
RC ����� ������� �� May ����
Computer Science

IBM Research Report

A Logic�based Knowledge Representation for

Authorization with Delegation

Ninghui Li
Computer Science� New York University
��� Mercer Street� New York� NY ������ USA
Internet e�mail� ninghui�cs�nyu�edu

Benjamin N� Grosof
IBM Research Division� T�J� Watson Research Center
P�O� Box ��	� Yorktown Heights� NY ���
�� USA
Internet e�mail� grosof�us�ibm�com �alt� grosof�cs�stanford�edu
Web� http���www�research�ibm�com�people�g�grosof�

Joan Feigenbaum
AT�T Labs � Research
Room C���� ��� Park Avenue� Florham Park� NJ ��
��� USA
Internet e�mail� jf�research�att�com
Web� http���www�research�att�com��jf

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication� It
has been issued as a Research Report for early dissemination of its contents� In view of the transfer of copyright to the outside
publisher� its distribution outside of IBM prior to publication should be limited to peer communications and speci�c requests� After
outside publication� requests should be �lled only by reprints or legally obtained copies of the article �e�g�� payment of royalties��
Copies may be requested from IBM T�J� Watson Research Center �Publications ���		
 ykt�� P�O� Box 	��� Yorktown Heights� NY
�
��� or via email� reports�us�ibm�com �
Some reports are available on the World Wide Web� at http���www�research�ibm�com �navigate to Research Reports� or at
http���domino�watson�ibm�com�library�CyberDig�nsf�home �

IBM
Research Division
Almaden � Austin � Beijing � Delhi � Haifa � T�J� Watson � Tokyo � Zurich

Abstract� We introduce Delegation Logic �DL� a logic�based knowledge representation
�i�e�� language that deals with authorization in large�scale� open� distributed systems� Of
central importance in any system for deciding whether requests should be authorized in such
a system are delegation of authority� negation of authority� and con�icts between authorities�
DL�s approach to these issues and to the interplay among them borrows from previous work
on delegation and trust management in the computer�security literature and previous work
on negation and con�ict handling in the logic�programming and non�monotonic reasoning
literature� but it departs from previous work in some crucial ways� In this introductory
paper� we present the syntax and semantics of DL and explain our novel design choices�
This �rst paper focuses on delegation� including explicit treatment of delegation depth and
delegation to complex principals� a forthcoming companion paper focuses on negation�
Compared to previous logic�based approaches to authorization� DL provides a novel com�

bination of features� it is based on logic programs� expresses delegation depth explicitly� and
supports a wide variety of complex principals �including but not limited to k�out�of�n thresh�
olds� Compared to previous approaches to trust management� DL provides another novel
feature� a concept of proof�of�compliance that is not entirely ad�hoc and that is based on
model�theoretic semantics �just as usual logic programs have a model�theoretic semantics�
DL�s approach is also novel in that it combines the above features with smooth extensibility
to non�monotonicity� negation� and prioritized con�ict handling� This extensibility is ac�
complished by building on the well�understood foundation of DL�s logic�program knowledge
representation�

Keywords� Authorization� delegation� trust management� security policy� non�
monotonicity� con�ict handling� knowledge representation� logic programs�

Publication and Copyright Information� This paper �formatted di�erently is an ex�
tended version of the paper to appear in the Proceedings of the IEEE Computer Security
Foundations Workshop �CSFW���� http���www��csl�sri�com�csfw�index�html� to be
held June ������ �

� in Mordano� Italy� The Limited Distribution Notice on the front page
notwithstanding �it is standard boilerplate for all IBM Research Reports� the author�s and
IBM retain unrestricted copyright to distribute this paper�

i

� Introduction

In today�s Internet� there are a large and growing number of scenarios that require autho�
rization decisions� By an authorization decision� we mean one in which one party submits
a request� possibly supported by one or more credentials� that must comply with another
party�s policy if it is to be granted� Scenarios that require authorization decisions include
content advising ����� mobile�code execution ����� public�key infrastructure ��� �
� ���
� ����
and privacy protection ���� ����
Electronic commerce is one class of services in which authorization decisions play a promi�

nent role� Merchants and customers both have valuable resources at risk and must have ap�
propriate policies in place before authorizing access to these resources� An interesting aspect
of e�commerce is that security policies and business policies are not always clearly separable�
If a merchant requires that electronic checks for more than a certain amount be signed by
at least two members of a set of trusted parties� is that a �security policy� or a �business
policy�� It would be desirable for one authorization mechanism to be able to handle both�
Authorization in Internet services is signi�cantly di�erent from authorization in central�

ized systems or even in distributed systems that are closed or relatively small� In these older
settings� authorization of a request is traditionally divided into two tasks� authentication and
access control� Authentication answers the question �who made the request��� and access
control answers the question �is the requester authorized to perform the requested action��
Following the �trust�management approach�� �rst put forth by Blaze et al� �	� ��� we argue
that this traditional view of authorization is inadequate� Reasons include�

� What to protect�� In a traditional client�server computing environment� valuable
resources usually belong to servers� and it is when a client requests access to a valuable
resource that the server uses an authorization procedure to decide whether or not
to trust the client� In today�s Internet �or any large� open� distributed system� users
access many servers� make many di�erent types of requests� and have valuable resources
of their own �e�g�� personal information� electronic cash� indeed �client� is no longer
the right metaphor� Such a user cannot trust all of the servers it interacts with� and
authorization mechanisms have to protect the users� resources as well as those of the
servers�

� Whom to protect against�� In a large� far��ung network� there are many more
potential requesters than there are in a smaller� more homogeneous �albeit distributed
system� Some services� e�g�� Internet merchants� cannot know in advance who the
potential requesters are� Similarly� users cannot know in advance which services they
will want to use and which requests they will make� Thus� authorization mechanisms
must rely on delegation and on third�party credential�issuers more than ever before�

� Who stores authorization information�� Traditionally� authorization information�
e�g�� an access control list� is stored and managed by the service� Internet services evolve
rapidly� and thus the set of potential actions and the users who may request them are
not known in advance� this implies that authorization information will be created�
stored� and managed in a dynamic� distributed fashion� Users are often expected
to gather all credentials needed to authorize an action and present them along with

�

the request� Since these credentials are not always under the control of the service
that makes the authorization decision� there is a danger that they could be altered or
stolen� Thus� public�key signatures �or� more generally� mechanisms for verifying the
provenance of credentials must be part of the authorization framework�

For these and other reasons� dividing authorization into authentication and access control
is no longer appropriate� �Who made this request�� may not be a meaningful question �
the authorizer may not even know the requester� and thus the identity or name of the
requester may not help in the authorization decision� The goal of a growing body of work
on trust management �	� ��
� �� �� is to �nd a more �exible� more �distributed� approach to
authorization� The trust�management literature approaches the basic authorization question
directly� �Does the set C of credentials prove that the request r complies with the set of
local security policies P �� The trust�management engine is a separate system component
that takes �r� C� P as input and outputs a decision about whether compliance with policy
has been proven�
Furthermore� trust�management adopts a �peer model� of authorization� Every entity

can be both a requester and an authorizer� To be an authorizer� it maintains policies and
is the ultimate source of authority for its authorization decisions� As a requester� it must
maintain credentials �e�g�� public�key certi�cates� credit card numbers� and membership
certi�cates or be prepared to retrieve or obtain them when it wants access to a protected
resource� When submitting a request to an authorizer� the requester also submits a set of
credentials that purport to justify that the requested action is permissible� An authorizer
may directly authorize certain requesters to take certain actions �and may not even try to
�authenticate� these requesters by resolving their �identities�� but more typically it will
delegate this responsibility to credential issuers that it trusts to have the required domain
expertise as well as relationships with potential requesters�
Basic issues that must be addressed in the design of a trust�management engine include

the de�nition of �proof of compliance�� the extent to which policies and credentials should
be programmable� and the language or notation in which they should be expressed�
In this paper� we propose the authorization language Delegation Logic �DL as a trust�

management engine� Its notable features include�

� A de�nition of �proof of compliance� that is founded on well�understood principles
of logic programming and knowledge representation� Speci�cally� DL starts with the
notion of proof embodied in Datalog de�nite ordinary logic programs ��
��� DL then
extends this with several features tailored to authorization�

� A rigorous and expressive treatment of delegation� including explicit linguistic support
for delegation depth and for a wide variety of complex principals�

� The ability to handle �non�monotonic� policies� These are policies that deal explicitly
with �negative evidence� and specify types of requests that do not comply� Important

�For review of standard concepts and results in logic programming� see ���� for example� �Ordinary� logic
programs �LP�s	 correspond essentially to pure Prolog� but without the limitation to Prolog�s particular
inferencing procedure� These are also known as �general� LP�s �a misleading name� since there are many
further generalizations of them	 and as �normal� LP�s� �De
nite� means without negation� �Datalog�
means without function symbols of more than zero arity� �Arity� means number of parameters�

�

examples include hot�lists of �revoked� credentials and resolution of con�icting advice
from di�erent� but apparently both trustworthy� sources�

�Non�monotonic� here means in the sense of logic�based knowledge representation �KR��

In combining both of these properties� DL departs sharply from earlier trust�management
engines� some key points of which we now review� PolicyMaker� which was introduced in
�	� and was the �rst system to call itself a �trust�management engine�� uses an ad�hoc
�albeit rigorously analyzed ��� notion of �proof of compliance� and handles only monotonic
policies� KeyNote ��� is a second�generation system based on most� but not all� of the
same design principles as PolicyMaker� in particular� KeyNote uses an ad�hoc notion of
proof of compliance �derived from the one used in PolicyMaker� and it does not handle
non�monotonic policies� Unlike PolicyMaker� KeyNote takes an integrated approach to the
design of the compliance�checking algorithm and the design of the programming language in
which credentials and policies are expressed� DL also takes an integrated approach to these
two aspects of authorization� REFEREE ��� handles nomonotonic policies� but it uses an
ad hoc proof system that was never rigorously analyzed� SPKI �
� handles limited forms of
non�monotonicity� but the �proof of compliance� notion �to the extent that one is speci�ed
in �
� is ad�hoc�
The outline of the rest of the paper is as follows� In section �� we give an overview of DL�

In section �� we give the syntax and semantics of the monotonic case of DL� called D�LP�
In section 	� we give an example of D�LP�s usage� In section �� we give an overview of our
expressive extension to handle negation and prioritized con�ict� called D�LP� A forthcoming
companion paper gives details about D�LP� In section �� we brie�y discuss related work and
future work�

� Overview of DL

Our use of a logic�program knowledge representation as the foundation of our authoriza�
tion language �a�k�a� �trust�management engine� o�ers several attractions� computational
tractability�� wide practical deployment� semantics shared with other practically important
rule systems� relative algorithmic simplicity� yet considerable expressive power�
We chose Datalog de�nite ordinary logic programs �OLP�s as the starting point for DL�

�More generally� however� we could started from other variants of logic�based knowledge
representation� e�g�� OLP�s without the Datalog restriction� DL extends Datalog de�nite
OLP�s along two dimensions that are crucial to authorization� delegation and non�monotonic
reasoning� The resulting notion of �proof of compliance� is easier to justify than the ad�hoc

�A KR K is �logically	 monotonic when its entailment relationship �i�e�� what it sanctions as conclusions	
has the following property� if the set of premises �e�g�� rules	 P� is a superset of the set of premises P�� then
the set of conclusions entailed by P� according to K is a superset of the set of conclusions entailed by P�� If
a KR is not monotonic� it is called non�monotonic� Non�monotonicity means that adding premises can lead
to retracting previously�sanctioned conclusions�

�Under commonly met restrictions �e�g�� no logical functions of non�zero arity� a bounded number of logical
variables per rule	� inferencing� i�e�� rule�set execution� in LPs can be computed in worst�case polynomial�
time� By contrast� classical logic �e�g��
rst�order logic	� is NP�complete under these restrictions and semi�
decidable without these restrictions�

�

notions used in PolicyMaker� KeyNote� REFEREE� and SPKI� because it is an extension of
the well�studied� logic�programming framework�
As in much of the related literature� e�g�� ��� ��� ���� we use the term principal to mean

an �entity� or �party� to an authorization decision� For example� a principal may make a
request� issue a credential� or make a decision� Each authorization decision must involve a
distinguished principal that functions as the �trust root� of the decision� this principal is
referred to as Local�� DL supports the speci�cation of sets of principals� via thresholds and
lists� as well as dynamic sets of the form �all principals that satisfy the following predicate��
DL principals express beliefs by making direct statements and delegation statements�
The DL framework provides a uniform representation for requests� policies� and creden�

tials� Information in DL is represented as rules and facts that are built out of statement
expressions� A request in DL corresponds to a query� E�g�� a simple query might be to ask
whether the ground statement �Local says is key���	
��Bob� is true� More generally�
a request can be a complex expression of statements� these expressions are called statement
formulas and are de�ned in the next section� All of the policies and credentials that the
receiving principal uses in evaluating the request form a DL program P � The DL semantics
de�nes a unique minimal model for P � and the request is authorized if and only if it is in
this model� The DL semantics provide the de�nition of �proof of compliance�� This use of
model�theoretic semantics is a novel feature of DL and a clear departure from the approaches
taken by other trust�management engines�
Delegation is one of the two major concepts with which we extended Datalog de�nite

OLP�s to form DL� and it is the main technical focus of this paper� Distinguishing features
of DL�s approach to delegation include�

� Delegations have arbitrary but speci�ed depth� For example� by using a depth�� dele�
gation statement� a principal A may delegate trust about a certain class of actions to
principal B and allow B to delegate to others but not allow these others to delegate
further�

� Delegations to complex principal structures are allowed� For example� a principal A
may delegate trust about a certain class of purchases to all principals that satisfy the
predicate GoodTaste��

The other major concept that we added to Datalog de�nite OLP�s to form DL is non�
monotonicity� DL uses explicit negation to allow a policy to say what is forbidden� negation�
as�failure to allow a policy to draw conclusions when there is no information about something�
and priorities to handle con�icts among policies�
We use DL to denote our general approach to trust management� The monotonic version

of DL �i�e�� Datalog de�nite OLP�s plus our delegation mechanism is called D�LP� and
the non�monotonic version �i�e�� with negation and prioritized con�ict handling is called
D�LP� This �rst paper focuses on D�LP� and only gives an overview of D�LP� a forthcoming
companion paper focuses on D�LP�
Compared to previous logic�based approaches to authorization� DL provides a novel com�

bination of features� it is based on logic programs� expresses delegation depth explicitly� and

�
Local plays the role that POLICY plays in PolicyMaker�

	

supports a wide variety of complex principals �including but not limited to k�out�of�n thresh�
olds� Compared to previous approaches to trust management� DL provides another novel
feature� a concept of proof�of�compliance that is not entirely ad�hoc and that is based on
model�theoretic semantics �just as usual logic programs have a model�theoretic semantics�
DL�s approach is also novel in that it combines the above features with smooth extensibility
to non�monotonicity� negation� and prioritized con�ict handling� This extensibility is ac�
complished by building on the well�understood foundation of DL�s logic�program knowledge
representation�

� Syntax and Semantics of D�LP

In this section� we formally de�ne D�LP�s syntax and semantics�

��� Syntax

�� The alphabet of D�LP consists of three disjoint sets� the constants� the variables� and
the predicate symbols� The set of principals is a subset of the constants and the set of
principal variables is a subset of the variables� Variables start with � � ��underscore���

The special variable symbol � � means a new variable whose name doesn�t matter� A
term is either a variable or a constant� Note that we prohibit function symbols with
non�zero arity� this is the Datalog restriction� This restriction helps enable �niteness
of the semantics and of computing inferences �a�k�a� entailments�

�� A base atom is an expression of the form

pred�t�� ���� tn

where pred is a predicate symbol and each ti is a term�

�� A direct statement is an expression of the form

X says p

where X is either a principal or a principal variable� �says� is a keyword� and p is
a base atom� X is called the subject of this direct statement� A base atom encodes
a trust belief or a security action� and a direct statement represents a belief of the
subject�

	� A threshold structure takes one of the following forms�

� threshold�k� f�A�� w�� � � � � �An� wng

where �threshold� is a keyword� k and the wi�s are positive integers� the Ai�s
are principals� and Ai �� Aj for i �� j� The wi�s are called weights� The set

�In Prolog� variables can also start with upper�case letters� and all constants start with lower�case letters�
We want to allow constants to start with upper�case letters� and we restrict variables to start with underscore�

�

f�A�� w�� � � � � �An� wng
is called a principal�weight pair set �abbreviated P�W set� If wi � �� then �Ai� wi
can be written as Ai� A threshold structure supports something if the sum of all
the weights of those principals that support it is greater than or equal to k�

� threshold�k� Prin says pred�x

where �threshold� and k are the same as above� Prin is a principal� pred is
a predicate symbol� and x is the arity �number of parameters of pred� The ar�
ity x must be either � or �� �x is not a logical variable� When x � �� �Prin
says pred��� de�nes a P�W set that gives weight � to all principals A such that
�Prin says pred�A� is true� When x � �� �Prin says pred��� de�nes a P�W
set� where the corresponding weight for any principal A is the greatest positive
integer w such that �Prin says pred�A�w� is true� These are called dynamic
threshold structures�

�� A principal structure takes one of the following forms�

� A where A is a principal

� TS where TS is a threshold structure

� PS�� PS� where PS� and PS� are principal
structures� This is the conjunction
of two principal structures� If both
PS� and PS� support a base atom
p� then PS�� PS� also supports p�

� PS��PS� where PS� and PS� are principal
structures� This is the disjunction
of two principal structures� If
either PS� or PS� supports a
base atom p� then PS��PS� also
supports p�

� fPSg where PS is a principal structure

In a principal structure� conjunction���� takes precedence over disjunction����� A prin�
cipal list is the special case of a principal structure that has the form fA�� � � � � Ang�
where each Ai is a principal� A principal set is the special case of a principal list in
which there are no repetitions� i�e�� in which Ai �� Aj for i �� j�

�� A delegation statement takes the form

X delegates p�d to PS

where X is either a principal or a principal variable� delegates and to are keywords�
p is a base atom� d is either a positive integer or the asterisk symbol ���� and PS is a
principal structure� X is called the subject � d is called the delegation depth� and PS is
called the delegatee� For example�

�

Alice delegates is key� � �� to Bob

is a delegation statement� Intuitively� it means�
Alice says is key� Key X� X

if Bob says is key� Key X� X�

In this example� Alice trusts Bob in making direct statements about the predicate
is key� Alice may also trust Bob in judging other people�s ability to make direct
statements about is key� i�e�� Alice trusts anyone Bob trusts� In this case� the dele�
gation depth is �� Similarly� delegation depth can also be greater than �� A

delegation depth ��� means unlimited depth�

�� A statement is either a direct statement or a delegation

statement� In the semantics of D�LP� the role of �statement� is similar to the role of
�atom� in ordinary LP�s�

�� A statement formula takes one of the following forms�

� S where S is a statement�

� F�� F� meaning �F� and F�� where F� and F�

are statement formulas�

� F��F� meaning �F� or F�� where F� and F�

are statement formulas�

� �F where F is a statement formula�

In a statement formula� the operator ��� �and takes precedence over the operator ���
�or�

� A clause� also known as a rule� takes the form�

S if F�

where S is a statement and F is a statement formula in which no dynamic threshold
structures appear� S is called the head of the clause� and F is called the body of the
clause� The body may be empty� if it is� the �if� part of the clause may be omitted�
A clause with an empty body is also called a fact � Permitting dynamic threshold
structures in the body in e�ect introduces logical non�monotonicity� which is why we
prohibit it in D�LP� However� when we introduce negation�as�failure in D�LP� this
restriction will be dropped�

There are two special principals that can be used in the body of a clause� �I� and
�Local�� �I� refers to the subject of the head� It is the default subject for all state�
ments in the body and may optionally be omitted� For example� when Alice believes

Bob says p if q� I says r�

this is shorthand for Alice believing
Bob says p

if Bob says q� Bob says r�

�

�Local� refers to the principal that is using this statement and trying to make an
authorization decision� i�e�� the current trust root� For example� when Alice believes
�Bob says p if Local says q��� and Alice believes �that Alice says �q�� then
Alice can conclude that �Bob says p��

Multi�agent logics of belief �or of knowledge express beliefs from the viewpoints of
multiple agents� DL can be viewed as expressing beliefs from the viewpoints of mul�
tiple agents� However� in DL� there is a single� distinguished viewpoint� that of the
principal Local� Every DL rule or statement is implicitly regarded as a belief of Local�
In other words� DL is used from one principal�s viewpoint� i�e�� Local�s� Let Local be
the agent Alice� When Alice believes

Bob says is key�Key M� M

if CA says is key�Key M� M�

this means that �If I �Alice believe that CA says is key�Key M� M� then I �Al�
ice can believe that Bob says is key�Key M� M�� The direct statements �CA says

is key�Key M� M� and �Bob says is key�Key M� M� actually mean �Alice believes
CA says is key�Key M� M� and �Alice believes Bob says is key�Key M� M�� It
doesn�t matter whether �Bob says is key�Key M� M� is believed by other princi�
pals� even Bob himself�

��� A program is a �nite set of clauses� This is also known as a logic program �LP� or as
a rule set �

As usual� an expression �e�g�� term� base atom� statement� clause� or program is called
ground if it does not contain any variables�

��� Semantics

In this subsection� we de�ne the set of statements that are sanctioned as conclusions by
a D�LP� Formally� this set of conclusions is de�ned as the minimal model of the D�LP�
This model assigns a truth value �true or false to each ground statement� The value true
means that the statement is an entailed conclusion� false means that it is not an entailed
conclusion� These conclusions represent the beliefs of the principal that is the trust root�
i�e�� Local�
Let P be a given D�LP�
Our semantics is de�ned via a series of steps� First� we de�ne a language LOP that

expresses de�nite OLP�s �de�nite logic programs ��
�� By contrast� we write the original
input �D�LP language of P as LIP � Second� we de�ne a translation that maps P to a ground
de�nite OLP O in LOP � Third� we de�ne the minimal model of P as the correspondent
�under this translation of O�s minimal model in the usual OLP semantics ��
��
We begin by de�ning LOP � Let N be the number of all principals in P� MaxDepth be

the greatest integer used as a delegation depth in P� and MaxArity be the maximum arity
of any predicate in P� The language LOP has two predicates� holds and delegates� The
predicate holds takes four parameters�

holds�subject� pred� �params�� length

�

Here� the domain of subject is the set of all principals appearing in P� which we write
as Principals� The domain of pred is the set of all the predicate symbols appearing in
P� The domain of �params� is all the length�l lists of constants that appear in P� where
� � l �MaxArity� The domain of length is integers ����N ��
A ground atom of the predicate holds represents a ground direct statement

