
RC 21694 (97736) 03/20/2000
Computer Science / Mathematics 10 pages

IBM Research Report

A Shearing Layers Approach to
Information Systems Development

daviding@ca.ibm.comsimmonds@us.ibm.com
NY 10964-8001, USAYorktown Heights, NY 10598
Route 9W, PalisadesPO Box 704

IBM Advanced Business InstituteIBM T J Watson Research Center
David IngIan Simmonds

LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted is accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/CyberDig.nsf/home. Copies may requested from IBM T.J. Watson Research Center, 16-220, P.O.
Box 218, Yorktown Heights, NY 10598 or send email to reports@us.ibm.com.

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

ABSTRACT

In this paper we respond to the observation that systems are
subjected to qualitatively different scales and rates of
change, and should consequently be constructed to adapt in
"shearing layers." This observation applies equally to social
systems such as business (or other) enterprises, and to the
software systems that they use.

Our response is multifaceted, concerned with three
different objects of design: the design of two kinds of
organization; the functional design of software applications
to support those organizations; and the implementation of
those applications as software. The two relevant kinds of
organization are large information systems services
organizations, and the organizations that use their services.
When an organization is designed to respond to change it is
called an adaptive enterprise. Software so designed is called
adaptable software.

Among these three forms of design, this paper focuses on
the middle one. We propose constructs called "agents" and
"conversations" as means for reasoning about the functional
design of adaptable software. The bridge to organization
design comes from determining which people should engage
in what conversations to achieve what forms of learning. The
bridge to software implementation comes from determining
how to deploy each conversation within available
middleware and other technologies.

We do not wish to claim that shearing layers is a new
phenomenon in information system development. Indeed, we
present examples of practices consistent with this approach.
Rather, we seek to name the phenomenon, present theory
that embraces that phenomenon, and demonstrate how we
are applying that theory within our ongoing work. As a
result, this paper can be seen as a source not only of newly
explicit requirements on software engineering, but also of
some possible solutions.

1. BACKGROUND

Blame for the systems development crisis has been laid
at the feet of the creators of development methods, tool
builders, analysts, designers, and implementors. But we
suggest that the problem may, instead, lie in an
incorrect goal set that we all have accepted from the
outset that is the idea that systems should support
organizational stability and structure, should be low
maintenance, and should strive for high degrees of user
acceptance.

Truex, Baskerville and Klein, 1999 [40]

1.1 Adaptive Enterprises need Adaptable Software

In his book Adaptive Enterprise [20], Haeckel points to the
effect on the strategy of a business enterprise of the
increasingly frequent unpredictable, discontinuous changes
that occur in the environments in which it operates. How
many enterprises predicted the rise of the World Wide Web
and e-commerce? How many software companies made this
prediction?

The kinds of change observed by Haeckel and others are
more than a temporary phenomenon. They are a
consequence of the very moral foundations of commercial
life. As Jane Jacobs has pointed out [25], the moral precepts
that govern commercial life require that commercial
organizations use initiative and enterprise in promoting
comfort and convenience for their customers, and that in
doing so they be thrifty, efficient and industrious. In other
words, they are morally driven to actively seek to change
(improve) what they do for their customers and how they go
about doing it.

Above all else, frequent and disruptive technological,
regulatory, political or competitive changes lead customers
to reconsider just what they consider to be of value. As such
they render traditional "predict and plan" approaches to
business and information technology strategy not only
inadequate, but downright dangerous to the long term health
of any enterprise offering them products or services.

The only possible alternative, in Haeckel's opinion, is to
focus strategic thinking on the design of an adaptive,
learning organization. Haeckel suggests that organizational

1

A Shearing Layers Approach to
Information Systems Development

daviding@ca.ibm.comsimmonds@us.ibm.com
NY 10964-8001, USANY 10532, USA
Route 9W, Palisades30 Saw Mill River Road, Hawthorne

IBM Advanced Business InstituteIBM T J Watson Research Center
David IngIan Simmonds

learning and adaptivity are optimized when they are focused
on two things [20]. Firstly, there should be constant inquiry
into what customers consider to be of value. This requires
that, at the very least, customer relationships be designed to
ensure learning. Secondly, there should be constant inquiry
into what organizational capabilities the enterprise must
develop, informed by an understanding of what customers
consider to be of value.

But while enterprises and their people may seek to
become ever more adaptive, software is at best adaptable.1

Adaptive enterprises need information system development
processes that ensure that changes are made not only in a
timely manner but are a creative response to changes both in
organizational needs and technological possibilities.
However these engineering approaches are still missing.

Note that adaptation is doubly interesting to an
information systems (IS) organization. On the one hand,
since the environments in which its customers operate are
undergoing rapid discontinuous change, the IS organization
needs to be able to rapidly adapt its customer's computer
systems in response to that change. On the other, the IS
organization itself operates in a changing world, inherited
partly from its customers and partly from the broader
environment. Thus it must organize itself and its own
systems (such as CASE tools) for adaptation.

1.2. Inspiration: Change occurs in shearing layers

Truex, Baskerville and Klein [40] view an enterprise as an
emergent organization2 and recommend that information
system developers embrace and even foster change within
both the organization that they support and the information
systems that they maintain and evolve. As such, they
propose an alternative goal set3 for information systems
professionals that optimizes on high maintenance rather than
low maintenance. In their words:

Emergent IT organizations value continuous analysis,
negotiated requirements, and a large portfolio of
continuous maintenance activities.

But how can engineers optimize for change rather than
stability, and do that efficiently, effectively and safely?
Engineering wisdom seems to suggest that certain forms of
change just cannot and should not occur quickly. Goals of
high throughput and reliability, or a need to interface to a
wide variety of other systems, are all believed to be
incompatible with many forms of change.

