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Abstract

We develop and experiment with new upper bounds for the constrained

maximum-entropy sampling problem. Our partition bounds are based

on Fischer's inequality. F urther new upper bounds combine the use of

Fischer's inequality with previously developed bounds. We demonstrate

this in detail by using the partitioning idea to strengthen the spectral

bounds of Ko, Lee and Queyranne and of Lee. Computational evidence

suggests that these bounds may be useful in solving problems to opti-

mality in a branch-and-bound framework.
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Introduction

The constrained maximum-entropy sampling problem is an important problem
in the design of experiments. For example, such problems arise in the design of
monitoring networks (see Ko, Lee and Queyranne [KLQ95] and the references
therein). Let C be an n � n real symmetric positive de�nite matrix with
row (and column) indices N = f1; 2; : : : ; ng. For S; T � N , we let C[S; T ]
denote the submatrix of C with row indices S and column indices T . We let
detC[S; S] denote the determinant of the principal submatrix C[S; S], with
the convention that detC[;; ;] = 1. Let s be an integer satisfying 0 < s � n.
Let M be a �nite index set. Let the aij and bi be real numbers, for i 2M and
j 2 N . The constrained maximum-entropy sampling problem is to solve

z :=max
S�N:

jSj=s

ln det C[S; S] ; (1)

subject to
X
j2S

aij � bi ; 8 i 2M : (2)

In the context of the design of experiments, C is a covariance matrix of
a set of Gaussian random variables, and, up to some constants, ln det C[S; S]
is the entropy of the set of random variables associated with S. So the
constrained maximum-entropy sampling problem amounts to �nding a most-
informative s-subset of a set of n Gaussian covariates, subject to some side
constraints.

The constrained maximum-entropy sampling problem is already NP-Hard
in the important special case with M = ;. Exact algorithms are based on the
branch-and-bound framework (see [KLQ95]). One upper bound for z is the
spectral bound

v :=
sX

l=1

ln �l (C) ; (3)

where �l denotes the l
th greatest eigenvalue (see [KLQ95]). This bound does

not take advantage of the side-constraints (2). Lee [Lee98] strengthened this
bound, taking advantage of the side-constraints, using a Lagrangian method-
ology. Speci�cally, Lee introduced the Lagrangian spectral bound

v(A; b) := min
w2RM

+

v(A; b; w) ; (4)

where

v(A; b; w) :=

sX
l=1

ln �l(DwCDw) +
X
i2M

wibi ; (5)
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and

Dw := diagj

(
exp

(
�
1

2

X
i2M

wiaij

))
: (6)

Lee demonstrated that v(A; b; w) is convex in w, and he described descent
methods for calculating the minimizing w in (4).

Other bounds are based on convex-programming formulations (see [AFLW96,
AFLW99, Lee00]).

Branching consists of �xing an index j out of the solution (deleting row
and column j of C) or �xing an index j in to the solution (pivoting in C on
Cjj, decrementing s by one, and decreasing each bi by aij. Lower bounds for
fathoming are determined by heuristic search methods. See [KLQ95, Lee98,
AFLW96, AFLW99] for more details.

In [AFLW96, AFLW99], we described how di�erent bounds can be cal-
culated by considering a \complementary problem" (when C is nonsingular).
Speci�cally, since

ln det C[S; S] = ln det C + ln det C�1[N n S;N n S]

(see for example [HJ85], Section 0.8.4 (\Minors of the inverse"), p. 21), we
have the complementary problem

z = ln det C + max
NnS�N:

jNnSj=n�s

ln det C�1[N n S;N n S] ;

subject to
X

j2NnS

(�aij) � bi �
X
j2N

aij ; 8 i 2M :

We can calculate a bound with respect to choosing the n�s element set N nS
for this problem, and then just add ln det C to that bound. We note that
the spectral bound for the complementary problem is always identical to the
spectral bound for the original problem; but this is not the case for other
bounds.

In Section 1, we develop new upper bounds based on Fischer's inequal-
ity. In Section 2, we demonstrate how to combine the use of Fischer's in-
equality with previously developed bounds. We demonstrate this in detail
by strengthening the spectral bounds of Ko, Lee and Queyranne and of Lee.
Computational experiments suggest that these bounds may be useful in solving
problems to optimality in a branch-and-bound framework.
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1 Partition Bounds

We base new methods for computing upper bounds on the following inequality
of Fischer.