subject says pred�params

Intuitively� length represents the number of delegation steps that is enough to derive the
corresponding direct statement� When length � �� it means this direct statement can be
derived directly without the use of delegation� We need not consider cases in which this
length exceeds the number N of principals�
The predicate delegates takes six parameters�

delegates�subject� pred� �params��

depth� delegatee� length

Here� subject� pred� params� and length are as above� The domain of depth is
����MaxDepth� � f�g� The domain of delegatee is the set of all principal sets� which we
write as �Principals� Recall that there are N principals altogether� and thus �Principals is �nite�
Notice that only principal sets� rather than more general principal structures� are permitted
as delegatee here� The reason this su�ces to represent P will become clear soon�
A ground atom of the predicate delegates represents a delegation statement

subject delegates pred�params�depth
to delegatee

The Herbrand base of LOP is the set of all ground atoms in LOP � Because all the domains
used above are �nite� the Herbrand base of LOP is also �nite� An interpretation of LOP

is an assignment of truth values �true and false to the Herbrand base of LOP � Such an
interpretation can also be viewed as a set of true ground atoms� i�e�� as a conclusion set �
Given an interpretation I of LOP and a principal structure PS� we de�ne PS

I � the
normal form of a principal structure under �i�e�� relative to I� as follows� A principal
structure PSI is in normal form when it is of the form� �PSI

� �PS
I
� � ����PS

I
r �� where each

PSI
i is a principal set and� for any i �� j� PSI

i �� PSI
j � One can view PS as a negation�

free formula in propositional logic� PS�s normal form PSI is then the result of converting
that propositional�logic formula into its reduced disjunctive normal form �DNF� Here� the
reduced DNF is logically equivalent �in propositional logic to PS given I� �Reduced� means
that there is no subsumption� neither within a conjunct �i�e�� no repetitions of principals nor
between conjuncts �i�e�� no conjunct is a subset of another conjunct� For dynamic threshold
structures like �threshold�k� Prin says pred�x�� the interpretation I determines the P�W
set de�ned by Prin and pred� A threshold structure

threshold�k� f�A�� w�� �A�� w�� � � � � �An� wng

is converted to the disjunction of all minimal subsets of fA�� � � � � Ang whose corresponding
weights sum to be greater than or equal to k� For example�

threshold��� f�A� �� �B� �� �C� �� �D� �g

is converted to
fA�Bg� fA�Cg� fA�Dg� fB�C�Dg�

After two principal structures have been transformed� their conjunction and disjunction are
convertible to normal form using methods similar to the usual ones used in propositional
logic�
Equipped with the de�nitions of LOP and PSI � we are ready next to give the main

de�nition of the translation� Given an interpretation I of LOP � the translation TransI

maps P into a de�nite OLP OI in the language LOP � i�e�� O
I � TransI�P� We de�ne

TransI via four steps�
Semantically� we treat a rule containing variables as shorthand for the set of all its ground

instances� This is standard in the logic programming literature� We write P instd to stand
for the LP that results when each rule r in P is replaced by the set of all its possible
ground instantiations� i�e�� by all of the ground clauses that can be obtained by replacing
r�s variables with constants �or �instantiating� them�
The �rst step of TransI is to replace P by P instd�
The second step of TransI is to replace all the delegation statements in P instd by those

that delegate to principal sets� as follows� Let PSI be written as PSI
� �PS

I
� � ����PS

I
r � each

PSI
i is a principal set�

� Rewrite head delegation statements�
Replace every clause of the form
A delegates s�d to PS if F�
by the r clauses�
f A delegates s�d to PSI

i if F� j i � ���r g�

� Rewrite body delegation statements�
Replace every delegation statement

A delegates s�d to PS
that occurs in the body of a clause� by the conjunction of the r delegation statements�

A delegates s�d to PSI
� �

A delegates s�d to PSI
� �

� � � �
A delegates s�d to PSI

r �

Let T I
� denote the program after the above transformations�

The third step of TransI takes T I
� as input and translates it to an OLP T

I
� in the language

LOP � as follows�

� For any direct statement
A says pred�params

in the body of a clause� change it to�
holds�A� pred� �params�� N�

��

� For any direct statement
A says pred�params

in the head of a clause� change it to�
holds�A� pred� �params�� ��

� For any delegation statement
A delegates pred�params�d to PS

in the body of a clause� change it to�
delegates�A� pred� �params�� d� PS�N

� For any delegation statement
A delegates pred�params�d to PS

in the head of a clause� change it to�
delegates�A� pred� �params�� d� PS� ��

Here� as before� N is the number of principals in P� Intuitively� if a statement in the head
is deduced� then it is deduced directly �length �� if a statement can be deduced within any
length� it is true�
The result of these changes is T I

� �
The fourth step of TransI is to add a further collection of clauses to T I

� � the resulting
OLP program is OI in the language LOP � Intuitively� these additional clauses represent
all instances of several meta�rules of deduction involving delegation� Because the relevant
domains are �nite� there are a �nite number of such instances�
Let A be a principal� BS be a principal set fB�� � � � � Bng� CS be another principal set�

d� d�� and d� be delegation depths �i�e�� elements of ����MaxDepth� � f�g� and� l� l�� and l�
be lengths �i�e�� elements of ����N �� Let pred and �params� be as above �recall the de�nition
of holds� Below� �length� means delegation�path length� The relations �� �� �� �� �� and
the functions � �� and min� are de�ned on the domain ����max�N�MaxDepth� � f�g� The
predicates � and � are de�ned on the domain of principal sets �Principals� The behavior of
�!� is similar to 	� e�g�� for any integer l in ��� ���� max�N�MaxDepth�� l � �� � � l � ��
� � �� and min��� l � l�
The additional clauses are as follows��

�� Every ground clause that has the form�
holds�A� pred� �params�� l
if holds�A� pred� �params�� l��

and satis�es l � l��
Intuitively� this represents the deduction meta�rule that� If a direct statement is de�
ducible within length l�� then the direct statement is deducible within any longer length
l � l��

�� Every ground clause that has the form�
delegates�A� pred� �params�� d� CS� l

if delegates�A� pred� �params�� d�� BS� l��

�These clauses are slightly dierent from the ones in the extended abstract version that appeared in
CSFW���� However� they are virtually equivalent�

��

and satis�es d � d�� l � l�� and CS � BS�
Intuitively� this represents the deduction meta�rule that� If a delegation statement is
deducible� then any weaker delegation statement is deducible within any longer length�
Smaller depth and larger conjunctive delegatee set each weaken a delegation statement�

�� Every ground clause that has the form�
holds�A� pred� �params�� l

if delegates�A� pred� �params�� �� BS� l��
holds�B�� pred� �params�� ��
holds�B�� pred� �params�� ��
� � � �
holds�Bn� pred� �params�� ��

and satis�es l � l� � and l� � N �
Intuitively� this represents the deduction meta�rule that enforces the e�ect of depth��
delegations�

	� Every ground clause that has the form�
delegates�A� pred� �params�� d� CS� l

if delegates�A� pred� �params�� d�� BS� l��
delegates�B�� pred� �params�� d�� CS� l��
delegates�B�� pred� �params�� d�� CS� l��
� � � �
delegates�Bn� pred� �params�� d�� CS� l��

and satis�es d � min�d�� d� � l�� l � l� l�� l� � d�� and l� � �N � l��
Intuitively� this represents the deduction meta�rule that enforces the e�ect of chaining
of delegations� The depth of the deduced �head delegation of A is bounded both by
the depth of the delegation from A to BS and by the depth of the delegations from
Bi�s to CS� The depth of the delegation from A to BS has to cover the path lengths
that have already been used in deriving delegations from Bi�s to CS�

The OI that results �from adding these further clauses to T I
� is a ground de�nite OLP�

It thus has one or more OLP�models� i�e�� models in the usual OLP semantics ��
�� In
particular� it has a model MinOLPModel�OI that is minimal in the sense of the usual
OLP semantics�

Proposition � Given two interpretations I � J of LOP � if an interpretation K of LOP is
an OLP�model of OJ � then K is also an OLP�model of OI�

Proof� The dependence of OI upon I is due solely to principal structures that depend upon
I� Furthermore� such a�ected principal structures depend upon I solely via the dynamic
threshold structures that those principal structures contain� The di�erences that may exist
between OI and OJ can thus only be caused by dynamic threshold structures� Note also
that such dynamic threshold structures are only allowed to appear in heads of clauses� not
their bodies� and moreover only in heads that are delegation statements�
More precisely� for a given principal structure PS� such a di�erence can be viewed as

the di�erence between the normal form PSI and the normal form PSJ � We say that PSI

��

is dominated by PSJ when for each i� there exists a j such that PSJ
j � PSI

i � Next� we will
show that such domination holds�
Let PSI and PSJ be viewed as propositional formulas in reduced DNF form� Let

be material implication� Then� tautologically� PSI
 PSJ is true if and only if PSI is
dominated by PSJ �
Consider a dynamic threshold structure

TS � threshold�k� Prin says pred���

Let W I and W J be the P�W sets de�ned in TS under I and J � respectively� Since I � J �
any direct statement �Prin says pred�P�w� that is true in I is also true in J � Thus the
weight of each principal in W J is greater than or equal to its weight in W I � Now consider
the normal forms of TS under I and J � i�e�� TSI and TSJ � Let TSI � TSI

� � � � � �TS
I
m and

TSJ � TSJ
� � � � � �TS

J
n � Each TS

I
i is a minimal subset of principals in W

I such that the sum
of these principals� weights is greater than or equal to the threshold k�
Since the weight of each principal in W J is greater than or equal to its weight in W I � for

each TSI
i �i�e�� for each i� given I there must exist a TS

J
j such that TS

J
j � TSI

i � In short�
TSI is dominated by TSJ � When principal structures are viewed as DNF propositional
formulas� they are nonnegative� Since domination is equivalent to material implication�
therefore� for any principal structure PS that contains dynamic threshold structures� PSI

is dominated by PSJ �
Next� we compare the rules in OI to the rules in OJ � The essence of the transform

TransI �s dependence on I is in the step two �of the four steps in the de�nition of TransI�
where a principal structure PS is replaced by its normal form PSI� Consider a rule r in OI �
If r is added in step four of TransI � it also appears in OJ � since step four actually does not
depend upon I� Otherwise� r must result from step three of TransI� If r results from step
three of TransI � we can view it in terms of the corresponding rule r� that resulted from step
two� Let ddr be a rule in P instd� We call ddr a dynamic delegation rule when ddr�s head is
a delegation statement that contains dynamic threshold structures� If r� is not a rule that
results from translating in step two from a dynamic delegation rule� then r� is not dependent
upon I and r also appears in OJ �
Thus� the rules in OI and OJ di�er only in regard to the results of applying step two of

TransI to dynamic delegation rules� Consider such a dynamic delegation rule ddr� It has
the form

A delegates p�d to PS if F�

where A is a principal� F is an instantiated statement formula in which no dynamic thresh�
old structures appear� and PS is a principal structure that contains one or more dynamic
threshold structures� Observe that every principal structure �in P does not contain logical
variables� and thus is una�ected by step one of TransI� Step two transforms ddr into a set
of one or more rules in each of which PS is replaced by a disjunct PSI

i of its normal form
PSI� Consider the ith such resulting rule�

A delegates p�d to PSI
i if F�

If r� results from translating in step two from a dynamic delegation rule� then it must have
this form� Next comes a crucial point of our argument� By the domination property shown

��

above� there exists in OJ a corresponding rule

A delegates p�d to PSJ
j if F�

such that PSJ
j � PSI

i �
We say that delegating to a smaller �in the sense of subset principal set is more unde�

manding � Therefore� for every rule r in OI � there is a corresponding rule in OJ that is either
identical or is at least as undemanding as r�
Intuitively� more undemanding delegations result in more �in the sense of superset con�

clusions inferred via delegation� Formally� this property is implied by the rules added in step
four of the transform� We say that a ruleset is stronger in deduction power when it entails
more �in the sense of superset conclusions�

OJ is thus at least as strong �in deduction power as OI � So any model of OJ is also a
model of OI �

De�nition � An interpretation I of LOP is an O�model of a D�LP program P if and only
if I is an OLP�model of OI � TransI�P �

We observe this de�nition�s �avor in that we use the interpretation itself in reducing
principal structures This is similar to It turns out that every D�LP program P has at least
one O�model� as we will show below in Theorem ��

Theorem � The intersection of any two O�models of P is also an O�model of P�

Proof� Given two O�models I and J of P� one can conclude by the de�nition of O�models
that I is an OLP�model of OI and that J is an OLP�model of OJ � Let K � I � J � Because
K � I and K � J � Proposition � implies that I and J are both OLP�models of OK� Because
de�nite ordinary logic programs have the property that two models� intersection is still a
model ��
�� K is an OLP�model of OK� By the de�nition of O�models� K is thus an O�model
of P�

De�nition � The minimal O�model of P is the intersection of all of its O�models� We
write this as MinOModel�P�

It turns out that every D�LP P has a minimal O�model� below� in Theorem �� we show
how to construct it�
Ultimately� we are interested in models expressed in LIP � the original D�LP language of

P� We de�ne a simple reverse translation ReverseTrans that maps each O�model I of P to
its corresponding D�LP�model in LIP � as follows�

� For each O�conclusion of the form
holds�A� pred� �params�� length�

include the D�LP�conclusion
A says pred�params�

�	

� For each O�conclusion of the form delegates�A� pred� �params�� depth�
Delegatee� length� include the D�LP�conclusion

A delegates pred�params�depth
to Delegatee�

Notice here that �delegation path length is ignored after the OLP conclusions are drawn�
We de�ne the Herbrand base of P� in LIP � as the set of all ground statements of P�

restricted to require that every principal structure be a principal set� We de�ne an interpre�
tation of P to be an assignment of truth values �true and false to the Herbrand base of
P� Such an interpretation can also be viewed as a set of true ground statements� i�e�� as a
conclusion set �

De�nition � An interpretation M of LIP is a model of a D�LP program P if and only if
M � ReverseTrans�I and I is an O�model of P� The minimal model of P is
ReverseTrans�MinOModel�P � We write this as MinModel�P�

Sometimes� for the sake of explicitness� we will also speak of these as �minimal D�LP�
models�
Next� we show that MinOModel�P and thus its corresponding MinModel�P actually

exist � by showing how to construct MinOModel�P�

De�nition � Given P� we de�ne an operator "P that takes an interpretation I of LOP

and returns another one� "P�I �MinOLPModel�OI� where MinOLPModel is the stan�
dard minimal model operator for OLP�

Theorem 	
Construct Minimal Model� MinOModel�P is the least �xpoint of
"P � This �xpoint is obtained by iterating "P a �nite number of times� starting from ��
MinModel�P thus exists� for every D�LP P�

Proof� Let I� � �� and� for i � �� let Ii � "P�Ii�� � MinOLPModel�OIi��� We �rst
show that the sequence I�� I�� � � � is increasing� Clearly� I� � I�� Suppose that Ik�� � Ik�
Now consider Ik��� It is a model of O

