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Abstra‘ct

The UPA (Underwriting Profitability Analysis) application embodies a new approach to mining
Property & Casualty (P&C) insurance policy and claims data for the purpose of constructing
predictive models for insurance risks. UPA utilizes the ProbE (Probabilistic Estimation) predictive
modeling class library to discover risk characterization rules by analyzing large and noisy insurance
data sets. Each rule defines a distinct risk group and its level of risk. To satisfy regulatory
constraints, the risk groups are mutually exclusive and exhaustive. The rules generated by ProbE
are statistically rigorous, interpretable, and credible from an actuarial standpoint. The ProbE
library itself is scalable, extensible, and embeddable. Our approach to modeling insurance risks
and the implementation of that approach have been validated in an actual engagement with a P&C
firm. The benefit assessment of the results suggest that this methodology provides significant value
to the P&C insurance risk management process.
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1 Introduction

The business of insuring tangible assets, also known as P&C (Property and Casualty) insurance,
deals with the insuring of things like cars, boats, homes, etc. The insuring company evaluates the
risk of the asset being insured taking into account characteristics of the asset as well as the owner
of the asset. Based on the level of risk, the company charges a certain fixed, regular premium
to the insured. Actuarial analysis of policy and claims data plays a major role in the analysis,
identification, and pricing of P&C risks. A good overview of this business appears in [6, 7].

Actuaries develop risk models by segmenting large populations of policies into predictively
accurate risk groups, each with its own distinct risk characteristics. A well-known segment is male
drivers under age 25 who drive sports cars. Examples of risk characteristics include mean claim
rate, mean claim severity amount, pure premium (i.e., claim rate times severity), and loss ratio
(i.e., pure premium over premium charged). Premiums are determined for each policy in a risk
group based on the risk characteristics of the group as well as on the cost structure of the P&C
company, its marketing strategy, competitive factors, etc.

A basic tenet in the industry is that no rating system can be perfect and competition therefore
compels P&C companies to continually refine both the delineations they make among risk groups
and the premiums they charge. The analytical methods employed by actuaries are based as much
on statistical analysis as they are on experience, expert knowledge, and human insight. Thus, it is
widely recognized that any risk model one develops is likely to overestimate the true levels of risk of
some groups of policies and underestimate the risks of others. Overcharging low-risk policyholders
may induce them to leave and seek lower rates from competitors, thereby reducing revenue and
market share. Undercharging high-risk policyholders may attract similar high-risk customers away
from competitors, thereby driving costs up and lowering profits. When one insurer refines the risk
groups it has identified and adjusts its prices accordingly, market pressures eventually provoke
other insurers to follow suit. To remain competitive, insurers must charge policyholders according
to ever-improving assessments of their true levels of risk.

Ideally, insurance companies would like to develop risk models based on the entire universe
of potential policies in order to maximize the accuracy of their risk assessments. Although no
insurer possesses complete information, many insurers, particularly ones operating across large
territories, have access to vast quantities of information given their very sizable books of business
(a book of business corresponds to either a type of policy or to the set of policies of that type in a
territory, depending on context). It is common for such firms to have millions of policies in each
of their major regions, with many years of accumulated claims data. The actuarial departments
of insurance companies make use of this data to develop risk models for the markets served by
their companies.

The availability of large quantities of insurance data represents both an opportunity and a
challenge for data mining. The opportunity exists to use data mining techniques to discover
previously unrecognized risk groups and thereby assist actuaries in developing more competitive
rating systems that better reflect the true risks of the policies that are underwritten. The challenge
for data mining is that individual policyholders file for claims very infrequently and, when they
do, the individual claim amounts vary over several orders of magnitude. In addition, some of the
most important data fields often have large proportions of missing values. A further challenge is
that actuaries demand statistical rigor and tight confidence bounds on the risk parameters that are
obtained—that is, the risk groups must be actuarially credible. This combination of rare events,
wide variation in claim amounts, large proportions of missing values, and demand for statistical
rigor is problematic for many data mining algorithms.
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These challenges have motivated our own research (3, 4] and have lead to the development of
the IBM ProbETM (Probabilistic Estimation) predictive modeling class library. This C++ library
embodies several innovations that address the challenges posed by insurance data. The algorithms
are able to construct rigorous rule-based models of insurance risk, where each rule represents a
risk group.

