
RC 21662 (Log 97617) 4 February 2000 Computer Science/Mathematics

Research Report

Cache-Memory Interfaces in
Compressed Memory Systems

Caroline Benveniste, Peter Franaszek, and John Robinson

IBM Research Division

T.J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598
fcdb, paf, robnsong@us.ibm.com

IBM
Research Division

Almaden Austin Beijing Haifa T.J. Watson Tokyo Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will

probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissem-

ination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside

of IBM prior to publication should be limited to peer communications and specic requests. After outside

publication, requests should be lled only by reprints or legally obtained copies of the article (e.g., payment

of royalties). Copies may be requested from IBM T. J. Watson Research Center [Publications 16-220], P.O.

Box 218, Yorktown Heights, NY 10598. Email: reports@us.ibm.com

Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Cache-Memory Interfaces in

Compressed Memory Systems

Caroline D. Benveniste, Peter A. Franaszek, and John T. Robinson

IBM Research Division, T. J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598

fcdb, paf, robnsong@us.ibm.com

February 2, 2000

Abstract

We consider a number of cache/memory hierarchy design issues in systems with
compressed random access memories (C-RAMs), in which compression and decom-
pression occur automatically to and from main memory. Using a C-RAM as main
memory, segments of main memory are stored in a compressed format, and dynami-
cally decompressed to handle cache misses at the next higher level of memory. Design
of main memory directory structures and storage allocation methods in such systems
are described elsewhere; here we focus on issues related to cache-memory interfaces. In
particular, if the cache line size (of the cache or caches to which main memory data is
transferred) is dierent than the size of the unit of compression in main memory, band-
width and latency problems can occur. Another issue is that of guaranteed forward
progress, that is ensuring that modied lines can be written to the compressed main
memory so that the system can continue operation even if overall compression dete-
riorates. We study several approaches for solving these problems, using trace-driven
analysis to evaluate alternatives.

1

1. Introduction

We consider some design issues in systems with main memories that incorporate automatic
compression and decompression to and from main memory. In such systems, the bulk of the
main memory contents are maintained in compressed form, with decompression occurring
on cache misses, and compression occurring on cache writebacks. Figure 1 shows a block
diagram of such a system. We study a system with 3 levels of caching, L1 and L2 caches on
each processor, and an L3 shared among the processors. Main memory is denoted by L4.

This approach is signicantly dierent than that of related work in this area (for example,
see [1], [2], [3]). As illustrated in Fig. 2, in these alternative approaches, main memory is
partitioned into compressed and uncompressed regions, and the OS and applications access
only the uncompressed region directly, using a standard memory architecture. Data is moved
from the compressed region to the uncompressed region via paging mechanisms in these
approaches. In contrast, in the system illustrated by Fig. 1, potentially all of main memory
can be compressed, and under normal operation the fact that main memory is compressed
is relatively transparent to the OS and applications. This approach is made feasible by very
fast hardware compression/decompression of relatively small amounts of data, for example
by using parallel compression with shared dictionaries (see [4], [5]).

In the systems we consider here, the real memory space at any point in time is logically
divided into a sequence of xed size segments (of size 512 or 1024 bytes, for example) which
are the units of compression. The L4 memory controller uses a compression translation table
(shown as the CTT in Fig. 1) as a directory into physical memory to nd the location of
the compressed contents of each such logical unit of real memory. Issues associated with the
design of the L4 directory and the mapping of variable size compressed units of real memory
to storage allocated dynamically in physical memory are discussed in [6].

The L3 line size may in some systems, due to bus latency and bandwidth considerations,
be smaller than the unit of compression (for example, the L3 line size could be 64 or 128
bytes). As discussed in more detail in Section 2, this can have a performance impact on L3
misses and writebacks. The objective of this study is to design an interface between L3 and
L4 which minimizes the penalties due to L3 misses and writebacks of modied L3 lines.

Another issue is guaranteed forward progress, that is ensuring that there is enough free
(unused) physical memory in the L4 so that, at any point in time, it is possible to write
back all modied L3 lines even when these lines result in a lower compression ratio. This
problem is made worse when the L3 line size is dierent than the unit of compression, since
in the worst case, for example, all L3 lines could be modied and reside in dierent units of
compression.

