryP)
and ClassPtrVarP), and a column for each element of
MemberDclgP) and MemberDefs(P). Informally, an entry
(v, dcl(A::m)) appearsin T iff the declaration of m is contained
inv'stype, and an entry (v, def(A::m)) appearsin T" iff the defini-
tion of m iscontainedin v’stype. We begin by adding entriesto T’
that reflect the member access operations in the program. Defini-
tion 4.2 below definesaset MemberAccesqP) of al pairs {m, z)
such that member m is accessed from variable z. For an indirect
cadl p = f(y1, ---, yn), We dso include an element (f, z) in
MemberAcces{P) for each (p, z) € PointsTo(P).

Definition 4.2 Let P beaprogram. Then, the set of member access
operationsin P is defined as follows:

MemberAcces{ P) £
{ {(m,v) | v.m occursin P, m isaclassmemberin P,
v € ClassVarP) } U
{ {(m,*p) | p — m occursin P, m isaclassmemberin P,
p € ClassPtrVarP) } U
{{m,z)| p— moccursinP, {p,z) € PointsTo(P),
m isavirtual method in P }

Example: For program P, of Figure 4, we have:
MemberAcces{P1) =

{ (x,*A:g), {y,*B:g), (z,*C:f), (g,*A:f
(f,*ap), {f,a), {f,b), (f.c), (g,a

) >7 <g:*C::f >:
), (9,0}, {9,¢c)}

Accessing a classmember is not an entirely trivial operation be-
cause different classesin a class hierarchy may contain members
with the same name (or signature). Furthermore, in the presence of
multiple inheritance, an object may contain multiple subobjectsof a
giventype C, and hencemultiple membersC::m. Thisimpliesthat
whenever amember m is accessed, one needsto determine which
m isbeing selected. This selection processis defined informally in
the C++ Draft Standard [1] as a set of rules that determine when a
member hides or dominates another member with the same name.
Rossie and Friedman [17] provided a formalization of the member
lookup, as a function on subobject graphs. This framework has
subsequently been used by Tip et a. as a formal basis for oper-
ations on class hierarchies such as slicing [24] and specialization
[25]. Ramalingam and Srinivasan recently presented an efficient
algorithm for member lookup [16].

For the purposes of the present paper, we will assumethe avail-
ability of a function static-lookup which, given a class C' and a
member m, determinesthe baseclass B (B iseither C, or atransi-
tive baseclassof ¢) in which the selected member islocated®. For
details on function static-lookup, the reader isreferred to [17, 24].

We are now in a position to state how the appropriate relations
between variables and declarations and definitions should be added
to thetable:

*In[17, 24, static-lookup is defined as a function from subobject to subobjects.
Since the present paper is only concerned with the classes in which membersare lo-
cated, we will simply ignoreall subobject information below.

Definition 4.3 Let P bea programwith associated table T'. Then,
the following entries are added to the table due to member access
operationsthat occur in the program.

{(m,y) € MemberAcces{P), TypeOf(P,y) = Y,
y = #p, ((p € ClassPirVar§P) and m € VirtualMethods(P)) or
€ DataMemberd P)), X = static-lookup(Y, m)

(y,dc(X::m)) €T

{(m,y) € MemberAcces{P), TypeOf(P,y) = Y,
y=v, ((v € ClassVarP) andm € VirtualMethodsP)) or
m € NonVirtuaMethodP)), X = static-lookup(Y, m)

(y, def(X::m)) €T

4.3 Table entries for t hi s pointers

The next table construction rule we will present is concerned with
t hi s pointers of methods. Consider the fact that for each method
C::f(), thereisacolumnin the table labeled def(C':: f), and arow
labeled *C:: f. The former is used to express the fact that method
C::f() may be called from objects. The latter is necessary to re-
flect members being accessed from method C':: f()’st hi s pointer.
Unless precautions are taken, the attribute def(C':: f) and the object
xC':: f may appear at different pointsin the lattice. More precisely,
we havethat y(xC::f) > pu(def(C::f)), and object «C": f and at-
tribute def(C':: f) will appear at different elementsin the lattice if
method C':: f does not accessitself (i.e., is non-recursive). In such
cases, our method effectively infers that the typeof at hi s pointer
could be a base class of thetypein which method C':: f occurs (and
therefore be less constrained). However, in redlity, the type of a
method’st hi s pointer is determined by the classin which the as-
sociated method definition appears.