The IBM UPATM (Underwriting Profitability Analysis) application is built around ProbE and
provides the infrastructure for using ProbE to construct rule-based risk models. UPA was designed
with input from marketing, underwriting, and actuarial end-users. The graphical user interface is
tailored to the insurance industry for enhanced ease of use. Innovative features such as sensitivity
analysis help in evaluating the business impact of rules. An iterative modeling paradigm permits
discovered rules to be edited and the edited rules to be used as seeds for further data mining. In a
recently concluded pilot engagement with a P&C company, the UPA solution amply demonstrated
the value that a discovery-driven approach can bring to the actuarial analysis of insurance data.

2 Modeling Insurance Risk

Risk groups and their associated risk characteristics can be expressed in the form of actuarial rules
such as male drivers under age 25 who drive sports cars have a claim frequency of 25% and an
average claim amount of §3200. To be able to discover such rules from historical claims and policy
data, it is intuitively natural to view the data mining task as one of predictive modeling based
on rule induction. Insurance companies collect several hundred data fields for each policy they
underwrite. There may be several million policies in a geographic region. Clerical verification and
entry of this information into a database is common practice. Given the high dimensionality of the
data and a regulatory requirement that risk groups be mutually exclusive, a decision-tree (1,2, 5]
approach is a pragmatic and practical method for rule induction.

The key variables that one must try to predict are claim frequency and claim severity, and
thereby pure premium. Claim frequency is the average rate at which individual policyholders
from a risk group file for claims and is expressed as the number of claims filed per policy per
unit time (i.e., quarterly, annually, etc.). Sometimes the rate is expressed as a percentage by
multiplying by 100. For example, a frequency of 25% means that the average number of claims
filed in a given unit of time is 0.25 times the number of policies. This is not to say that 25%
of policyholders file claims—only about 19.5% will file one claim and an unlucky 2.6% will file
two or more claims. Thus, the 25% refers to a rate, not a probability. Claim severity is more
straightforward and is simply the average dollar amount per claim. Pure premium is the product
of frequency and severity.

Raw policy claims data contains fields from which frequency and severity can be estimated.
The fields for estimating frequency typically specify the total number of claims filed under a given
policy during a specified time period. The field for estimating severity typically specifies the total
dollar amount of the corresponding claims for that policy during that time period.

If one were restricted to using standard decision-tree algorithms, one might try to view fre-
quency modeling as a classification problem and severity modeling as a regression problem. How-
ever, further examination suggests that these modeling tasks are not exactly straightforward clas-
sification or regression problems.

Viewing frequency prediction as a classification problem is misleading. It is certainly not the
case that every individual policyholder will file a claim with either 100% certainty or 0% certainty.
In actuality, every individual has the potential to file claims, it is just that some do so at much
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higher rates than others. The predictive modeling task is therefore a frequency modeling problem,
which needs to discover recognizable groups of policies, each with its own unique filing rates, rather
than attempt to discover groups that are classified as either always filing for claims or never filing
for claims.

From the point of view of standard decision-tree algorithms, severity prediction appears to be
very much a regression problem, given that the fields corresponding to this variable are contin-
uous values across a wide range. However, the distribution characteristics of claim amounts are
quite different from the traditional Gaussian (i.e., least-squares optimality) assumption that most

regression modeling systems make.
A further complication from the point of view of standard decision-tree algorithms is that

frequency and severity must be modeled simultaneously because the risk parameter that ultimately
determines pricing is the pure premium estimate. Developing risk groups based on frequency or
severity alone and then estimating pure premium post hoc would yield suboptimal models because
the risk groups would not be optimized for predicting pure premium. Developing separate rule-
based models for frequency and severity and then combining them would also be unsatisfactory
because the estimates for frequency and severity would be based on different subpopulations. From
actuarial and regulatory standpoints, the credibility of the resulting pure premium estimates would
therefore be questionable. Frequency and severity must be modeled simultaneously in order to
construct risk groups that accurately predict pure premium.

