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Abstract

This paper deals with e�cient algorithms for simulating performance measures of Gauss�

ian random vectors� Recently� we developed a simulation algorithm which consists of doing

importance sampling by shifting the mean of the Gaussian random vector� Further variance

reduction is obtained by strati�cation along a key direction� A central ingredient of this

method is to compute the optimal shift of the mean for the importance sampling� The opti�

mal shift is also a convenient� and in many cases� an e�ective direction for the strati�cation�

In this paper� after giving a brief overview of the basic simulation algorithms� we focus on

issues regarding the computation of the optimal change of measure� A primary application

of this methodology occurs in computational �nance for pricing path dependent options�

This paper will appear in the Proceedings of the ���� Winter Simulation Conference
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� INTRODUCTION

We consider Monte Carlo methods driven by Gaussian random variables� a primary application

of which is pricing path dependent options� In this �nance application� the Gaussian random

variables represent the increments of Brownian motion� Only very simple options� e�g�� a

European call� can be priced analytically in closed form� For the more complicated ones� either

numerical methods or Monte Carlo techniques are used� Monte Carlo methods are usually used

for higher dimensional problems� or problems with stochastic parameters �like interest rates�

volatilities etc��� for which �nite di�erence methods are very time consuming� A recent review

of Monte Carlo methods for security pricing may be found in Boyle� Broadie and Glasserman

�������

Recently� in Glasserman� Heidelberger� Shahabuddin ����	� �we will denote this by GHS�	��

we presented an e
cient Monte Carlo algorithm for estimating � � E�G�Z��D�Z� where Z is

a vector of m independent standard normal random variables� G is some nonnegative function

and �D�Z� is the indicator that Z � D for some set D� If we let N�a� A� denote a multivariate

random vector with mean �drift� vector a and covariance matrix A� then Z � N��� Im� where

Im is the m �m identity matrix� �Since any m dimensional multivariate normal distribution

can easily be generated from N��� Im�� no loss of generality is su�ered in this formulation�� The

method consists �rst of doing an importance sampling change of measure� which is chosen to

be the best �in an appropriate asymptotic setting� from among all independent multivariate

distributions� i�e�� distributions of the form N�a� Im�� Let � denote the optimal drift vector�

As will be discussed in Section �� � is found by solving a nonlinear optimization problem� The

related problem of �nding the optimal drift for estimating the probability� E��D�Z� �G�Z� � �
in our formulation�� where D is a rare set� was addressed in Chen� Lu� Sadowsky� and Yao

������� Further variance reduction is obtained by stratifying along some direction a� i�e�� by

stratifying upon a linear combination a�Z� The selection of a good strati�cation direction was

analyzed in GHS�	� but a particularly convenient and often e�ective direction is to simply let

a � �� the optimal drift vector� See� e�g�� Hammersley and Handscomb ������ for general

discussions of both importance sampling and strati�cation�

A central ingredient in this method is thus to compute the optimal change of measure for

the importance sampling� In GHS�	� a bisection procedure was used for the speci�c case of the

Asian option �see Section �� and non�linear optimization techniques were used for the other more

general cases� In this paper� we use the special structure of certain instances of this problem

to derive a closed form approximation for the optimal change of measure� We also prove that
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this approximation is close to the true optimum in an appropriate asymptotic setting� This

approximation can be interpreted as the �rst iteration of a re�ned �xed point iterative method

developed in GHS�	� In particular� the approximation is obtained by assuming that G is linear

and explicitly solving the optimization� We then examine the computational overhead incurred

in the optimization part of the overall importance sampling and strati�cation procedure� where

the optimization is done by using the re�ned �xed point iterative method mentioned above� the

bisection method �for the case of Asian options�� and a non�linear optimization package�

� BACKGROUND AND MAIN ALGORITHMS

To motivate this problem� consider the case of using Monte Carlo to price an arithmetic Asian

option on a single asset� under standard Black�Scholes assumptions� The price of the underlying

asset under the equivalent martingale measure is described by the stochastic di�erential equation

dSt � Strdt � �StdWt� where r is the interest rate and � is the volatility� both of which are

assumed to be constants� and Wt is the standard Brownian motion� Let T be time horizon�

and let there be n equally spaced time intervals between ��� T  each of length � � T�n� The

solution of the above equation can be simulated without discretization error on a discrete grid

of points ��� ��� � � � � n�� by setting Si� the stock price at the ith grid point� as Si � S� exp��r�
������i��

p
�
Pi

j��Zj�� where Zj �s are independent standard normals� i�e�� N��� ���s� Let Z �

�Z�� Z�� � � �Zn�� The discounted payo� for the arithmetic Asian option is given by G�Z��D�Z�

where G�Z� � e�rT �
Pn

i�� Si�n � K� and D is the region fG�Z� � �g� The objective is then
to estimate the expected discounted payo� � � E�G�Z��D�Z�� which falls into our general

framework �m � n in this case��

We now outline the method presented in GHS�	� Let g�z� be them dimensional multivariate

normal density with mean � and covariance matrix Im As is well known from the theory of

importance sampling� a zero�variance estimate is obtained by choosing the importance sampling

density to be

h�z� � G�z�g�z��D�z���� ���

However� it is not possible to use this change of measure because the desired quantity � must

be known from the outset and� even if it were known� it may be di
cult to sample from

h� Nevertheless� this observation provides a useful insight� an e�ective importance sampling

density should weight points according to the product of their probability and their payo��

In GHS�	� for tractability� the only h�z� that is considered is ha�z�� which is de�ned to be

the original multivariate normal measure g�z� �that had mean zero� shifted so that the mean
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vector is now a� One way of achieving a good approximation to ��� is to align the mode of

the integrand �assuming it exists and is unique� G�z�g�z��D�z� with the mode of the shifted

measure� i�e�� choose a to be a vector � that solves

max
z�D

G�z� e�z
�z��� ���

Assuming G�z� is appropriately smooth� this tends to assign high probability to regions of D

where G�z�g�z� is large� It was shown in GHS�	 that such a change of measure is �asymptoti�

cally optimal� in an appropriate setting�

The problem then is to compute the optimal drift vector �� Three main methods were

mentioned�used in GHS�	 to compute the optimal drift� Assuming that G�z� is positive in

the interior of the set D� one can use F �z� � lnG�z�� Hence the problem becomes to �nd the

maximum of F �z��z�z�� over the set D� Assuming that the maximum occurs in the interior of
the set D� the optimal drift � satis�es the �xed point equation rF ��� � �� The �rst method

is to use the usual �xed point iterative method �i�� � F ��i�� However� this method did not

always converge and was thus discarded� A more re�ned �xed point iterative method which

appears to converge more generally �and faster� was also developed as follows� First rewrite

the condition rF ��� � � as rG����G��� � �� After i iterations one can approximate G���

by G��i� �rG��i���� �i� and rG��� by rG��i� and thus set �i�� to be the solution of

�i�� �
rG��i�

G��i� �rG��i���i�� � �i�
�

This set of equations has two roots� the relevant one being given by

�i�� �
�B��i� �

p
B��i�� � �krG��i�k�
�krG��i�k� rG��i� ���

where B��i� � G��i�� rG��i��i� The third method was to use general purpose optimization
code� An iterative method involving bisection� that was more speci�c to the Asian option with

non�random volatility� was also developed in GHS�	�

Given a drift vector �� the likelihood ratio g�z��h��z� � exp����z � �
�
����� Thus applying

importance sampling and using the fact that Z � � �where Z � N��� Im�� has density h� we

obtain

� � E�G�Z � ���D�Z � ��e��
�Z����

� � ���

Equation ��� suggests the importance sampling estimator that we use� The form of this esti�

mator motivates the use of stratifying upon ��Z� which is equivalent to stratifying upon the

likelihood ratio�
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� APPROXIMATIONS FOR THE OPTIMAL CHANGE OF