Our source of inspiration for this dilemma is Stewart
Brand's observation that successful buildings are constructed
to support qualitatively different rates and scales of change
[7]. That is, they are constructed in shearing layers, with a
clear demarcation between parts that should change at
different rates.

Brand describes six shearing layers of change in a
building. (i) A site, especially when bordered by other
buildings and roads in an urban setting, may constrain

generations of buildings. (ii) A load-bearing structure may
last for 30 to 300 years. (iii) The skin (exterior surfaces)
typically changes every 20 years due to changes in fashion
or technology or for wholesale repair. (iv) Services (heating,
ventilation, wiring, elevators, communications, and so on)
"wear out or obsolesce every 7 to 15 years." (v) Space plans
in "turbulent commercial space can change every 3 years or
so." And (vi) stuff ("chairs, desks, phones,") "twitch[es]
around daily to monthly."

Brand's model corresponds closely to our own intuitions
about the kinds of changes that are made to information
systems. Some features change very slowly: credit card
processing, or posting systems in banks. Others change very
frequently, such as advertising features of web sites.
Moreover, some engineering techniques and technologies
exist to overcome cases where appropriate shearing was not
initially supported. For example, the technique of screen
scraping allows composite business functions and more
modern user interfaces to be assembled on top of the
unfashionable and obsolete character-based user interfaces
of valuable, long-lasting systems built in earlier eras. Such
techniques are the equivalent, in Brand's terms, of changing
skin and space plan while leaving valued, reliable structure
and site unchanged.

An area where we need to enrich Brand's work is that
corresponding to the qualitatively different kinds and rates of
change there is a correspondingly richly differentiated set of
materials and practices for achieving those changes. For
building, for example, different groups of experts lay
foundations, produce structures from reinforced concrete,
and design and assemble different kinds of facades [10]. In
particular, the experts in selecting and arranging "stuff" are
the "users" of the building. As a result, the materials and
elements of "stuff" are optimized so that almost anyone can
rearrange them for their own purposes whenever those
purposes change.

1.3. Bringing a consideration of shearing layers into three
aspects of design

We propose to use scales and rates of change, and a
corresponding richly differentiated set of materials and
practices, as primary criteria for the separation of concerns
not only in information systems development, but for three
related areas of design:
! the design of organizations: with an emphasis on design

that promotes organizational adaptiveness and learning;
! the functional design of information systems: that is,

design of how information systems will support the
organization;4

! the implementation of information systems: that is, design
of how required function is made available to users using
enabling information technologies.

While this may seem like a broad focus for study, any large
information systems services organization must not only
cover this range of practices, but do so in an increasingly

2

seamless manner. Moreover, if it is itself to be a learning
organization, it must apply these three forms of design to
itself, not only to its customers.

1.4. This paper focuses on functional design of software

Other papers, for other audiences, will address the shearing
layers model of information system design from other points
of view, notably those of computer-supported cooperative
work, management information systems, organization
design, middleware technology, and programming language
design.

This paper focuses on functional design. Functional
design is the territory between experts in information system
design and people with expertise in the business in which
requirements are continually (re)negotiated.

We propose constructs called agents and conversations as
means for reasoning about the functional design of adaptable
software. The bridge to organization design comes from
determining5 which people should engage in what
conversations to achieve what outcomes. The bridge to
software implementation comes from determining how to
deploy each conversation within available middleware and
other technologies.

In the next section we present at a conceptual level our
constructs for functional design, based on our early
experience of their concrete realization in a prototype system
called Ibex. A detailed presentation of the Ibex language and
the issues involved in its design is beyond the scope of this
paper. We assert that such a language can be designed and
explore how it will support information system development
in shearing layers.

In section 3 we discuss how an agent / conversation model
serves as the basis for the deployment of function as
implemented software. Central to this is an evaluation of
alternative technologies in terms of their costs-to-deploy-
and-to-evolve, which allows us to refine our criteria for
drawing boundaries between conversations. In section 4 we
identify and comment on further related work before
presenting conclusions in section 5.

2. FUNCTIONAL DESIGN IN TERMS OF AGENTS
AND CONVERSATIONS

Our approach to functional design is to present an
informational view of an organization as a fairly large
number of units called conversations. In addition to basic
issues of what information each conversation should store,
and how it can be modified and visualized, each
conversation can be reasoned about from two quite different
perspectives:
! cooperative work and organizational design: who may

participate in the conversation? who must pay attention to
it and under what circumstances? who should have what
awareness of the conversation?

! implementation design, which relates to sets of similar or
related conversations: from which devices will which

conversations be accessed? what throughput is required?
what are the expected rates and scales of change?

The result is a conceptual view of an information system as
"lots of applications,"6 each supporting a single conversation
or an interaction between a few conversations.

2.1. Agents participating in different genres of
conversation as a model for information systems

In choosing agents and conversations as primary constructs
for the functional design of information systems, we are
building upon the considerable body of sociological studies
of organizational work conducted within fields such as
computer-supported cooperative work.

Lucy Suchman applied the insights of Harold Garfinkel
[19] to propose a view of human action as improvised within
each given situation, and in so doing successfully disposed
of then-prevailing procedural views of work [38].7 While she
did not deny that people did indeed produce and make use of
plans and procedures, she explained that when they are
produced they are used as "resources for situated action"
rather than as accurate accounts of what has taken or should
take place.

Our focus in designing both organizations and software is
on carefully identifying and designing situations, and some
of the resources available to people within those situ- ations.
With this approach we leave people free (empow- ered) to
choose how to act within those situations [20,35].

We define a conversation as a virtual space grouping
virtual resources for use by a specified group of agents.