The table entries added by Definition 4.4 will force a method's
attribute and amethod’'st hi s pointer to appear at the samelattice
element. Thiswill alow uslater to removerowsfort hi s pointers
from the table when constructing the lattice.

Definition 4.4 Let P beaprogram. Then, thefollowing entriesare
added to the table:

m € (VirtualMethods(P) U NonVirtuaMethod{ P)),
TypeOf(P, m) = C
(#C::m, def(C::m)) €T

Example: Table 1 shows the table for program P, of Figure 4
after adding the entries according to Definitions 4.3 and 4.4.

4.4 Table entries for assignments

Consider an assignment v = w, where v and w are two variables
whosetypeis aclass. Such an assignment is only valid if the type
of v is abase class of the type of w. Consequently, any member
declaration or definition that occurs in v's type must also occur
in w’'s type. We will enforce this constraint using an implication
from the row for v to the row for w. However, we will begin by
formalizing the notion of an assignment.

Definition 4.5 below defines a set AssignmentgP) that con-
tains a pair of objects (v, w) for each assignment v = w in
P where v and w are class-typed. In addition, AssignmentqP)
also contains entries for cases where the type of v and/or w are
a pointer to a class. Parameter-passing in direct calls to func-
tions and methods is modeled by way of assignments between
corresponding formal and actual parameters. For an indirect call
p—= f(y1, - .., yn), AssignmentyP) containsadditional elements
that model the parameter-passinginthedirect call =. f(y1, . . ., yn),
for each {(p, z) € PointsTo(P). That is, we conservatively approx-
imate the potential targets of dynamically dispatched calls. The set

S5 |Xx|IT|B ||| N|T
< |l < |« |« |« |@d | @ | @ | OC|O
S|c|c|o|s|c|c|o|c|B
© © © © © © © © © ©
a X | X
b X X
. ¢ x| |X
T *ap ><
*Af X X
*Alg >< ><
*Bi:g >< ><
vof X X | X
Table 1: Initial table for program P; of Figure 4. Arrows indicate

implications due to assignments (see Section 4.4).

AssignmentqP) will also contain elementsfor implicit parameters
such ast hi s pointers of methods and function/method return val-
ueswhosetypeis class-related.

Definition 4.5 Let P be a program. Then, the set of assignments
between variableswhosetypeis a (pointer to a) classis defined as
follows:

AssignmentP) =
{ {(v,w) | v =woccursin P, v, w € ClassVar{P) } U
{{(xp,w)| p=&w occursmP p € ClassPirVars(P),
w € ClassVar{P) } U
{ {xp,*q) | p = g occursin P, p, g € ClassPtrVar{P) } U
{ {xp,w) | *p = woccursin P, p € ClassPtrVar{P),
w € ClassVar{P) } U
{{v,*q) | v =x%goccursinP, v € ClassVar{P),

g € ClassPirVargP) } U
{ (xp, *q) | *p = »q occursin P, p, g € ClassPtrVarP) }

Example: For program P, of Figure 4, we have:

AssignmentqP.) =
{ (*ap,a), (*ap,b), (*ap C>y (*Af a), (*A:f,b),
(*Cuf ,c), (*Azg,a), (*B:g,b), (*B:g,c)}

We are now in a position to express how elements should be
added to the table due to assignments. Definition 4.6 states this as
an implication, which tells us how elements should be copied from
onerow to another.