The study is based on trace data, in particular on traces of bus transactions in 4-way
Pentium machines running TPC-C, SAP, and NotesBench workloads. Each trace consists of
approximately 80 million Pentium bus request/response records, and was used to construct
a sequence of L2 misses, L2 writebacks, and processor stores. Reconstructed L3 misses and
writebacks were used to obtain data on dierent L3/L4 interfaces and their eects on miss

{ 2 {

rates to the L4. L2 misses, writebacks, and stores were used to study issues such as writeback
clustering.

Section 2 presents an overview of the system. Section 3 considers methods for reducing
performance penalties due to L3 misses. These include caching of directory entries and main-
taining some amount of data in uncompressed form. Section 4 addresses issues associated
with writebacks. A property of these, distinct to systems with compressed main memory, is
that a writeback of part of the contents of a unit of compression may require that the unit
be decompressed, then modied and recompressed. For this reason we studied the benets
of \batching", i.e. writing back all modied pieces of any given unit of compression. This is
also related to the problem of minimizing the amount of free physical L4 memory required
to guarantee forward progress. Section 5 provides some concluding remarks.

{ 3 {

Figure 1.

{ 4 {

Figure 2.

{ 5 {

2. System Architecture and Simulation Methodology

To obtain our performance results, we simulated systems as illustrated in Figures 3, 4,
and 5. In all cases the unit of compression is logically a 1K segment of the real memory
space, aligned on a 1K boundary; thus four consecutive units of compression aligned on a
4K boundary form a logical real page. In each case the L3 line size is 64 bytes. The fact
that the L3 line size is signicantly smaller than the unit of compression leads to potential
performance problems. For example, a sequence of misses to 64 byte lines in the same 1K
line could require decompressing the same 1K line repeatedly. Conversely, a writeback of a
64 byte line could require decompression of a 1K line in order to make the update, followed
by recompression of the same 1K line. The architectures illustrated by Fig.s 3, 4, and 5 are
designed to alleviate these problems.

In Fig. 3, a partition of memory is set aside to hold recently uncompressed data; this
paritition is referred to as the compression cache. A directory of the contents of the com-
pression cache is maintained in the memory controller; in order to reduce the size of this
directory, sets of 4 1K lines in the same page are stored contiguously. Thus, a directory entry
is required in the memory controller only for the beginning of this 4 line set. Note that in
this design, each line stored in the compression cache is stored twice: once in uncompressed
form, and again outside the compression cache in compressed form.

Fig. 4 illustrates an alternative design in which each logical 1K line of real memory is
stored once, either in compressed or uncompressed form. The lines stored in uncompressed
form consist of some number of recently accessed lines. The directory entries (from the
CTT) for a recently accessed subset are cached in the memory controller. The area shown
as the VUC (\virtual uncompressed cache") in Fig. 4 consists of all lines which are stored
in uncompressed form. The VUC is managed using a FIFO algorithm. For convenience
of illustration, the VUC is shown as a contiguous area, however in practice this set of
lines is stored as sets of four 256 byte sectors allocated randomly throughout memory using
the usual compressed memory system memory management mechanisms, including pair-wise
combining of \fragments", that is, the last partially full sectors used to store each compressed
logical 1K line (for a detailed description, see [6]). The VUC (logical) area can be divided
into two parts: the VCC (\virtual compression cache"), which consists of those logical lines
for which a directory entry is currently cached (in the VCCD, or \VCC directory"), and the
UC (\uncompressed area"), consisting of the remaining uncompressed lines.

Fig. 5 illustrates a potential performance enhancement to the system illustrated by Fig. 4,
in which in addition to the VCC and UC, some (small) number of recently accessed logical
1K lines are saved in uncompressed form in a number of line buers in the memory controller.

In the next section these various system designs will be compared, using the results of
trace-driven analyses to evaluate alternatives.