In using the term "virtual space" we are drawing an
analogy between how people use physical space and how
they structure their use of information technology. On the
one hand, people gather resources into shared physical
spaces. For example, a room may contain posters, writing on
white boards, papers and books all pertaining to a software
development project. Similarly, a virtual space supported by
information technology groups virtual resources for some
purpose. On the other hand, people partition physical space
into realms with differing degrees of exposure or intimacy,
varying from public to private.8 As Clement and Wagner
have pointed out, human communication consists of
similarly fragmented spaces, in which choosing not to
articulate something within a given space can be as valuable
as articulating it [9].

Virtual resources include information and means (such as
an information model) for structuring that information and
maintaining its integrity (such as operations that maintain the
invariant of the information model). They include user
interfaces (forms and dialogs) that present the information in
useful ways, and means for navigating to other related
conversations. Although agents may include both people and
computer programs, we definitely do not see people and
software as interchangeable.

People (human agents) are assumed to have a
considerable degree of freedom not only in what they do and
how they act within any given conversation, but to which

3

conversation(s) they pay attention at any given moment.
This leads to a number of important concerns, including:
awareness of what others are doing within a space consisting
of a large number of conversations (such as through
Erickson et al's notion of social translucence [15]);
producing an interactive account of your own behavior (as
do the ground traffic controllers described by Suchman
[39]); and many related visualization issues.

The conversation construct is intended to support the full
spectrums between computer- and socially-enforced
conduct, and from high to low enforcement. Conversations
may involve only human agents (for example, e-mail or a
chat room), a mixture of human and software agents9 (for
example, a person managing their bank accounts online), or
only software agents (for example, ensuring a correct
transfer of funds between two bank accounts).

Any structure within a conversation may be partially
enforced by the information technology and partially by
social pressures. As an example of how successful social
pressures can be, Erickson describes a spontaneously formed
limerick telling conversation within a chat room in which
strict yet slowly evolving rules were rigorously enforced
purely by social conventions [14].

2.2. Elements of a single conversation

A set of agent and conversation specifications constitutes a
functional design for information systems to support certain
parts of an enterprise.

A conversation stores and structures information for a
group of agents. It maintains the integrity of the information
by only allowing changes through operations known to
maintain a conversation invariant. It renders the information
to users in meaningful "forms" (user interfaces), which also
support the dialogs that enable human agents to invoke
operations.

The information stored in a conversation is specified in
terms of an information model which defines types,
relationships and attributes.10 Each informational thing
represented in the conversation is characterized in terms of a
changeable set of classifications (types), relationships and
attributes. Invariants govern legal combinations of types,
relationships and attribute values.

A conversation's operations and forms govern changes to
and the display of its information. Operations are specified
in terms of their parameters, a precondition, a postcondition11

and a condition determining to whom the operation is
available. For Ibex, we assume that all operations within
conversations are of short duration and are serializable.
Forms are specified in terms of display and dialog elements,
layout information, bindings of dialog elements to operation
specifications, and conditions determining who may use the
form.

A number of variables and types are built into all Ibex
conversations. Within each conversation there is a unique
thing of type ThisConversation which represents the current

conversation and is bound to the conversation variable
thisConversation. Each person currently involved in the
conversation is represented by a thing of type
CurrentlyActivePerson. Operations and forms may refer to
the session-level variable currentUser which identifies the
Person that represents that user within the conversation.

An information model together with operation and form
specifications constitutes a complete functional specific-
ation of a conversation. The set of agents who may partici-
pate in the conversation is determined entirely within the
availableTo clauses of form and operation specifications.

2.3. Correspondences and transactions between several
conversations

While conversations are intended to be somewhat self-
contained information spaces, users frequently switch their
attention between conversations. Equally, one conversation
may involve the identification of, collection of information
about, or transfer of information to and from other
conversations.

Two low-level features of Ibex support such connections
between conversations. Firstly, a conversation may be
represented within another conversation as a Known-
Conversation. Secondly, a formal correspondence may be
established and maintained between things in two
conversations. Thing correspondence is achieved in terms of
identity only: thing a in conversation A is asserted to
correspond to thing b in conversation B, and will remain so
until the assertion is revoked.12

KnownConversations and thing correspondence enable a
navigational structure that spans many conversations.
Additional conventions can ensure, for example, the ability
to locate all conversations of a given kind or allow a user to
locate all conversations in which they participate or are
expected to do something.

These features also support transactions and multi-
conversation forms. In Ibex, transactions are a special kind
of operation that refers to and alters information within two
or more conversations. They can only occur between
conversations that are known to each other and can exploit
and create correspondences between the things in those
conversations. In a similar way, a multi-conversation form is
a special kind of form that displays information within and
dialog between two or more conversations.

Multi-conversation forms and transactions are intended to
be short lasting, atomic and stateless. When this is not the
case an intermediating conversation will more accurately
represent the true nature of the business. As a conversation it
may be long lasting and have its own state.

2.4. Criteria for demarcating conversations include
durations and rates of information accumulation

In addition to providing basic design constructs we are
collecting heuristics that help determine whether a given
functional design is a good outcome of a design activity. The

4

determination of appropriate heuristics in this area is a
subject of open ended research and reflection.

The following sections draw an understanding of
heuristics for demarcating conversations from sociology and
engineering. Sociological and business views of work allow
us to demarcate conversations by asking which agents
should be engaged in which conversations. The engineering
viewpoint brings an understanding of the different costs of
implementing and changing various sets of conversations
using the many different techniques and technologies
available to software engineers.

Remaining within the realm of pure conversation leaves
us with a narrower although promising set of criteria. In this
realm, conversation can be considered from the literary
point-of-view expounded by advocates of genre theory.13 We
propose as a design heuristic that conversations should be of
pure genres. While articulating what might constitute a pure
genre or a tolerable hybrid is a subject of ongoing research,
we can illustrate this intuition in terms of a tentative
definition. We assume that this definition can be extended to
apply to inter-conversation transactions also.

