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Abstract

The design of a class hierarchy may be imperfect. For example, a
class C may contain a member m not accessed in any C-instance,
an indication that m could be eliminated, or moved into a derived
class. Furthermore, different subsets of C’s members may be ac-
cessed from different C-instances, indicating that it might be ap-
propriate to split C into multiple classes. We present a framework
for detecting and remediating such design problems, which is based
on concept analysis. Our method analyzes a class hierarchy along
with a set of applications that use it, and constructs a lattice that
provides valuable insights into the usage of the class hierarchy in a
specific context. We show how a restructured class hierarchy can
be generated from the lattice, and how the lattice can serve as a
formal basis for interactive tools for redesigning and restructuring
class hierarchies.

� Introduction

Designing a class hierarchy is hard, because it is not always pos-
sible to anticipate how a hierarchy will be used by an application.
This is especially the case when a class hierarchy is developed as a
library, and designed independently from the applications that use
it. Ongoing maintenance, in particular ad-hoc extensions of the
hierarchy, will further increase the system’s entropy. As typical
examples of inconsistencies that may arise, one might think of:

� A class C may contain a member m not accessed in any C-
instance, an indication that m may be removed, or moved
into a derived class.

� Different instances of a given class C may access different
subsets of C’s members, an indication that it might be ap-
propriate to split C into multiple classes.

In this paper, we present a method for analyzing the usage of
a class hierarchy based on concept analysis [27]. Our approach
comprises the following steps. First, a table is constructed that pre-
cisely reflects the usage of a class hierarchy. In particular, the ta-
ble makes explicit relationships between the types of variables, and
class members such as “the type of x must be a base class of the
type of y”, and “member m must occur in a base class of the type

An identical version of this paper appears as a technical report of
the Technische Universität Braunschweig.

of variable x” are encoded in the table. From the table, a concept
lattice is derived, which factors out information that variables or
members have in common. We will show how the concept lattice
can provide valuable insight into the design of the class hierarchy,
and how it can serve as a basis for automated or interactive restruc-
turing tools for class hierarchies. The examples presented in this
paper are written in C++, but our approach is applicable to other
object-oriented languages as well.

Our method can analyze a class hierarchy along with any number
of programs that use it, and provide the user with either a combined
view reflecting the usage of the hierarchy by the entire set of pro-
grams, or with individual views that clarify how each application
uses the hierarchy. Analyzing a class hierarchy without any accom-
panying applications is also possible, and can be useful to study the
internal dependences inside class definitions.

��� A motivating example

Consider the example of Figure 1, which is concerned with rela-
tionships between students and professors. Figure 1(a) shows a
class hierarchy, in which a class Person is defined that contains
a person’s name, address, and socialSecurityNumber.
Classes Student and Professor are derived from Person.
Students have an identification number (studentId), and a
thesis advisor if they are graduate students. A constructor is
provided for initializing Students, and a method setAdvisor
for designating a Professor as an advisor. Professors have
a faculty and a workAddress, and a professor may hire a stu-
dent as a teaching assistant. A constructor is provided for ini-
tialization, and a methodhireAssistant for hiring aStudent
as an assistant. Details for classes Address and String are not
provided; in the subsequent analysis these classes will be treated as
“atomic” types and we will not attempt to analyze them.

Figure 1(b) and (c) show two programs that use the class hierar-
chy of Figure 1(a). In the first program, a student and a professor
are created, and the professor is made the student’s advisor. The
second program creates another student and professor, and here the
student is made the professor’s assistant. The example is certainly
not perfect C++ code, but looks reasonable enough at first glance.

Figure 2 shows the lattice computed by our method for the class
hierarchy and the two example programs of Figure 1. Ignoring a
number of details, the lattice may be interpreted as follows:

� The lattice elements (concepts) may be viewed as classes of
a restructured class hierarchy that precisely reflects the usage
of the original class hierarchy by the client programs.

� The ordering between lattice elements may be viewed as in-
heritance relationships in the restructured class hierarchy.
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class String f /* details omitted */ g;
class Address f /* details omitted */ g;
enum Faculty f Mathematics, ComputerScience g;
class Professor; /* forward declaration */

class Person f
public:

String name;
Address address;
long socialSecurityNumber;

g;

class Student : public Person f
public:

Student(String sn, Address sa, int si)f
name = sn; address = sa; studentId = si;

g;
void setAdvisor(Professor *p)f

advisor = p;
g;
long studentId;
Professor *advisor;

g;
class Professor : public Person f
public:

Professor(String n, Faculty f, Address wa)f
name = n; faculty = f;
workAddress = wa;
assistant = 0; /* default: no assistant */

g;
void hireAssistant (Student *s)f

assistant = s;
g;
Faculty faculty;
Address workAddress;
Student *assistant; /* either 0 or 1 assistants */

g;

(a)

int main()f
String s1name, p1name;
Address s1addr, p1addr;
Student* s1 = /* Student1 */

new Student(s1name,s1addr,12345678);
Professor *p1 = /* Professor1 */

new Professor(p1name,Mathematics,p1addr);
s1->setAdvisor(p1);
return 0;

g

(b)

int main()f
String s2name, p2name;
Address s2addr, p2addr;
Student* s2 = /* Student2 */

new Student(s2name,s2addr,87654321);
Professor *p2 = /* Professor2 */

new Professor(p2name, ComputerScience, p2addr);
p2->hireAssistant(s2);
return 0;

g

(c)

Figure 1: Example: relationships between students and professors. (a)
Class hierarchy for expressing associations between students and profes-
sors. (b) Example program using the class hierarchy of Figure 1(a). (c)
Another example program using the class hierarchy of Figure 1(a).