Definition 4.6 Let P bea programwith associated table T'. Then,
the following implications must be encoded in the table due to as-
signmentsthat occur in P:

{z,y) € Assignment{P)
z—vy

Example: For program P, of Figure4, thefollowing assignment
implications are generated:

*ap —a, *ap - b, *fap > c*A:f —a, *A:f = b,
*Ab:g—a, *B::g—b,*B::g—c,*C:f —5¢

Theseimplications are indicated onthe left side of Table 1. Table2
is obtained by copying the elements from the “source row” to the
“target row” according to each of theseimplications.

S| |X | S| BRI N|Z
L || < |« |« |d|d|d|0 |0
S| o|c|o|v|c|c|o|ol|lo
T | oo || oo || T | T | T | T | T
a XXX | XX

b X | X X X | X

¢ X XXX XX

*ap><

*Af >< ><

*Alg >< ><

*Bi:g ><><

*Co:f X X | X

Table 2: Table after application of assignment implications. Arrows in-
dicate implications for preserving hiding/dominance among memberswith
the same name (see Section 4.5).

4.5 Table entries for preserving dominance/hiding

Thetablethusfar encodesfor each variable the members contained
in its type (either directly becausea member is accessed from that
variable, or indirectly dueto assignmentsbetween variables). How-
ever, in the original class hierarchy, an object’s type may contain
more than one member with a given name. In such cases, the mem-
ber lookup rules of [1] determine which member is accessed. This
is expressed as a set of rulesthat determine when a member hides
or dominates another member with the same name. In caseswhere
a variable contains two members m that have a hiding relation-
shipintheoriginal classhierarchy, this hiding relationship must be
preserved, because we are interested in generating a restructured
hierarchy from the table, and the member access operationsin the
program might otherwise become ambiguous. Definition 4.7 incor-
porates the appropriate hiding/dominance relations into the table,
using implications between attributes:

Definition 4.7 Let P be a programwith associated table T". Then,
the following implications are incorporatedinto 7" in order to pre-
serve hiding and dominance:

(z, dcl(A::m)) € T, (z,dcl(B::m)) € T,
Aisatransitive base classof B
dcl(B::m) — dcl(A::m)

(z,dcl(A::m)) € T, (z, def(B::m)) € T,
A = Bor Aisatransitive baseclassof B
def(B::m) — dcl(A::m)

(z, def(A::m)) € T, (z, def(B::m)) € T,
Aisatransitive base classof B
def(B::m) — def(A::m)

(z, def(A::m)) € T, (z,dcl(B::m)) € T,
Aisatransitive base classof B
dcl(B::m) — def(A::m)

2lzlzlglzlgla|s oo
a XXX IX X

b X | X X XX

¢ [XX XXX XX
ap |
AT XX X
*Alg X | X X
Bio | X X | X
GRS X X | ¥

Table3: Final tablefor program P .

Example: For program P,, the following dominance implica-
tions are generated:

def(A:f) — dcl(A:f) def(A::g) — dcl(A::g)
def(B::g) — dcl(A::g) dcl(B::g) — dcl(A::9)

These implications are shown at the bottom of Table 2. After in-
corporating theseimplications, Table 3 results.

4.6 Lattice construction

From the final table, the lattice can be constructed using Ganter’'s
algorithm [6]. Thereis one minor issue that deserves mentioning.
Recall that in Section 4.3 table entries were added to ensure that
method definitions and their t hi s pointers show up at the same
|attice element. In order to avoid presenting redundant information
to the user, we will henceforthomit t hi s pointersfrom the lattice.
The easiest way to accomplishthisisto remove therowsfor t hi s
pointer variables to the table prior to generating the lattice. Note
that rows for t hi s pointers cannot be left out during table con-
struction becausethey are needed to model member accessesfrom
t hi s pointers, and the elements in such rows may beinvolved in
implications due to assignments and dominance.

Example: Figure 5 showsthe lattice for program P, generated
from Table 3 after removing the rows labeled * A::f , * A::g, * B::g,
and* C::f .