A tentative expression of how to define a conversation
genre is: the patterns and subjects both (i) of participation by
the conversation's human and software participants and (ii)
by which they access and update the informational content
of the conversation. Genre purity occurs when the patterns
are clean and regular.

In this view, the separation of concerns by interactional
patterns only can be seen as akin to performing a spectral
analysis of a signal: that is, using differences in duration,
rates and frequencies of participation and information
accumulation to identify subconversations that require
qualitatively different software implementations.

2.5. Transforming concepts from computer-supported
cooperative work into functional design constructs

Fortunately many general lessons drawn from ethnographic
and genre studies of work are available for our reuse. Not
only is the agent / conversation approach inspired by
sociological accounts of organizational work, we are in the
process of reexpressing as patterns of conversation many of
the well known and documented strategies that people use in
their computer-supported cooperative work.14 The resulting
pattern language, we believe, will allow us to enroll
organization members and their intuitive organizational
understanding as a more natural way of separating functional
concerns.

For example, in his work on "ethnomethodology"
Garfinkel emphasizes that much of a person's behavior
consists of producing accounts of her own behavior [19]. In
applying this precept in a study of ground traffic controllers
at an airport, Suchman observed that they produced accounts
for two quite distinct audiences: to coordinate their decision
making with that of their colleagues, and to make their work
visible to managers and regulators [39]. Corresponding to

this intuition are patterns that regard some forms as
supporting accounts, form being the general purpose Ibex
construct for defining required user interfaces. Forms can
then be discussed as documents whose completion achieves
some sort of accounting within the organization, be it
amongst colleagues who are cooperating to accomplish some
larger outcome, between employees and their supervisors, or
both at once.15

As well as CSCW intuitions that in certain situations bring
a sociological and organizational meaning to certain
elements of the Ibex language, there are intuitions that relate
to the demarcation of conversations. Sociological accounts
of work are full of discussions of boundaries and boundary
practices. Star talks about artifacts specifically developed to
support exchanges between different communities of
practice [37]. Wenger talks about boundary practices
including legitimate peripheral participation which we can
interpret as specially demarcated conversations on the
boundaries of a community [42]. Many authors talk about
the advantages and disadvantages of keeping one group's
work invisible to others (e.g., [31]). Clement and Wagner
talk about the value of not articulating something [9]. And
Bannon and Bødker build upon Strauss's notion of
articulation work to point out that maintaining a "common
information space" requires extra work on behalf of its
participants [4].

2.6. Conversations as a foundation for shearing layers

So far we have introduced agents and conversations as ends
in themselves with only passing reference to our motivation
for introducing them: namely, as a foundation for discussing
shearing layers.

Firstly, conversation provides a uniform means of
representing a broad range of required function across the
full spectrums between computer- and socially-enforced
conduct, and from high to low enforcement. Moreover, they
do this free of consideration of in which layer each piece of
function might be implemented.

Secondly they match what we believe to be natural
boundaries and practices within organizations than appr-
oaches such as classical object-orientation. A conversation-
orientation places boundaries where they belong, matching
natural points of shearing within human organizations.

Finally, they promise to raise the level of discourse for IS
design away from technology and towards how the IS
supports the organization. Amongst other things, this allows
us to enlist users and other subject matter experts in
achieving a shearing layers separation of concerns.

3. IMPLEMENTATION DESIGN AS FUNCTION
DEPLOYMENT TO TECHNOLOGIES
DIFFERENTIATED BY COST

We started this paper by citing the opinion of Truex,
Baskerville and Klein that information systems should be
built to assume organizational instability and change and a

5

large portfolio of continuous maintenance activities. That is,
information systems professionals should optimize their own
practices and the systems that they build to assume high
maintenance rather than low maintenance.

We then formulated the problem of this paper as being
"how can engineers optimize for change rather than stability
yet do that efficiently, effectively and safely?"

3.1. Deployment target variety leads to cost variety

The solution that we propose, of which functional design in
terms of agents and conversations is one element, is a
shearing layers approach to information systems
development inspired by Brand's model for buildings.

Shearing layers provides a language and metaphor for
discussing adaptive change within information systems
development. As in buildings, changes are differentiated in
terms of their associated costs, durations and disruption, with
relatively many cheap, rapid, unobtrusive changes, and
relatively few large, costly, long duration, disruptive
projects. Moreover, we should think of software as being
constructed as shearing layers with each layer deliberately
having associated materials, practices and costs appropriate
for its scales and rates of change.

We are led beyond a simplistic mapping of shearing
layers to elements within a "layered box" software
architecture diagram by the fact that several of Brand's
layers (site, structure, space plan and even stuff) accomplish
the single end of partitioning physical space into smaller
units. Similarly, even for a single technological function
such as the persistent storage of data there is a wide variety
of rates and costs of implementation. The wide variety of
information technologies (such as database management
systems), whether proposed by academia or available on the
market, are a response to the highly differentiated needs of
different applications. That there is such a wide variety of
needs and a corresponding variety of solutions seems to be
natural in any technological market and an empirical
validation of the shearing layers model.

In the context of system implementation, we use the term
deployment (of function) to cover the broad range from the
software equivalent of rearranging the stuff of a building (for
example, a user spending twenty minutes implementing a
spreadsheet) through to the equivalent of investing in new
structure or site (for example, a multi-year, multi-person
century project to reimplement a high throughput, high
reliability system such as a transaction posting system in a
financial institution).

In evaluations of the cost of deploying function, money to
change, time to change and level of disruption must all be
considered. Financial costs to change include: purchase,
licensing and upgrade costs of raw software technologies;
costs of employing, developing, retaining and renting the
human skills necessary to deploy and maintain the
technology in support of selected conversations; and costs
associated with the purchase, leasing, maintenance and

operation of supporting hardware, including bandwidth,
storage media and processors. Deployment costs apply both
to deployment of individual classes of conversation and of
interactions between conversations that may have been
deployed to different technologies.