Student::setAdvisor
Person::name

Professor::assistant Student::advisor p s p1 s2

Student2

Student::Student
Student::studentId
Person::address

Professor::Professor
Professor::workAddress

Professor::faculty

Student::advisor

s1

Professor1

Professor::assistant

Person::socialSecurityNumber

p2

Professor::hireAssistant

Student1 Professor2

Figure 2: Lattice for Student/Professor example after assignment propa-
gation.

� A variable v has type C in the restructured class hierarchy if
v occurs immediately below concept C in the lattice.

� A member m occurs in class C if m appears directly above
concept C in the lattice.

Examining the lattice of Figure 2 according to this interpretation
reveals the following interesting facts�:

� Data member Person::socialSecurityNumber is
never accessed, because no variable appears below it. This
illustrates situations where subclassing is used to inherit the
functionality of a class, but where some of that functionality
is not used.

� Data member Person::address is only used by stu-
dents, and not by professors (for professors, the data member
Professor::workAddress is used instead, perhaps be-
cause their home address is confidential information). This
illustrates a situation where the member of a base class is
used in some, but not all derived classes.

� No members are accessedfrom parameterss andp, and from
data members advisor and assistant. This is due to
the fact that no operations are performed on a student’s advi-
sor, or on a professor’s assistant. Such situations are typical
of redundant, incomplete, or erroneous code and should be
examined closely.

� Class Student’s constructor does not initialize the
advisor data member. This can be seen from the fact that
attribute Student::advisor does not appear above at-
tribute Student::Student in the lattice.

� There are professors who hire assistants (Professor2),
and professors who do not hire assistants (Professor1).
This can be seen from the fact that data member
Professor::hireAssistant appears above the con-
cept labeled Professor2, but not above the concept la-
beled Professor1.

� There are students with advisors (Student1) and students
without advisors (Student2). This can be seen from the
fact that data member Student::setAdvisor appears
above the concept labeled Student1, but not above the
concept labeled Student2.

�The labels Student1, Professor1, Student2, and Professor2 that ap-
pear in the lattice represent the types of the heap objects created by the example pro-
grams at various program points (indicated in Figures 1(b) and (c) using comments).
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One can easily imagine how the above information might be
used as the basis for restructuring the class hierarchy. One pos-
sibility would be for a tool to automatically generate restructured
source code from the information provided by the lattice, similar
to the approach taken in [25, 26]. However, from a redesign per-
spective, we believe that an interactive approach would be more
appropriate. For example, the programmer doing the restructuring
job may decide that the data member socialSecurityNumber
should be retained in the class hierarchy because it may be needed
later. In the interactive tool we envision, one could indicate
this by moving up in the lattice the attribute under consideration,
socialSecurityNumber. The programmer may also decide
that certain fine distinctions in the lattice are unnecessary. For ex-
ample, one may decide that it is not necessary to distinguish be-
tween professors that hire assistants, and professors that don’t. In
an interactive tool, this distinction could be removed by merging
the concepts for Professor1 and Professor2.

Another useful capability of an interactive tool would be to as-
sociate names with lattice elements. When the programmer is done
manipulating the lattice, these names could be used as class names
in the restructured hierarchy when the restructured source code is
generated. For example, using the information provided by the
lattice, the programmer may determine that Student objects on
which the setAdvisor method is invoked are graduate students,
whereas Student objects on which this method is not called are
undergraduates. Consequently, he may decide to associate names
Student and GraduateStudent with the concepts labeled
Student2 and Student11, respectively.

��� Organization of this paper

The remainder of this paper is organized as follows. Section 2
briefly reviews the relevant parts of the theory of concept analy-
sis. In Section 3 we define the objects and attributes in our domain,
which correspond to the rows and columns of the tables. The pro-
cess of constructing tables and lattices is presented in Section 4. In
Section 5, we discuss how the information provided by the lattice
can reveal problems in the design of class hierarchies, and how the
lattice can be used as a basis for interactive tools for restructuring
class hierarchies. Section 6 discusses related work. Finally, con-
clusions and directions for future work are presented in Section 7.

� Concept Analysis

Concept analysis provides a way to identify groupings of objects
that have common attributes. The mathematical foundation was
laid by Birkhoff in 1940 [3]. Birkhoff proved that for every binary
relation between certain objects and attributes, a lattice can be con-
structed that provides remarkable insight into the structure of the
original relation. Later, Wille and Ganter elaborated Birkhoff’s re-
sult and transformed it into a data analysis method [27, 6]. Since
then, it has found a variety of applications, including analysis of
software structures [8, 20, 10, 19].

Concept analysis starts with a relation, or boolean table, T be-
tween a set of objects O and a set of attributes A, hence T �
O � A. For any set of objects O � O, their set of common at-
tributes is defined as ��O� � fa � A j �o � O � �o�a� � Tg.
For any set of attributes A � A, their set of common objects is
��A� � fo � O j �a � A � �o�a� � Tg.

A pair �O�A� is called a concept if A � ��O� and O � ��A�.
Informally, such a concept corresponds to a maximal rectangle in
the table T : any o � O has all attributes in A, and all attributes
a � A fit to all objects in O. It is important to note that con-
cepts are invariant against row or column permutations in the table.
The set of all concepts of a given table forms a partial order via
�O��A�� � �O��A�� �� O� � O� �� A� � A�. Birkhoff
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Figure 3: Example table and associated concept lattice.

proved that the set of concepts constitutes a complete lattice, the
concept lattice L�T �. For two elements �O��A�� and �O��A�� in
the concept lattice, their meet �O��A�� 	 �O��A�� is defined as
�O� 
O�� ��O� 
O��� and their join as �O��A�� � �O��A�� �
���A� 
A���A� 
A��.