4.7 Modeling constructors

Constructors require special attention. A constructor generally
initializes all data members contained in an object. If no con-
structor is provided by the user, a so-called default constructor
is generated by the compiler, which performs the necessary ini-
tializations. The compiler may also generate a call to a con-
structor in certain cases. Modeling these compiler-generated ac-
tions as member access operations would lead us to believe that
each member m of class C is needed in all C-instances, even in
caseswhere the only accessto m consistsof its (default) initializa-
tion. Compiler-generated constructors, compiler-generated initial-
izations, and compiler-generated callsto constructorswill therefore
we excluded from the set of member accessoperations. Destructors
can be handled similarly.

del (A::f)

Figure5: Latticefor program Py, generated from Table 3 after removing
therowslabeled * A::f , * A::g, * B::g, and * C::f .

:studentild)
:faculty)
1 wor KAdr ess)
rassistant)
: Student)
: set Advi sor)
: Prof essor)
1 hireAssistant)

Person: : soci al securityNunber)
:advi sor)

Per son: addr ess)

Per son: : nane)
St udent :

St udent :

Prof essor:
Prof essor:
Prof esor:

St udent :

St udent :

Prof essor:
Prof essor

dcl
dcl
dcl
dcl
dcl
dcl
dcl
dcl
def
def
def
def

*s1 X X
*s2
“p1
*p2 X X
*s
*p
Studentl | X | X X | X X | X
Student2 | X | X X X
Professorl [XX | X X
Professor2 | X X | X | X X | X

*advi sor

*assi st ant

*Student: : Student | X | X X X
*Student : : set Advi sor X X
*Prof essor: : Professor [X X | X | X X
*Prof essor : : hi reAssi st ant X X

Figure 6: Final tablefor the Student/Professor example.

4.8 Example

Table 6 shows the final table for the example of Figure 1, as ob-
tained by analyzing the class hierarchy along with the two example
programs. The lattice correspondingto this table was shown previ-
ously in Figure 2 (note that we replaced member definitions by the
corresponding method namesthere for convenience).

4.9 Limitations

We conclude this section with aremark on alimitation of our anal-
ysis. In situations where an object z contains multiple subobjects
of sometype C' (due to the use of nonvirtual multiple inheritance),
our tables do not make a distinction between the various “copies’

of the members of C in z. Thisleadsto problemsif the objective
is to generate a new hierarchy from the lattice in which the dis-
tinct copies of the members of C must be preserved. We consider
this to be aminor problem because situations where nonvirtua in-
heritance is used for its “member replicating” effect are quite rare
in practice, and the restructuring tool could inform the user of the
cases where the problem occurs. A clean solution to this problem
would involve the encoding of subobject information in the table
using an adaptation of the approach of [25, 26].

5 Restructuring class hierarchies

The following can be learned from the lattice (we refer the reader
to the lattice of Figure 2 for examples):

e Datamembersthat are not accessedanywherein the program
(eg., Person::social SecurityNunber) appear at
the bottom element of the lattice.

¢ Data members of a base class B that are not used by (in-
stances of) all derived classes of B are revealed. Such data
members (e.g., Per son: : addr ess) appear above (vari-
ables of) some but not all derived classes of B. For ex-
ample, Person: : address appears above instances of
St udent , but not above any instancesof Pr of essor .

¢ Variablesfrom which no members are accessed appear at the
the top element of the lattice (e.g., S).

e Data membersthat are properly initialized appear above the
(constructor) method that is supposed to initialize them. If
this is not the case, the data member may not be initial-
ized. For example, St udent : : St udent doesnot initial-
izeSt udent : : advi sor becauseSt udent : : advi sor
does not appear above St udent : : St udent inthelattice.

¢ Situations where instances of a given type C' access differ-
ent subsets of C's members are revedled by the fact that
variables of type C' appear at different pointsin the lattice.
Our example contains two examples of this phenomenon.
The instances Pr of essor 1 and Prof essor 2 of type
Pr of essor andtheinstancesSt udent 1 and St udent 2
of type St udent .