Suppliers of materials, practices and human resources,
whether aimed at buildings or information systems, seek to
differentiate and diversify their offerings in terms of the
differing needs of their users. So far as we are concerned, a
key criterion for differentiating these technologies is in terms
of their deployment costs. Moreover, deployment costs
should be appropriate for the scale and rate of change of the
shearing layer(s) at which the technology is targeted.

3.2. Criteria governing deployment

The appropriate timescale and cost for a change determines
and is determined by the layer to which function is deployed.
Deployment may vary from the implicit in the case where a
user rearranges stuff in an existing deployment, to a need for
a major system development effort.

Of course, there are many other characterizations that
affect how a conversation should be deployed. For example,
it may need to be deployed so that a certain participant may
participate using one or more given access technologies.
Access technologies may include: desktop workstations on
company premises; a customer's home workstation; a mobile
computing device disconnected from any network; or a
telephone and its keypad. Software technologies may
support deployment-related features such as the replication
of a conversation (as in Lotus Notes).

3.3. Working in a construction site

What might the rich portfolio of ongoing maintenance
activities that Truex, Baskerville and Klein recommend [40]
feel like?

We have already indicated that such a portfolio will be
richly differentiated, with relatively many cheap, short, low
disruption changes and relatively few expensive, long, high
disruption projects. This variety of maintenance projects
should give the non-IT person the same sense of ongoing
change as ongoing shearing changes to the buildings that
they occupy and visit. They will be surrounded by varying
scales and degrees of construction and rearrangement,
including those that they accomplish themselves such as
rearranging windows on their screens.

In more rapidly shearing layers where system function
supports the most rapidly changing aspects of the business,
there will be a great many ongoing change efforts as a
consequence of what Truex et al call continuous analysis and
requirements negotiation [40]. These will be performed by
the users themselves and by information systems
professionals who can implement the changes as and when
needed, at low cost, and with little or no delay.

We are focusing our current language and tool design on
these most rapidly changing layers for two reasons. Firstly,

6

these layers are not well supported by available tools. While
some products exist that allow rapid assembly of simple
applications they do not integrate well with function
deployed in other layers.

Secondly, we are firm believers in in-situ design
techniques, similar to those advocated by Alexander for
buildings [3,35]. This is because, in Wenger's words:

There is an inherent uncertainty between design and its
realization in practice, since practice is not the result of
design but rather a response to it. [42, p. 233]

This is the argument for participatory, user-centered design.
From such a standpoint, techniques such as prototyping and
extreme programming can be seen as designing and
verifying within a relatively cheap layer function that will
later be deployed to a more expensive layer.16

3.4. Shearing layers makes sense of and brings rigor to
choices of how to implement

While there already exists a broad range of technologies and
techniques aimed at decoupling things that change separately
(e.g., [18]) or at implementing things with different costs,
there have been few attempts to make sense of these efforts
within a single conceptual framework.

The shearing layers intuition addresses this by focusing
attention on two things. Firstly, suppliers of and investors in
infrastructure require an appropriately richly differentiated
set of deployment capabilities, including corresponding
skills, hardware and software. Secondly, they need
techniques for separating required function into pieces each
of which can be separately deployed to a single appropriate
shearing layer and thus targeted to appropriate deployment
capabilities. Functional design in terms of agents and
conversations achieves the necessary separation of concerns
and so enables rigorous consideration of costs.

4. RELATED WORK

So far we have demonstrated how our work builds upon
work in areas such as computer-supported cooperative work,
organization design and management information systems
and provides a framework for understanding and exploiting
the many techniques and technologies that seek to make
software more adaptable. In this section we would like to
explicitly relate our work to several specific themes of
software engineering research.

4.1. Reflection in the lightest-weight shearing layers

Numerous commercial products have been developed to be
programmable by end users, perhaps starting with
spreadsheets in the early 1980s. More recently, many
software technologies have been aimed at making engineers
more productive. For example, anecdotally the development
of applications in Lotus Notes is significantly cheaper than
writing custom code with similar function in a high-level
programming language.

Our approach is somewhat related to Dourish's Prospero,
in which he applied the principle of reflection in his
explorations of flexibility for CSCW applications [11].
(Dourish builds upon Kiczales' concept of open
implementation [26]). In the Ibex language we apply
reflection in making such concepts as conversation, agent,
transaction and form explicit both in the Ibex language itself
and in the models built with that language.

4.2. Making sense of viewpoints
In their short overview of the software engineering topic of
viewpoints in software development [17], Finkelstein and
Sommerville provide the following definition:

The study of viewpoints embraces the relations
between views, between views and agents, and between
agents.

In such a definition, different agents are assumed to have
different views on a situation because they have different
positions within the organization. Viewpoints then become
an obstacle to be overcome through consistency checking
techniques and approaches to inconsistency management
(for example, [13,16]). Approaches such as that of Verlage
go further promoting the positions of agents to a first class,
explicit status as roles whether or not roles were previously
defined within the modeled domain [41].

In our approach we focus on social agreement and conflict
rather than personal viewpoint. Conversations and
transactions are locally and socially negotiated agreements
of how certain forms of interaction can take place. As such,
they are constantly renegotiated outcomes of necessary
debates between members of the organization and are best
explicitly specified within such debates. In contrast,
viewpoint-centric views merely capture subjective opinions
divorced from the very dialectical inquiry in which learning
about interactions can occur [8].

Conflict can lead to learning and so is valuable to
organizations [8,21]. As such software engineering practices
should not unduly seek to eliminate it in the name of
reconciling viewpoints. Within the shearing layers model
knowledge of the extent of conflict or agreement over a
certain form of conversation or transaction is considered to
be extremely valuable. It provides an indication of how
stable any functional design to support the interaction will be
and thus to which shearing layer the interaction should be
deployed.