{ 6 {

Figure 3. Design using \Compression Cache"

{ 7 {

Figure 4. Design using \Virtual Uncompressed Cache" (VUC)

{ 8 {

Figure 5. Design using VUC and Line Buers

{ 9 {

3. Reducing L3 Miss Penalties

To compare the performance of dierent system congurations we designed a trace-driven
simulator. Using this simulator we investigated the behavior of a system with a compression
cache, as well as a system with a virtual compression cache and and uncompressed area as
described in the previous section. In the second system we considered an architecture with
and without line buers.

3.1. System Parameters and Workloads

We make the following assumptions about access times: access to data in the compression
cache takes 10 memory bus cycles, access to data whose CTT entry is cached (in the VCCD)
also takes 10 cycles, and access to data in the uncompressed area takes 20 cycles (since an
additional memory reference is required for CTT lookup). If the data is stored in compressed
form then 90 cycles are needed for decompression. If data is found in the line buers only
one cycle is needed for access.

We simulated a random replacement policy in the CTT cache (VCCD), and the uncom-
pressed area was simulated as a FIFO. Cache directories (the L3 directory and VCCD) were
simulated as 4-way set-associative. In the case of the VCCD, a CTT entry was cached
only for L3 misses but not for L3 writebacks (however both types of accesses caused the
uncompressed data to be saved in the compression cache or VUC).

We used traces from three dierent workloads: TPC-C, NotesBench and SAP. These
traces captured bus trac, and we ltered them so that they contained only L2 misses,
L2 writebacks, and processor stores. Each trace was over 1GB in length, and contained over
80 million trace records. The traces were taken from a 4-processor pentium system. For all
the experiments we ran we assumed a 2:1 compression ratio. We ran simulations for three
dierent L3 cache sizes: 8MB, 16MB, and 32MB.

3.2. Results

The results for the 32MB L3 simulations are shown in Figures 6-11. The rst three graphs
compare the performance of a system with a compression cache to one with a virtual un-
compressed region and a cache of CTT directory entries. For the TPC-C trace, the miss
rate for the system with the compression cache was 67% higher than the miss rate for the
VUC system, and the average memory access time was 30% greater. For the NotesBench
trace, the miss rate of the system with the compression cache was three times the miss rate
of the VUC system, while the access time was 55% greater. For the SAP trace the miss rate
in the system with compression cache was almost 4 times greater than the miss rate for the
VUC system and the access time was 62% greater. In the VUC system, the hits were almost
equally divided between the virtual uncompressed area and the area containing lines whose

{ 10 {

CTT directory entries were cached (36% vs. 37% for TPC-C, 43% vs. 47% for NotesBench
and 48% vs. 44% for SAP).

A simple calculation, as follows, shows that by using the VUC the same amount of physical
memory can be used to store twice as much data in uncompressed form as compared to
the compression cache approach (due to avoiding storing lines twice). First, consider the
compression cache: suppose that M 1K lines are stored (uncompressed) in the compression
cache, that there are N other lines stored outside the compression cache, and that the
compression ratio is 2:1. Then, since each line stored in the compression cache is also stored
in compressed form, the total physical memory required for the M + N distinct lines is, in
1K byte units, M + M=2 + N=2 = (3M + N)=2. Now consider the VUC: using the same
amount of physical memory, 2M lines can be stored in uncompressed form and (N M) lines
stored in compressed form (for the same total of M + N distinct lines), since the amount
of physical memory required in this case is (again in 1K byte units) 2M + (N M)=2 =
(3M + N)=2, as before.