The structure theory of concept lattices offers several algorithms
which may provide useful information [21] aswell. For example,
one might think of measuring quality factors such as cohesion and
coupling by algebraic decomposition of the lattice [10, 14].

As we mentioned earlier, a class hierarchy may be analyzed
along with any number of programs, or without any program at
al. Thelatter case may provide insights into the “internal struc-
ture” of a class library. Figure 7 shows the lattice obtained by
analyzing the class hierarchy of Figure 1(a) without the programs
of Figure 1(b) and (c); only code in method bodies is analyzed.

Prof essor:: as .
\set Advi sor

St udent \: advi sor

Professor::faculty
ssor: : wor kAddr gss

Jaddress
student|d
: St udent

Per son:
pr Per son: :

Prof essor: : hj reAssi st ant St udent :

Per son: : soci al $ec

Figure 7: Lattice obtained by analyzing the class hierarchy of Figure 1
without accompanying programs.

Clearly, the resulting lattice should not be interpreted as a restruc-
turing proposal, because it does not reflect the usage of the class
hierarchy. However, there are some interesting things to note. For
example, soci al Securi t yNunber isnot accessed anywhere.
If wewould know in additionthat soci al Secur it yNunber is
private, we could inform the user that it is effectively dead. Ob-
serve also that no members are accessed from method parameters
s and p. Sincethe scopeof thesevariablesislocal to thelibrary, we
know that analyzing additional codewill not changethis situation.
Finally, onecan observefrom Figure 7that St udent : : St udent
doesnot initialize St udent : : advi sor.

We intend to construct an interactive tool that provides the user
with aview of the lattice and the associated table. One could easily
imagine that such a tool would notify the user of anomaliesin the
design of a class hierarchy, as was discussed above. In addition,
the tool could generate source-code from the lattice at any point in
the transformation processby interpreting the lattice asa classhier-
archy. Optionaly, the analyzed programs could be transformed as
well to take the new, restructured hierarchy into account. Specific
transformations that the tool could support are:

e The user can decide to merge® adjacent lattice elements if
the distinction between these conceptsis irrelevant (possi-
bly because the lattice reflects a specific use of the hierar-
chy). For example, one may decide that it is not necessary
to distinguish between professors that hire assistants, and
professors that don't, and therefore merge the concepts for
Pr of essor 1 and Pr of essor 2.

e With certain limitations, the user may move attributes up-
wardsin thelattice, and object downwards. For example, the
user may decide that soci al Securi t yNurber should
be retained in the restructured class hierarchy, and move the
corresponding attribute up to the concept labeled with at-
tribute Per son: : nane.

¢ Backgroundknowledgethat isnot reflectedin the lattice, e.g.
“the type of =z must be abase class of the type of ", can be
integrated via backgroundimplications.

¢ The user may associate names with lattice elements. When
the programmer isdonemanipul ating the latti ce, these names
could be used as class names in the restructured hierar-
chy. For example, by examining the lattice, the program-
mer may determine that St udent objects on which the

5 Thereare someissues that a tool must take into account, becausewe want to pre-
serve member lookup behavior. For example, merging two conceptsthat have different
definitions of avirtua method f associated with them s not possible, because at most
one f can occurin any class.

set Advi sor method is invoked are graduate students,
whereas St udent objects on which this method is not
called are undergraduates. Consequently, he may decide to
associate names St udent and Gr aduat eSt udent with
the conceptslabeled s2 and s 1, respectively.

¢ For very large class hierarchies, the tool would allow the
user to focus on a selected subhierarchy either by specify-
ing its minimal and maximal elements in the lattice, or by
leaving out rows and columns in the table (in particular, the
user could investigate the usage of a specific class C' in the
original hierarchy by focusing on the rows for the variables
of type C, and the columnsfor the members of C).