4.3. Relationship to multi-schema systems

It is interesting to relate our proposal to debates in the late
1980s and early 1990s over infrastructures for producing
integrated software engineering environments.

Much of the architectural side of this debate is
summarized by Schefstrom [33]. Schefstrom compared the
data-centric model of technologies such as PCTE with a
more federated, control-centric model of technologies such
as the ESF Software Bus. While the PCTE object base

7

supported schema definition as a series of tool-specific
schema definition sets, these schemata nevertheless had to be
resolved if tools were to in any way share data, even within a
single PCTE object base. The Eureka Software Factory, on
the other hand, assumed that the key archi- tectural concern
was to allow message exchange between tools, leaving
choices of techniques and technologies for data storage to
each individual tool developer.

Our current approach is sympathetic to both approaches,
generally favoring federated architectures, but valuing
multi-schema technologies for those cases where several
classes of conversation need to be codeployed.

4.4. Relationship to transactional and workflow models

We believe that not only can we achieve sophisticated
transactional models using simpler constructs, but that it is
better to do this than invest in ever more elaborate
technological means to support intergroup transactional
conflicts. We prefer to leave these as issues to be resolved
within the social realm as negotiated practices, where
appropriate coordination practices can be constantly
renegotiated and even improvised.

We have presented a model in which work and control
flows are largely implicit, being confined to pre- and
postconditions of operations and what we call transactions.
While our multi-classification object model allows roles to
be introduced as classifications of Person things, we do not
believe that formal roles are necessarily a good way of
designing all aspects of work.

We are not at all sympathetic to the use of procedural
prescriptions of work or work flows. Emerging approaches
for organization design focus on designs that promote
organization learning. They involve a shift from an agenda
of procedure (define means) and control (of adherence to
means) to one of accountability (for outcomes) and
empowerment (allowing individuals to choose means and
negotiate outcomes) [20].

However, we are very sympathetic to Bardram [12] and
Dourish [5]'s inversions of workflow. Suchman is careful to
observe that while human work is improvised within the
situation and not the execution of predefined plans, plans
and procedures are nevertheless often resources for this
situated action [38]. Bardram and Dourish's responses to
Suchman have been to build systems in which workflow
representations are incorporated to help in the visualization
of ongoing work in a user-meaningful way while in no way
dictating how work is actually accomplished.
5. CONCLUSIONS

Our starting motivation was that enterprises need to become
more adaptive, and that an aspect of doing that is having
adaptable computer systems. The challenge is then to
optimize information system development for change (high
maintenance) rather than stability (low maintenance).

Our response is to make explicit within software
engineering the notion of shearing layers, and explore it as

the principle that systems should be built to be adaptable in
response to the qualitatively different scales and rates of
change to which they will be subjected. This allows us to
separate function that should legitimately change relatively
slowly and at significant cost from that which should be
changeable often, quickly and cheaply.

While we are seeking to apply this intuition to three kinds
of design, in this paper we have focused on the software
engineering concerns of functional design and the
deployment of function. We have described a set of
constructs that encourage this separation of concerns during
functional design and its preservation or controlled removal
during deployment. Constructs include agents and
conversations and others addressing the related concerns of
what goes on within a conversation and between it and other
conversations.

We have assembled various heuristics and criteria for
demarcating conversations and have thus suggested how a
shearing layers separation of concerns can be accomplished
in practice. Here we rely upon genre theory and on the many
results within the field of computer-supported cooperative
work.

We have emphasized that information systems
organizations require a richly differentiated set of materials
and practices corresponding to the need to implement system
function that is changeable on different scales and at
different rates. The Ibex system on which we are work- ing
is intended to have a dual role in this respect. On the one
hand it will be used to cheaply build in-situ mock-ups of
system function that may ultimately be built in more costly
technologies. On the other, we expect Ibex applica- tions to
be suitable as applications in cheaper layers: that is, for
actual use, albeit on a local scale with low throughput.

There are many outstanding research questions the
majority of which are beyond software engineering. For
example, how do shearing layers within an organization
relate to those within its information technology? This is a
nontrivial question since it involves systems built of quite
different stuffs. Part of the answer is that conversations are
part of practices which are themselves situated in different
shearing layers of the organization.

While we do not wish to claim that shearing layers is a
new phenomenon in information system development, it is a
phenomenon that deserves to be named. It requires theory
and practices that embrace it. This paper has demonstrated
how we are going about doing just that.

Acknowledgments

Ibex is joint work with Bard Bloom. It is part of the larger
Enterprise Builder project involving Darrell Reimer, Mark
Wegman and Sarvamangala Jagadeesh. We have benefited
greatly from our discussions with Steve Haeckel and Doug
McDavid about Sense and Respond, Tom Erickson and John
Thomas about social aspects of computing, Stan Sutton and
Asit Dan about deployment to Middleware. Clay Williams,

8

Gene Hoffnagle, Steve Bello and David Bevington gave
valuable comments on a draft of the paper.

End Notes

1 Here we build on rigorous definitions from systems science [1].
An organization may be purposefully adaptive because its parts
— people and smaller organizations — are purposeful. A system
is purposeful if it is ideal-seeking. Software, which is a mecha-
nism, is at best goal-seeking (and so purposive), since it cannot
itself change the ends that it pursues. Thus software is at best
adaptable and if it is this is a property of the way that it is con-
structed rather than the way that it functions.

2 Truex et al contrast the conventional, outmoded view of the sta-
ble organization with what they call the emergent organization.
They 'use the terms "emergent" and "emergence" rather than
"emerging" because "emergent" refers to the state of being in
continual process, never arriving but always in transition' [40].
Haeckel's notion of adaptive enterprise [20] goes further still,
extending emergence-as-a-continual-process with an organiza-
tional strategy focused on and driving learning and change.