Since twice as much data can be stored uncompressed using the VUC design as compared
to the compression cache, and furthermore at a ner granularity (1K instead of 4K), there is
a signicant increase in the hit ratio to uncompressed data. The situation regarding uncom-
pressed data for which a CTT entry is cached is slightly more complicated. Directory entries
for the compression cache are signicantly smaller than for the VCC, since they are pointers
to data in a xed memory partition; based on calculations of required pointer lengths, we
assume that four times as many directory entries can be cached for the compression cache
as compared to the VCCD (for the same directory entry cache memory size). Furthermore,
in the compression cache the amount of uncompressed data covered by each cached direc-
tory entry is four times larger (using the compression cache, each cached directory entry
is for a logical real page, that is a set of four consecutive uncompressed lines aligned on
a 4K real memory address, whereas in the VUC design each cached directory entry is for
an uncompressed 1K line); the result is 16 times more addressability for the compression
cache directory. On the other hand, the granularity at which uncompressed data is cached is
smaller in the VCC. The end result, as seen in Figures 6-8, is that although there is in fact a
smaller hit ratio to the VCC than to the compression cache, this is more than oset by the
signicantly decreased miss rates to uncompressed data: as described above, average mem-
ory access times (for the 32MB L3 case) are from 30% to 62% larger using the compression
cache approach as compared to those obtained using the VUC design.

In the next set of Figures (9-11) we show the performance of a VUC system with an
additional 8K of line buers. The miss rate is the same as the miss rate in the VUC system
without line buers, since the hits to the line buer result in an equal decrease in hits to the
VCC. However, since line buer hits take only one cycle (as opposed to 10 cycles for VCC
hits), the average memory access times decreases slightly as shown in the Figures.

{ 11 {

Figure 6.

{ 12 {

Figure 7.

{ 13 {

Figure 8.

{ 14 {

Figure 9.

{ 15 {

Figure 10.

{ 16 {

Figure 11.

{ 17 {

4. Reducing L3 Writeback Penalties

In the previous sections we described some of the problems that arise in a system with main
memory (L4) compression when the L3 line size is smaller than the unit of compression in
L4. In this section we discuss how this can result in additional compression/decompression
trac, and how use of a technique in which writebacks are \batched" can alleviate these
problems. In addition, we will show how using batched writebacks decreases the amount
of free space that must be reserved to guarantee forward progress, and how the structures
needed to support batched writebacks can provide an estimate of the free space required.

4.1. Batched Writebacks

In the systems shown in Figures 4-5, writebacks may have some eects not seen in sys-
tems without main memory compression. First, a writeback of a 64-byte line from the L3
may require that the corresponding 1K line be decompressed. This will result in additional
compression/decompression trac in the system. One possible solution is to batch L3 write-
backs. This can be done as follows: each time a 64-byte line is written back from the L3 due
to a castout, all other 64-byte pieces of the 1K line that are currently present and modied
in the L3 are also written back. This can be done either by snooping the L3 to nd all the
64-byte pieces of the 1K line, or by maintaining a dual size directory. Logically, the dual
size directory can be thought of as a combination of the usual L3 cache directory for 64
byte lines, together with an additional directory of 1K lines in which each entry contains 16
bits, one for each 64-byte piece of the 1K line (in an actual design, the logical function of
the 1K directory can be realized without implementing a second full directory, but instead,
for a 4-way set-associative L3 directory for example, providing a mechanism for reading in
parallel 16 sets of 4 tags, and then using a 64-way content addressable memory to compare
the appropriate elds of these 64 tags with the address of a 1K line, yielding a bit-vector
of length 64 which species the \pieces" of the 1K line currently contained in each of the
corresponding 16 sets of the 64-byte line L3 directory). If the 64-byte piece is present and
modied in the L3, then the corresponding bit is set in the (logical) 1K line size directory.
When a writeback from L3 occurs, the system (logically) checks the directory entry associ-
ated with the 1K line that contains the L3 line to be written back, and performs a writeback
of all modied 64-byte pieces of that line.

We simulated a system with batched writebacks. In Figures 12-14 we show the results for
this system and compare the hit and miss ratios to the VCC and UC with those of a system
without batched writebacks. Here, a miss to the VUC can occur due to an access associated
with an L3 miss or an L3 writeback. For all three workloads, the miss ratio is slightly lower
for the system with batched writebacks. This is not surprising since fewer misses occur on
writebacks. The reason for this is that in the system without batched writebacks, each time
a writeback occurs, if the corresponding 1K line is stored in memory in compressed form,
the line must then be decompressed to perform the writeback. In a system with batched