6 Related Work

6.1 Applications of concept analysis

Godin and Mili [7] aso use concept analysis for class hierarchy
(re)design. The starting point in their approach is a set of inter-
faces of (collection) classes. A table is constructed that specifies
for each interface the set of supported methods. The lattice derived
from this table suggests how the design of aclass hierarchy imple-

menting theseinterfaces could be organized in away that optimizes
the distribution of methods over the hierarchy. Another property of
their approachis that it identifies useful abstract classesthat could
be interesting in their own right, or suitable starting points for fu-
ture extensions of the hierarchy. Although Godin and Mili’s work
has the same formal basis as ours, the domains under considera-

tion are different. In [7], relations between members and classes
are studied in order to improve the distribution of these members
over the class hierarchy. In contrast, we study how the members
of aclass hierarchy are used in the executable code of a set of ap-

plications by examining relationships between variables and class
members, and relationships among class members. Godin and Mili

discuss some extensions of their basic approach to so-called multi-

faceted domains, but do not study the usage of class hierarchiesin

applications.

Another application of concept analysisin the domain of soft-
ware engineering is the analysis of software configurations. Snelt-
ing [20] uses concept analysis to analyze systems in which the C
preprocessor (CPP) is used for configuration management. There-
lation between code pieces and governing expressionsis extracted
from a sourcefile, and the corresponding lattice visualizesinterfer-
ences between configurations. Later, Lindig proved that the con-
figuration space itself is isomorphic to the lattice of the inverted
relation [9].

Concept analysis was also used for modularization of old soft-
ware. Siff and Reps[19] investigated the relation between proce-
dures and “features” such as usage of global variables or types. A
modul arization is achieved by finding elementsin the lattice whose
intent partitions the feature space. Lindig and Snelting [10] also
analyzed the relation between procedures and global variables in
legacy Fortran programs. They showed that the presence of mod-
ule candidates corresponds to certain decomposition properties of
the lattice (the Siff/Reps criterion being a specia case).

6.2 Class hierarchy specialization and application extrac-
tion

Thework in the present paper isclosely related to thework on class
hierarchy specialization by Tip and Sweeney [25, 26]. Class hier-
archy specialization is a space optimization technique in which a
class hierarchy and a client program are transformed in such away
that the client’s space requirements are reduced at run-time. The
method of [25, 26] sharessome basic “information gathering” steps

with the method of the present paper®, but the subsequent steps of
that method are quite different. After determining the member ac-
cess and assignment operations in the program, a set of type con-
straints is computed that capture the subtype-rel ationshi ps between
variables and members that must be retained. These type con-
straints roughly correspond to the information encoded in our ta-
bles, but contrary to our current approach they can correctly distin-
guish between multiple subobjectsthat have the same type. From
the type constraints, a new class hierarchy is generated automati-
caly. In a separate step, the resulting class hierarchy is simplified
by repeatedly applying a set of simple transformation rules.

In addition to the differences in the underlying agorithms, the
method of [25, 26] differs from our reengineering framework in a
number of ways. Class hierarchy specialization is an optimization
techniquethat doesnot require any intervention by the user. In con-
trast, the current paper presents an interactive approach for analyz-
ing the usage of aclass hierarchy in order to find design problems.
Reducing object size through the elimination of membersis possi-
ble, but not necessarily an objective. For the purpose of restructur-
ing it may very well be the case that an unused member should be
retained in the restructured class hierarchy. Theframework we pre-
sented here also allows for the analysis of a class hierarchy along
with any number of programs, including none. Class hierarchy spe-
cialization customizesaclass hierarchy w.r.t. asingle program.

Several other application extraction techniques for eliminating
unused components from hierarchies and objects have been pre-
sented in the literature [2, 24, 23]. These are primarily intended
as optimizations, although they may have some value for program
understanding.