3 See opening quotation for a summary of a traditional goal set.
4 What we refer to as "functional design" is elsewhere referred to

using a variety of terms, including functional specification, sys-
tems analysis and requirements capture. The term "design" indi-
cates that deciding what function is required is a creative process.
There simply isn't a set of requirements lying around waiting to
be captured [3,35]. The term "functional" is used as a contrast to
"implementation". Functional design, as we shall see, may
involve prototyping-for-function (as opposed to prototyping-of-
implementation) and other forms of mockup to facilitate the crea-
tive, learning processes of design.

5 We carefully used the term "determining" rather than "deciding."
Organizations are the result of design actions that occur in shear-
ing layers: on many scales and at different rates. They vary from
relatively formal actions of executives to the kinds of improvised
acts discussed by Suchman [38] and negotiated commitments
advocated by Haeckel [20]. In the latter cases these design acts
are merely aspects of other actions.

6 Thanks to Sarva Jagadeesh for this phrase.
7 Others have built upon Suchman's and Garfinkel's work to make

extensive critiques of workflow-oriented models of work. These
critiques apply both to system implementation in terms of work-
flow technologies and, perhaps more importantly, to the use of
many workflow representations within information system speci-
fication. For a detailed example see Bowers, Button and Shar-
rock's contrast of how work flows "from within" versus how it is
viewed or imposed "from without" [6].

8 A quick survey of Alexander's pattern language for the design of
towns and buildings [2] reveals that a significant proportion of
the patterns are related to achieving various levels of permanent
or temporary intimacy or openness. That this is so is registered in
the pattern Intimacy Gradient. More specific patterns supporting
certain valuable forms of intimacy or gradient include Common
Land, Public Outdoor Room, Couple's Realm, Children's Realm,
Farmhouse Kitchen, Private Terrace on the Street, Alcoves, Win-
dow Places and Workplace Enclosure.

9 For the purposes of the current paper we are deliberately down-
playing the notion of "software agent." On the one hand, there is
a considerable and growing literature under the title of "software

agents" which, since it refers primarily to implementation strate-
gies, may ultimately prove useful in the realm of what we call
"deployment." On the other hand, in Ibex we are exploring a pro-
gram unit called a [software] agent, which is a scope grouping a
set of transactions, multi-conversation forms and shared declara-
tions. This definition draws an analogy between a person (a
human agent) who participates, mediates between and switches
attention between many conversations, and a role for a unit of
software (a software agent) that similarly mediates between sev-
eral conversations. This concept will be discussed in detail in
forthcoming papers about Ibex.

10 For Ibex, our approach is based upon the ISO Reference Model
for Open Distributed Processing (RM-ODP) including its General
Relationship Model (GRM) [23,24,28].

11 In Ibex an operation outcome is expressed as a transformation.
12 The intuition that object identity might be the only useful point

of correspondence between applications or viewpoints has been
the subject of a long-lasting discussion between one of the
authors and Bill Harrison.

13 Genre as a way of understanding and classifying organizational
communications has received increasing interest within the fields
of management information systems (for example [32]) and
computer-supported cooperative work (for example [14,15])
since the publication of Yates' historical study of the evolution of
forms of communications within business [43].

14 This is the subject of a forthcoming paper [36].
15 As Suchman observed [39], and others have observed in their

own studies, many software systems conflate these two forms of
accounting, with mixed results.

16 Our focus on tools for supporting the cheapest kinds of change
explains our decision to base the Ibex language upon RM-ODP
information modeling [23,24,28] rather than a classical object
model. This reflects our personal experience from a variety of
projects (e.g., [27,34]) that information modeling is simultane-
ously easier for business people and achieves specifications with
greater precision than when we have applied the classical object
model.

References

1 Russell L Ackoff, Fred E Emery. On Purposeful Systems. Aldine
Atherton Inc., 1972.

2 Christopher W Alexander, Murray Silverstein, Sara Ishikawa
with Shlomo Angel, Ingrid Fiksdahl-King. A Pattern Language:
Towns, Buildings, Construction. Oxford. 1976.

3 Christopher W Alexander. The Nature of Order. Oxford. To
Appear, 2000.

4 Liam Bannon, Susan Bødker. Constructing Common Information
Spaces. In [22], 1997.

5 Jakob E Bardram. Plans as situated actions: An activity theory
approach to workflow systems. In [22], 1997.

6 John Bowers, Graham Button, Wes Sharrock. Workflow from
within and without: Technology and cooperative work on the
print industry shopfloor. In [30], 1995.

7 Stewart Brand. How Buildings Learn: What Happens After
They're Built. Viking Penguin, 1995.

8 C West Churchman. The Design of Inquiring Systems. Basic
Books, 1971.

9 Andrew Clement, Ina Wagner. Fragmented Exchange: Disarticu-
lation and the need for Regionalized Communication Spaces. In
[30], 1995.

9

10 Howard Davis. The Culture of Building. Oxford. 1999.
11 Paul Dourish. Using Metalevel Techniques in a Flexible Toolkit

for CSCW Applications. ACM Transactions on Computer-Human
Interaction, 5(2), pp. 109-155, 1998.

12 Paul Dourish, Richard Bentley, Rachel Jones, Allan MacLean.
Getting Some Perspective: Using Process Descriptions to Index
Document History. In Stephen C Hayne editor, Proceedings of
the International ACM SIGGROUP Conference on Supporting
Group Work (GROUP '99). November 14-17 1999, ACM Press.

13 Steve Easterbrook, Anthony Finkelstein, Jeff Kramer, Bashar
Nuseibeh. Co-ordinating Distributed ViewPoints: the anatomy of
a consistency check. Concurrent Engineering and Applications.
CERA Institute, 1994.

