
RC ��������������APR�� Computer Science	Mathematics

Research Report

Multi�Dimensional Separation of Concerns in
Hyperspace

Harold Ossher and Peri Tarr
IBM T�J� Watson Research Center

P�O� Box ���

Yorktown Heights� NY �����
fossher� tarrg�watson�ibm�com

IBM
Research Division
Almaden � Austin � Beijing � Haifa � T
J
 Watson � Tokyo �
Zurich

LIMITED DISTRIBUTION NOTICE This report has been submitted for publication outside of IBM and will probably be copy�

righted if accepted for publication� It has been issued as a Research Report for early dissemination of its contents� In view

of the transfer of copyright to the outside publisher� its distribution outside of IBM prior to publication should be limited

to peer communications and speci�c requests� After outside publication� requests should be �lled only by reprints or legally

obtained copies of the article �e�g�� payment of royalties�� Copies may be requested from IBM T�J� Watson Research Center

�Publications ���		
 ykt� P�O� Box 	��� Yorktown Heights� NY �
��� email reports�us�ibm�com

Some reports are available on the internet at http���domino�watson�ibm�com�library�CyberDig�nsf�home



Multi�Dimensional Separation of Concerns in Hyperspace

Harold Ossher and Peri Tarr

IBM Thomas J� Watson Research Center

P�O� Box ���

Yorktown Heights� NY �����

Abstract

Despite the well�known bene�ts of separation of con�

cerns� and despite the presence of mechanisms to
achieve separation of concerns in all modern software
formalisms� software artifacts continue to exhibit prop�
erties associated with poor separation of concerns�
Comprehensibility degrades over time� impact of change
is high� reuse and traceability are limited�

We have hypothesized that these limitations are largely
caused by the �tyranny of the dominant decompo�
sition�� existing languages and formalisms generally
provide only one� �dominant� dimension along which
to separate concerns�e�g�� by object or by function�
Achieving many software engineering goals depends on
the ability to separate all concerns of importance� We
therefore introduced the notion of multi�dimensional

separation of concerns� simultaneous separation accord�
ing to multiple� potentially overlapping concerns�

This paper explores the structure of the space of con�
cerns� to which we refer as hyperspace� partially formal�
izing our earlier model� We discuss how the model facil�
itates the identi�cation and encapsulation of those por�
tions of a system pertaining to a given concern� whether
or not that concern is �dominant�� and how it helps
identify� introduce� change and remove concerns during
evolution� We also show how this approach promotes
two crucial aspects of evolvability� traceability and lim�
ited impact of change�

Keywords� Multi�dimensional separation of concerns�
hypermodules� hyperslices� evolution� traceability� lim�
ited impact of change� software decomposition and com�
position� concern spaces� hyperspace

� Introduction

The notion of separation of concerns 	
�� is at the core
of software engineering� Done well� it permits the iso�
lation and encapsulation of all concerns of importance
in a software system� Proper separation of concerns
results in a number of properties of recognized impor�
tance� including traceability� reduced impact of change�
plug�and�play and mix�and�match� and improved com�

prehensibility� evolvability� and reusability�

Despite the well�known bene�ts of separation of con�
cerns� and despite the presence of mechanisms for
achieving it in all modern software formalisms� soft�
ware artifacts across the software lifecycle continue to
exhibit negative properties commonly associated with
poor separation of concerns� Software comprehensibil�
ity degrades over time if� indeed� it is present at all��
Many common maintenance and evolution activities re�
sult in high impact of change� Artifacts are of limited
reusability� or are reusable only with di�culty� Trace�
ability� both within and across the various software ar�
tifacts� is limited�

In a previous paper 	
��� we hypothesized that these
limitations are caused� in large part� by the �tyranny
of the dominant decomposition�� existing artifact for�
malisms generally provide only one� �dominant� dimen�
sion along which concerns can be separated e�g�� by
object or by function�� The ability to achieve the goals
of software engineering depends fundamentally on our
ability to separate all concerns of importance� These
concerns often overlap and interact with one another�
e�g�� a method print�� is part of concerns in both the
object and function dimensions� Concerns often vary
over time� as requirements change� Representing and
satisfying di�erent concerns may even suggest di�erent
artifact decompositions and architectures� To begin to
address these problems� we proposed multi�dimensional

separation of concerns� simultaneous separation accord�
ing to multiple� potentially overlapping and interacting

concerns�

Our previous work presupposed the identi�cation of
�dimensions� of concern� and of �concerns� and their
interrelationships� including points of overlap and
interaction�concepts of which most software engineers
have an intuitive grasp but no precise de�nition� This
paper makes several novel contributions� It partially
formalizes these notions� and our earlier model� by intro�
ducing and modeling multi�dimensional concern spaces�
which we call hyperspaces� It discusses how hyperspaces






facilitate identi�cation and encapsulation of concerns�
whether or not they are �dominant�� and whether or
not they were identi�ed during original development�
Finally� it demonstrates how this approach promotes
the �ilities�� which� for the purposes of this paper� we
restrict to mean comprehensibility� traceability� evolv�
ability and limited impact of change�

Section � introduces an example to motivate the work
and to illustrate the key concepts presented in this pa�
per� Section � presents our model of hyperspaces� In
Section �� we apply this model to the example intro�
duced in Section �� illustrating how hyperspaces can be
used to identify and encapsulate concerns and to guide
the structuring of systems� We also demonstrate how
the model promotes the �ilities�� Section � discusses
related work� Section � presents some conclusions and
future work�

� Motivation and Concepts

In this section� we introduce an example adapted from
	
��� to motivate this work and to introduce key con�
cepts and issues�

Motivating Example� A Matter of Concern in an

SEE

The example involves constructing and evolving a sim�
ple software engineering environment SEE� for pro�
grams consisting of expressions� We assume a simpli�ed
software development process� consisting of informal re�
quirements speci�cation in natural language� design in
UML� and implementation in Java�

The initial set of requirements for the SEE are simple�

The SEE supports the speci�cation of expres�
sion programs� It contains a set of tools that
share a common representation of expressions�
The initial toolset should include an evalua�
tion capability� which determines the result of
evaluating an expression and displays it� and a
display capability� which depicts an expression
textually�

Based on these requirements� we design the system us�
ing UML� as partially depicted in Figure 
� It represents
expressions as abstract syntax trees ASTs� and de�nes
a class for each kind of AST node� Each class contains
accessor and modi�er methods� plus methods eval��

and display��� which realize the required tools in a
standard� object�oriented manner�

The code that implements this design has a similar
structure� except that it separates interfaces to AST
nodes from implementation classes� resulting in two hi�
erarchies instead of one�

In using the SEE� clients discover that unnecessary
reevaluations occur� causing performance problems�
They request an enhancement to the SEE to permit

���������	


���� ��	����������� �	�����������

���� ��	�� �	������� �	�����	��

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

������
�������	
�����
������
���������
�������
���������

����

�������	�����	���� ����������	�����

�!���������������"��#�# �!

Figure 
� Initial Partial� Design Artifact for SEE�

caching of evaluation results�

Unfortunately� this seemingly straightforward enhance�
ment has a signi�cant impact on the design and code�
A simple implementation of caching requires adding a
�cached result� instance variable and its accessor meth�
ods to the Expression base class� modifying all existing
setter methods� in all classes� to invalidate the cached
result� and changing the implementation of the eval��
method in all classes that implement it to return a
cached result if one is available� Clearly� this represents
a non�trivial� invasive change to the design and code
	
��� Further� code to support caching becomes tangled
with other code� impeding comprehensibility and future
evolution�

A World of Concerns

This example illustrates a few fundamental and perva�
sive problems in modern software engineering� pertain�
ing to separation of concerns� This concept is essen�
tial to reducing the complexity of software systems to a
level where people can cope with it� as it permits peo�
ple to focus on a small set of details and ignore others�
Clearly� however� the separation of concerns in this ex�
ample� while �clean�� was insu�cient to facilitate trace�
ability� limited impact of change and evolution�

Numerous di�erent dimensions of concern may

a�ect a software system� and the concerns and

dimensions may evolve over time� as the system

evolves� Informally� a dimension of concern is a means
of decomposing a software system into a set of concerns�



A myriad of di�erent dimensions of concern exist� each
possessing di�erent properties that make them more or
less able to facilitate particular kinds of evolution� This
example illustrates several common ones� Object is a
key dimension� and each of the design and code classes
is a concern in this dimension� Feature is another dimen�
sion� it encompasses the kernel core AST�� display� and
evaluation concerns� Traditionally� artifact is also an
important dimension� in this example� it includes the re�
quirements� design� and code artifacts� The signi�cance
of this dimension is re�ected in the great importance
given to the traceability property� Unit of change is a
dimension of less importance initially� but it becomes
increasingly important� as a system evolves� to be able
to encapsulate units of change as individual concerns on
which developers focus�

Note that the dimensions of concern facilitate very dif�
ferent kinds of changes� For example� objects� as units
of data abstraction� help localize the e�ects of adding or
making changes to data� but they result in the scattering
of functions across multiple classes e�g�� each class in
the AST design and implementation has its own eval��

method�� Conversely� features help localize the e�ects of
adding or making changes to units of functionality� but�
since di�erent features may manipulate the same data�
feature�based separation of concerns results in scatter�
ing of data across multiple features� The fact that dif�
ferent kinds of concerns facilitate only a subset of the
types of changes that occur during the course of soft�
ware evolution leads inevitably to the conclusion that
di�erent kinds of evolution require the use of di�erent
dimensions of concern� The reason that the addition
of caching was di�cult is that it represents a concern
in a di�erent dimension�feature�from the dominant
one used to decompose the design and code artifacts�
object�

Multiple concerns may a�ect the same software

system simultaneously� but only a small number

can� traditionally� be separated� This is� in essence�
the �tyranny of the dominant decomposition��despite
the clear need for di�erent dimensions of concern to pro�
mote and limit the impact of di�erent kinds of evolu�
tion� modern artifact formalisms generally provide only
a single dimension of decomposition�

Whereas artifact development formalisms generally per�
mit decomposition along only one dimension� mecha�
nisms outside of these formalisms can help to achieve
some secondary decompositions along other dimensions�
For example� the separation into di�erent kinds of ar�
tifacts is enforced by the use of di�erent formalisms to
represent di�erent artifacts� and units of change can
be encapsulated� to some extent� using version control
and con�guration management systems� Unfortunately�
these mechanisms are insu�cient to achieve the �ilities��

even for those dimensions of decomposition that they
support� This is because any given piece of a software
system may a�ect concerns in multiple dimensions e�g��
the �display� requirement a�ects design and code� plus
all of the classes in the object dimension�� conversely�
any given concern may a�ect multiple pieces of a soft�
ware system� Thus� concerns are interrelated� Existing
mechanisms cannot represent or manage these interre�
lationships�

Separation of concerns involves both identi�ca�

tion and segregation� Traceability� and to some
extent� comprehensibility� depend on identi�cation�
determining which pieces of software pertain to a given
concern� Identi�cation is necessary for determining how
concerns impact software systems� While it can demar�

cate the scope of a change to a given concern� however�
it cannot itself limit the impact of such a change� we
must still determine how the change a�ects other con�
cerns and propagate its e�ects to those other concerns�
which may cascade� Thus� evolution also requires the
ability to segregate and encapsulate concerns� which lo�
calizes the e�ects of a change to a given concern� For
example� if we intend to modify the evaluation feature
to include caching� and to have the e�ects of this change
not cascade across other concerns� evaluation must be
encapsulated as a feature�

�Clean	 separation of concerns along a single

dimension cannot� in general� promote the �il�

ities�	 Comprehensibility� traceability� limited impact
of change� and evolvability all depend on separation and
encapsulation of all concerns of importance� and they
depend on the ability to identify� understand� and man�
age interactions among concerns�


 A Model of Hyperspace

To begin to address these problems� we now describe a
model of software that permits the explicit representa�
tion of all concerns of importance in a system and the
identi�cation and management of interactions among
those concerns� This model is intended to facilitate both
segregation and identi�cation of concerns� and includes
several features aimed at achieving limited impact of
change� This section elaborates the model� while Sec�
tion � describes speci�cally how it supports the �ilities��

Units Organized within Hyperspace

Software consists of artifacts� which comprise descrip�
tive material in suitable formalisms� A unit is a syntac�
tic construct in some such formalism� A unit might
be� for example� a declaration� a statement� a state
chart� a class� an interface� a requirement speci�cation�
or any other coherent entity that can be described in a
given formalism� We distinguish primitive units� which
are treated as atomic� from compound units� or mod�

ules� which group units together� Thus� for example�



a method� instance variable� or performance require�
ment might be treated as a primitive unit� while a class�
package� or collaboration diagram might be treated as
a module�� In the expression SEE example� we treat
methods e�g�� Number�display��� Plus�eval��� as
primitive units� and classes e�g�� Number� Plus� as mod�
ules�

A concern space encompasses all the software in some
domain of discourse� such as a set of software systems�
product families� or component libraries� For example�
a concern space for the SEE contains all of the software
artifacts described in Section �� for both the initial sys�
tem and the extension�

The job of a concern space is to organize the units in
the domain of discourse so as to separate identify and
segregate� all important concerns� and to indicate how
software components and systems can be built and in�
tegrated from the units that address these concerns�

Every software artifact or set of artifacts�� in what�
ever formalism it is written� can be mapped to some
concern space that organizes it so that some set of con�
cerns it addresses are separated� The structure of each
such concern space depends on the formalisms� used
and the particular decomposition approach� For exam�
ple� object�oriented formalisms help to identify object

concerns� Thus� a concern space for an object�oriented
system separates out object concerns� the particular ob�
jects it separates depends on the set of classes chosen
for a given system�

As we have noted� we believe that achieving the �ilities�
requires the representation ofmultiple kinds of concerns�
Our model therefore introduces the notion of a hyper�

space� which� broadly speaking� is a concern space that
facilitates multi�dimensional separation of concerns us�
ing our approach� The remainder of this section de�
scribes our model of hyperspaces�

Formally� a hyperspace is a tuple U�M�H�� where

� U is the set of units in the hyperspace�
� M is a concern matrix� which simultaneously or�
ganizes the units in U according to all concerns of
importance� M supports identi�cation of concerns
in the hyperspace�

� H is a set of hypermodules 	
��� which specify how
to build components from the units in U � H pro�
motes segregation of concerns�

Identi�cation� The Concern Matrix

As noted in Section �� many concerns are of interest in
a software system� and they often overlap� since a single

�Exactly what syntactic constructs are regarded as primitive
units or modules depends upon how this model is instantiated for
use with particular formalisms� a process described in ����� The
details are not� however� relevant to elaboration of the model�

unit can address many concerns� For example� the unit
Number�display�� in the expression SEE is involved in
the Number object concern and the Display feature con�
cern� Since units simultaneously address multiple con�
cerns� usually of di�erent types e�g�� object vs� feature��
we represent concern matrices as multi�dimensional ma�
trices of units� The dimensions represent types of con�
cerns� and the points on the dimensions are the speci�c
concerns of those types�

We model a concern as a predicate� c� over units in U �
It indicates whether a unit addresses that concern� The
unit set induced by concern c is�

Uc� � fu � U j cu�g

Concerns are said to overlap if their unit sets are not
disjoint�

A dimension of concern is a set of concerns whose unit
sets partition U � This partitioning property is impor�
tant� and is standard in multi�dimensional spaces� a
point in the space projects onto exactly one coordinate
in each dimension� It implies that the concerns within a
dimension cannot overlap� and must cover all the units
in U �

Each dimension� d� has a special concern� which we call
the none concern for d� Nd� All units that do not ad�
dress any other concern in d address Nd� For example�
function units do not address concerns in a dimension
based on data decomposition� thus� they address Nd for
that dimension� The none concern is important� it is
the set of all units that are una�ected by evolutionary
changes that occur within its dimension� Thus� every
dimension has one� even if it happens to be empty�

We de�ne a concern matrix over a set of units� U � as a
tuple C�D�� where C is a set of concerns� and D is a
set of concern dimensions� such that�

� Every concern in C is in exactly one dimension in
D�

� Every dimension in D partitions U �

Each unit in U will fall at exactly one point i�e�� ad�
dress exactly one concern� in each dimension� and its
coordinates in the matrix identify these concerns��

The structure of a concern matrix makes it possible to
choose any concern or dimension as the primary focus�
and be able to see directly which units in the hyperspace
a�ect that concern� or each concern in that dimension�

Segregation� Hyperslices and Hypermodules

Concern matrices support the identi�cation of di�erent
concerns� in di�erent dimensions� simultaneously� They
do not segregate concerns� however� Concerns can be

�Note that it is possible for multiple units to fall at the same
coordinates�



segregated only if the units� artifact formalisms� pro�
vide explicit constructs typically in the form of mod�
ules� to do so� This is the primary cause of the �tyranny
of the dominant decomposition��

To address the need for segregation and encapsulation
of concerns� we use hyperslices and hypermodules 	
���
A hyperslice is a set of units� Like modules� hyperslices
are units of encapsulation� intended to encapsulate con�
cerns� but they are not bound by artifact formalisms�
hyperslices can include any units�

Hyperslices are the building blocks of software� Each
unit in a hyperspace belongs to at least one hyperslice�
When new units are added� they must be added in hy�
perslices� Hyperslices can be grouped into hypermod�
ules� which specify how they are related� and how they
may be integrated to form a single hyperslice� Systems
are hypermodules that satisfy a particular �complete�
ness� constraint described below��

In the rest of this section we describe the properties
of hyperslices� model them� and discuss how they are
composed into hypermodules�

Declarative Completeness

Units are typically related in a variety of ways� for exam�
ple� one procedure unit may invoke another� or it may
de�ne or use a variable declaration unit� When these
kinds of interrelationships exist between units in di�er�
ent concerns� high coupling results� defeating the goal of
segregation� To decouple them� we require hyperslices
to be declaratively complete� they must themselves de�
clare though not necessarily implement� everything to
which they refer e�g�� every function they invoke and
variable they use��

For example� suppose a Display hyperslice contains a
unit� u�� for its display�� method� which uses a
getOperand�� accessor function� u�� de�ned in a Ker�

nel hyperslice� To make Display declaratively complete�
it must contain another unit� u�decl � which declares

getOperand�� without necessarily implementing it��
u� must use u�decl instead of u�� This eliminates the
coupling between Display and Kernel� in favor of the as�
sertion that u�decl must eventually be �bound� to a unit
in some hyperslice that provides the required implemen�
tation�

This approach makes use of a common mechanism for
achieving looser� later binding� the separation of �decla�
rations� from �implementations��� We assume a pred�

�Neither �declaration� nor �implementation� should be taken
as referring solely to code units� Taken loosely� they apply equally
well to any entity for which it is possible to separate some sort
of declaration �e�g�� a requirement name� test plan name� or func	
tion signature
 from a full de�nition �e�g�� the statement of a
requirement� the contents of a test plan� or a function body
� De	
clarations merely specify requirements� implementations provide

icate� decl� on units that identi�es declarations� The
declarative completeness requirement typically results
in many declarations of the same entity� in di�erent hy�
perslices� These declarations are sometimes di�erent�
where the di�erent hyperslices have di�erent needs� but
often look just the same� We do not wish these simi�
lar declarations in di�erent hyperslices to create �false
overlap�� We therefore de�ne the implementation set of
a hyperslice as

Ihs� � fu � hs j �declu�g

and use it when determining overlap� The implementa�
tion set of a concern is de�ned similarly�

This property of declarative completeness means that
each hyperslice is self�contained� from the perspective
of declarations� Declarative completeness of hyperslices
is crucial to achieving limited impact of change� as we
will discuss in Section ��

Correspondence

Total isolation of hyperslices is useless� e�g�� to create
a working SEE� some hyperslice must provide a unit
that can be bound to u�decl to provide an implementa�
tion� We refer to this kind of association among units as
correspondence� Correspondence occurs within the con�
text of a particular software component or system�the
same declarative unit may be associated� for example�
with di�erent implementation units in di�erent systems�
This context is a hypermodule described later in this
section�� Once corresponding units have been identi�
�ed� they can be composed� or integrated� within the
hypermodule to form a software component or system�
Thus� the composition of corresponding units u� and
u�decl results in u� being called by u� at runtime�

Correspondence represents a fairly loose form of bind�
ing� which is a critical property for evolvability� Hyper�
slices do not depend on each other directly� Instead�
systems are subject to a completeness constraint in
which each declaration unit in a systemmust correspond
to compatible implementations� in some other hyper�
slices�� Replacing an implementation is non�invasive on
hyperslices� it merely requires the rede�nition of corre�
spondence relationships�

Di�erent types of correspondences can occur� beyond
the association between declarations and implementa�
tions� For example� a requirements unit may correspond
to one or more design units that satisfy it� or a unit im�
plementing the eval�� function may correspond to a
unit that encapsulates code to check the cached result
before evaluating�

Clearly� the issue of whether corresponding units are
�compatible� e�g�� whether an implementation unit sat�

details that satisfy requirements �though they might also have
requirements of their own
�



is�es a declaration unit�s requirements� or whether a
design unit satis�es a requirement� involves both syn�
tactic and semantic issues� How to characterize and
check such for compatibility remains an issue for future
research� Even once resolved� however� we expect check�
ing to be semi�automatic in general� ultimately� software
engineers must understand enough about corresponding
units to determine whether or not they are compatible�

Correspondence provides great �exibility� and directly
supports substitutability� including mix�and�match and
plug�and�play� Completeness constraints can be im�
posed as needed e�g�� on code� to ensure that it can
run�� but they are not necessary when a hypermodule
represents a building block e�g�� a reusable component
or framework�� whose remaining needs can be satis�ed
through future compositions�

Hyperslices

Formally� a hyperslice in a hyperspace U�M�H� is a
declaratively complete concern hs � C�� Thus� hs is
closed under references of all kinds� if any unit u� � hs

refers in any way to any other unit� u� � U � then u� �
hs�

Hyperslices di�er from other concerns only in that other
concerns need not be declaratively complete� We re�
quire all hyperslices to occur in distinguished dimen�
sions� called hyperslice dimensions�

Because they occur in separate dimensions� hyperslices�
by de�nition� overlap other concerns� This is deliber�
ate� their very purpose is to segregate units belonging
to speci�c concerns� We say that a hyperslice a�ects

a concern if and only if their implementation sets in�
tersect� We say that a hyperslice perfectly encapsulates

a concern if and only if their implementation sets are
equal�

Hypermodules

Hyperslices provide a means of segregating concerns�
Once segregated� however� it must be possible to in�
tegrate them 	��� A hypermodule is used to integrate a
set of hyperslices into a new� uni�ed hyperslice that ad�
dresses some or all of the concerns encapsulated in the
original hyperslices� This integration may be used� for
example� to create a system� a software artifact� or any
meaningful software component that addresses some set
of concerns of interest�

To integrate a set of hyperslices in a hypermodule� it
is necessary to identify the set of correspondence re�
lationships that exist among the hyperslices� and de�
termine how to compose them together to e�ect inte�
gration� Thus� we de�ne a hypermodule as a tuple�
HS�CR�� where HS is a set of hyperslices and CR is
a set of composition relationships� A composition rela�
tionship is itself a tuple� I� r� f� o�� where

� I is a tuple of input units drawn from the hyper�
slices in HS�

� r is a correspondence relationship� which character�
izes the way in which the units in I are interrelated�

� f is a composition function� f � I � r� �� U � which
indicates how to compose the units in I as appropri�
ate for r� If correspondence relationships are being
used solely for traceability� f need not be speci�ed�

� o is an output unit produced using f �

As noted earlier� many di�erent types of correspondence
relationships may be of interest� Some noteworthy ones
are�

� Binding of declarations to implementations�
� Correspondence of multiple implementations� with
the intent of integrating their respective capabili�
ties�

� Elaboration� For example� a design unit might
elaborate a requirement unit� Elaboration relation�
ships are appropriate for modeling re�nement�

Correspondence relationships are deliberately left ab�
stract in this model� as their details depend on many
factors� including the formalisms� in which units are
written� which of the formalisms� constructs are treated
as units and modules 	
��� the extent of environment
support for correspondence� etc� Our intent was to pro�
vide a framework within which multiple semantics for
correspondence could be speci�ed�

We previously de�ned a hypermodule as a set of hyper�
slices together with a composition rule� rather than rela�

tionships 	
��� Composition rules are high�level� inten�
sional speci�cations of composition relationships� They
are as succinct as possible� relying on defaults and uni�
formity to specify composition primarily at the hyper�
slice level rather than at the individual unit level� A
compositor tool generates from such a rule the set of
unit�level composition relationships used in this model�
We use the extensional unit�level approach here to fa�
cilitate discussion of impact of change� but we expect
environmental support for hyperspaces to include com�
position rules and compositors�

Hypermodules can be used to model many kinds of soft�
ware artifacts� components� and fragments thereof� For
example� an entire artifact� like a requirements speci�ca�
tion� a design� or code� can be modeled as a hypermod�
ule� A software system as a whole is also a hypermod�
ule� subject to the completeness constraint� A system
hypermodule might consist of a hyperslice for each arti�
fact� with composition relationships describing how the
artifacts interrelate� they might� for example� indicate
how particular design and code units elaborate given re�
quirements units� As we shall see in the next section�
many system structures and �packagings� of concerns
are also possible� and very useful�



� Applying the Model

In this section we discuss the use of the model just pre�
sented� in the context of the SEE example from Sec�
tion �� to promote comprehensibility� traceability� evo�
lution� and limited impact of change�

The Original SEE in Hyperspace

We identi�ed three dimensions of concern in the original
SEE�


� Artifact� comprising concerns Requirements� De�
sign� and Code�

�� Feature� comprising concerns Kernel� Display� and
Check�

�� Object� comprising concerns Expression� Num�

ber� BinaryOperator� UnaryOperator� Plus� Unary�

Plus� Minus and UnaryMinus�

Structurally� all of the object concerns are fairly simi�
lar and equally well illustrate important features of the
model� so� for expository simplicity� we will model only
one concern in the object dimension�Plus�while mod�
eling all concerns in the other dimensions�

The SEE may undergo evolution based on any of these
dimensions� For example� if we chose to add the abil�
ity to multiply expressions� we might want to focus on
the Object dimension and add a new concern� Mul�

tiply� if we wanted to add a tool to the environment
to check the correctness of expressions� we would focus
on the Feature dimension and add a Check concern�
and if we needed to add a test plan� we would focus
on the Artifact dimension and add a TestPlan concern�
Thus� we de�ne two hyperslice dimensions� one to repre�
sent Feature hyperslices and one to represent Artifact
hyperslices��

Two hyperslice dimensions are shown in the �gure� Ar�
tifactHD and FeatureHD� re�ecting decompositions
of the system by artifact and by feature� They con�
tain hyperslices that perfectly encapsulate the concerns
in the Artifact and Feature dimensions� Artifac�

tHD comprises hyperslices RequirementsHS� DesignHS�
and CodeHS� and FeatureHD contains hyperslices Ker�
nelHS� DisplayHS� and EvaluateHS� These hyperslices in�
clude any declaration units introduced to make them
each declaratively complete see Section ��� hyperslice
concerns are needed� in addition to the concerns they en�
capsulate� precisely to provide an appropriate location
for these declarations in the matrix� Thus� for example�
the EvaluateHS hyperslice� which encapsulates Evaluate�
contains all the units that Evaluate does� along with
declaration units for display�� since the evaluation

�Recall that we are focusing on a single object concern� so we
do not need a hyperslice dimension to representobject hyperslices�

feature depends on being able to depict results or er�
rors� but depiction is not itself part of the evaluation
concern� and AST accessor methods which are part of
the Kernel concern��

To create any needed expression SEE artifact� we simply
write a hypermodule that encapsulates the hyperslices
concerns� the artifact must address� plus a set of com�
position relationships that describe the correspondence
relationships among units in the hyperslices and how to
compose the artifact from the hyperslices� Thus� for ex�
ample� we can represent the entire SEE� with all features
and all its artifacts� by de�ning either of the hypermod�
ules shown in Table 
� This table shows high�level com�
position rules� rather than unit�level composition rela�
tionships� The merge rule establishes correspondences
by name� and merges corresponding units 	