Lemma 1 ([Fis08] pp. 36{7; also see [HJ85] pp. 478{9: Theorem
7.8.3 and the exercise that follows it). Let B be a square symmetric

positive-semide�nite matrix with rows and columns indexed from the cardinal-

ity s set S�. Let S1; S2; : : : ; Ss be a partition of S� (note that we allow empty

parts for convenience). Then

detB �
sY

k=1

detB[Sk; Sk] : (7)

A sequence of re�nements of the partition yields a nondecreasing sequence of
upper bounds on detB.

Let � = f�1; �2; : : : ; �sg be a \partition" of s; that is, a multiset of non-
negative integers such that

Ps
k=1 �k = s. We introduce the partition bound

 (�) :=max
sX

k=1

ln det C[Sk; Sk] ; (8)

subject to Sk � N ; 8 k = 1; 2; : : : ; s ; (9)

jSkj = �k ; 8 k = 1; 2; : : : ; s ; (10)

Sk \ Sk0 = ; ; 8 1 � k < k0 � s ; (11)
sX

k=1

X
j2Sk

aij � bi ; 8 i 2M : (12)

We note that when � = fs; 0; 0; : : : ; 0g, we have z =  (�). Next, we establish
that the partition bound is in fact an upper bound on z.

Proposition 1 z �  (�).

Proof: Suppose that S� is an optimal solution to (1{2). So z = ln det C[S�; S�].
Choose any partition S = fS1; S2; : : : ; Ssg of S� satisfying (10); the conditions
(9,11) are obviously satis�ed. Moreover,

sX
k=1

X
j2Sk

aij =
X
j2S�

aij ;
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so (12) is satis�ed. Therefore, S is a feasible solution to the program (8-12).
Now, applying Fischer's inequality (7) to B = C[S�; S�], and considering the
monotonicity of the logarithm, the result follows. �

Next, we focus on situations where we can compute  (�) eÆciently |
either in a practical or theoretical sense. The simplest such situation is based
on the �nest partition, where we take � = f1; 1; : : : ; 1g. In this case, we can
recast the diagonal bound  1 :=  (�) as the optimal value of the following
integer linear program:

 1 =max
X
j2N

(ln Cjj)xj ;

subject to
X
j2N

xj = s ;

X
j2N

aijxj � bi ; 8 i 2M ;

xj 2 f0; 1g; 8 j 2 N :

General methods of integer linear programming can be applied to solve this
bounding program (see [NW88]). When M = ;, we obtain

 1 =
sX

l=1

ln C[ll] ;

where C[ll] is the l
th greatest diagonal element of C. So when M = ;, we can

calculate  1 eÆciently in the theoretical sense.

Example 1 Let n be even, and let s := n=2. Let the nonzeros of C consist of

the n=2 diagonal blocks�
C2l�1;2l�1 C2l�1;2l

C2l;2l�1 C2l;2l

�
:=

�
1 1
1 1

�
;

for l = 1; 2; : : : ; n=2. It is easy to check that with M = ;, we have z =  1 = 0,
while v = ln 2n=2. So here the diagonal bound is much better than the spectral

bound.

Example 2 Let C := �In + 1n�n, with � > 0. Clearly  1 = ln (1 + �)s, which
tends to 0 as � ! 0+. It is an exercise to check that v = ln (n + �)�s�1 and

z = ln (s + �)�s�1 which both tend to �1 as � ! 0+. So here the spectral

bound is much better than the diagonal bound.
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Another situation that we can exploit is when � = f2; 2; : : : ; 2; 0; 0; : : : ; 0g
for even s and � = f2; 2; : : : ; 2; 1; 0; 0; : : : ; 0g for odd s. Again, we can recast
this matching bound as the optimal value of an integer linear program. We let
N2 be the set of all subsets T of N satisfying jT j = 2. For all T � N2, we
de�ne binary variables yT . The form of the program depends on the parity of
s. If s is even, then our bound  2 :=  (�) is

 2 =max
X
T2N2

(ln det C[T; T ]) yT ;

subject to
X
T2N2

yT = s=2 ;

X
T2N2 :

j2T

yT � 1 ;8 j 2 N ;

X
T2N2

0
@X

j2T

aij

1
A yT � bi ; 8 i 2M ;

yT 2 f0; 1g; 8 T 2 N
2 :

General methods of integer linear programming may be applied to solve
this bounding program. Constrained maximum-entropy sampling problems
are already quite diÆcult at n = 100, so this approach might be quite rea-
sonable. We note that for the important case in which M = ;, there is a
theoretically-eÆcient algorithm for solving this program. We simply de�ne a
complete graph with vertex set N and edge set N2. For edge T 2 N2, we as-
sign weight ln det C[T; T ]. Then we simply �nd a maximum-weight matching
having cardinality s=2, hence the moniker \matching bound".