14 Tom Erickson. Rhyme and Punishment: The Creation and
Enforcement of Conventions in an On-Line Participatory Limer-
ick Genre. Proceedings of the Thirty Second Annual Hawai'i
International Conference on Systems Science, January 1999.

15 Tom Erickson, David N Smith, Wendy A Kellogg, Mark R
Laff, John T Richards and Erin Bradner. Socially Translucent
Systems: Social Proxies, Persistent Conversation, and the Design
of 'Babble.' In Human Factors in Computing Systems: The Pro-
ceedings of CHI '99. ACM Press, 1999.

16 A Finkelstein, D Gabbay, A Hunter, J Kramer, B Nuseibeh.
Inconsistency Handling in Multi-Perspective Specifications.
IEEE Transactions in Software Engineering. 20(8) August 1994,
pp. 569-578.

17 Anthony Finkelstein, Ian Sommerville. The Viewpoints FAQ.
Software Engineering Journal, 11(1), 1996, pp. 2-4.

18 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Design.
Addison-Wesley. 1995.

19 Harold Garfinkel. Studies in Ethnomethodology. Prentice Hall,
1967.

20 Stephan H Haeckel. Adaptive Enterprise: Creating and Lead-
ing Sense-and-Respond Organizations. Harvard Business School
Press, 1999.

21 Rudy A Hirschheim, Kalle Lyytinen, Heinz Klein. Information
Systems Development and Data Modeling: Conceptual and
Philosophical Foundations. Cambridge, 1995.

22 J Hughes, T Rodden, W Prinz, K Schmidt editors, ECSCW '97:
Proceedings of the 5th European CSCW Conference. Kluwer,
1997.

23 ISO/IEC JTC1/SC21/WG7. Open Distributed Processing —
Reference Model: Part 2: Foundations. ISO 10746-2 / ITU-T
Recommendation X.902, February 1995.

24 ISO/IEC JTC1/SC21. Information Technology — Open Systems
Interconnection — Management Information Systems — Struc-
ture of Management Information Systems — Part 7: General
Relationship Model. ISO/IEC 10165-7, 1995.

25 Jane Jacobs. Systems of Survival: A Dialogue on the Moral
Foundations of Commerce and Politics. Vintage, 1992.

26 Gregor Kiczales. Beyond the Black Box: Open Implementation.
IEEE Software, 13(1), January 1996.

27 Haim Kilov, Helen Mogill, Ian Simmonds. Invariants in the
Trenches. Chapter 6 of Haim Kilov, William Harvey editors,
Object-Oriented Behavioral Specifications. Kluwer, 1996.

28 Haim Kilov, James Ross. Information Modeling: An Object-
Oriented Approach. Prentice Hall, 1994.

29 Haim Kilov, Bernhard Rumpe, Ian Simmonds editors, Behav-
ioral Specifications of Businesses and Systems. Kluwer, 1999.

30 Hans Marmolin, Yngve Sundblad, Kjeld Schmidt editors. Pro-
ceedings of the Fourth European Conference on Computer-
Supported Cooperative Work (ECSCW '95). Kluwer, 1995.

31 Bonnie A Nardi and Yrjo Engestrom editors. A Web on the
Wind: The Structure of Invisible Work. Special Issue of Computer
Supported Cooperative Work: The Journal of Collaborative Com-
puting. 8(1-2), 1999.

32 Wanda Orlikowski, JoAnne Yates. Genres of Organizational
Communication: A Structurational Approach to Studying Com-
munication and Media. Academy of Management Review, 17,
April 1992: 299-326.

33 Dick Schefstrom. System Development Environments: Contem-
porary Concepts. Part 1 of D Schefstrom, G van den Broek edi-
tors. Tool Integration: Environments and Frameworks. Wiley,
1993.

34 Mark Shafer. Using Information Modeling to Define Business
Requirements. Chapter 15 of [29], 1999.

35 Ian Simmonds, David Ing. A Layered Context Perspective on
the Design of Information Systems. Chapter 16 of [29], 1999.

36 Ian Simmonds, David Ing. Integrating CSCW Intuitions into
Information Systems Development by Means of a Pattern Lan-
guage. In preparation, 2000.

37 Susan Leigh Star. The Structure of Ill-Structured Solutions:
Boundary Objects and Heterogeneous Distributed Artificial Intel-
ligence. In M Huhns and L Gasser editors. Distributed Artificial
Intelligence 2. Morgan Kauffmann, pp. 37-54.

38 Lucy A Suchman. Plans and Situated Actions: The Problem of
Human-Machine Interaction. Cambridge, 1987.

39 Lucy A Suchman. Technologies of Accountability: Of Lizards
and Aeroplanes. In Graham Button editor. Technology in Work-
ing Order: Studies of work, interaction and technology. Rout-
ledge, 1993.

40 Duane P Truex, Richard Baskerville, Heinz Klein, Growing
Systems in Emergent Organizations, Communications of the
ACM, August 1999, 42(8), pp. 117-123.

41 Martin Verlage. About Views for Modeling Software Processes
in a Role-Specific Manner. In Laura Vidal, Anthony Finkelstein,
George Spanoudakis, Alexander L Wolf editors, Joint Proceed-
ings of the SIGSOFT '96 Workshops, ACM, 1996.

42 Etienne Wenger. Communities of Practice: Learning, Meaning
and Identity. Cambridge, 1998.

43 JoAnne Yates. Control through Communication: The Rise of
System in American Management. Johns Hopkins, 1989.

10

	Cover Page
	ABSTRACT
	1. BACKGROUND
	2. FUNCTIONAL DESIGN IN TERMS OF AGENTS AND CONVERSATIONS
	3. IMPLEMENTATION DESIGN AS FUNCTION DEPLOYMENT TO TECHNOLOGIES DIFFERENTIATED BY COST
	4. RELATED WORK
	5. CONCLUSIONS
	Acknowledgments
	End Notes
	References