3 The UPA Solution

RULE #22

IF

Field "VANTILCK" "Vehicle Antilock Break Discount?”
= "Antilock Brake”

Field "VEHTYPE" "Type of Vehicle”

= "Truck”

THEN

claim rate g.8115561
mean severity 5516.84
std dev severity 1161%.9
pure premium 63.753
loss ratio 2.688284

688 training ctaims out of 53221 training points

Figure 1: Example of a UPA generated rule

The UPA solution consists of the UPA application and a methodology for processing P&C policy
and claims data using the application. The UPA application is a client-server Java-based applica-
tion. On the server side, the ProbE C++ data mining class library is used for actual execution of
mining tasks. The client-server implementation is multi-threaded and a process scheduling sub-
system on the server manages and synchronizes requests for ProbE runs that may flow in from
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Quantity Drop None VANTILCK VEHTYPE
Train Pts 53221 1192768 627926
ratio 22.41 11.88
Claim Rate g.0116 0.0894 ©.PB88
change -f.0822 -@.8828
% change -18.8%  -24.0%
Severity 5517 5145 5764
change -372 247
% change -6.7% 4.5%
Pure Prem 63.75 48.27 50.68
change -15.48 -13.15
% change -24.3% -28.6%
Loss Ratio g.688 g.482 g.522
change -@.286 -0.166
% change -29.9% -24.1%

Figure 2: Example of sensitivity analysis of a rule

any of the clients. Results of mining are available in various graphical and tabular formats, some
of which may require a business analyst to interpret while others can be directly interpreted by a
business decision maker.

In preparation for mining, company policy and claims data may be combined with exogenous
data, such as demographics, and stored as a set of records. Each record is essentially a snapshot of
a policy during an interval of time, including any claim information. Trend information is captured
in a set of derived fields. The application is geared to predict pure premium, which is the product
of claim frequency and claim severity. Though not explicitly present in the raw data, it is readily
computed once mean frequency and mean severity have been estimated.

The user has control over three distinct phases in the mining process.

1. Trainingis the process in which the application discovers the statistically significant subpop-
ulations that exist in the data.

2, Calibration is the process in which the application applies a second data set to the rules
discovered in the training phase, and calibrates the statistics associated with each rule, such

as claim rate, claim amount, and pure premium.

3. Evaluation permits a user to evaluate the rules on yet another data set to confirm the actuarial
credibility of the calibrated rules.

The training, calibration, and test data sets are constructed so as to be disjoint (i.e., they
have no records in common). This is necessary to ensure the statistical reliability of the rules and
subsequent analysis. Both the calibration and test data sets are obtained by randomly sampling
the entire data set that was constructed for analysis. The claim rates and severities measured on
the calibration and test data sets therefore reflect the rates and severities of the entire data set.
The training data set, on the other hand, is a stratified random sample in which the proportion
of claim to non-claim records is greater than in the entire data set.

Mining runs produce risk models that are represented as collections of rules. A typical rule is
illustrated in Figure 1. Several statistics are reported for each rule, including claim rate, mean
severity, standard deviation of the severity, pure premium (i.e., claim rate times severity), and
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Figure 3: UPA Lift Chart

loss ratio (i.e., pure premium over premium charged). Two additional statistics that are reported
for each rule are the number of total examples that match the rule and the total number of those
examples that are claim-related. For example, the rule in Figure 1 matches 53,221 examples, out
of which 608 had incurred claims.

Also reported for each rule is a sensitivity analysis table as illustrated in Figure 2. The
sensitivity analysis tables show how the segment statistics of each rule change by dropping one
clause from the “if” part of the rule. For example, the rule in Figure 1 has two clauses, VANTILCK
= “Antilock Brake” and VEHTYPE ="Truck”. The sensitivity analysis table in Figure 2 illustrates
the effect on the predictions if either of these clauses were to be dropped individually. The table is
an extremely useful analytical tool that an end-user can employ during rule editing to generalize
a rule by dropping only those clauses that cause maximal increases in matching examples with
minimal changes in risk characteristics.