A concept c � �O�A� has extent ext�c� � O and intent int�c� �
A. In our figures, a lattice element (concept) c is labeled with at-
tribute a � A, if it is the largest concept with a in its intent, and it
is labeled with an object o � O, if it is the smallest concept with o
in its extent. The (unique) lattice element labeled with a is denoted
��a� �

W
fc � L�T � j a � int�c�g, and the (unique) lattice ele-

ment labeled with o is denoted��o� �
V
fc � L�T � j o � ext�c�g.

The following property establishes the connection between a table
and its lattice, and shows that they can be reconstructed from each
other: �o� a� � T �� ��o� � ��a�. Hence, the attributes of
object o are those which appear above o, and all objects that ap-
pear below a have attribute a. Consequently, join points (suprema)
in the lattice indicate that certain objects have attributes in com-
mon, while meet points (infima) show that certain attributes fit to
common objects. In other words, join points factor out common
attributes, while meet points factor out common objects.

Figure 3 shows a table and its lattice. The element labeled far
corresponds to the maximal rectangle indicated in the table. This
element is the supremum of all elements with far in their intent:
Pluto, Jupiter, Saturn, Uranus, Neptune are below far in the lattice,
and the table confirms that these planets are indeed far away.

A table and its lattice are alternate views on the same informa-
tion, serving different purposes and providing different insights.
There is yet another view: a set of implications. Let A�B � A
be two sets of attributes. We say that A implies B, iff any object
with the attributes in A also has the attributes in B: A� B ��
�o � O � ��a � A � �o�a� � T � � ��b � B � �o� b� � T �.
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For B � fb�� � � � � bkg, A � B holds iff A � bi for all bi � B�.
Implications show up in the lattice as follows: A � b holds iffV
f��a� j a � Ag � ��b�. Informally, implications between

attributes can be found along upward paths in the lattice. In the ex-
ample of Figure 3, we have that ��far� � ��moon�, which can be
read as far � moon, or “A planet which is far away has a moon”.
Another example of an implication is no moon� near, small.

Often, some implications are known to hold a priori. Such back-
ground knowledge can easily be integrated into a given table. An
implication x � y can be enforced by adding the entries in the x
column to the y column, and will cause ��x� � ��y� in L�T �. A
general implication A � B can be enforced by adding the inter-
section of the A columns to all B columns. Implications between
objects can be defined (and enforced) similarly.

Construction of concept lattices and implication bases has typ-
ical time complexity O�n�� for an n � n table, but can be ex-
ponential in the worst case. If a row or column is added to a ta-
ble, the lattice for the original table is a sublattice of the lattice
for the extended table. There is much more to say about concept
lattices, their structure theory, and related algorithms and method-
ology. Davey and Priestley’s book [5] contains a chapter on ele-
mentary concept analysis. Ganter and Wille [6] treat the topic in
depth.

� Objects and Attributes

Roughly speaking, the objects and attributes in our domain are vari-
ables and class members, respectively, and the table that will be
constructed in Section 4 identifies for each variable which members
must be included in its type. Before we can define the objects and
attributes more precisely, we need to introduce some terminology.
In what follows, P denotes a program containing a class hierarchy,
or a collection of programs that share a class hierarchy. Further, v,
w, � � � denote the variables in P whose type is a class, and p, q,
� � � the variables in P whose type is a pointer to a class (references
can be treated similarly, and will be ignored in the present paper).
Expressions are denoted by x, y, � � �. We will henceforth use “vari-
ables” to refer to variables as well as parameters. In the definitions
that follow, TypeOf�P� x� denotes the type of expression x in P .

The objects of our domain are the program variables through
which the class hierarchy is accessed. Variables whose type is
(pointer to) built-in can be ignored because the class hierarchy can
only be accessed through variables whose type is class-related (i.e.,
variables whose type is a class, or a pointer to a class). Defini-
tion 3.1 below defines sets of variables ClassVars and ClassPtr-
Vars whose type is a class, and a pointer to a class, respectively.
Note that ClassPtrVars includes implicitly declared this point-
ers of methods. In order to distinguish between this pointers of
different methods, we will henceforth refer to the this pointer of
method A��f() by the fully qualified name of its method, i.e., A��f.

Definition 3.1 Let P be a program. Then, we define the set of
class-typedvariablesand the set of pointer-to-class-typedvariables
as follows:

ClassVars�P� �
f v j v is a variable in P� TypeOf�P� v� � C�

for some classC in P g

ClassPtrVars�P� �
f p j p is a variable in P� TypeOf�P� 
p� � C�

for some classC in P g

� We will usually write a�� � � � � an � b�� � � � � bm instead of
fa�� � � � � ang � fb�� � � � � bmg.

The attributes of our domain are class members. Following the
definitions of [25, 26], we will distinguish between definitions and
declarations of members. We define these terms as follows: The
definition of a member comprises a member’s signature (interface)
as well as the executable code in its body, whereas the declara-
tion of a member only represents its signature. This distinction is
needed for accurately modeling virtual method calls. Consider a
call to a virtual method f from a pointer p. In this case, only the
declaration of f needs to be contained in p’s type in order to be able
to invoke f ; the body of f does not need to be statically visible to
p� . Naturally, a definition of f must be visible to the object that p
points to at run-time, so that the dynamic dispatch can be executed
correctly.