MEASURE

We will now approximate solutions to the unconstrained version of ���� i�e�� where the constraint

z � D is removed� Under an appropriate asymptotic setting described below� we show that

these approximations are close to the exact optimal� We end with a discussion of what happens

when we re�introduce the constraint z � D�

To motivate this asymptotics� consider the problem of pricing Asian options as mentioned

in Section �� The approximation we propose makes use of the fact that certain parameters in

the equation for G�Z� are small� especially the prefactor � in front of the Zi�s� A typical value

of � is ���� Hence� we let � � � where � is a small parameter� Also� a typical value of r is

���� and so� in this case� r � ����� �a function f��� is said to be ���c� i� there exist positive

constants K� and K� such that K��
c � f��� � K��

c for all � small enough�� When G��� � ��

S� is usually relatively close to the strike price K� For example S� � �� and K � ��� Hence

K � S��� �O�����

In general we now consider G�z� of the form �G��z� �� and study the behavior of the solution

of the unconstrained version of

max
z�D

�G��z� �� e�z
�z�� ���

as � � �� To capture the basic �avor of the discussion below� consider the simpli�ed version

G�z� � �G��z� of the asymptotics above� Using the substitution v � �z� we can transform the

corresponding simpli�ed version of ��� to

max
v��D

�G�v� e�v
�v������� ���

If we assume modest limitations on the growth rate of �G�v� with increasing kvk� then for
all su
ciently small �� only the region in a small neighborhood of � matters in computing

the maximum� This is illustrated in Figure �� In this small neighborhood� �G�v� may be

approximated by �G����r �G���v� and so the solution of the unconstrained version of ��� tends
to be close to that of

max
v

� �G��� �r �G���v� e�v�v�������

The solution of the latter is easily obtained in closed form as�
�� �G��� �

q
�G���� � ���kr �G���k�
�kr �G���k�

�
Ar �G����

In order to state and prove this idea rigorously for the more di
cult case of G�z� � �G��z� ���

we need the following assumptions�
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Figure �� Illustrating the linear approximation to G in a neighborhood of �� As � � �� the
normal density becomes more peaked around �� and thus optimizing the density times the linear
approximation is almost the same as optimizing the density times G�

Assumption � �a� �G�x� ��� r �G�x� �� and r�
�G�x� �� are continuous at ��� ��� �r �G�x� �� is

the vector of derivatives with respect to the arguments given by x� r� is the derivative

with respect to the last argument��

�b� �G��� ��� � �equivalent to G��� � �� and ���c� for some c � ��

�c� kr �G��� ��k is ���� �i�e�� at least one of the elements of r �G��� �� is non�zero��

�d� The solution to the unconstrained version of ��� is unique for each �� Call it � � ���

�e� k��k is O����

Assumption ��d� is not necessary� but we have it here in order to simplify the presentation�

Sample conditions under which Assumption ��e� is true are provided in Proposition � below�

Theorem � Suppose Assumption � holds� Let

�� � ��� �
�
�G��� �pG���� � �krG���k�

�krG���k�
�
rG���� ���

Then
k��� � ��k
k��k � �

as � � ��

Remark �� The �� may also be expressed in terms of �G��� �� by using the fact that G��� � �G��� ��

and rG��� � �r �G��� ��� But the representation given by ��� is more practical�
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Remark 	� The �� is also the �rst iteration of the re�ned �xed point iteration method given by

���� with the starting point �� being ��

The proof of Theorem � is deferred to Appendix A� The approach we adapt in the proof is

as follows� Under the transformation G�z� � �G��z� ��� the � � �� should satisfy the �xed point

equation

r �G���� �� � � �G���� ����� �	�

Let A� be the set of solutions to this �xed point equation for a given �� We �approximate�

all � � A� that lie in a ball of a su
ciently large but constant �i�e�� independent of �� radius

around �� and then choose the relevant one�

Now we formally specify one of the circumstances under which k��k is O����

Assumption � � �G�x� ���e�kxk
��� � �� uniformly in �� for all � small enough� as kxk � 	�

Assumption � is true in most problems where E�G�Z� � E� �G��Z� �� is �nite�

Proposition � Suppose Assumption ��a� � ��d� and Assumption 	 hold� Consider the case

where �G��� �� is ����� Then k��k is O����

The proof of this proposition is given in Appendix B� Similar results may also be shown for

other cases� but they are much more tedious�

Now let us see what happens when we re�introduce the constraint z � D in the maximization

problem� Note that D may also depend on � �e�g�� if D is of the form fz � G�z� � �g�� so we
denote D by D�� Obviously� the above approximations would go through if the set D� included

a ball of su
ciently large �constant� radius around �� for all �su
ciently small� � � �� In

practice� we found this is procedure to be quite accurate even when only a weaker condition is

satis�ed� � lies in the interior of the set D� for all �su
ciently small� � � �� If we found out

before hand that infz�D�
kzk � 	 as � � �� then due to Assumption ��e�� �� will not lie in

the feasible region �for all su
ciently small ��� In fact� in many cases where � 
� D�� it turns

out that this is the case� Then the approximation cannot be expected to be close� although one

still use the iterative procedure of ��� starting at ��

Let us take a closer look at ��� corresponding to the simpler asymptotics G�z� � �G��z��

when � � �D� is not satis�ed� For simplicity� assume that �D� � �D� i�e�� it is independent of

�� Then one can expect that the optimal solution to ��� �that can be expressed as �� where

� now denotes the optimal solution to the version of ��� with the simpler asymptotics � will

occur close to vmin � minv� �D kvk �see Figure �� and �G�v� is approximately linear in the small
region around vmin� Hence if one were to start the iteration procedure given by ��� at vmin��
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then one may again expect asymptotic convergence after one iteration� The problem is that in

most cases determining vmin is as di
cult as determining the solution to ��� itself�

0

_
D

minv
δ µ

Figure �� Illustrating the situation when � 
� D and � is in the interior of D�

� COMPUTATIONAL ISSUES ANDNUMERICALRESULTS

In this section we

�� test the accuracy of the approximation scheme described in the previous section and

�� investigate� numerically� the overhead involved in solving the optimization problem to

compute the optimal drift vector ��

Regarding the second point� a reasonable measure of this overhead is to compare the number

of function evaluations� M � required to achieve optimality �to a given level of precision� to

the number of replications� N � that a standard simulation would require to achieve a desired

level of accuracy� As each such function evaluation or replication both require evaluating G�

their computational costs are comparable� If M�N is small� then IS�strati�cation is cost�

e�ective for even a modest reduction in variance �or more precisely� for a modest reduction in

the variance times the work per sample� see GHS�	�� On the other hand� if M�N is large� then

the method must produce large variance reductions to be cost�e�ective� For the purpose of this

paper� our de�nition of the required sample size will be the number of samples required for a

�� con�dence interval to have a relative half width of �� � i�e�� if the estimated per sample
standard deviation using standard simulation is S and the estimated price of the option is !P

we require ����S�
p
N � ���� !P � or N � �����S����� !P���

We consider four models� which are described in full detail in GHS�	� the arithmetic Asian

option with constant volatility �denoted Asian�� the arithmetic Asian option with the Hull�

	



White stochastic volatility model �denoted HW�� the Cox� Ingersoll� Ross interest rate model

for pricing a bond �denoted CIR�� and the Cox� Ingersoll� Ross interest rate cap model �denoted

CIR�Cap�� In the interest of space� we do not describe these models or their parameters here�

but refer the reader to GHS�	� For n time steps� the Asian model has m � n and the HW�

CIR� and CIR�Cap models have m � �n�

For the Asian option� it was shown in GHS�	 that the optimal � could be found by reducing

the set of n optimality equations to a single nonlinear equation that can be solved by bisection�

A high degree of accuracy was typically found in only about a dozen function evaluations� which

is negligible compared to the cost of the simulation� For example� in the notation of Section

�� consider the parameter settings n � ��� � � ���� K � ��� S� � ��� r � ���� and T � ��

With these parameters the required sample size using standard simulation is about 		����

replications� IS and strati�cation reduces the variance by about a factor of ������ However�

each such sample requires about �� more CPU time than standard simulation �due to the

increased cost of sampling from the strati�ed distribution�� Thus the method improves the the

e
ciency �work times variance� by about a factor of ���	� �� �� ���������
We will also use this example to illustrate the accuracy of the approximation �� described

in the previous section� De�ne the Relative Error �RE� to be k�� � �k� k�k� For the same
parameter setting as in the above example� the RE is ������� Note that the payo� at zero is

positive in this case� as required for the approximation� It also worthwhile to see how the RE

behaves as a function of the volatility ���� as in this case� � may be interpreted directly as ��

As � decreases from ��� to ����� the RE decreases to ��������

For the other three models� nearly closed�form optimal solutions �like the bisection algo�

rithm mentioned above� to the optimization problem are not available� We therefore compared

two general purpose approaches that do not take advantage of any problem speci�c structure�

The �rst approach is to apply a nonlinear optimization package� The speci�c package we chose

was GRG�� which was developed by Leon Lasdon of the University of Texas and is marketed by

Optimal Methods� Inc� The second approach is to apply ��� with a suitable starting point� Both

these approaches require derivative information� which were estimated using �nite di�erences�

The conditions under which these methods converge to a global optimum are di�erent� and

di
cult to verify in practice� However� we did not �nd convergence to be a problem� provided

a �reasonable� initial point z� was selected �see discussion below�� In addition� a direct com�

parison of function evaluation counts is somewhat misleading since the termination criteria are

di�erent� In the case of GRG�� the termination criteria are complex as they include checking

that the objective function does not change by more than a factor of 	 for a certain number of
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K � n GRG� Fixed
Point

�� ��� �� ��� ���
�� ��� �� ��� ���
�� ��� �� ��� ���
�� ��� �� ��� ���
�� ��� �� ��� ���
�� ��� �� �	� ���

�� ��� �� ��� ���
�� ��� �� 	
� ���
�� ��� �� ���� 		�
�� ��� �� ��� ���
�� ��� �� ��� ���
�� ��� �� ���� ���

Table �� Number of function evaluations to achieve convergence to optimality in the Hull�White
stochastic volatility model� All results use S� � ��� V� � ����� � � �� r � ���� and T � ����

iterations �line searches�� In addition� GRG� also computes the gradient at the �nal point� We

set a similar termination criterion for the �xed point iteration" the iteration terminated when

the objective function changed by less than a factor of 	� Throughout� we used 	 � �����

For the HW model the �undiscounted� payo� function takes the form G�z� � �A�z��K��

where K is the strike price and A�z� is the arithmetic average of the underlying stock prices�

Note that if � optimizes g�z�G�z�� it also optimizes H�z� � g�z��A�z� � K�� which has the

advantage of not losing information about the shape of A�z� when A�z� � K� Thus for the

HW model� we optimized H�z�� Recall that z � � corresponds to not doing IS� which as

described earlier is a natural starting point� However� it turns out that if z � �� then the

partial derivatives of H�z� are all � for z�n � ��� � � � � z��n�� Therefore� we set z��i� � ���� for

all i and all parameter settings�

Table � shows the total function evaluation counts �including those used for the �nite

di�erence approximations to the derivatives� for the two methods� In all cases� the optimization

problem is solved in between ��� and ����� function evaluations� As expected� the cost to solve

the optimization increases as n increases� Recall that for n � �� this is a �� dimensional problem

while for n � �� this is a ��	 dimensional problem� Thus most of the function evaluations could

be eliminated if partial derivatives were computed analytically �although it is by no means easy

to compute them�� While the �xed point iteration appears to converge more quickly� part of

the di�erence is due to the di�erent termination criteria�

As it may not be necessary to actually solve the optimization to such a high degree of

accuracy in order to obtain good variance reduction� we next investigate how e�ective the
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K IS Function Relative Variance
Vector Calls Error Ratio

�� �� �� ���

 �
�

�� ��� ��� ����� ���

�� ��� ��� ����� ����
�� � ��� ��� ����

�� �� �� ����� �	��
�� ��� ��� ����� ����
�� ��� ��� ����� ����
�� � ��� ��� ����

Table �� IS � Strati�cation performance for the Hull�White stochastic volatility model� All
results use n � ��� S� � ��� V� � ����� � � �� 
 � ���� r � ���� and T � ����

r� n GRG� Fixed Relative
Point Error

����� �� ��� �� �����
����� �� ��� �� �����
���
� �� ��� �� �����
����� �� ��� ��
 �����
����� �� ��� ��
 �����
���
� �� ��� ��
 �����

Table �� Number of function evaluations to achieve convergence to optimality in the Cox�
Ingersoll� Ross interest rate model� All results use d � �� � � ����� � � ���	 and T � ���� The
starting point is z��i� � ��� for all i�

IS�strati�cation procedure is for �nearly optimal� changes of measure� To study this� let

!�j denote the solution when GRG� is prematurely terminated after j line searches� and let

� denote the GRG� solution when solved to optimality� i�e�� within the accuracy criteria as

described above� For the parameters listed in Table �� � is obtained in � line searches� Table �

lists the number of function calls required to compute an IS vector� ��� where �� � ��� !��� !��� or

��� !���� This represents the cost to solve the problem to partial optimality� In addition� it lists

the relative error� k�� � �k�k�k as well as the variance ratio �estimated variance of standard
simulation to that of the IS�strati�cation procedure�� To obtain accurate variance estimates�

we used ��������� replications and all strati�cation used ��� strata� Table � illustrates that

the procedure can be highly e�ective even when the optimization problem is not solved exactly�

In this example� it becomes more important to obtain a good solution when the strike price K

increases� in which case the problem takes on the �avor of a rare event simulation�

Results for the CIR model are reported in Table �� The problem is solved in between ��

and ��� function evaluations� Again� �xed point iteration appears to converge more rapidly�

��



K n GRG� Fixed Relative
Point Error

����� �� ��� �� �����
���	� �� ��� ��� ����

���
� �� ��� ��� ����	
����� �� ��	� �
	 ����	
���	� �� ���� �
	 �����
���
� �� ���� ��� �����

Table �� Number of function evaluations to achieve convergence to optimality in the Cox�
Ingersoll� Ross interest rate cap model� All results use d � �� � � ����� � � ���	� r� � �����
and T � ����

however GRG� again produces near�optimal results earlier� The relative error column lists

k����k� k�k� In this problem� �� is extremely close to �� as all cases of this problem satisfy the
conditions for the approximations to be asymptotically close� especially the condition G��� � ��

For the CIR�Cap model� starting in a neighborhood of z� � � produces a payo� of � for many

of the parameter settings �leading to a gradient estimate of ��� We therefore chose z��i� � ���

for all i� which produces a positive payo� for all parameter settings� As reported in Table ��

this problem is solved in between �� and ����� function evaluations� with �xed point iteration

converging more rapidly� As for the �� �this is not exactly ��� as by de�nition� �� is always

computed with z��i� � ��� in some cases they seem to be very close� whereas in other cases

there is a wide di�erence� Note that in this case the payo� is of the form
Pl

i��Gi�Z��Di
�Z��

and thus strictly speaking it does not �t the framework described earlier� However� one can

easily show that if for each i� Gi��� � �� then one can again expect a good approximation� In

none of the above mentioned cases is this condition satis�ed� With K � ����� this condition is

satis�ed and with z��i� � � the relative error was ����� for n � �� and ����� for n � ���

We also experimented with using �� as the starting point for GRG�� which sometimes� but

not always� produced savings compared to GRG� initialized with the values of z� described

above�

Table � reports the variance ratio �estimated variance of standard simulation divided by

estimated variance of IS � strati�cation� obtained from GHS�	�� the required sample sizes

�in thousands� for �� relative accuracy �derived from data reported in GHS�	� and the

percentage optimization overhead� The overhead is de�ned to be the corresponding number

of function evaluations required by GRG� as shown in Tables ��� divided by the required

sample sizes �expressed as a percentage�� This is a conservative estimate of the overhead�

since the optimization may not need to be solved to such a high degree of accuracy� For the

��



Model Variance Sample Opt�
Ratio Size Overhead

������
HW� K � ��� � � ��� ���� ��	 �����
HW� K � ��� � � ��� ���� ��� �����
HW� K � ��� � � ��� ���� ��� �����
HW� K � ��� � � ��� ���� ��� �����

CIR� r� � ����� ��� ���� ����
CIR� r� � ����� ��� ���� ���� �
CIR� r� � ���
� ��� ��	� �	�
 �

CIR�Cap� K � ����� ���� �� �����
CIR�Cap� K � ���	� ���
 ��	 ���
�
CIR�Cap� K � ���
� �
�� ��� �����

Table �� Parameters are as in Tables �� � and � with n � �� for the HW model� and n � �� for
the CIR and CIR�Cap models�

HW and CIR�Cap models� the required sample sizes are in the tens to hundreds of thousands�

the optimization overheads are less than � � and the variance reductions range from ���� to

���� Interpreting� for example� the �rst row of Table �� we see that IS � strati�cation would

obtain the same �� relative accuracy in about ��	�� �� ���� ��������� replications� However�
each such sample takes about �� more CPU time than standard simulation� Including the

cost of the optimization ������ IS � strati�cation achieves comparable accuracy in e�ectively

�� 	���� ��� � ����� �� 	��� replications�
For the CIR model� which prices a bond paying ��� at maturity� the accuracy was de�

�ned relative to ����� !P �� Standard simulation achieves this level of accuracy in about �����

replications� Thus the relative cost of the optimization is high� and in fact this type of elabo�

rate variance reduction technique seems unnecessary� However� if one wants to achieve �penny

accuracy�� i�e�� ����� absolute accuracy� then the required sample sizes increase to between
������ and ������� the percentage optimization overhead decreases and the procedure becomes

computationally attractive�
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APPENDIX A

Proof of Theorem �� We will �rst give some de�nitions and prove a lemma� For any set A 
Rm� de�ne kAk as supz�A kzk� Two vectors ��� and �� in Rm �where k���k and k��k are positive
for all su
ciently small � � �� are said to be �asymptotically close� i� k��� � ���k�k���k � � as

� � �� Let ������ � � � � ���k� be a set of vectors in R
m with k���ik 
� � for all i and all su
ciently

small � � �� Assume that none of them are asymptotically close to each other� A set A�  Rm

is said to be �asymptotically close� to ���� i� sup��A�

k������k

k����k
� � as � � �� The set A� is said

to be asymptotically close to ������ � � � � ���k� i�

sup
��A�

�
min
��i�k

k� � ���ik
k���ik

�
� � ���

as � � �� In a rough sense� ��� means that all the elements of A� are asymptotically close to

at least one ���i�

We consider three sub�cases for Assumption ��a��

Case �� �G��� �� is ����� i�e�� �G��� ��� ��

Case �� �G��� �� is ����� i�e�� �G��� �� � � and jr�
�G��� ��j� ��

Case �� �G��� �� is ���c�� with c � ��

Other cases �e�g�� �G��� �� is ���c� with � � c � �� can similarly be handled�

Lemma � Suppose Assumption � holds� Let A��R � A� � BR� where BR is a ball of constant

radius r around 
� Then

Case �� For all R � �� A��R is asymptotically close to r �G��� ���� �G��� ��� Alsor �G��� ���� �G��� ��
and rG����G��� �which is equivalent to r �G��� ���� �G��� ��� are asymptotically close�

Case �� Let ��� ��� be given by�
��r�

�G��� ���
q
r�
�G��� ���� �kr �G��� ��k�

�kr �G��� ��k�

�
A

r �G��� ���
respectively� Then for all R � max�k�k� k�k�� A��R is asymptotically close to ��� ���

Also� � and � are asymptotically close to�
�G����pG���� � �krG���k�

�krG���k�
�
rG���� ����

respectively�

��



Case �� For all R � �� A��R is asymptotically close to �r �G��� ���kr �G��� ��k� Also� �r �G��� ���kr �G��� ��k
are asymptotically close to �rG����krG���k� respectively�

Proof of Lemma �� Consider Case �� In this case we only make use of the fact that both �G�x� ��

and r �G�x� �� are continuous at ��� ��� In that case� for all 	 � �� one can select a �� such that for
all � � �� and � � BR �i�e�� bounded� j �G���� ��� �G��� ��j� 	 and kr �G���� ���r �G��� ��k� 	�

Since �G��� �� � �� this implies that for all 	� � �� one can �nd ��� such that for all � � ��� and

� � BR�

kr
�G���� ��
�G���� ��

� r �G��� ��
�G��� ��

k � 	��

Then from �	� we get that for � � A��R

k�
�
� r �G��� ��

�G��� ��
k � 	��

Now consider Case �� Again� due to the continuity of r �G�x� �� we have that for all 	 � ��
there exists ��� such that kr �G���� ���r �G��� ��k � 	 for all � � ��� By the mean value theorem

and the fact that �G��� �� � �� we have that for all � and �

�G���� ���� � r�
�G����� ��� �r �G����� ����

where � is some quantity between � and �� Again by continuity of the derivatives we have

that jr�
�G����� ��� �r�

�G��� ��j � �� uniformly over all � � BR� Similarly for kr �G����� ��� �
r �G��� ��k� Now since � � BR� this also holds for kr �G����� �����r �G��� ���k� Hence j �G���� ���
�r�

�G��� ���r �G��� ����j � � uniformly over � � BR as � � ��

Note that jr�
�G��� ���r �G��� ���j is always positive for � � A��R� �Because if it were zero�

then the norm of the righthand side of �	� will be converging to zero� uniformly over � � A��R� as

� � �� whereas the norm of the left hand side will be converging uniformly to kr �G��� ��k� ���
In that case one can show that

kr
�G���� ���
�G���� ��

� r �G��� ��
r�
�G��� ���r �G��� ����k � �

uniformly over � � A��R� as � � �� Equivalently�

kh���k � � ����

uniformly over � � A��R as � � �� where

h��� � � � r �G��� ��
r�
�G��� ���r �G��� ���� �

��



Now the solutions of h��� � � is given by � and �� For any 	 � �� let B��� and B��� be two

balls around � and �� respectively� such that kh�z�k � 	 for z � BR � �B��� � B����� Let ri�	�

be the radius of B��i� Note that due to the continuity of h�z�� for any 	
� � �� there exists 	 � ��

such B���� B���  BR� B��� � B��� � � and max�r��	�� r��	�� � 	� � Using ����� for any 	 � ��

there exists ��� such that for all � � ��� the set A��R will be a subset of B��� � B���� Hence

max��A��R
min�k� � �k� k� � �k� � 	��

The proof of the third case is very similar� �

Proof of Theorem �� For Case �� using the fact that �G��� �� is ����� it can easily be shown that

��� and r �G��� ���� �G��� �� are asymptotically close� For Case � and Case � we need only the
positive root in Lemma �� because for all � � A��R that is close to the negative root� �G���� �� � �

�for all su
ciently small ��� In Case �� the positive root in ���� is exactly ���� For Case �� using

the fact that �G��� �� is ���c�� c � �� one can easily show that ��� and r �G��� ���kr �G��� ��k are
asymptotically close� ��

APPENDIX B

Proof of Proposition �� �G��� �� being ���� and Assumption ��a���b� imply that �G��� ��� ��

Using v � �z we can transform the unconstrained version of ��� to maxv �G�v� �� exp��v�v�����
Using Assumption �� there exists a d � � and �� � �� such that for all v and �� such that kvk � d�

and � � ��� �G�v� ��e
�v�v������ � �G�v� ��e�v

�v�� � �G��� ����� Hence� due to the continuity of

�G�x� �� and the fact that �G��� �� is positive� we get that for all su
ciently small �� the maximum

of �G�v� ��e�v
�v������ cannot occur in the region kvk � d�

So now let us consider the region kvk � d� Let M be the maximum of �G�v� �� over kvk � d

and � � ��� The compactness of the feasible region and the conditions on �G�v� �� ensure that

M exists and is positive� Then for all v such that ��
q
ln� �G��� ����M�� kvk � d we see that

�G�v� ��e�v
�v������ �Me�v

�v������ � �G��� �����

So the corresponding optimal of the unconstrained version of ��� cannot occur in the region

z � �
q
ln� �G��� ����M�� �
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