4 TUncovering nuggets in the rules

The first step in transforming the mining results into business value begins with the lift charts that
are generated from a mining run. A typical UPA lift chart is displayed in Figure 3. The X-axis is a
cumulative percentage count of the policies, sorted in order of decreasing predicted pure premium.
The values therefore range from 0 to 100. The Y-axis is the cumulative percentage of actual
premiums collected from, or actual claims paid to the policyholders in the order defined by the
X-axis. The Y-axis therefore also ranges from 0 to 100. The chart displays three plots. The first
plot is that of a hypothetical situation, in which a uniform premium is collected for each policy.
This essentially represents the scenario when an insurance firm has no insight about its policies
and spreads its risk uniformly across the entire pool. The second plot displays the actual scenario



for “Accs This Qtr U1t $ BI+PD"
claim rate 0.80600882

ean severity 4676.55
std dev severity 9165.3
pure premium 28.1006
loss ratio B.315589

3958 training claims out of 662656 training points

Figure 4: Background Statistics for a Data Mining Run

in which the firm’s current actual premium pricing is plotted (which is the actual cumulative
premiums collected for the policies in descending order sorted by predicted pure premium). The
third plot displays the scenario proposed by the UPA in which the UPA-recommended pricing is
plotted (which is the actual cumulative claim amounts for the policies in descending order sorted
by predicted pure premium).

Figure 3 illustrates the best-case scenario from a data-mining perspective in which the in-
surer’s actual pricing reflects differences between risk groups that are not captured by uniform
pricing, and the UPA-proposed pricing incorporates further distinctions among risks not currently
reflected in the insurer’s pricing. These relationships are also common in practice. Actuaries have
identified many distinct risk groups and their characteristics have been incorporated into the pre-
miums charged. However, as the lift chart illustrates, the UPA solution, with its insurance-tuned
data mining engine, has a strong likelihood of discovering previously unknown risk groups and is
therefore can suggest more competitive prices in many situations.

If an actual mining run results in a lift chart very similar to the one illustrated in Figure 3,
then the business analyst has a basis for continuing further investigations of the rules. If the lift
chart indicates very little or no difference between actual pricing and the UPA-proposed pricing,
then the results can be abandoned right away.

To uncover nuggets, the analyst needs to first understand the statistics for the entire book of
business. The UPA application can present these background statistics to the user, as shown in
Figure 4. This particular book has 662,656 records, of which 3,958 records actually had claims.
The claim rate for this database is 0.006, with a mean severity of $4676 and a standard deviation
of $9165. The average pure premium is $28, and the loss ratio is 0.31. Using these overall statistics
as a basis, an analyst needs to look for rules that predict pure premiums and/or loss ratios that
differ significantly from the overall average, and still cover a sizable number of policies to be both
actuarially credible and interesting from a marketing standpoint. This latter threshold will vary
from business to business, and the end-user may use discretionary judgment in determining the
nuggets utilizing the above criteria. For example, the rule illustrated in Figure 1 has a predicted
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pure premium of $63, a loss ratio of 0.69, and matches 8.0% of the policies. It therefore represents

a potential nugget using these criteria.
The final check to confirm the quality of a nugget is to examine how these candidate rules hold
up when applied to unseen data; i.e, when they are evaluated for their predictive accuracy.

5 Conclusion

The UPA solution was recently developed as part of a joint project with a major insurance company
in North America. Automobile insurance data for 16 quarters from the books of business in a single
state was extracted and transformed into a data mart. The mart represented about 2 million

policies and was approximately 30 GB in size.
There were many ways to mine this data. The data consisted of three major books of busi-

ness: preferred, high risk and standard. There were over 250 explanatory data fields, comprising
demographic, agency, vehicle, and policyholder information. In addition, there were several dif-
ferent types of coverages to be modeled, including bodily injury (BI), property damage (PD),
comprehensive (Comp), and collision (Coll).

The books of business, the different variable groups, and the different coverages could be
combined in many different ways for the purpose of mining. After consulting with the firm'’s
actuaries and marketing analysts, mining runs were conducted for 18 unique combinations of
books of business, explanatory variables, and coverages. Each run generated about 40 rules. From
this collection of rules, 43 nuggets were identified using the methodology described in this paper.
A benefits assessment study indicated that implementing just 6 of these 43 nuggets in a single
state could potentially realize a net profit gain of several million dollars. The benefits that could

be realized by scaling up the business implementation of all 43 nuggets across multiple states are
clearly appealing,.
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