Definition 3.2 (shown below) defines sets MemberDcls�P� and
MemberDefs�P� of member declarations and member definitions
in P . We distinguish between declarations and definitions of vir-
tual methods for the reasons stated above. For nonvirtual meth-
ods, making this distinction is not necessary because the full def-
inition of a nonvirtual method must always be statically visible to
the caller. Therefore, nonvirtual methods are modeled using defini-
tions only. Data members are modeled as declarations because they
have no this pointer from which other members can be accessed.
We will shortly discuss how class-typed data members (which be-
have like variables because other members can be accessed from
them) are modeled.

Definition 3.2 Let P be a program. Then, we define the set of
member declarations and member definitions as follows:

MemberDcls�P� �
f dcl�C��m� j m is a data member or virtual method

in class C g
MemberDefs�P� �
f def�C��m� j m is a virtual or nonvirtual method

in class C g

Example: Figure 4 shows a program P � that will be used as a
running example. For P�, we have:

ClassVars�P�� � f a� b� c g
ClassPtrVars�P�� � f ap� A��f� A��g� B��g� C��f g
MemberDcls�P�� � f dcl�A��f�� dcl�A��g�� dcl�A��x��

dcl�B��g�� dcl�B��y�� dcl�C��f��
dcl�C��z� g

MemberDefs�P�� � f def�A��f�� def�A��g�� def�B��g��
def�C��f� g

We conclude this section with a brief discussion of the treat-
ment of class-related data members (i.e., data members whose
type is class-related), such as Student::advisor in Figure 1.
Like data members of built-in types, class-related data members
can be accessed from variables and are therefore modeled as at-
tributes. However, since other members may be accessed from a
class-related data member, such data members play an alternate
role as objects as well. For a data member C �� m whose type
is D in the original hierarchy, its “attribute interpretation” deter-
mines in which objects m is contained and will affect the restruc-
turing of type C later on, whereas its “object interpretation” deter-
mines how the type D of m will be restructured. The definitions
of the subsequent sections that are concerned with variables apply
to class-related data members as well, and for convenience we will
henceforth assume the term “variable” to include class-related data
members as well.

�Our objective is to identify the smallest possible set of member declarations and
definitions that must be included in the type of any variable. Including the definition of
f in �p’s type may lead to the incorporationof members that are otherwise not needed
(in particular, members accessed from f ’s this pointer).
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class A f
public:
virtual int f()f return g(); g;
virtual int g()f return x; g;
int x;

g;
class B : public A f
public:
virtual int g()f return y; g;
int y;

g;
class C : public B f
public:
virtual int f()f return g() + z; g;
int z;

g;

int main()f
A a; B b; C c;
A *ap;
if (...) f ap = &a; g
else f if (...) f ap = &b; g

else f ap = &c; g g
ap->f();
return 0;

g

Figure 4: Example programP �.

� Table and Lattice Construction

This section describes how tables and lattices are constructed. Re-
call that the purpose of the table is to record for each variable the
set of members that are used. A few auxiliary definitions will pre-
sented first, in Section 4.1.

��� Auxiliary de�nitions

For each variable v in ClassPtrVars�P� we will need a conserva-
tive approximation of the variables in ClassVars�P� variables that
v may point to. Any of several existing algorithms [4, 15, 22, 18])
can be used to compute this information, and we do not make as-
sumptions about the particular algorithm used to compute points-to
information. Definition 4.1 expresses the information supplied by
some points-to analysis algorithm as a set PointsTo�P�, which con-
tains a pair hp� vi for each pointer p that may point to a class-typed
variable v.

Definition 4.1 Let P be a program. Then, the points-to informa-
tion for P is defined as follows:

PointsTo�P� � f hp� vi j p � ClassPtrVars�P��
v � ClassVars�P��
p may point to v g

Example: We will use the following points-to information for
programP�. Recall that X��f denotes the this pointer of method
X��f��.

PointsTo�P�� � f
hap� ai� hap�bi� hap�ci� hA��f�ai� hA��f�bi�
hC��f�ci� hA��g�ai� hB��g�bi� hB��g�ci g

Note that the following simple algorithm suffices to compute the
information of Example 4.1: for each pointer p of type 
X , assume
that it may point to any object of type Y , such that (i) Y � X or
Y is a class transitively derived from X , and (ii) if p is the this
pointer of a virtual method C��m, no overriding definitions of m
are visible in class Y .

We will use the following terminology for function and method
calls. A direct call is any call to a function or a nonvirtual
method, or an invocation of a virtual method from a variable in
ClassVars�P�. An indirect call is an invocation of a virtual method
from a variable in ClassPtrVars�P� (requiring a dynamic dispatch).

��� Table entries for member access operations

Table T has a row for each element of ClassVars�P�
and ClassPtrVars�P�, and a column for each element of
MemberDcls�P� and MemberDefs�P�. Informally, an entry
�v� dcl�A��m�� appears in T iff the declaration of m is contained
in v’s type, and an entry �v� def�A��m�� appears in T iff the defini-
tion of m is contained in v’s type. We begin by adding entries to T
that reflect the member access operations in the program. Defini-
tion 4.2 below defines a set MemberAccess�P� of all pairs hm�xi
such that member m is accessed from variable x. For an indirect
call p � f�y�� � � � � yn�, we also include an element hf� xi in
MemberAccess�P� for each hp� xi � PointsTo�P�.