6.3 Techniques for restructuring class hierarchies

Another category of related work is that of techniquesfor restruc-
turing class hierarchies for the sake of improving design, improv-
ing code reuse, and enabling reuse. Opdyke and Johnson [13, 12]
present a number of behavior-preserving transformations on class
hierarchies, which they refer to as refactorings. The goal of refac-
toring is to improve design and enable reuse by “factoring out”
common abstractions. This involves steps such as the creation of
new superclasses, moving around methods and classesin a hierar-
chy, and a number of similar steps. Our techniques for analyzing
the usage of a class hierarchy to find design problems is in our
opinion complimentary to the techniquesof [13, 12].

Moore[11] presentsatool that automatically restructuresinheri-
tance hierarchiesand refactors methodsin Self programs. The goal
of this restructuring is to maximize the sharing of expressions be-
tween methods, and the sharing of methods between objectsin or-
der to obtain smaller programs with improved code reuse. Since
Moore is studying a dynamically typed language without explicit
class definitions, a number of complex issuesrelated to preserving
the appropriate subtype-rel ationshi psbetween types of variablesdo
not arise in his setting.

7 Conclusions and Future Work

We have presented a method for finding design problemsin aclass
hierarchy by analyzing the usageof the hierarchy by aset of appli-
cations. This method is based on concept analysis and constructs a
concept lattice in which relationships between variables and class
members are made explicit, and where information that members
and variables have in common is “factored out”. We have shown
the technique to be capable of finding design anomalies such as
class members that are redundant or that can be moved into a de-
rived class. In addition, situationswhere it is appropriate to split a

Definitions 3.1, 4.1, 4.2, and 4.5 were taken from [25, 26].

10

class can be detected. We have suggested how these techniquescan
be incorporated into interactive tools for maintaining and restruc-
turing class hierarchies.

The present paper has focused on foundational aspects. We in-
tend to implement an interactive class hierarchy restructuring tool
based on our technique, and verify its practicality by applying it
to large C++ applications. We believe that there are several inter-
esting research issues related to the question of how to present the
information contained in the lattice to the user. The treatment of a
number of C++ features (in particular type casts) still needsto be
modeled, but we anticipate no major problems. We hopeto be able
to report on realistic case studies soon.

Acknowledgements

We are grateful to Robert Bowdidge, Christian Lindig, and Peter
Sweeney for commenting on drafts of this paper.

References

[1] ACCREDITED STANDARDS COMMITTEE X3, |. P. S. Working paper for draft
proposed international standard for information systems—programming lan-
guage C++. Doc. No. X3J16/97-0108. Draft of 25 November 1997.

[2] AGESEN, O., AND UNGAR, D. Sifting out the gold: Delivering compact ap-
plications from an exploratory object-oriented programming environment. In
Proceedings of the Ninth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA'94) (Portland, OR, 1994),
pp. 355-370. SGPLAN Notices 29(10).

[3] BIRKHOFF, G. Lattice Theory. American Mathematical Society, 1940.

[4] CHol, J.-D., BURKE, M., AND CARINI, P. Efficient flow-sensitive interpro-
cedural computation of pointer-induced diases and side effects. In Conference
Record of the Twentieth ACM Symposium on Principles of Programming Lan-
guages(1993), ACM, pp. 232-245.

[5] DAVEY,B., AND PRIESTLEY, H. Introductionto lattices and order. Cambridge
University Press, 1990.

[6] GANTER, B., AND WILLE, R. Formale Begriffsanalyse — Mathematische
Grundlagen. Springer Verlag, 1996.

[7]1 GobpIN, R., AND MiLI, H. Building and maintaining analysis-level class hier-
archies using galois lattices. In Proceedings of the Eighth Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications(OOP-
SLA 93) (Washington, DC, 1993), pp. 394-410. SIGPLAN Notices 28(10).

[8] KRONE, M., AND SNELTING, G. On the inference of configuration structures
from source code. In Proceedingsof the 1994 Inter national Conference on Soft-
ware Engineering (ICSE’ 94) (Sorrento, Italy, May 1994), pp. 49-57.