If s is odd, we de�ne additional binary variables xj, for j 2 N . In this
case, we calculate our bound by solving the integer linear program

 2 =max
X
j2N

(ln Cjj) xj +
X
T2N2

(ln det C[T; T ]) yT ;

subject to
X
j2N

xj = 1 ;

X
T2N2

yT = (s� 1)=2 ;

xj +
X

T2N2 :

j2T

yT � 1 ;8 j 2 N ;
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X
j2N

aijxj +
X
T2N2

0
@X

j2T

aij

1
A yT � bi ; 8 i 2M ;

xj 2 f0; 1g; 8 j 2 N ;

yT 2 f0; 1g; 8 T 2 N
2 :

Again, when M = ;, we can recast this program using matchings. We start
with the same graph as before, but now we incorporate an additional vertex
0. We join vertex 0 to each other vertex j 2 N . Then, for each j 2 N , we give
weight K + ln Cjj to the edge f0; jg, for suÆciently large K. Then, we again
�nd a maximum-weight matching having cardinality s=2. For large enough
K, the optimal weight matching will include exactly one of the edges meeting
vertex 0. The optimal weight for this matching will exceed  2 by exactly K.

Example 3 Continuing with the matrix from Example 2, we calculate  2 =
ln (2� + �2)s=2 which tends to �1 as � ! 0+. So here the matching bound

is much better than the diagonal bound. Furthermore, holding � constant (at
some small positive value), and letting n increase, we can make the matching

bound do much better than the spectral bound as well.

Although  2 is harder to calculate than  1, we do have  2 �  1, so it may
be worth the extra e�ort, in the context of branch-and-bound, to calculate  2.

We performed some computational experiments using environmental mon-
itoring data (see [KLQ95]). In the tables, the \bars" indicate bounds applied
to the complementary problem. The �rst problem has n = 48 and no side
constraints. In Table 1 we display the gaps (i.e., upper bound minus optimal
entropy)  k � z and � k � z. This gives an indication of the behavior of the
partition bound  k and the complementary partition bound � k as k increases.
For small values of k, we can observe how  k (resp. � k) does better than
� k (resp.  k) when s is small (resp. large) relative to n. Unfortunately, the
improvement in the bound is often rather slight as k increases, while the dif-
�culty in calculating the bound grows very quickly. We note that experience
has shown that a gap of up to perhaps 3 indicates that a problem might be
solved to optimality by branch-and-bound within a reasonable amount of time.

Table 2 compares these partition bounds to previous bounds for a data
set having n = 124; \Id,Di,Tr" refer to particular parameter choices for some
convex-programming bounds (see [AFLW99]) . We note that for s not too
small nor too large, these problems are beyond our current capability to solve,
so we have tabulated bounds rather than gaps. For this data set,  2 (resp.
� 2) o�ers no signi�cant improvement over  1 (resp. � 1). Furthermore, for
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small (resp. large) values of s,  1 (resp. � 1), which is very cheap to compute,
is competitive with the other bounds.

 k � z s = 12 s = 24 s = 36

k = 1 2:960525 6:346888 11:544246

k = 2 2:683129 6:208118 11:335711

k = 3 2:298198 5:915404 10:871107

� k � z s = 12 s = 24 s = 36

k = 1 4:180991 2:372326 0:716902

k = 2 4:180985 2:372316 0:716723

k = 3 4:180968 2:372173 0:712107

Table 1: Gaps (n = 48)

s = 10 20 30 40 50 60 70 80 90 100 110 120

 1 = 44:21 81:45 116:15 149:08 180:55 210:37 237:55 262:83 285:32 303:53 316:93 326:84
 2 = 44:21 81:45 116:15 149:08 180:55 210:37 237:55 262:83 285:32 303:53 316:93 326:84
� 1 = 290:12 293:06 291:39 286:14 277:95 267:12 253:88 237:72 217:31 191:56 160:27 122:15
� 2 = 290:12 293:06 291:39 286:13 277:95 267:12 253:87 237:70 217:30 191:54 160:23 122:12
Id = 47:23 92:25 136:30 179:18 220:62 260:21 297:36 331:15 359:97 380:65 385:18 337:13

Id = 470:81 490:05 478:64 454:27 422:68 386:47 347:06 305:28 261:69 216:66 170:47 123:30
Di = 63:89 118:57 167:33 210:72 250:84 287:90 321:88 352:40 378:13 395:44 395:35 337:95