{ 18 {

writebacks, if the line is compressed, then it is decompressed once and multiple writebacks
occur. The average number of writebacks that occur on an L3 castout is shown in Figure 15
for three dierent L3 sizes. The VCC hit rate of the system with batched writebacks is also
slightly higher than for a system without batched writebacks. The reason for this is that
there are fewer total references, but the number of hits to the VCC remains the same for L3
misses while decreasing slightly for L3 writebacks. (As mentioned in Section 3, if a miss to the
uncompressed region occurs on an L3 writeback, that line is decompressed, but its directory
entry is not cached. Therefore, the number of hits to the VCC caused by writebacks is small
compared to the number of hits to the VCC caused by L3 misses). One possible disadvantage
of batched writebacks is that a line may be written back more than once if it is modied
between the times it is written back (in practice, for the type of compressed memory system
architectures we are consdidering here, this will not be a peformance problem, since no extra
compression/decompression work is required for batching writebacks, and as we have seen
earlier compression/decompression times are the dominant factor for L4 access times). To
measure this eect, we calculated the total number of writebacks in a system with batched
writebacks, and compared that to the number of writebacks in a system without batched
writebacks. For a 32MB L3, the ratios are 1.95 for TPC-C, 2.08 for NotesBench, and 4.89
for SAP.

4.2. Guaranteed Forward Progress

A writeback from L3 may result in an expansion of memory contents due to changes in
compressibility. If the writeback goes to a line in the uncompressed area, no immediate
expansion occurs; however, since there is a dierence in line size between L3 and the unit of
compression, writebacks from the L3 can in the worst case each occur to a dierent L4 1K
line and potentially cause a loss of compression for each such 1K line. The latter is signicant
for purposes of control since the system needs to maintain sucient free space in L4 physical
memory to guarantee forward progress in the worst case in which all modied L3 lines are
written back and cause a loss of compression (i.e. avoid crashes due to insucient space for
cache writebacks).

Using batched writebacks can reduce the amount of free space that must be reserved in the
system to handle this situation, since the number of modied lines in the L3 will be smaller
at any given time for a system with batched writebacks. The results of our simulation show
that in a 32MB L3, on average, the number of modied 1K lines in a system without batched
writebacks is about 52,000 for NotesBench, 62,000-64,000 for SAP, and up to 100,000 for
TPC-C. In contrast, with batched writebacks, these numbers are reduced by a factor of two
or more (26,000 modied 1K lines in the L3 for NotesBench, 24,000 for SAP, and 46,000
for TPC-C). In addition, the (logical) dual size directory (as described above), which \keeps
track" of modied 1K lines in the L3, can also be used to calculate the amount of free space
that should be maintained in L4 to guarantee forward progress.

{ 19 {

Figure 12.

{ 20 {

Figure 13.

{ 21 {

Figure 14.

{ 22 {

Figure 15.

{ 23 {

5. Conclusion

Compressed memory systems, in which compression and decompression take place automati-
cally to and from main memory as a result of cache writebacks and misses, oer the potential
to provide a real memory space that is 2-3 times the physical main memory size (these are
in fact typical compression ratios) with very little increase in system cost. In this approach,
unlike designs based on decompression on page faults for example, under normal operation
there is no additional software overhead due to the memory compression architecture (the
operating system need only respond to signicant changes in overall compressibility, decreas-
ing the logical real memory space if compression becomes worse for example, or conversely
adding more logical real memory if compression improves { early experience indicates that
for a given workload, compressibility tends to be stable). Therefore, since the overall sys-
tem performance, to a rst approximation, is largely determined by the processor speeds,
cache access times, and cache hit-ratios, it is to be expected that the use of a compressed
memory system architecture of this general type will have performance similar to that of a
far more costly non-compressed memory system with 2-3 times the main memory size of the
compressed memory system.

However, when the cache line size of the lowest-level cache above main memory has a line
size that is dierent than the unit of compression, there is a potential for some performance
problems. For example, a sequence of cache misses to cache lines residing in the same unit
of compression could require repeated decompressions of the same main memory data.