Definition 4.2 LetP be a program. Then, the set of member access
operations in P is defined as follows:

MemberAccess�P� �
f hm�vi j v�m occurs in P� m is a class member in P�

v � ClassVars�P� g �
f hm�
pi j p� m occurs in P� m is a class member in P�

p � ClassPtrVars�P� g �
f hm�xi j p� m occurs in P� hp� xi � PointsTo�P��

m is a virtual method in P g

Example: For program P� of Figure 4, we have:

MemberAccess�P �� �
f hx�*A��gi� hy�*B��gi� hz�*C��fi� hg�*A��fi� hg�*C��fi�
hf�*api� hf�ai� hf�bi� hf� ci� hg�ai� hg�bi� hg�ci g

Accessing a class member is not an entirely trivial operation be-
cause different classes in a class hierarchy may contain members
with the same name (or signature). Furthermore, in the presence of
multiple inheritance, an object may contain multiple subobjects of a
given typeC , and hence multiple membersC��m. This implies that
whenever a member m is accessed, one needs to determine which
m is being selected. This selection process is defined informally in
the C++ Draft Standard [1] as a set of rules that determine when a
member hides or dominates another member with the same name.
Rossie and Friedman [17] provided a formalization of the member
lookup, as a function on subobject graphs. This framework has
subsequently been used by Tip et al. as a formal basis for oper-
ations on class hierarchies such as slicing [24] and specialization
[25]. Ramalingam and Srinivasan recently presented an efficient
algorithm for member lookup [16].

For the purposes of the present paper, we will assume the avail-
ability of a function static-lookup which, given a class C and a
member m, determines the base classB (B is either C , or a transi-
tive base class of C) in which the selected member is located�. For
details on function static-lookup, the reader is referred to [17, 24].

We are now in a position to state how the appropriate relations
between variables and declarations and definitions should be added
to the table:

�In [17, 24], static-lookup is defined as a function from subobject to subobjects.
Since the present paper is only concerned with the classes in which members are lo-
cated, we will simply ignore all subobject information below.
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Definition 4.3 Let P be a program with associated table T . Then,
the following entries are added to the table due to member access
operations that occur in the program.

hm�yi � MemberAccess�P�� TypeOf�P� y� � Y�
y � 
p� ��p � ClassPtrVars�P� andm � VirtualMethods�P�� or

m � DataMembers�P��� X � static-lookup�Y�m)
�y� dcl�X��m�� � T

hm�yi � MemberAccess�P�� TypeOf�P� y� � Y�
y � v� ��v � ClassVars�P� andm � VirtualMethods�P�� or
m � NonVirtualMethods�P��� X � static-lookup�Y�m)

�y� def�X��m�� � T

��� Table entries for this pointers

The next table construction rule we will present is concerned with
this pointers of methods. Consider the fact that for each method
C��f��, there is a column in the table labeled def�C��f�, and a row
labeled 
C��f . The former is used to express the fact that method
C��f�� may be called from objects. The latter is necessary to re-
flect members being accessed from method C��f��’s this pointer.
Unless precautions are taken, the attribute def�C��f� and the object

C��f may appear at different points in the lattice. More precisely,
we have that ��
C��f� � ��def�C��f��, and object 
C��f and at-
tribute def�C��f� will appear at different elements in the lattice if
method C��f does not access itself (i.e., is non-recursive). In such
cases, our method effectively infers that the type of a this pointer
could be a base class of the type in which methodC��f occurs (and
therefore be less constrained). However, in reality, the type of a
method’s this pointer is determined by the class in which the as-
sociated method definition appears.

The table entries added by Definition 4.4 will force a method’s
attribute and a method’s this pointer to appear at the same lattice
element. This will allow us later to remove rows for this pointers
from the table when constructing the lattice.

Definition 4.4 LetP be a program. Then, the following entries are
added to the table:

m � �VirtualMethods�P� � NonVirtualMethods�P���
TypeOf�P�m� � C

�
C��m� def�C��m�� � T

Example: Table 1 shows the table for program P � of Figure 4
after adding the entries according to Definitions 4.3 and 4.4.

��� Table entries for assignments

Consider an assignment v � w, where v and w are two variables
whose type is a class. Such an assignment is only valid if the type
of v is a base class of the type of w. Consequently, any member
declaration or definition that occurs in v’s type must also occur
in w’s type. We will enforce this constraint using an implication
from the row for v to the row for w. However, we will begin by
formalizing the notion of an assignment.

Definition 4.5 below defines a set Assignments(P ) that con-
tains a pair of objects hv�wi for each assignment v � w in
P where v and w are class-typed. In addition, Assignments(P)
also contains entries for cases where the type of v and/or w are
a pointer to a class. Parameter-passing in direct calls to func-
tions and methods is modeled by way of assignments between
corresponding formal and actual parameters. For an indirect call
p� f�y�� � � � � yn�, Assignments(P) contains additional elements
that model the parameter-passing in the direct call x�f�y�� � � � � yn�,
for each hp� xi � PointsTo�P�. That is, we conservatively approx-
imate the potential targets of dynamically dispatched calls. The set
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*ap

*A::f

*A::g

*B::g
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Table 1: Initial table for program P� of Figure 4. Arrows indicate
implications due to assignments (see Section 4.4).

Assignments(P) will also contain elements for implicit parameters
such as this pointers of methods and function/method return val-
ues whose type is class-related.