Di = 339:16 370:54 375:75 370:41 359:03 343:66 324:58 299:97 269:12 231:78 186:36 130:63
Tr = 52:08 98:13 140:33 180:55 219:16 255:87 290:14 321:12 347:29 365:47 367:81 319:11

Tr = 358:40 387:92 390:61 382:37 368:17 349:62 327:09 298:42 263:67 223:61 178:50 127:16
v = 50:35 90:57 124:08 151:67 173:51 189:90 198:75 199:76 193:85 180:41 159:64 125:40

Table 2: Bounds (n = 124)

2 Spectral Partition Bounds

Let N = fN1; N2; :::; Nng denote any partition of N (since the partition has n
parts, we are allowing, for convenience, empty parts). For k = 1; 2; : : : ; n, let
�(Nk) be the multiset of jNkj eigenvalues of C[Nk; Nk]. Let �(N ) denote the
multiset union of jN j = n elements from the sets �(Nk). For a multiset �(�),
�l(�) denotes the l

th greatest element. We de�ne the spectral partition bound

�(N ) :=
sX

l=1

ln �l(N ) : (13)

Proposition 2 z � �(N ).
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Proof: Let S be any subset of N having cardinality s.

ln det C[S; S]

�
nX

k=1

ln det C[S \Nk; S \Nk] (14)

=
nX

k=1

X
�2�(S\Nk)

ln � (15)

�
nX

k=1

jS\NkjX
l=1

ln �l(Nk) (16)

�
sX

l=1

ln �l(N ) : (17)

We note that the inequality (14) holds by Fischer's inequality (7), the
equation (15) holds since the product of all eigenvalues of a matrix is its
determinant, the inequality (16) holds by the eigenvalue interlacing inequalities
(see, for example, [HJ85] pp. 185{6: Theorem 4.3.8; also see [KLQ95]), and
the inequality(17) holds by allowing S to range over subsets of N having
cardinality s. �

We note that

� �(fN; ;; ;; : : : ; ;g) = v (thus subsuming the bound of [KLQ95]);

� �(ff1g; f2g; : : : ; fngg) =  1 .

Next, we demonstrate a revealing situation in which neither of these two par-
titions is best possible.

Example 4 Let s := n=2, and let S := f1; 2; : : : ; n=2g; so N n S = fn=2 +
1; n=2+2; : : : ; ng. Let C[S; S] := nIs+1s�s, let C[N�S;N�S] := (3n=4)Is+
1s�s, and let C[S;N n S] := C[N n S; S] := 0s�s. It is an exercise to check

that �(S) = f3n=2; n; n; : : : ; ng, �(N �S) = f5n=4; 3n=4; 3n=4; :::; 3n=4g, and
obviously �(N) = �(S) [ �(N � S). Therefore v = �(fN; ;; ;; : : : ; ;g) =
�(fS;N nS; ;; ;; : : : ; ;g) = ln (3n=2)(5n=4)nn=2�2 ; note that we picked up the
5n=4 from �(N�S). We also have �(ff1g; f2g; : : : ; fngg) =  1 = ln (n+1)n=2

; note that we did not pick up any of �(N � S), but the bound is deteriorated

by chopping up S and using Fischer's inequality. Finally, we observe that

�(fS; fn=2+1g; fn=2+2g; :::; fngg) = ln det C[S; S], since all of the diagonal
entries of C[N � S;N � S] are 3n=4 + 1, which is less than all eigenvalues of
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C[S; S]. So this last partition establishes that S has maximum entropy, while

the other partitions mentioned above do not.

Example 4 suggests the following suÆcient optimality criterion.

Proposition 3 Let S be a feasible subset of N . If

�s(S) � maxfCjj : j 2 N n Sg;

then z = ln det C[S; S].

Proof: We simply observe that under the hypothesis we have �(fS; fs +
1g; fs + 2g; :::; fngg) = ln det C[S; S]. �

Next, we turn to the issue of �nding the best partition N . That is,

MIN� : minf�(N ) : N is a partition of Ng:

As we do not know a good algorithm for MIN�, we suggest a heuristic
which is outlined in Figure 1. We experimented with the heuristic of Figure 1
on an example from [AFLW99] having n = 63; s = 31. For the local-search of
Step 2, we repeatedly evaluated the spectral bound for O(n2) \nearby parti-
tions" and selected the move that achieved the best improvement. Speci�cally,
we considered the moves described in Figure 2. At a �rst pass, we just used
the single-element moves 2a until no further improvement was possible. Then
we proceeded further using 2a{d. We worked with the complementary prob-
lem as well as the original. The results are displayed in Table 3. Since we
have the optimal value from [AFLW99], we have subtracted that value from
the bounds to obtain the gaps. The �rst row consists of the gaps after Step 1.
The second row consists of the gaps after all 2a moves were completed. The
third row consists of the gaps after all 2a{d moves were completed. Also, for
Step 1a, since we wish to see how the bounding idea performs when we have an
extremely good heuristic for �nding an S with high entropy, we actually used
an optimal S. The results are exceptionally good. The best bound obtained
(2.521062) is much better than the ordinary spectral bound (v = 5:707025)
and also signi�cantly better than the best bound obtained ( � 1 = 3:252440)
without applying the local search procedure indicated in Step 2. In addition,
our results suggests that our particular local search moves (see Figure 2) are
rather robust, since the �nal bound obtained from local search procedure does
not depend very much on the initial partition selected in Step 1. Finally, we
mention that for the best bound obtained (i.e., ��(N ) starting with 1b), the
�nal partition had block sizes of: 3, 4, 4, 5, 5, 7, 9, 11, 15.
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1a. Use heuristic methods to �nd an S � N , jSj = s with a high value
of ln det C[S; S] (e.g., greedy and interchange heuristics for the
problem are discussed in [KLQ95]); then take the initial partition
N = fS; fj1g; fj2g; :::; fjn�sgg, where N n S = fj1; j2; : : : ; jn�sg
(and use Proposition 3 to attempt to establish the optimality of
S).

1b. Alternatively, we could try the initial partition N = fN; ;; ;;
: : : ; ;g which would guarantee that we do no worse than the spec-
tral bound v.

1c. Alternatively, we could try the initial partition N = ff1g; f2g;
: : : ;fngg which would guarantee that we do no worse than the
diagonal bound  1.

2. Use a local search method on the space of partitions, to decrease
�(N ).

Figure 1: MIN� Heuristic

2a. (single-element move) j 2 Nk, l 6= k: Nk  Nk� j , Nl  Nl+ j .

2b. (two-element switch) j 2 Nk, i 2 Nl, l 6= k: Nk  Nk � j + i,
Nl  Nl � i+ j .

2c. (one new two-block or two new one-blocks) j 2 Nk, i 2 Nl, i 6= j,
Nh = ;, Ng = ;: Nk  Nk � j, Nl  Nl � i, Nh  Nh + i,
Ng  Ng + j .

2d. (merge two blocks) k 6= l: Nk  Nk [Nl, Nl  ; .

Figure 2: Local Search Moves

The spectral partition bound does not take advantage of the side-constraints.
We can improve the spectral partition bound by adapting the Lagrangian

10



original complementary
1a 1b 1c 1a 1b 1c

1 5:512078 v = 5:707025  1 = 7:924975 3:352356 v = 5:707025 � 1 = 3:252440
2a 4:576737 4:579252 5:060646 2:655492 2:607664 2:629423
2a{d 4:576737 4:579252 4:577380 2:630182 2:521062 2:627294

Table 3: Gaps using local search (n = 63; s = 31)

methodology employed in [Lee98]. As before, we consider a partition N =
fN1; N2; :::; Nng of N and de�ne the diagonal matrix Dw by (6). Now we
let �(Nk; A;w) denote the multiset of jNkj eigenvalues of (DwCDw)[Nk; Nk]
and �(N ; A;w) denote the multiset union of jN j = n elements from the sets
�(Nk; A;w). We introduce the Lagrangian spectral partition bound

�(N ; A; b) := min
w2RM

+

�(N ; A; b; w) ;

where

�(N ; A; b; w) :=
sX

l=1

ln �l(N ; A;w) +
X
i2M

wibi :

Following the ideas in [Lee98], we can demonstrate the following results.

Proposition 4 z � �(N ; A; b).

Proposition 5 The function �(N ; A; b; w) is convex in w.

Also, again adapting an idea in [Lee98], we can derive an expression for
subgradients of �(N ; A; b; w).

Finally, we mention that although we chose to concentrate on spectral
bounds, other bounds (for example, those in [AFLW96, AFLW99, Lee00]) can
also be strengthened using the partitioning idea and Fischer's inequality. We
will discuss experiments with some of these possibilities in a forthcoming paper
in which we report on results of incorporating our new bounds in a branch-and-
bound code for the exact solution of constrained maximum-entropy sampling
problems.
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