�� Both
these hypermodules create the same system� comprising
all of the concerns identi�ed in this hyperspace� with all
declaration units merged with appropriate implementa�
tion units�

Perhaps a more interesting feature of hyperspaces is that
they can also facilitate the creation and integration of
concerns based the intersection of hyperslices� Con�
sider� for example� the situation where we would like
to create a code artifact that includes just the Kernel

and Display features� The code units that satisfy these
concerns appear in the sets UKernel� � UCode� and
UDisplay��UCode�� Thus� these sets represent a con�
cern that has no corresponding hyperslice� We can en�
capsulate them by creating a new hyperslice dimension�
CodeFeatureHD� which will have two hyperslice con�
cerns� KernelCodeHS and DisplayCodeHS� We can use
hypermodules to create these two new hyperslices� and
then de�ne a hypermodule to integrate them� to produce
a new hyperslice� KernelDisplayCodeHS� as shown in Ta�
ble �� This table shows the use of the composition rule
declaratively complete intersection� which simply takes
the intersection of two hyperslices and adds any neces�
sary declaration units to make the resulting hyperslice
declaratively complete��

As Concerns Turn� Extending the Environment

Clients of the SEE requested caching of the results of
evaluating expressions� to improve performance� Ex�
amining the concern matrix� we determine that caching
cuts across multiple concerns in every dimension all
classes in the object dimension� the evaluation and ker�
nel concerns in the feature dimension� and all artifacts
in the artifact dimension�� This means that caching be�
longs in a new dimension� Adding a dimension to a
concern matrix is generally straightforward� the new di�

�This composition rule presumes the availability of intra	
hyperslice defuse analysis� a capability we presume elsewhere
as well� Since it is only intra	slice� this analysis is not di�cult to
perform�



Hypermodule Hyperslices Composition Rules

EnvironmentAll� KernelHS merge
DisplayHS

EvalHS

EnvironmentAll� RequirementsHS merge
DesignHS

CodeHS

Table 
� Alternative Hypermodule De�nitions for the SEE�

Hypermodule Hyperslices Composition Rules

KernelCodeHS KernelHS declaratively complete intersection
CodeHS

DisplayCodeHS DisplayHS declaratively complete intersection
CodeHS

KernelDisplayCodeHS KernelCodeHS merge
DisplayCodeHS

Table �� Creating New Hypermodules from Existing Ones�

mension is unlikely to a�ect existing units� so adding the
dimension generally requires nothing more than updat�
ing the coordinates of each existing unit to indicate that
the unit is in the none concern in the new dimension�
in this case Caching�

Adding new units that address caching to the concern
matrix requires de�ning the units within the context
of one or more hyperslices� as noted in Section �� We
choose to do it in a single one� CachingHS� encapsulating
all details of caching� portions that intersect with spe�
ci�c other concerns� such as objects or artifacts� can be
extracted by intersection� CachingHS must� of course�
be declaratively complete� where there is a need to re�
fer to units in the existing hyperslices� local declarations
must be introduced� We put CachingHS in a new hyper�
slice dimension� CachingHD� We must also determine
the correct location of each new unit in the other di�
mensions� For example� the code unit that declares the
variable to hold the cached result belongs in the Expres�
sion� Kernel� Code and Caching concerns�

After adding caching to the concern matrix� we can de�
scribe any number of interesting software artifacts based
on it� by de�ning the appropriate hypermodules and
composition rules� We can create any or all of the SEE
artifacts� and they can provide caching or omit it� they
can include or exclude any of the features except for the
kernel�� Table � depicts some of the possible artifacts
that can be created using the SEE hyperspace�

Removal of Concerns

Removal is typically the most invasive of evolutionary
activities� In the context of hyperspaces� there are sev�

eral scenarios� some remarkably simple� We consider
here just the most di�cult� removing a concern� along
with all its units� from the hyperspace�

The most di�cult aspect of removing a concern from a
hyperspace U�M�H� is removing its units� After that�
the concern itself can merely be removed from M � A
unit� u� can simply be removed from U � which will si�
multaneously remove it from all concerns it a�ects� de�
termined by it coordinates in M � The di�culty is that
at least one of these will be a hyperslice� and declara�
tive completeness must be maintained and composition
relationships must remain valid�

To maintain declarative completeness� if u � hs is an
implementation unit that is used by other units in hs� u
must be transformed into a declaration unit� For exam�
ple� if u represents a display�� method with an imple�
mentation� it must be transformed to remove the imple�
mentation� A declaration that is used within its hyper�
slice cannot be removed without removing or changing
the using units�

To maintain the validity of compositions� it is necessary
to examine the correspondence relationships of all hy�
permodules that include each a�ected hyperslice� once
all unit removal has been completed� For any compo�
sition relationship� I� r� f� o�� such that u � I� it is
necessary to remove u from I� compensate for e�ects
on the relationship� and then reapply f possibly re�
vised�� In some cases� e�ects might be nonexistent or
purely local�for example� if all declarations in I have
also been removed� In other cases� the unit might really
be needed�for example� it might be the only implemen�



Hypermodule Hyperslices Composition Rules� Comments

CachingEnv� EnvironmentAll� merge
CachingHS Environment with caching

CachingEnv� EnvironmentAll� merge
CachingHS Environment with caching

CachingReqsHS CachingHS declaratively complete intersection
Requirements Requirements for the caching capability

AllReqsHS RequirementsHS merge
CachingReqsHS Requirements for environment with caching

CachingEHS CachingHS declaratively complete intersection
Eval Eval part of caching capability