Ik � From Proposition �� Ik�� is also a model of O
Ik���

By de�nition of the operator "P � Ik is the minimal OLP�model of OIk�� � Thus Ik � Ik���
So the sequence I�� I�� � � � is increasing�
Since the Herbrand base of LOP is �nite� there are only �nite number of interpretations

of LOP � Therefore� there must exist a �rst ordinal � such that I� � I���� And I� is the
least �xpoint of "P �
We now prove that I� � MinOModel�P� By de�nition of the operator "P � I� is an

O�model of P� Let J � MinOModel�P� Then J � I�� Suppose� by contradiction� that
I� �� J � Since I� � J � there must exist an ordinal � � � � � such that I� � J but I��� �� J �
Because J is an OLP�model of OJ � Proposition � implies that J is also an OLP�model of OI� �
However� I��� is the minimal OLP�model of OI� � Thus I��� � J � which is a contradiction�

Inferencing� Because of the �niteness properties mentioned above� computing
MinModel�P is decidable� Given the minimal model MinModel�P� queries in D�LP
can be translated as we did for the body of a clause� then answered using the model� We
have a current implementation of restricted D�LP� It is written in Prolog and uses a top�down
query�answering method�

��

� Use of D�LP

In this section� we use the public�key infrastructure problem to demonstrate the use of D�LP�
The trust�management approach views the PKI problem from one user�s point of view� The
user has trust beliefs and certi�cates from other principals� and it needs to decide whether a
particular binding is valid according to its information� All of these beliefs� certi�cates� and
decisions can be represented uniformly in D�LP�
D�LP can also be used to represent authorizations� Authorizing a principal to do some�

thing can be represented as a delegation to that principal� Whether to allow this principal
to further grant this authorization to other principals can be controlled by delegation depth�
An authorization request can be answered by deciding whether a delegation statement is
true or false� Moreover� separation of duty ��� can be achieved by delegations to threshold
structures�
We �rst show how certi�cates from di�erent PKI proposals can be represented in D�LP�

Pretty Good Privacy �PGP�s certi�cates only establish key bindings� they have no delegation
semantics� The delegations in PGP are expressed by trust degrees that are stored in local key
rings� They all have depth �� In PGP� a user can also specify threshold values for accepting
a key binding� In D�LP� this can be achieved through dynamic threshold structures� One
way is to use several predicates to denote di�erent trust levels� for example� fully trusted

and partly trusted� A user Alice may have the following policies�

Alice says fully�trusted�Bob�

Alice says fully�trusted�Sue�

Alice says partly�trusted�Carl�

Alice says partly�trusted�Joe�

Alice says partly�trusted�Peg�

Alice delegates is�key��Key��User��

to threshold���fully�trusted���

Alice delegates is�key��Key��User��

to threshold���partly�trusted���

Of course� one can also use weighted dynamic threshold structures�
In X���
 ���� certi�cation authorities �CAs� certi�cates are chained together to establish

a key binding� For such delegation chains to be really meaningful� the certi�cates on such
chains must also imply delegations� Since there is no limit on the length of delegation chains�
all such delegations have depth ���� Privacy Enhanced Mail �PEM uses X���
�s certi�cates
but limits the CA hierarchy to three levels� IPRA� PCAs� and CAs� Thus PEM�s trust
model requires that every user give a depth�three delegation to IPRA�
A SPKI certi�cate does not establish key binding� it is a delegation from the issuer to the

subject of the certi�cate� It has one �eld that controls whether a delegation can be further
delegated or not� this means that every delegation has depth � or ����
There are other proposals to use lengths of delegation paths as a metric for public�key

bindings� The di�erence between these path lengths and our delegation depths is that� in
the former� there is only one length� and it is speci�ed by the trust root� However� every DL
delegation statement can have a delegation depth limit� This has the e�ect of allowing every

��

principal on the delegation path to specify how much further this path can go� Together�
the set of delegation depths along the path determine whether the path is invalidly deep�

Next� we give an extended example of public key authorization with delegation� Consider
a user Alice who wants to decide whether a public key M Key is web site M Site�s public key�
There are many certi�cation systems that may be relevant� In particular� Alice trusts three
of them� systems X� Y � and Z� System X has three levels� XRCA� XPCA�s� and XCA�s� where
XRCA is the root� XCA�s are CA�s that certify users� public keys directly� and XPCA�s certify
XCA�s public keys and are in turn certi�ed by XRCA�� System Y has two levels� YRCA and
YCA�s� System Z has only one level� ZRCA� which certi�es users� keys directly� Alice �rst
translates �i�e�� represents certi�cates of these systems into statements using the predicates
Xcertificate�signature key� subject� ���� Ycertificate����� Zcertificate�����	

Then Alice asserts some rules that translate these into statements of a common certi�cate
predicate� say� is site key� Key� Site� For example�

�Issuer says is�site�key��Key��Site

if Xcertificate��Issuer��Key��Site�

Next� Alice speci�es the sense in which she trusts the three systems� by asserting the
rule�

Alice delegates is�site�key��K��S�	

to �XRCA��YRCA�ZRCA���

This means that Alice requires system X and one of system Y and system Z to certify a
website public key� She does this with delegation depth � because she knows that � is the
maximum number of levels in those certi�cation systems� �Note that� for other purposes�
Alice can use predicates other than is site key and trust these systems di�erently� Sup�
pose that M Key is certi�ed by both system Y and system Z� i�e�� there are certi�cates that
translate into�

YRCA delegates is�site�key��K��S��

to YCA��

YCA� says is�site�key�M�Key�M�Site�

ZRCA says is�site�key�M�Key�M�Site�

Then the given information is not enough to deduce �i�e�� entail that �Alice says

is key�M Key�M Site��� because there is no certi�cation of that key from XRCA�
Now suppose that� in addition to these systems above� Alice has a friend Bob� For

whatever reasons� Alice trusts Bob unconditionally to certify websites� public keys� i�e��

Alice delegates is�site�key��K��S��

to Bob�

�In Privacy Enhanced Mail �PEM	����� the three levels of CA�s are Internet Policy Registration Authority
�IPRA	� Policy Certi
cation Authority �PCA	� and Certi
cation Authority �CA	�

�The exact
elds of these predicates are determined by Alice� They should be whichever elements of the
certi
cates are relevant to Alice�s policies�

��

Bob thinks that certi�cation by system Z is itself enough for those sites that belong to
association assoc� and he trusts ASSOC in deciding which sites belong to assoc� i�e��

Bob delegates is�site�key��K��S��

to ZRCA

if I says belongs�to��S�assoc�

Bob delegates belongs�to��S�assoc��

to ASSOC�

Alice stores these policies that she got from Bob earlier� Suppose that site M Site also sent
the following certi�cate issued by ASSOC�

ASSOC says belongs�to�M�Site�assoc�

With the above additional information� Alice can deduce the following�

Bob says belongs�to�M�Site�assoc�

Bob delegates

is�site�key�M�Key�M�Site��

to ZRCA�

Alice delegates

is�site�key�M�Key�M�Site��

to ZRCA�

Finally� Alice can deduce�

Alice says is�site�key�M�Key�M�Site�

� Extension� Negations and Priorities

D�LP is �logically monotonic� It cannot express negation or negative knowledge�
However� many security policies are non�monotonic or more easily speci�ed as non�

monotonic ones� e�g�� certi�cate revocation� In many applications� a natural policy is to make
a decision in one direction� e�g�� in favor of authorizingH� if there is no information�evidence
to the contrary� e�g�� no known revocation� Using negation�as�failure �a�k�a� default negation
or weak negation is often an easy and intuitive way to do this� Also useful in representation
of many policies is classical negation �a�k�a� explicit negation or strong negation� which
allows policies that explicitly forbid something� Classical negation in rules� especially in the
consequents �heads of rules� enables one to specify both the positive and negative sides of
a policy� �i�e�� both permission and prohibition using the expressive power of rules� e�g��
using inferential chaining� As argued in ���� ���� this allows more �exible security policies�
Classical negation is particularly desirable for authorization in Internet scenarios� where the
number of potential requesters is huge� For low�value transactions� users sometimes have
security policies that give access to all except a few requesters� Without negations� it would
be e�ectively impossible to do this�
Introducing classical negation leads to the potential for con�ict � Two rules for opposing

sides may both apply to a given situation� Care must be taken to avoid producing inconsis�
tency� Priorities� which specify that one rule overrides another� are an important tool for

��

specifying how to handle such con�ict� E�g�� a known revocation overrides a general rule to
presume trustworthiness� E�g�� one principal overrides another�s decision�recommendation�
Some form of prioritization is generally present in many rule�based systems� prioritization
has also received a great deal of attention in the non�monotonic reasoning literature �see�
e�g�� ���� for some literature review and pointers�
Prioritization information is naturally available� One common basis for prioritization

is speci�city � Often it is desirable to specify that more speci�c�case rules should override
more general�case rules� Another basis is recency � in which more recent rules override less
recent rules� A third common basis is relative authority � in which rules from a more au�
thoritative source override rules from a less authoritative one� For example� a superior
legal�bureaucratic�organizational jurisdiction or a more knowledgeable�expert source may
be given higher priority� It is often useful to reason about prioritization� e�g�� to reason from
organization roles or timestamps to deduce priorities� Reasoning about prioritization may
itself involve con�ict� e�g�� a less recent rule may be more speci�c or more authoritative�
To allow users to express non�monotonic policies in a natural and powerful fashion� we

de�ne D�LP� which stands for version � of Delegation Logic Programs� D�LP is �logically
non�monotonic� D�LP expressively extends D�LP to include negation�as�failure� classical
negation� and partially�ordered priorities� Just as D�LP bases its syntax and semantics
on de�nite ordinary LP�s� D�LP bases its syntax and semantics on Courteous LP�s ��	� ����
The version of Courteous LP�s we use is expressively generalized as compared to the previous
version in ���� ����
In the rest of this section� we give an overview of D�LP� Full details will be given in a

forthcoming companion paper�
Syntactically� each D�LP rule �clause is generalized to permit each statement to be

negated in two ways� by classical negation and�or by negation�as�failure �NAF �� Each
rule also is generalized to permit an optional rule label � which is a handle for specifying
priority� Prioritization is speci�ed via the predicate overrides� overrides�label�� label�
means that every rule having rule label label� has strictly higher priority than every rule
having rule label label�� overrides is treated specially in the semantics to generate the
prioritization used by all rules� Otherwise� however� overrides is treated as an ordinary
predicate�
A D�LP direct statement has the form�

A says ��� �� p

A D�LP delegation statement has the form�

A ��� �� delegates p�d to PS

Here� as when we described D�LP� A is a principal� p is a base atom� d is a depth� and PS is a
principal structure� Square brackets �������� indicate the optionality of what they enclose�
stands for classical negation and is read in English as �not�� � stands for negation�as�failure
and is read in English as �fail��
When a statement does not contain �� we say it is classical � when it contains neither �

nor � we say it is atomic�
Semantically� the negations� scope can be viewed as applying to the whole statement�

Intuitively� s means that s is believed to be false� By contrast� �cs means that cs is not

�

believed to be true� i�e�� either cs is believed to be false� or cs is unknown� �Unknown� here
means in the sense that there is no belief one way or the other about whether cs is true
versus false�
A D�LP statement formula is de�ned as the result of conjunctions and disjunctions

applied to D�LP statements� similarly to the way in which a D�LP statement formula is
de�ned as the result of conjunctions and disjunctions applied to D�LP statements �i�e��
atomic statements� A D�LP rule �clause is de�ned as�

hlabi S if F�
Here� S is a classical statement� F is a statement formula� The rule label lab is an ordinary
logical term �e�g�� the constant frau below
in the D�LP language� The rule label may optionally be omitted� Note that D�LP

relaxes the D�LP prohibition on dynamic threshold structures in the body� Syntactically� a
D�LP rule is a special case of a D�LP rule�
We say that c is a base classical literal when c has the form a or a� where a is a base

atom� Here� stands for classical negation� and is read in English as �not�� We say that
f is a base literal when f has the form c or �c� where c is a classical literal� � stands for
negation�as�failure and is read in English as �fail�� Intuitively� a means that a is believed
to be false� By contrast� �a means that a is not believed to be true� i�e�� a is either believed
to be false� or a is unknown� Unknown here means in the sense that there is no belief one
way or the other about whether a is true versus false�
Next� we give a simple example that illustrates the use of classical negation and priorities�

Let D�LP program R� be the following set of rules�
hcredi A says honest� X

if B says creditRating� X� good�
hfraui A says honest� X

if C says fraudulent� X �
D says fraudExpert�C�

A says overrides�frau� cred�
B says creditRating�Joe� good�
D says fraudExpert�C�

R� entails the conclusion� A says honest�Joe�
Continuing the example� suppose the following statement is added to R� to form R��

C says fraudulent�Joe�
R� instead entails the conclusion�

A says honest�Joe�
The semantics of a D�LP are de�ned via a translation Trans� to a ground courteous

LP that is roughly similar to D�LP�s translation Trans to a ground OLP� Courteous LP�s
expressively extend OLP�s to include and �� as well as prioritization represented via an
overrides predicate on rule labels�
We impose some further expressive restrictions in D�LP� related especially to cyclicity

of dependency between predicates� to ensure D�LP�s well�behavior semantically and compu�
tationally� The generalized version of Courteous LP�s relies on the well�founded semantics
����� which is computationally tractable �worst�case polynomial�time for the ground case�
Courteous LP�s semantic well�behavior includes having a unique �minimal model that

is consistent �s and s are never both sanctioned as conclusions� D�LP inherits this same

��

well�behavior� D�LP inferencing remains decidable� its �niteness properties are similar to
those of D�LP�
In a forthcoming paper� we cover DL�s treatment of negation in detail� as we have covered

delegation in detail in this paper�

� Discussion and Future Work

As explained in previous sections� our design of DL was primarily in�uenced by earlier
work on trust management and on logic programming and knowledge representation� There
is other� more tenuously related work in the computer security literature� which we now
review�
In ��� ��� ���� Abadi� Burrows� Lampson� Wobber� and Plotkin developed a logic for

authentication and access control in distributed systems� Their logic is similar to DL in one
respect� It focuses on delegation� which it expresses via the �speaks for� relation� In all
other respects� their logic is quite di�erent from DL in its ends and means� Its approach to
delegation does not include delegation�depth or threshold structures� in this respect� DL�s
notion of delegation is more powerful� Their treatment of authorization is considerably less
general than DL�s� all of their �policies� are expressed as access�control lists� whereas DL
�which takes the �trust�management approach� is a general authorization language� Their
approach also di�ers from DL in that it is not based on logic programming� and it does not
have a model�theoretic semantics� Finally� their logic does not incorporate negation�
Maurer ���� modeled public�key infrastructure via recommendations with levels and con�

�dence values� �Delegation� in DL is very similar to �recommendation� in ����� but there are
several di�erences� One is that Maurer�s model supports direct statements and delegation
statements but not clauses �rules� A second is that Maurer�s model supports reasoning
about the delegations and beliefs of what DL calls �Local�� but it does not allow� say� Local
A to reason about the beliefs of B �e�g�� about whether� in A�s view� B delegates to C or
B believes a particular statement� Thus� one cannot express� in Maurer�s model� that �A
says X if B says Y �� This second restriction eliminates the need to maintain �lengths�� and
permits delegation chaining to be much simpler in ���� than it is in DL� Thirdly� Maurer�s
model does not support delegation to lists� threshold structures� etc�� Finally� DL does not
use numerical con�dence values� because it is our view that users would have little if any
factual basis for choosing speci�c numbers� in many scenarios� threshold structures can pro�
vide similar functionality� Like Abadi et al� ��� ��� ���� Maurer ���� does not treat negation
and does not provide a model�theoretic semantics�
Previous work on authorization languages that incorporate negation includes that of Woo

and Lam ���� and Jajodia et al� ���� ���� Compared to DL� those previous approaches di�er
in that they do not deal with delegation� in particular� they have no complex principal
structures such as thresholds� Furthermore� the way in which ���� ��� ��� handles negation is
di�erent from the way it is handled in D�LP� Although we have not fully speci�ed D�LP in
this paper� the discussion in Section � above su�ces to allow us to explain how our approach
to negation di�ers from that of ���� ��� ����
The language of Woo and Lam ����� which is based on Default Logic ��	�� does not guar�

antee that every program �or� in their terms� every �policy base� has a model� furthermore�

��

when a model exists� it might not have a meaningful interpretation� because that model might
be inconsistent� Well�founded semantics and prioritized con�ict handling enable D�LP to
support a more expressive set of non�monotonic policies and to give a unique and meaningful
model to every program�
Jajodia et al� ���� ��� propose a logical authorization language that is based on Datalog

OLP extended with two forms of negation �classical negation and negation as failure� Their
support for non�monotonic policies is limited� however� because they impose syntactic re�
strictions that ensure that policies are con�ict�free� Moreover� they prede�ne all predicates
and require strati�ability� By contrast� D�LP is more expressive� via well�founded semantics
and con�ict handling�

Future work will address the computational complexity of compliance checking in DL�
syntactically restricted classes of DL programs for which compliance can be checked very
e�ciently� implementation of the DL interpreter �for which we now have only a preliminary
version for restricted D�LP� and deployment of DL in an e�commerce platform�

References

��� M� Abadi� M� Burrows� B� Lampson� and G� Plotkin� �A Calculus for Access Control in Dis�
tributed Systems�� ACM Transactions on Programming Languages and Systems� �� 	�

���
pp� ������

��� C� Baral and M� Gelfond� �Logic Programming and Knowledge Representation�� Journal of
Logic Programming � �
���	�

��� pp� ������ Includes extensive review of literature�

��� M� Blaze� J� Feigenbaum� J� Ioannidis� and A� Keromytis� �The KeyNote Trust�Management
System�� submitted for publication as an Internet RFC� March �

��
http���www�cis�upenn�edu��angelos�Papers�draft�keynote�txt�

��� M� Blaze� J� Feigenbaum� and J� Lacy� �Decentralized Trust Management�� in Proceedings of

the Symposium on Security and Privacy� IEEE Computer Society Press� Los Alamitos� �

��
pp� �������

��� M� Blaze� J� Feigenbaum� and M� Strauss� �Compliance�Checking in the PolicyMaker Trust
Management System�� in Proceedings of Financial Crypto ���� Lecture Notes in Computer
Science� vol� ����� Springer� Berlin� �

�� pp� �������

��� ITU�T Rec� X���
 	revised�� The Directory � Authentication Framework� International Telecom�
munication Union� �

��

�� Y��H� Chu� J� Feigenbaum� B� LaMacchia� P� Resnick� and M� Strauss� �REFEREE� Trust
Management for Web Applications�� World Wide Web Journal� � 	�

�� pp� ������

��� D� Clark and D� Wilson� �A Comparison of Commercial and Military Computer Security
Policies�� In Proceedings of the IEEE Symposium on Security and Privacy� IEEE Computer
Society Press� Los Alamitos� �
��

�
� C� Ellison� �SPKI Certi�cate Documentation��
http���www�pobox�com��cme�html�spki�html�

��

���� A� Van Gelder� K� A� Ross� and J� S� Schlipf� �The Well�founded Semantics for Logic Pro�
gramming�� Journal of the ACM� �� 	�

��� pp� ��������

���� J� Gosling and H� McGilton� The Java Language Environment� A White Paper� Sun Microsys�
tems� Inc�� Mountain View� �

��

���� B� Grosof� �Courteous Logic Programs� Prioritized Con�ict Handling for Rules�� IBM Re�
search Report RC������ May �

� This is an extended version of �����

���� B� Grosof� �Prioritized Con�ict Handling for Logic Programs�� in Proceedings of the Interna�

tional Symposium on Logic Programming� MIT Press� Cambridge� �

� pp� �
�����

���� B� Grosof� �Compiling Prioritized Default Rules Into Ordinary Logic Programs�� IBM Re�
search Report RC ����� May �

�

���� B� Grosof� �DIPLOMAT� Compiling Prioritized Default Rules Into Ordinary Logic Programs�
for E�Commerce Applications 	extended abstract of Intelligent Systems Demonstration��� in
Proceedings of AAAI���� Morgan Kaufmann� �

� Extended version is IBM Research Report
RC ����� May �

�

���� S� Jajodia� P� Samarati� and V� S� Subrahmanian� �A Logical Language for Expressing Autho�
rizations�� in Proceedings of the Symposium on Security and Privacy� IEEE Computer Society
Press� Los Alamitos� �

� pp� ������

��� S� Jajodia� P� Samarati� V� S� Subrahmanian� and E� Bertino� �A Uni�ed Framework for
Enforcing Multiple Access Control Policies�� in Proceedings ACM SIGMOD Conference on

Management of Data� �

�

���� S� T� Kent� �Internet Privacy Enhanced Mail�� Communications of the ACM� � 	�

��� pp� ���
���

��
� J� W� Lloyd� Foundations of Logic Programming� second edition� Springer� Berlin� �
��

���� M� Longhair 	editor�� �A P�P Preference Exchange Language 	APPEL� Working Draft�� W�C
Working Draft
� October �

��
http���www�w��org�P�P�Group�Preferences�Drafts�WD�P�P�preferences������		��

���� B� Lampson� M� Abadi� M� Burrows� and E� Wobber� �Authentication in Distributed Systems�
Theory and Practice�� ACM Transactions on Computer Systems� �� 	�

��� pp� ��������

���� M� Marchiori� J� Reagle� and D� Jaye 	editors�� �Platform for Privacy Preferences 	P�P����
Speci�cation�� W�C Working Draft
 November �

��
http���www�w��org�TR�WD�P�P��

���� U� Maurer� �Modelling a Public�Key Infrastructure�� in Proceedings of the ���� European

Symposium on Research in Computer Security� Lecture Notes in Computer Science� vol� �����
Springer� Berlin� �

� pp� ��������

���� R� Reiter� �A Logic for Default Reasoning�� Arti�cial Intelligence� �� 	�
���� pp� �������

���� P� Resnick and J� Miller� �PICS� Internet access controls without censorship�� Communications
of the ACM� �
 	�

��� pp� ��
��

��

���� R� Rivest and B� Lampson� �Cryptography and Information Security Group Research Project�
A Simple Distributed Security Infrastructure��
http���theory�lcs�mit�edu��cis�sdsi�html�

��� E� Wobber� M� Abadi� M� Burrows� and B� Lampson� �Authentication in the TAOS Operating
System�� ACM Transactions on Computer Systems� �� 	�

��� pp� �����

���� T� Woo and S� Lam� �Authorization in Distributed Systems� A New Approach�� Journal of

Computer Security� � 	�

��� pp� �������

��
� P� Zimmermann� The O�cial PGP User�s Guide� MIT Press� Cambridge� �

��

�	