Definition 4.5 Let P be a program. Then, the set of assignments
between variables whose type is a (pointer to a) class is defined as
follows:

Assignments(P) �
f hv�wi j v � w occurs in P� v� w � ClassVars�P� g �
f h
p�wi j p � �w occurs in P� p � ClassPtrVars�P��

w � ClassVars�P� g �
f h
p� 
qi j p � q occurs in P� p� q � ClassPtrVars�P� g �
f h
p�wi j 
p � w occurs in P� p � ClassPtrVars�P��

w � ClassVars�P� g �
f hv� 
qi j v � 
q occurs in P� v � ClassVars�P��

q � ClassPtrVars�P� g �
f h
p� 
qi j 
p � 
q occurs in P� p� q � ClassPtrVars�P� g

Example: For program P� of Figure 4, we have:

Assignments(P�) �
f h*ap�ai� h*ap�bi� h*ap�ci� h*A��f�ai� h*A��f�bi�
h*C��f�ci� h*A��g� ai� h*B��g�bi� h*B��g�ci g

We are now in a position to express how elements should be
added to the table due to assignments. Definition 4.6 states this as
an implication, which tells us how elements should be copied from
one row to another.

Definition 4.6 Let P be a program with associated table T . Then,
the following implications must be encoded in the table due to as-
signments that occur in P:

hx� yi � Assignments(P )
x� y

Example: For programP� of Figure 4, the following assignment
implications are generated:

*ap � a� *ap � b� *ap � c *A::f � a� *A::f � b�
*A::g � a� *B::g � b� *B::g � c� *C::f � c

These implications are indicated on the left side of Table 1. Table 2
is obtained by copying the elements from the “source row” to the
“target row” according to each of these implications.
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Table 2: Table after application of assignment implications. Arrows in-
dicate implications for preserving hiding/dominance among members with
the same name (see Section 4.5).

��� Table entries for preserving dominance�hiding

The table thus far encodes for each variable the members contained
in its type (either directly because a member is accessed from that
variable, or indirectly due to assignments between variables). How-
ever, in the original class hierarchy, an object’s type may contain
more than one member with a given name. In such cases, the mem-
ber lookup rules of [1] determine which member is accessed. This
is expressed as a set of rules that determine when a member hides
or dominates another member with the same name. In cases where
a variable contains two members m that have a hiding relation-
ship in the original class hierarchy, this hiding relationship must be
preserved, because we are interested in generating a restructured
hierarchy from the table, and the member access operations in the
program might otherwise become ambiguous. Definition 4.7 incor-
porates the appropriate hiding/dominance relations into the table,
using implications between attributes:

Definition 4.7 Let P be a program with associated table T . Then,
the following implications are incorporated into T in order to pre-
serve hiding and dominance:

�x� dcl�A��m�� � T� �x� dcl�B��m�� � T�
A is a transitive base class of B

dcl�B��m�� dcl�A��m�

�x� dcl�A��m�� � T� �x� def�B��m�� � T�
A � B or A is a transitive base class of B

def�B��m�� dcl�A��m�

�x� def�A��m�� � T� �x� def�B��m�� � T�
A is a transitive base class of B

def�B��m�� def�A��m�

�x� def�A��m�� � T� �x� dcl�B��m�� � T�
A is a transitive base class of B

dcl�B��m�� def�A��m�
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*ap

*A::f

*A::g

*B::g

*C::f

Table 3: Final table for programP�.

Example: For program P�, the following dominance implica-
tions are generated:

def�A��f�� dcl�A��f� def�A��g�� dcl�A��g�
def�B��g�� dcl�A��g� dcl�B��g�� dcl�A��g�

These implications are shown at the bottom of Table 2. After in-
corporating these implications, Table 3 results.

��� Lattice construction

From the final table, the lattice can be constructed using Ganter’s
algorithm [6]. There is one minor issue that deserves mentioning.
Recall that in Section 4.3 table entries were added to ensure that
method definitions and their this pointers show up at the same
lattice element. In order to avoid presenting redundant information
to the user, we will henceforth omit this pointers from the lattice.
The easiest way to accomplish this is to remove the rows for this
pointer variables to the table prior to generating the lattice. Note
that rows for this pointers cannot be left out during table con-
struction because they are needed to model member accesses from
this pointers, and the elements in such rows may be involved in
implications due to assignments and dominance.

Example: Figure 5 shows the lattice for program P�, generated
from Table 3 after removing the rows labeled *A��f, *A��g, *B��g,
and *C��f.

��	 Modeling constructors

Constructors require special attention. A constructor generally
initializes all data members contained in an object. If no con-
structor is provided by the user, a so-called default constructor
is generated by the compiler, which performs the necessary ini-
tializations. The compiler may also generate a call to a con-
structor in certain cases. Modeling these compiler-generated ac-
tions as member access operations would lead us to believe that
each member m of class C is needed in all C-instances, even in
cases where the only access to m consists of its (default) initializa-
tion. Compiler-generated constructors, compiler-generated initial-
izations, and compiler-generated calls to constructors will therefore
we excluded from the set of member access operations. Destructors
can be handled similarly.
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*ap

def(A::f)dcl(B::y)

b ac

dcl(A::x)dcl(B::g)
dcl(C::z)
dcl(C::f)

def(A::g)

def(B::g)

dcl(A::f)

dcl(A::g)

Figure 5: Lattice for programP�, generated from Table 3 after removing
the rows labeled *A��f, *A��g, *B��g, and *C��f.
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*Student::setAdvisor
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*Professor::hireAssistant

Figure 6: Final table for the Student/Professor example.

��
 Example

Table 6 shows the final table for the example of Figure 1, as ob-
tained by analyzing the class hierarchy along with the two example
programs. The lattice corresponding to this table was shown previ-
ously in Figure 2 (note that we replaced member definitions by the
corresponding method names there for convenience).

��� Limitations

We conclude this section with a remark on a limitation of our anal-
ysis. In situations where an object x contains multiple subobjects
of some type C (due to the use of nonvirtual multiple inheritance),
our tables do not make a distinction between the various “copies”
of the members of C in x. This leads to problems if the objective
is to generate a new hierarchy from the lattice in which the dis-
tinct copies of the members of C must be preserved. We consider
this to be a minor problem because situations where nonvirtual in-
heritance is used for its “member replicating” effect are quite rare
in practice, and the restructuring tool could inform the user of the
cases where the problem occurs. A clean solution to this problem
would involve the encoding of subobject information in the table
using an adaptation of the approach of [25, 26].

� Restructuring class hierarchies

The following can be learned from the lattice (we refer the reader
to the lattice of Figure 2 for examples):

� Data members that are not accessedanywhere in the program
(e.g., Person::socialSecurityNumber) appear at
the bottom element of the lattice.

� Data members of a base class B that are not used by (in-
stances of) all derived classes of B are revealed. Such data
members (e.g., Person::address) appear above (vari-
ables of) some but not all derived classes of B. For ex-
ample, Person::address appears above instances of
Student, but not above any instances of Professor.

� Variables from which no members are accessed appear at the
the top element of the lattice (e.g., s).

� Data members that are properly initialized appear above the
(constructor) method that is supposed to initialize them. If
this is not the case, the data member may not be initial-
ized. For example, Student::Student does not initial-
ize Student::advisor becauseStudent::advisor
does not appear above Student::Student in the lattice.

� Situations where instances of a given type C access differ-
ent subsets of C’s members are revealed by the fact that
variables of type C appear at different points in the lattice.
Our example contains two examples of this phenomenon.
The instances Professor1 and Professor2 of type
Professor and the instancesStudent1 and Student2
of type Student.

The structure theory of concept lattices offers several algorithms
which may provide useful information [21] as well. For example,
one might think of measuring quality factors such as cohesion and
coupling by algebraic decomposition of the lattice [10, 14].

As we mentioned earlier, a class hierarchy may be analyzed
along with any number of programs, or without any program at
all. The latter case may provide insights into the “internal struc-
ture” of a class library. Figure 7 shows the lattice obtained by
analyzing the class hierarchy of Figure 1(a) without the programs
of Figure 1(b) and (c); only code in method bodies is analyzed.
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Student::setAdvisor

Professor::assistant Student::advisor p s

Professor::assistant Person::name

Professor::hireAssistant Student::Student
Person::studentId
Person::address

Person::socialSecurityNumber

Professor::Professor
Professor::workAddress

Professor::faculty

Student::advisor

Figure 7: Lattice obtained by analyzing the class hierarchy of Figure 1
without accompanyingprograms.

Clearly, the resulting lattice should not be interpreted as a restruc-
turing proposal, because it does not reflect the usage of the class
hierarchy. However, there are some interesting things to note. For
example, socialSecurityNumber is not accessed anywhere.
If we would know in addition that socialSecurityNumber is
private, we could inform the user that it is effectively dead. Ob-
serve also that no members are accessed from method parameters
s and p. Since the scope of these variables is local to the library, we
know that analyzing additional code will not change this situation.
Finally, one can observe from Figure 7 that Student::Student
does not initialize Student::advisor.

We intend to construct an interactive tool that provides the user
with a view of the lattice and the associated table. One could easily
imagine that such a tool would notify the user of anomalies in the
design of a class hierarchy, as was discussed above. In addition,
the tool could generate source-code from the lattice at any point in
the transformation process by interpreting the lattice as a class hier-
archy. Optionally, the analyzed programs could be transformed as
well to take the new, restructured hierarchy into account. Specific
transformations that the tool could support are:

� The user can decide to merge� adjacent lattice elements if
the distinction between these concepts is irrelevant (possi-
bly because the lattice reflects a specific use of the hierar-
chy). For example, one may decide that it is not necessary
to distinguish between professors that hire assistants, and
professors that don’t, and therefore merge the concepts for
Professor1 and Professor2.

� With certain limitations, the user may move attributes up-
wards in the lattice, and object downwards. For example, the
user may decide that socialSecurityNumber should
be retained in the restructured class hierarchy, and move the
corresponding attribute up to the concept labeled with at-
tribute Person::name.

� Background knowledge that is not reflected in the lattice, e.g.
“the type of x must be a base class of the type of y”, can be
integrated via background implications.

� The user may associate names with lattice elements. When
the programmer is done manipulating the lattice, these names
could be used as class names in the restructured hierar-
chy. For example, by examining the lattice, the program-
mer may determine that Student objects on which the

� There are some issues that a tool must take into account, because we want to pre-
serve member lookup behavior. For example, merging two concepts that have different
definitions of a virtual method f associated with them is not possible, because at most
one f can occur in any class.

setAdvisor method is invoked are graduate students,
whereas Student objects on which this method is not
called are undergraduates. Consequently, he may decide to
associate names Student and GraduateStudent with
the concepts labeled s2 and s1, respectively.

� For very large class hierarchies, the tool would allow the
user to focus on a selected subhierarchy either by specify-
ing its minimal and maximal elements in the lattice, or by
leaving out rows and columns in the table (in particular, the
user could investigate the usage of a specific class C in the
original hierarchy by focusing on the rows for the variables
of type C , and the columns for the members of C).

� Related Work

��� Applications of concept analysis

Godin and Mili [7] also use concept analysis for class hierarchy
(re)design. The starting point in their approach is a set of inter-
faces of (collection) classes. A table is constructed that specifies
for each interface the set of supported methods. The lattice derived
from this table suggests how the design of a class hierarchy imple-
menting these interfaces could be organized in a way that optimizes
the distribution of methods over the hierarchy. Another property of
their approach is that it identifies useful abstract classes that could
be interesting in their own right, or suitable starting points for fu-
ture extensions of the hierarchy. Although Godin and Mili’s work
has the same formal basis as ours, the domains under considera-
tion are different. In [7], relations between members and classes
are studied in order to improve the distribution of these members
over the class hierarchy. In contrast, we study how the members
of a class hierarchy are used in the executable code of a set of ap-
plications by examining relationships between variables and class
members, and relationships among class members. Godin and Mili
discuss some extensions of their basic approach to so-called multi-
faceted domains, but do not study the usage of class hierarchies in
applications.

Another application of concept analysis in the domain of soft-
ware engineering is the analysis of software configurations. Snelt-
ing [20] uses concept analysis to analyze systems in which the C
preprocessor (CPP) is used for configuration management. The re-
lation between code pieces and governing expressions is extracted
from a source file, and the corresponding lattice visualizes interfer-
ences between configurations. Later, Lindig proved that the con-
figuration space itself is isomorphic to the lattice of the inverted
relation [9].

Concept analysis was also used for modularization of old soft-
ware. Siff and Reps [19] investigated the relation between proce-
dures and “features” such as usage of global variables or types. A
modularization is achieved by finding elements in the lattice whose
intent partitions the feature space. Lindig and Snelting [10] also
analyzed the relation between procedures and global variables in
legacy Fortran programs. They showed that the presence of mod-
ule candidates corresponds to certain decomposition properties of
the lattice (the Siff/Reps criterion being a special case).

��� Class hierarchy specialization and application extrac�
tion

The work in the present paper is closely related to the work on class
hierarchy specialization by Tip and Sweeney [25, 26]. Class hier-
archy specialization is a space optimization technique in which a
class hierarchy and a client program are transformed in such a way
that the client’s space requirements are reduced at run-time. The
method of [25, 26] shares some basic “information gathering” steps
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with the method of the present paper�, but the subsequent steps of
that method are quite different. After determining the member ac-
cess and assignment operations in the program, a set of type con-
straints is computed that capture the subtype-relationships between
variables and members that must be retained. These type con-
straints roughly correspond to the information encoded in our ta-
bles, but contrary to our current approach they can correctly distin-
guish between multiple subobjects that have the same type. From
the type constraints, a new class hierarchy is generated automati-
cally. In a separate step, the resulting class hierarchy is simplified
by repeatedly applying a set of simple transformation rules.

In addition to the differences in the underlying algorithms, the
method of [25, 26] differs from our reengineering framework in a
number of ways. Class hierarchy specialization is an optimization
technique that does not require any intervention by the user. In con-
trast, the current paper presents an interactive approach for analyz-
ing the usage of a class hierarchy in order to find design problems.
Reducing object size through the elimination of members is possi-
ble, but not necessarily an objective. For the purpose of restructur-
ing it may very well be the case that an unused member should be
retained in the restructured class hierarchy. The framework we pre-
sented here also allows for the analysis of a class hierarchy along
with any number of programs, including none. Class hierarchy spe-
cialization customizes a class hierarchy w.r.t. a single program.

Several other application extraction techniques for eliminating
unused components from hierarchies and objects have been pre-
sented in the literature [2, 24, 23]. These are primarily intended
as optimizations, although they may have some value for program
understanding.

��� Techniques for restructuring class hierarchies

Another category of related work is that of techniques for restruc-
turing class hierarchies for the sake of improving design, improv-
ing code reuse, and enabling reuse. Opdyke and Johnson [13, 12]
present a number of behavior-preserving transformations on class
hierarchies, which they refer to as refactorings. The goal of refac-
toring is to improve design and enable reuse by “factoring out”
common abstractions. This involves steps such as the creation of
new superclasses, moving around methods and classes in a hierar-
chy, and a number of similar steps. Our techniques for analyzing
the usage of a class hierarchy to find design problems is in our
opinion complimentary to the techniques of [13, 12].

Moore [11] presents a tool that automatically restructures inheri-
tance hierarchies and refactors methods in Self programs. The goal
of this restructuring is to maximize the sharing of expressions be-
tween methods, and the sharing of methods between objects in or-
der to obtain smaller programs with improved code reuse. Since
Moore is studying a dynamically typed language without explicit
class definitions, a number of complex issues related to preserving
the appropriate subtype-relationships between types of variables do
not arise in his setting.

	 Conclusions and Future Work

We have presented a method for finding design problems in a class
hierarchy by analyzing the usage of the hierarchy by a set of appli-
cations. This method is based on concept analysis and constructs a
concept lattice in which relationships between variables and class
members are made explicit, and where information that members
and variables have in common is “factored out”. We have shown
the technique to be capable of finding design anomalies such as
class members that are redundant or that can be moved into a de-
rived class. In addition, situations where it is appropriate to split a

�Definitions 3.1, 4.1, 4.2, and 4.5 were taken from [25, 26].

class can be detected. We have suggested how these techniques can
be incorporated into interactive tools for maintaining and restruc-
turing class hierarchies.

The present paper has focused on foundational aspects. We in-
tend to implement an interactive class hierarchy restructuring tool
based on our technique, and verify its practicality by applying it
to large C++ applications. We believe that there are several inter-
esting research issues related to the question of how to present the
information contained in the lattice to the user. The treatment of a
number of C++ features (in particular type casts) still needs to be
modeled, but we anticipate no major problems. We hope to be able
to report on realistic case studies soon.
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