Here, we have used trace-driven analyses to investigate these issues, and studied several
alternative designs for improving performance. These include the \compresssion cache"
approach, the virtual uncompressed cache (VUC) design (including a memory controller
cache for CTT, that is main memory directory, entries), and the use of memory controller
line buers to hold a small amount of recently uncompressed main memory data. In terms
of memory access times, signicant improvement is seen using the VUC design as compared
to the compression cache, and a small additional improvment is provided by the use of line
buers.

Related problems in the case that the cache line size is dierent than the unit of compres-
sion are due to cache writebacks. Just as a sequence of cache misses residing in the same
unit of compression could require repeated decompressions of the same main memory data,
a sequence of writebacks residing in the same unit of compression could require repeated
decompressions and also subsequent re-compressions of the same main memory unit of com-
pression. As in cache misses, this eect is greatly reduced by the use of the VUC design
(together with, optionally, line buers). However, there is now an additional optimization
that can be made, since all modied cache lines residing in the same unit of compression can
be found from the cache directory (using a logical \dual size directory", which in practice
could be implemented as a single cache line size directory with additional logic allowing all
cache lines residing in the same unit of compression to be found in the time taken for one
cache directory access); this allows all such modied lines to be grouped and written back

{ 24 {

together, that is, writebacks can be batched. Trace-driven analyses showed that the use
of this technique leads to reduced VUC miss rates, which results in a further reduction of
memory access times. An additional eect is increased VCC hit rates (that is, that part
of the VUC for which CTT entries are cached), which also contributes to the performance
improvement.

Batched writebacks can also alleviate problems associated with maintaining enough free
space in the compressed main memory to guarantee forward progress (that is, to guarantee
that all modied cache lines could be written back even if every such line caused a decrease
in compressibility). This is simply because batching writebacks results in fewer modied
cache lines: for the traces of this study, the number of modied cache lines was reduced by
a factor of two or more.

Finally, although at the current time it is dicult to quantify, the VUC approach has
certain properties that could prove to be valuable from the standpoint of a robust system
design. Since the VUC is a logical entity (the storage used for the VUC consists of a number
of sectors taken from the same pool as that used to store compressed data), as opposed
to a memory partition for example, it may be designed so that its size varies dynamically
without requiring memory reorganization. This has two eects: (1) workloads generating
highly compressible data can gain a performance benet from a larger VUC made possible by
the high degree of compression; (2) when free space in main memory (required to guarantee
forward progress, as previously discussed) runs low, decreasing below a threshold for example,
then prior to initiating OS action, additional free space can be generated by dynamically
decreasing the size of the VUC; similarly, given an excess of free space, the VUC size can be
increased; thus in many cases it may be possible to adapt to changes in compressibility with
no software OS interaction at all, that is entirely by hardware means.

Acknowledgments: the authors gratefully acknowledge the assistance of Dan Colglazier,
Mike Wazlowski, Chuck Schulz, Scott Clark, and Basil Smith in the work described here.

{ 25 {

References

[1] Kjelso, M., Gooch, M., and Jones, S. Performance evaluation of computer architectures
with main memory data compression. Journal of Systems Arch. 45, 571-590, 1999.

[2] MacDonald, J. R., Dutton, D., and Cox, S. Memory paging system and method in-
cluding compressed page mapping hierarchy. U.S. Patent 5,696,927, Advanced Micro
Devices Inc., Dec. 9, 1997.

[3] Douglis, F. The compression cache: using on line compression to extend physical mem-
ory. In Proc. Winter 1993 USENIX Conf., pp. 519-529, USENIX Assoc., 1993.

[4] Franaszek, P., Robinson, J., and Thomas, J. Parallel compression with cooperative
dictionary construction. In Proc. DCC '96 Data Compression Conf., pp. 200-209, IEEE,
1996.

[5] Franaszek, P., Robinson, J., and Thomas, J. Parallel compression and decompression
using a cooperative dictionary. U.S. Patent 5,729,228, International Business Machines
Corp., Mar. 17 1998.

[6] Franaszek, P., and Robinson, J. Design and analysis of internal organizations for com-
pressed random access memories. Research report RC 21146, IBM Watson Res. Ctr.,
Yorktown Hts., NY, October 20, 1998.

{ 26 {