[9] LiINDIG, C. Analyse von Softwarevarianten. Tech. Rep. 98-02, TU Braun-
schweig, FB Informatik, 1998.

LINDIG, C., AND SNELTING, G. Assessing modular structure of legacy code
based on mathematical concept analysis. In Proceedings of the 1997 Interna-
tional Conferenceon Software Engineering (ICSE’97) (Boston, MA, May 1997),
pp. 349-359.

MOORE, |. Automatic inheritance hierarchy restructuring and method refac-
toring. In Proceedings of the Eleventh Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA' 96) (San Jose,
CA, 1996), pp. 235-250. SIGPLAN Notices 31(10).

OPDYKE, W., AND JOHNSON, R. Cresating abstract superclasses by refactoring.
In ACM 1993 Computer Science Conference (1993).

OPDYKE, W. F. Refactoring Object-Oriented Frameworks. PhD thesis, Univer-
sity Of Illinois at Urbana-Champaign, 1992.

[10]

[11]

[12]
[13]
[14] OTT, L. M., AND THUSS, J. The relationship between slices and module co-

hesion. In Proceedings of the 11th International Conference on Software Engi-
neering (1989), pp. 198-204.

PANDE, H. D., AND RYDER, B. G. Static type determination and aliasing for
C++. Report LCSR-TR-250-A, Rutgers University, October 1995.

RAMALINGAM, G., AND SRINIVASAN, H. A member lookup algorithm for
C++. In Proceedings of the ACM SIGPLAN' 97 Conference on Programming
Language Design and Implementation (Las Vegas, NV, 1997), pp. 18-30.

[15]

[16]

[17] RossIE, J. G., AND FRIEDMAN, D. P. An algebraic semantics of subobjects.
In Proceedings of the Tenth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA' 95) (Austin, TX, 1995),

pp. 187-199. SIGPLAN Notices 30(10).

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

SHAPIRO, M., AND HORWITZ, S. Fast and accurate flow-insensitive points-
to analysis. In Conference Record of the Twenty-Fourth ACM Symposium on
Principles of Programming Languages(Paris, France, 1997), pp. 1-14.

SIFF, M., AND REPS, T. Identifying modules via concept analysis. In Proc.
Inter national Conference on Software Maintenance(Bari, Italy, 1997), pp. 170—
179.

SNELTING, G. Reengineering of configurationsbased on mathematical concept
analysis. ACM Transactions on Software Engineering and Methodology 5, 2
(April 1996), 146-189.

SNELTING, G. Concept analysis—anew framework for program understanding.
In Proceeding of the ACM S GPLAN/SIGSOFT Wbrkshop on Program Analysis
for Software Tools and Engineering (Montreal, Canada, 1998). To appear.

STEENSGAARD, B. Points-to analysis in aimost linear time. In Proceedings
of the Twenty-Third ACM Symposium on Principles of Programming Languages
(St. Petersburg, FL, January 1996), pp. 32-41.

SWEENEY, P. F., AND TIP, F. A study of dead data membersin C++ applica
tions. In Proceedings of the ACM SIGPLAN'98 Conference on Programming
Language Design and Implementation (Montreal, Canada, June 1998). To ap-
pear. Also IBM Research Technical Report RC 21051.

Tip, F., CHOI, J.-D., FIELD, J., AND RAMALINGAM, G. Slicing class hierar-
chies in C++. In Proceedings of the Eleventh Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA' 96)
(San Jose, CA, 1996), pp. 179-197. SGPLAN Notices 31(10).

Tip, F., AND SWEENEY, P. Class hierarchy specidization. In Proceedings
of the Twelfth Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA' 97) (Atlanta, GA, 1997), pp. 271-285.

Tip, F., AND SWEENEY, P. F. Class hierarchy specialization. Tech. Rep.
RC21111, IBM T.J. Watson Research Center, February 1998.

WILLE, R. Restructuring lattice theory: an approach based on hierarchies of
concepts. Ordered Sets (1982), 445-470.

11