CachingEvalHS EvalHS merge
CachingEHS Eval feature with caching

Table �� Some software artifacts that can be created from the SEE hyperspace�

tation in I that satis�es corresponding declarations� In
such cases� the developer must determine whether other
units in existing hyperslices can ful�ll the need� possibly
with some �transformational glue� that can be speci�ed
in a revised composition function� f � If not� the devel�
oper must either reinsert u at a di�erent location in
the matrix�� write a new implementation unit� or� in
the worst case� rewrite existing units�those related to
the other units in I by def�use relationships within their
hyperslices� Only the last case involves invasive change�
further research is needed to determine how often it oc�
curs in practice�

Analysis� Achieving the �Ilities	

The representation of the SEE using hyperspaces
demonstrates some important properties of our model
with respect to achieving the �ilities�� First� the hy�
perspace� by its structure� enables software engineers to
focus in on any concern of importance that is repre�
sented in the hyperspace�they need only examine the
hyperplane containing the concern and orthogonal to its
dimension� This facilitates comprehensibility�

Second� given the ability to separate� simultaneously�
all concerns of importance� it is possible to focus on
the interactions among concerns and to identify and
encapsulate� new concerns� Hyperspaces make explicit
the ways in which concerns a�ect one another� based on
how they intersect and on the composition relationships
in which their encapsulating hyperslices are involved�
These interactions are extremely important for evaluat�
ing impact of change on other concerns when working
with a particular concern� Concern intersections also
often turn out to be useful concerns themselves� as the
example demonstrated� and the model of hyperspace
provides for the identi�cation and rei�cation of such
concerns� Further� the structure of a hyperspace aids
the identi�cation of other types of �hidden� concerns�
In particular� the de�nition of dimensions precludes sit�

uations where two concerns in the same dimension over�
lap� This property helps identify many kinds of errors�
ranging from weak identi�cation and separation of con�
cerns to coupling of concerns�

Third� the addition of units� concerns� and dimensions
in the model is clearly straightforward� with little im�
pact on existing concerns� Moreover� the process of
adding units forces software engineers to determine how
the new units a�ect existing concerns� though they can
choose to indicate that the units a�ect no existing con�
cerns by using none concerns� Extension is additive�
rather than invasive�a signi�cant part of the goal of
limited impact of change�

Fourth� hyperspaces help to limit the impact of remov�
ing concerns� which is typically the most invasive and
high�cost evolutionary activity� A common problem in
removal is that such changes tend to cascade through�
out large parts of a software system� In including the
declarative completeness requirement as part of the de�
�nition of hyperslices� we have ensured that removal of
units� and hence� concerns� can� at worst� a�ect noth�
ing more than the set of hypermodules in which those
units and concerns played explicit roles in composition
relationships� This is because the model eliminates di�
rect dependences among hyperslice concerns by using
declarative completeness� Thus� while removal of a unit
from a hyperslice� or a hyperslice itself� from a hyper�
space may end up eliminating units with which units
in other hypermodules had been connected� the break�
ing of these connections embodied by correspondence
relationships� can be followed� non�invasively� by the es�
tablishment of new connections to other units that ful�ll
the intended semantics of a given composition relation�
ship� The impact of removal can� therefore� be limited
to the particular hyperslice it a�ects and to the com�
position relationships of hypermodules� The �dangling
relationships� that result from removing units can also



be used to identify concerns that might not have been
separated appropriately� and to identify other concerns
that should also be removed e�g�� when removing a dis�
play requirement� we would certainly want to remove
any design and code concerns that satisfy the require�
ment�� Thus� the model promotes both traceability and
limited impact of change�

� Related Work

In a prior paper 	
��� we discussed various modern
approaches that have introduced novel modularization
mechanisms that relate to multi�dimensional separa�
tion of concerns� subject�oriented programming 	�� 

��
aspect�oriented programming 	��� contracts 	��� role
models 	�� 
��� adaptive programming 	��� Viewpoints
	
�� and Catalysis 	��� All of these� except Viewpoints�
deal with object�oriented systems� in which the dom�
inant decomposition is by Object� Each introduces a
mechanism� analogous to hyperslices� to segregate de�
sign or code addressing other� non�object concerns� All
these approaches provide some of the bene�ts of hy�
perslices� in terms of identi�cation and encapsulation of
concerns that are not in the dominant decomposition di�
mension� Many of these approaches also provide some of
the bene�ts of hypermodules�namely� some degree of
�exibility in composition of concerns along some useful
dimensions 	
��� We believe that all of these approaches
�t well into hyperspaces� which� in turn� o�er additional
bene�ts to them� These bene�ts include help with se�
lecting and modeling additional dimensions of separa�
tion� organization and comprehension of concerns� iden�
tifying and managing overlap among concerns� and en�
hanced traceability�

Our model has relationships to� and has used results
from� other areas of related work� The utility of loose
binding to help limit the impact of some forms of change
is accepted� Work in the area of software architec�
ture e�g�� 	
�� 
�� has identi�ed the need to separate
software components from connectors� Similarly� ear�
lier work on Precise Interface Control PIC� 	
�� iden�
ti�ed bene�ts of representing a particular kind of inter�
component interactions� provides and requires� The
declarative completeness requirement and use of sep�
arately speci�ed composition relationships are in the
spirit of these� and similar� approaches� Barrett et� al 	��
describe a spectrum of mechanisms available to achieve
connections among components� ranging from tightly
to loosely bound� and from early to late binding� We
have attempted to choose a point on this spectrum that
balances the need to limit impact of change by not per�
mitting software components to know about one another
other� with the need for analyzability most readily ac�
complished in the presence of tighter binding��

 Conclusions and Future Work

A number of important problems in software engineer�

ing have resisted general solution� notably ones related
to the �ilities�� comprehensibility� traceability� and
evolvability� We believe that these problems share a
common cause� failure to identify and encapsulate� si�
multaneously� all concerns of importance in a software
system� and the inability to use di�erent dimensions
of concern for di�erent purposes throughout a system�s
lifetime�

This paper introduced and modeled hyperspaces� which
provide a foundation for addressing these problems�
This model does not replace� but rather supplements�
existing artifact notations� It facilitates the separa�
tion� encapsulation� and ultimately� integration of mul�
tiple concerns� along multiple dimensions� simultane�
ously� providing uniform treatment of �dominant� and
other concerns� This permits software engineers truly
to achieve the comprehensibility promise of �clean sep�
aration of concerns�� the ability to ignore any part of
a system that is not of importance for a particular pur�
pose� The structure of hyperspaces facilitates traceabil�
ity� identi�cation of how a change a�ects other concerns�
and localization and limited impact of change� The abil�
ity to introduce� modify� and remove concerns and di�
mensions of concern further enhances evolvability�

Much work remains� both to address limitations of and
issues with the model and to apply hyperspaces to the
software engineering lifecycle� First� environment sup�
port for hyperspaces will be critical to their use� and
is an open research issue� Second� issues of scalability�
including possible problems with proliferation of hyper�
slices� concerns and dimensions must be addressed� Re�
structuring of hyperspaces� to change or consolidate di�
mensions and concerns� is also important� and should
facilitate software reengineering� We believe that so�
phisticated environment support is the key to dealing
with these issues� Third� it will be important to identify
and specify more precisely the types of correspondence
and composition relationships required to achieve the
�ilities� in practice�

Finally� it is particularly important to instantiate the
model of hyperspaces for a variety of formalisms� to
explore issues that arise when using di�erent method�
ologies� These instantiations must be used for real de�
velopment� to evaluate them and to create new devel�
opment methods that explore their strengths� to ex�
plore issues in cross�concern and cross�formalism cor�
respondence and composition� to explore the potential
for mix�and�match and plug�and�play� and to explore
the impact of this approach on areas like development
methodologies� software process� analysis� testing� re�
verse engineering� reengineering� and software architec�
ture�

This work is clearly at an early stage� largely unproven



as yet� Still� a considerable body of experience and
related research now exists to support the claim that
multi�dimensional separation of concerns is one of the
key software engineering issues today� The model of
hyperspaces we propose goes beyond existing e�orts by
providing a basis for� �nally� realizing the full potential
of �separation of concerns��

REFERENCES

��� R� Allen and D� Garlan� A formal basis for architectural
connection� ACM Transactions on Software Engineer�
ing and Methodology� July �����

�	� E� P� Andersen and T� Reenskaug� System design by
composing structures of interacting objects� In O� L�
Madsen� editor� ECOOP ���� European Conference on
Object�Oriented Programming� pages �����	� Utrecht�
June�July ���	� Springer�Verlag� Lecture Notes in
Computer Science� no� ���

��� D� J� Barrett� L� A� Clarke� P� L� Tarr� and A� E�
Wise� A Framework for Event�Based Software Integra�
tion� ACM Transactions on Software Engineering and
Methodology� ���������	�� October �����

��� D� D�Souza and A� C� Wills� Objects� Components�
and Frameworks with UML� The Catalysis Approach�
Addison�Wesley� �����

�� W� Harrison and H� Ossher� Subject�oriented program�
ming �a critique of pure objects�� In Proceedings of the
Conference on Object�Oriented Programming� Systems�
Languages� and Applications� pages �����	�� Washing�
ton� D�C�� September ����� ACM�

��� I� M� Holland� Specifying reusable components us�
ing contracts� In O� L� Madsen� editor� ECOOP ����
European Conference on Object�Oriented Programming�
pages 	����
�� Utrecht� June�July ���	� Springer�
Verlag� Lecture Notes in Computer Science� no� ���

��� M� Jackson� Some complexities in computer�based sys�
tems and their implications for system development� In
Proceedings of the International Conference on Com�
puter Systems and Software Engineering� pages ����
��� ���
�

��� G� Kiczales� Aspect�oriented programming� In Pro�
ceedings of the European Conference on Object�Oriented
Programming� ����� Invited presentation�

��� M� Mezini and K� Lieberherr� Adaptive plug�and�play
components for evolutionary software development� In
Proceedings OOPSLA ���� �����

��
� B� Nuseibeh� J� Kramer� and A� Finkelstein� A frame�
work for expressing the relationships between multiple
views in requirements speci�cations� Transactions on
Software Engineering� 	
��
����
����� Oct �����

���� H� Ossher� M� Kaplan� A� Katz� W� Harrison� and
V� Kruskal� Specifying subject�oriented composition�
TAPOS� 	��������	
	� �����

��	� D� L� Parnas� On the criteria to be used in decomposing
systems into modules� Communications of the ACM�
���	���
���
�� December ���	�

���� M� Shaw and D� Garlan� Software Architecture� Per�
spectives on an Emerging Discipline� Prentice Hall�
April �����

���� P� Tarr� H� Ossher� W� Harrison� and S� M� Sutton� Jr�
N degrees of separation� Multi�dimensional separation
of concerns� In Proc� International Conference on Soft�
ware Engineering �ICSE���	� ����� �To appear���

��� M� VanHilst and D� Notkin� Using roles components
to implement collaboration�based designs� In Proceed�
ings of the Conference on Object�Oriented Program�
ming� Systems� Languages� and Applications� pages
������� San Jose� California� October ����� ACM�

���� A� L� Wolf� L� A� Clarke� and J� C� Wileden�
The AdaPIC Toolset� Supporting Interface Control
and Analysis Throughout the Software Development
Process� IEEE Transactions on Software Engineering�
�����	
�	��� March �����


