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ABSTRACT 

 

This paper describes a new mandatory security model that better combines secrecy and commercial data 
integrity requirements than previous models based on Bell and LaPadula and Biba.  The new model solves 
many of the previously perceived drawbacks and limitations of the Biba model, and makes use of a 
modified-Biba lattice to incorporate into the model the operation of so-called trusted processes that in the 
past have always been viewed as annoying exceptions to the existing mandatory security models.  It then 
applies this new model as a better approach to security of mobile code. 
 
Keywords:  Mandatory access control, Lattice security models, Biba Integrity model, Bell and LaPadula 
model, mobile code security. 
 
1 Introduction 
Existing mandatory security models such as the Bell and LaPadula model [11] and the Biba model 
[13] have a number of drawbacks when put into practical use.  Actual implementations of both 
models have required the use of trusted processes to meet a variety of administrative and 
downgrading requirements, yet trusted processes typically have been allowed to violate the 
requirements of the models – not an appealing procedure mathematically.  The Biba integrity 
model has received little practical use, due to difficulties in actually assigning levels of integrity 
and because the model does not reflect actual practice in many cases. 

Existing mandatory security models have also not directly addressed the needs for mobile code, 
such as Java or ActiveX.  While there have been informal proposals to apply mandatory access 
controls to downloading code from the World Wide Web [19], there have not been any real 
models or implementations. 

This new mandatory security model has been developed as part of a larger project to design and 
implement a high-assurance smart card operating system [9].  However, the model is in no way 
limited to only smart cards, and smart cards should not be viewed as central to this paper.  Some 
of the examples of use of the model are based on smart cards, but only because it was convenient 
to use examples developed for our smart card operating system project. 

The model has been designed for use in systems ranging from smart cards up to large servers and 
supercomputers.  The model is particularly designed to address the needs of downloaded code, 
distinguishing between downloaded or mobile code that cannot be trusted from that which can be 
trusted.  However, unlike the existing Java 2.0 and ActiveX trust models that simply rely on the 
reputation of the software developer, the new model relies on independent third-party evaluation 
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of downloaded code, based on either the ITSEC [8] or the Common Criteria [7] security 
evaluation schemes. 

2 Models of Security 
A formal model of security is essential when reasoning about the security of a system.  Without 
an unambiguous definition of what security means, it is impossible to say whether a system is 
secure.  Security models can be broken down into three major categories, listed in order of 
complexity: 

• Models that protect against unauthorized disclosure of information, 

• Models that protect against unauthorized tampering or sabotage, and 

• Models that protect against denial of service. 

Protection against disclosure of information has been understood the longest and has the simplest 
models.  Protection against tampering or sabotage has been less well understood and appropriate 
models are only now under development.  Protection against denial of service is not well 
understood today, although the recent rash of distributed denial of service attacks on the Internet 
is focusing much more attention than before.   This paper does not deal with denial of service. 

2.1 Preventing Information Disclosure 
The first requirement of most security systems is preventing unauthorized disclosure of 
information.  Indeed, the basic point of Lampson's access matrix [21] and the various access-
control-list and capability-based systems that have been implemented is to control who may have 
access to which objects, both to prevent information disclosure and to prevent unauthorized 
tampering or sabotage.  This section examines two classes of mechanisms: discretionary access 
controls and mandatory access controls. 

2.1.1 Discretionary Access Controls 
Discretionary access controls are the commonly available security controls based on the fully 
general Lampson access matrix.  They are called discretionary, because the access rights to an 
object may be determined at the discretion of the owner or controller of the object.  Both access-
control-list and capability systems are examples of discretionary access controls.  The presence of 
Trojan horses in the system can cause great difficulties with discretionary controls.  The Trojan 
horse could surreptitiously change the access rights on an object or could make a copy of 
protected information and give that copy to some unauthorized user.  All forms of discretionary 
controls are vulnerable to this type of Trojan-horse attack.  Even if the Trojan horse couldn’t 
directly leak the information, it could change the access control rules of an object to effectively 
cause a leak to occur.  For example, a Trojan horse in an access-control-list system could 
surreptitiously change the ACL of an object. A Trojan horse in a capability system could make a 
copy of a capability for a protected object and then store that capability in some other object to 
which a penetrator would have read access.  In both cases, the information is disclosed to an 
unauthorized recipient. 

Harrison, Ruzzo, and Ullman [17] have shown that the safety  property is undecidable for fully 
general, discretionary access controls, such as either a general access-control-list or capability 
system.  Their argument is based on modeling the state transitions of the access matrix as the state 
transitions of a Turing machine.  They show that solving the safety problem is equivalent to 
solving the Turing-machine halting problem. 
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2.1.2 Mandatory Access Controls 
Mandatory access controls have been developed to deal with the Trojan horse problems of 
discretionary access controls.  The distinguishing feature of mandatory access controls is that the 
system manager or security officer may constrain the owner of an object in determining who may 
have access rights to that object.  Mandatory access controls were developed to solve what 
Lampson has called the confinement problem [20] to control the leaking of information by Trojan 
horses.1 

Lipner [23] and Denning [16] have shown that for lattice security models, unlike for fully general 
access matrices, it is possible to solve the confinement problem.  All mandatory controls, to date, 
have been based on lattice security models. 

 

2.1.2.1 Elements of the Lattice Model 
A lattice security model consists of a set of access classes that form a partial ordering.  Any two 
access classes may be less than, greater than, equal to, or not ordered with respect to one another.  
Two access classes that are not ordered are called incomparable .  Furthermore, there exists a 
lowest access class, called system low, such that system low is less than or equal to all other 
access classes.  There also exists a highest access class, called system high, such that all other 
access classes are less than or equal to system high.   

A very simple lattice might consist of two access classes: LOW and HIGH. LOW is less than 
HIGH.  LOW is system low, and HIGH is system high.  A slightly more complex example might 
be a list of secrecy levels, such as UNCLASSIFIED, CONFIDENTIAL, SECRET, and TOP 
SECRET.  Each level in the list represents data of increasing secrecy. 

There is no requirement for strict hierarchical relationships between access classes.  The U.S. 
military services use a set of access classes that have two parts: a secrecy level and a set of 
categories.  Categories represent compartments of information for which an individual must be 
specially cleared.  To gain access to information in a category, an individual must be cleared, not 
only for the secrecy level of the information, but also for the specific category.  For example, if 
there were a category NUCLEAR, and some information classified SECRET-NUCLEAR, then 
an individual with a TOP SECRET clearance would not be allowed to see that information, unless 
the individual were specifically authorized for the NUCLEAR category. 

Information can belong to more than one category, and category comparison is done using 
subsets.  Thus, in the military lattice model, for access class A to be less than or equal to access 
class B, the secrecy level of A must be less than or equal to the secrecy level of B, and the 
category set of A must be an improper subset2 of the category set of B.  Since two category sets 
may be incomparable, the complete set of access classes has only a partial ordering.  There is a 
lowest access class, {UNCLASSIFIED-no categories}, and a highest access class, {TOP 
SECRET-all categories}.  The access classes made up of levels and category sets form a lattice. 

Many other security policies also form lattices.  One could define other lattices that model 
commercial security requirements. Section 2.2.1 describes one such commercial security lattice. 

                                                                 
1 Lampson’s confinement problem [20] and Harrison, Ruzzo, and Ullman’s safety property [17], although 
related, are NOT the same property.  A full treatment of  these issues is beyond the scope of this paper.   
The interested reader should consult Denning [15, chapters 4 and 5] for a more complete treatment. 
2 Proper subsets must contain fewer elements than the set of which they are a subset.  Improper subsets may 
contain all of the elements as the set of which they are a subset.  Thus, every set is its own improper subset, 
and all proper subsets of a set are also improper subsets of that set, but not all improper subsets are proper 
subsets of a set. 
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2.1.2.2 Defeating Trojan Horses 
Lattice models were first developed at the MITRE Corporation by Bell and LaPadula [11] and at 
Case Western Reserve University by Walter [33] to formalize the military security model and to 
develop techniques for dealing with Trojan horses that attempt to leak information.3  At the time, 
no one knew how to deal with Trojan horses at all, and it came as quite a surprise that two quite 
simple properties could prevent a Trojan horse from compromising sensitive information. 

First, the simple security property says that if a subject wishes to gain read access to an object, the 
access class of the object must be less than or equal to the access of the subject.  This is just a 
formalization of military-security-clearance procedures that one may not read a document unless 
one is properly cleared. 

Second, the confinement property or *-property  4 requires that if a subject wishes to gain write 
access to an object, the access class of the subject must be less than or equal to the access class of 
the object.  The net effect of enforcing the confinement property is that any Trojan horse that 
attempts to steal information from a particular access class cannot store that information 
anywhere except in objects that are classified at an access class at least as high as the source of 
the information.  Thus, the Trojan horse could tamper with the information, but it could not 
disclose the information to any unauthorized individual.  A more detailed discussion of the 
confinement property and its interpretation in the context of a practical time-sharing system can 
be found in [11].  A survey on formal security models in general can be found in [22]. 

2.2 Preventing Tampering and Sabotage 
The military's emphasis on the lattice security models, as typified by the requirements of the 
National Computer Security Center's evaluation criteria [3], has often been criticized as 
neglecting the issues of information tampering.  However, the history of the development of the 
lattice security model shows that the military services have always been concerned with both 
unauthorized release and tampering.  When the original work on the lattice security model was 
done at the MITRE Corporation [11] and at Case Western Reserve University [33] no one knew 
how to make formal statements about security policy.  Indeed, protection against Trojan horses 
was considered an unsolvable problem at the time, and security researchers were all quite 
surprised when the *-property made it possible to formalize Trojan horse protection.  The later 
emphasis on protecting against unauthorized release was because no one knew how to protect 
against tampering but protection against unauthorized release was understood. 

2.2.1 Biba Integrity Model 
Biba [13] later developed a model of mandatory integrity that is a mathematical dual of the Bell 
and LaPadula mandatory-security model.  Biba defines a set of integrity access classes that are 
analogous to security access classes and defines simple-integrity and integrity-confinement 
properties that are analogous to the simple-security and confinement properties.  The difference 
between integrity and security is that the direction of the less-than signs are all reversed, so that a 
program of high integrity is prevented from reading or executing low integrity objects that could 
                                                                 
3  The lattice models were based on earlier work on the ADEPT-50 operating system [34] and on the 
security enhancements to the WWMCCS-GCOS operating system [25] (pp. 147—148).  Neither of those 
systems could solve the Trojan-horse problem, although ADEPT-50 contained a partial solution. 
4 The confinement property was called the *-property in [12].  It was so named as a place holder until a 
better name could be found.  No better name was found prior to publication, so *-property was used, and 
much of the literature on non-discretionary controls continues to use the name *-property  (pronounced star 
property).  In 1977, Jerry Saltzer [29] urged that a more meaningful name be found.  Thus, some of the 
literature has since used the term confinement property.   
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be the source of tampering or sabotage.  The principal difficulty with the Biba integrity model is 
that it does not model any practical system.  Unlike the security models that developed from 
existing military security systems, the Biba integrity model developed from a mathematical 
analysis of the security models.  However, Biba did not suggest how to actually decide which 
programs were deserving of a high integrity access class and which were not.  This has made 
practical application of the Biba model very difficult. 

2.2.2 Lipner Commercial Integrity Model 
Lipner developed a commercial integrity model [24] that uses both the mandatory security and 
mandatory integrity models to represent a software development environment in a bank.  It tied 
the integrity modeling much closer to reality than the Biba model did, but it was still quite 
complex.  To our knowledge, no effort has been made to actually implement the Lipner 
commercial integrity model. 

2.2.3 Clark and Wilson Commercial Integrity Model 
A more recent development in preventing tampering and sabotage is the Clark and Wilson 
commercial integrity model [14].  They have proposed a model of data integrity that they assert 
more accurately describes the needs of a commercial application than the Bell and LaPadula 
lattice security model [11].  Clark and Wilson's model focuses on two notions: well-formed 
transactions and separation of duties.  Separation of duties is commonly used in commercial 
organizations to protect against fraud.5  Clark and Wilson contrasted their work with Lipner's 
commercial security interpretation of the lattice security and integrity models [24] and concluded 
that Lipner's commercial model does not adequately deal with limiting data manipulation to 
specific programs to implement the well-formed transactions. 

The Clark and Wilson model consists of a set of certification and enforcement rules to be applied 
to a computer system.  These rules apply to the operations of transformation procedures (TPs) 
that actually carry out the data manipulation in their system.  Clark and Wilson clearly identified 
that the TPs needed to be certified to be valid.  Unfortunately, they did not suggest any way to 
decide which TPs were valid and which were not.  This is the same as the problem in the Biba 
model. 

 

3 Using Mandatory Policies on a Smart Card 
 
This section discusses how mandatory security policies could be used in a smart card system.  
Smart card examples are used, because the model was developed as part of a smart card operating 
system project.   However, the examples could equally well apply to other types of limited-
memory systems, such as personal digital assistants, cellular phones, etc.  They could also apply 
in larger systems, such as desktops or servers. 

3.1 Mandatory Secrecy Policy 
We need a mandatory secrecy policy to ensure that information does not leak from one 
application to another, even in the presence of downloaded Trojan horse code.  A Bell and 
LaPadula lattice model [11] will handle this nicely. The principal requirement will be categories, 
                                                                 
5 Separation of duties is  also a familiar concept to the military.  Launch of nuclear weapons is done under a 
concept of two-person control in which no one individual can ever launch a nuclear weapon.  Two separate 
individuals must turn separate keys simultaneously.  The keys are placed such that it is physically 
impossible for one person to perform the necessary actions. 
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while secrecy levels will take a subsidiary role.  Presumably, each major application source will 
need its own category.  Thus, an airline loyalty card might assign one category to the airline and 
one category to each rental car partner. Information would be constrained from flowing from one 
rental car partner to another rental car partner.  Data to flow from a rental car company to the 
airline would be marked with both the categories of the rental car company and of the airline.  A 
downgrading process would ultimately remove the rental car marking, before applying the 
frequent flyer miles to the customer’s account.  The downgrading process would only be allowed 
to downgrade from a single partner’s marking to the airline’s marking.  It would not be allowed to 
apply the marking of some other partner company. Control of downgrading will be discussed in 
section 3.2 below on integrity policies.   

The number of categories required will be relatively large for any given smart card.  For example, 
a typical airline program might have 6-8 partner airlines, 3-4 partner rental-car companies, and 
10-15 partner hotel chains.  This means that typical applications will need at least 20 categories, 
with large applications needing 50-100 categories.  On the other hand, the number of category 
combinations that will actually be used is relatively small.  Given N categories, we could safely 
allocate storage for roughly 2*N category combinations, rather than the 2N possible category 
combinations, assuming that each category is usually combined with only one other category. 

To summarize the standard Bell and LaPadula security rules: 

 Read permission:  Secrecy access class of the process >= Secrecy access class of the data. 
Write permission: Secrecy access class of the process <= Secrecy access class of the data 

(no downgrading permitted.) 
Execute permission: Same as read permission. 

3.2 Mandatory Integrity Policy 
A commercial system, however, cannot be limited to only protecting the secrecy of information.  
Assuring that information is not tampered with is often much more important in a commercial 
setting.  Whether a smart card is used as a cash card or as a loyalty card, ensuring that the correct 
amount of money or loyalty points are transferred may be much more important than keeping 
secret how much money or how many loyalty points were transferred. 

A simple Biba [13] hierarchy of integrity levels of the form from high to low:   

• Operating system high integrity code,  

• Card issuer high integrity code,  

• Partner company’s high integrity code, 

• Normal applications code.   

Data files could be marked with an integrity level and a process’ integrity level would have to be 
greater than or equal to the integrity level of the data for write permission, and the process’ 
integrity would have to be less than or equal to the integrity level of the data for read permission.  
This way, we could assure the card issuer that applications added later could never modify the 
issuer’s data. 

However, the simple Biba integrity model suffers from a serious problem – how do you actually 
decide which programs are worthy of a higher integrity level?  Since card issuers will be 
particularly worried about the security of applications on their cards (since they might be held 
liable in a court), we need to improve on the Biba model.  The Biba model also prevents high 
integrity applications from reading low-integrity data, in fear that the application might be 
compromised in some form.  This, however, makes it difficult to describe applications that have 
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been designed with high integrity to specifically process low integrity data input and to rule on its 
appropriateness.  Therefore, we need some changes to the model. 

Just as for the ActiveX and Java polic ies, developers digitally sign their applications.  However, 
we go beyond this.  If an application has been independently reviewed and digitally signed by the 
certifying body, then we can grant it a higher level of integrity.  For example, we could define 
integrity levels for ITSEC-evaluated [8] applications.  The Commercially Licensed Evaluation 
Facility (CLEF) would evaluate the application and the certifying body would digitally sign the 
application and its ITSEC E-level.  A card issuer (such as a bank) might lay a requirement on 
vendors who want to download applications onto their cards.  Your application must have 
received at ITSEC evaluation of some level to be acceptable.  The NSA and NIST are developing 
a US equivalent of ITSEC evaluation CLEFs.  That program is called the National Information 
Assurance Partnership (NIAP) and is based on the Common Criteria [5-7].  NIAP is designed to 
replace an existing NSA program for commercial evaluations called the Trust Technology 
Assessment Program (TTAP).  Similarly, European evaluation agencies are also converting 
gradually to the Common Criteria. 

The approach we have defined for assigning ITSEC E-levels as integrity levels does not address 
integrity categories.  Biba defined integrity categories, and Lipner proposed use of them in his 
commercial data integrity model [24].  Interestingly, the Shirley and Schell program integrity 
model [32] also does not use integrity categories.  However, we have not yet identified a use for 
integrity categories in this new model.  We continue to include them for mathematical 
completeness and because someone may develop a use for integrity categories in the future, but 
all examples in this paper will only have integrity levels. 

There could be provisions for less formal evaluations than full ITSEC.  For example, a 
commercial security laboratory could check an application for obvious security holes (buffer 
overflows and the like) and for Trojan horses or trapdoors.  While not as formal as an ITSEC 
evaluation, it might be sufficient for loyalty applications to gain access to communications files 
that are used to send data between applications (as discussed above). 

There is one problem with using more than one kind of evaluation criteria.  If an application has 
been evaluated under one criteria, and another application has been evaluated under a very 
different criteria, then if a user wishes to download both of those application onto the same card, 
it is not clear how to compare the integrity classes.   If the two criteria have defined mappings 
(such as the E levels of the ITSEC and the EAL levels of the Common Criteria [5-7]), then there 
is not a problem.   The Canadian criteria [1] and the US Orange book [3] can probably also be 
mapped.  However, if the card issuer chose to use some very different and incompatible criteria, 
then downloading of other applications that were ITSEC evaluated might be difficult. 

Essentially, this is a security policy to allow a card issuer to set some minimum quality standards 
on downloaded applications and to grant more or less access, based on the independent security 
reviews of applications.  

3.2.1 Integrity Policy Details 
Processes could be marked with an integrity level, based on the signatures of the independent 
reviewer of the code.  That is pure Biba integrity.  However, we will instead mark a process with 
TWO separate integrity access classes – one for read permission and one for write and execute 
permission.  The write/execute integrity access class will be the level determined by the 
independent evaluator.  If the read integrity access class equals the write/execute class, then we 
have the standard Biba model.  If the read integrity access class is lower than the write/execute 
integrity access class, then we have a process permitted to sanitize and upgrade input that is 
initially marked at a low integrity access class. Not just any program will be trusted for 
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sanitization, but rather only programs explicitly evaluated for the purpose.  Identifying the range 
of levels across which a program is allowed to sanitize will be specified as part of the digitally 
signed information from the CLEF.  The operating system kernel will read that information when 
starting a program into execution to know what range of integrity classes to assign the process.   

Separating the execute permission from the read permission originated in the program integrity 
model of Shirley and Schell [32].  The policy was further developed in the GEMSOS security 
model [30] that specified a range of levels within which integrity downgrading could occur.   

However, our model allows a further generalization beyond that of GEMSOS.   GEMSOS 
required that the trusted processes execute within a range of access classes.  For integrity, this 
means that the write/execute integrity access class must be greater than or equal to the read 
integrity access class.  Our model recognizes that allowing the read integrity access class to be 
greater than the write/execute integrity access class allows modeling firewall policies.  In such a 
case, a particularly untrustworthy process executing at a low integrity level can be protected from 
possible attacks by only allowing it to read data that is at a higher integrity level.  All data that the 
process writes must be marked at the lower integrity level.    

The initial access rules will be as follows.  These rules will change later in the paper, when we 
combine this new integrity model with the new secrecy model.  Note that we separate execute 
permission into two subclasses – normal transfers and a special CHAIN operation.  A normal 
transfer is the execution of a branch instruction or a subroutine call instruction.  CHAIN is a way 
to start a separate process executing at some other integrity and secrecy access class.  Due to the 
limited memory of a smart card, the process executing the CHAIN operation is immediately 
terminated.  On a larger system, the process initiating the CHAIN in principle could continue 
executing.  However, in either case, a CHAIN is a one-way operation.  The GEMSOS security 
model did not include any counterpart of the CHAIN operation.  The intended use of CHAIN is to 
start a guard or sanitization process or for a guard process to start a recipient of sanitized 
information.  Note also that data files have only one integrity access class, just as in the original 
Biba model.   

Read permission: Integrity read access class (process) <= integrity access class (object) 
 

 Write permission:  Integrity write/execute access class (process) >=  
integrity access class (object) 

 Execute permission:  
Transfer: Integrity write/execute access class (process) <=  

integrity access class (object) 
The target program runs at the integrity level of the caller.   Note that a 
high integrity program cannot call or transfer to lower integrity code. 
 

  CHAIN:  No integrity access check is required.  The target program runs in a 
    new process at the integrity access class specified in the digitally 
    signed certificate of the program. 

3.3 Formalizing Secrecy Downgrading 
This same strategy for allowing integrity downgrading can also be used for secrecy downgrading, 
as discussed in section 3.1 above.  However, we would define a pair of secrecy access classes, 
rather than integrity levels, and the read and write rules would be reversed.  There would be two 
secrecy access classes – one for read/execute and one for write.  Note that for secrecy, we keep 
execute tied to read permission, because a process at a low secrecy level should not be permitted 
to execute high secrecy program code.  This is not for anti-piracy purposes, but rather to maintain 
the secrecy of algorithms or constants in the code that must not be revealed, even by mere use of 
the program.  Software piracy protection is outside the scope of this security model. 
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This policy for secrecy downgrading is identical to that used in GEMSOS [30].   

The rules for secrecy downgrading are as follows: 

 
Read/Execute permission: Secrecy read/execute access class (process) >=  

secrecy access class (object) 
 Write permission:  Secrecy write access class (process) <= secrecy access class (object) 
 
For a normal process, the read/execute secrecy access class will be identical to the write secrecy 
access class.  However, if the process has a high enough integrity level, then the process may 
have a lower write secrecy access class.   What integrity level is required for what range of 
read/execute versus write secrecy access classes is discussed below in section 3.5. 

3.4 Combining the New Access Rules 
We have now modified both the Bell and LaPadula model for secrecy and the Biba model for 
integrity and stated the access rules for each.  However, when the two models are combined, the 
resulting access rules are a bit more complex and must be stated together.  It is our expectation 
that with these modifications, the two models will always be used together, because the integrity 
access classes will be used to determine the secrecy downgrading rules, as specified in section 
3.5. 

Read permission 

  Secrecy read/execute access class (process) >= secrecy access class (object) 

  Integrity read access class (process) <= integrity access class (object) 

Write permission 

  Secrecy write access class (process) <= secrecy access class (object) 

Integrity write/execute access class (process) >= integrity access class (object) 

Execute permission 

     Transfer 

  Secrecy read/execute access class (process) >= secrecy access class (object) 

  Integrity write/execute access class (process) <= integrity access class (object) 

The target program of a transfer runs at the integrity level of the caller.   A high integrity 
program cannot call or transfer to lower integrity code. 

     Chain 

  Secrecy read/execute access class (process) >= secrecy access class (object) 

  Secrecy write access class (process) <=  

runtime read/execute secrecy class (new process) 

  Integrity write/execute access class (process) >= 

integrity read access class (new process) 

The first rule ensures that chain is possible only to files to which the caller has secrecy 
read permission.  Integrity read permission is NOT required, because a high integrity 
process is always allowed to start a low integrity process.  Contrast this with the rule that 
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a high integrity program is not allowed to transfer directly to a low integrity program in 
the same process. 

The second rule  ensures that the target process must have secrecy read permission to any 
passed arguments. 

The third rule ensures that the target process is not contaminated by a low integrity 
argument. 

The target program runs in a new process at the integrity access cla ss specified in the 
digitally signed certificate of the program.  This is a very important distinction.  The 
process that issues the CHAIN operation does not determine the access class at which the 
target process executes.  Rather, it is determined by the third party evaluator and 
certifying body who have digitally signed the code file.  Section 3.5.3 shows how the 
certifying body can determine what access class to specify in the digitally-signed code 
file. 

3.5 Using Integrity to Control Security Downgrading 
As mentioned in section 3.2.1, we can use the modified integrity model to control security 
downgrading.  To do this, we need a policy, similar to that specified in the NSA’s Yellow Books 
[2, 10] to determine the level of integrity needed to control a particular range of downgrading.  
The Yellow Books establish US DoD policy on what level of security evaluation is required as a 
function of the risk range of the data.   The methodology is to look at the maximum secrecy level 
of the data and the minimum trustworthiness level of users to determine a risk range over which 
the software must preserve security.   The higher the risk range, the higher evaluation level that is 
required. 

3.5.1 Summary of Yellow Book Recommendations 
The Yellow Books derive their recommendations from the following sets of tables:  Table 
1assigns numeric levels to the level of clearance that a user may have.  Note that the table 
distinguishes between totally uncleared people and people who do not have security clearances, 
but are authorized access to sensitive but unclassified information.  It also distinguishes between 
two different kinds of background investigations at the same clearance level. 

 

MINIMUM USER CLEARANCE RATING 
Uncleared (U) 0 

Not Cleared but Authorized 
Sensitive Unclassified Information 

1 

Confidential (C) 2 
Secret (S) 3 

Top Secret (TS) with Background 
Investigation (BI) 

4 

Top Secret with Special 
Background Investigation (SBI) 

5 

One Category (1C) 6 
Multiple Categories (MC) 7 

Table 1.  Rating Scale for Minimum User Clearance 
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Table 2 assigns numeric values to the secrecy of data.  Note that it distinguishes not only the 
number of categories that may be processed, but also that the secrecy of data in one category may 
be different from another category. 

MAXIMUM DATA 
SECRECY WITHOUT 

CATEGORIES 

RATING MAXIMUM DATA SECRECY 
WITH CATEGORIES 

RATING 

Unclassified (U) 0 Not Applicable  
Sensitive Unclassified (N) 1 N with one or more categories 2 

Confidential (C) 2 C with one or more categories 3 
Secret (S) 3 S with one or more categories with 

no more than one category 
containing Secret data 

4 

  S with two or more categories 
containing Secret data 

5 

Top Secret (TS) 5 TS with one or more categories with 
no more than one category 

containing Secret or Top Secret Data 

6 

  TS with two or more categories 
containing Secret or Top Secret Data 

7 

Table 2.  Rating Scale for Maximum Data Secrecy 

Table 3 establishes policy for what level of evaluation is required for what level of risk index.  
The entries in this table are subjective, in that they are based on an assessment of how strong each 
level of evaluation is against system compromise.   Note that even the highest level of evaluation 
in the DoD Orange Book [3] is not trusted for the highest risk indexes. 

RISK INDEX Security Operating Mode Minimum Evaluation Level 
0 Dedicated No Prescribed Minimum 
0 System High C2 
1 Limited Access, Controlled B1 
2 Limited Access, Controlled B2 
3 Controlled, Multilevel B3 
4 Multilevel A1 
5 Multilevel Beyond State of the Art  
6 Multilevel Beyond State of the Art 
7 Multilevel Beyond State of the Art  

Table 3.  Computer Security Requirements for Open Security Environments 

Table 4 combines the information in Table 1, Table 2, and Table 3 to indicate the recommended 
evaluation level for each combination of minimum user clearance and maximum data secrecy. 

Maximum Data Secrecy 
 U N C S TS 1C MC 

U C1 B1 B2 B3 * * * 
N C1 C2 B2 B2 A1 * * 
C C1 C2 C2 B1 B3 A1 * 
S C1 C2 C2 C2 B2 B3 A1 

TS(BI) C1 C2 C2 C2 C2 B2 B3 
TS(EBI) C1 C2 C2 C2 C2 B1 B2 

1C C1 C2 C2 C2 C2 C2 B1 

 
 
 

Minimum 
Clearance 
of Users 

MC C1 C2 C2 C2 C2 C2 C2 

Table 4.  Security Index for Open Security Environments 
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3.5.2 Possible Commercial Version of Yellow Book Recommendations 
To make use of these tables for commercial applications requires a different set of clearances and 
more attention paid to categories.   We have experimented with policies based on whether the 
companies in question are direct competitors or not, and we have found it possible to construct 
tables similar to the Yellow Book.  However, it is not clear whether to weigh competition more or 
less heavily than secrecy of data within a given company, so much additional research is needed 
to develop commercial counterparts to the NSA Yellow Books. 

3.5.3 Applying the Yellow Book Recommendations 
How would the Yellow Book recommendation be applied in practice?   When two companies 
agreed on a policy for controlled downgrading, they would bring the guard program to an ITSEC 
or Common Criteria CLEF for evaluation.  The CLEF would evaluate the program and suggest a 
recommended integrity access class.  The result of the evaluation, together with the two 
companies agreed upon policy would be sent to the certifying body.  After the certifying body 
approved the evaluation, it would not only issue a certificate on paper.  It would also digitally 
sign the binary code of the evaluated program, together with a binary representation of the E level 
or EAL level assigned.   In addition, it would also sign the four access classes for secrecy 
read/execute, secrecy write, integrity read, and integrity write/execute.  When the program was 
then downloaded to a secure operating system, that operating system could determine the level of 
trustworthiness assigned to the guard program and what levels of both secrecy and integrity 
downgrading should be permitted. 

3.6  More Complex Commercial Integrity Policies 
It is clear that our new model that revises and combines both Bell and LaPadula and Biba can be 
relevant to the Clark and Wilson model.   As we discussed in section 2.2.3, Clark and Wilson 
requires that their TPs be validated correct, yet they provided no mechanism for achieving this 
goal.  Our new integrity model clearly provides this, since we can assign an integrity access class, 
based on the results of an ITSEC or Common Criteria evaluation of a TP, determining not only 
whether the TP is trustworthy, but assigning a scale of trustworthiness, based on an established 
international standard.   

However, as our first implementation of the model is intended for a smart card system with 
extremely limited amounts of memory, we have not investigated this combination with the Clark 
and Wilson model to any depth, because the resulting system would clearly be too large for 
current smart card systems.  More research is needed in this area. 

4 Using the Security and Integrity Policies 
In this section, we show an example of how the security and integrity policies might be used in an 
airline, hotel, and rental car loyalty application.  The example is significantly different from 
Lipner’s proposals for using non-discretionary controls for commercial applications [24], and we 
believe it is more easily understood and implemented.  Assume we have an airline A with ties to 
hotel chains H and M and rental car chains B and D.  Staying at the hotel chains earns airline 
loyalty points.  Hotel H gives hotel loyalty points in addition to airline points, while hotel M 
gives hotel points or airline points, but not both.  Hotel H loyalty points and Hotel M loyalty 
points are completely separate systems.  Furthermore, the hotel chains consider the information 
about where and when the customer has stayed to be valuable marketing information, since the 
competing hotel chain could use this information to do target marketing.  However, the customer 
and the airline would like all three loyalty systems to be managed from a single smart card, so 
that the customer need only carry one card, and that card is branded by the airline.  Hotel chains 
H and M do not trust one another, but are both willing to cooperate with the airline A.   
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Based on these assumptions, the software that manages hotel H loyalty points must behave 
differently from the software that manages hotel M loyalty points.  This is because the hotels 
have different policies on double dipping in which the customer earns points in both hotel and 
airline plans.  Furthermore, the software for both hotel chains and for the airline may need 
periodic updating to reflect limited time special offers (e.g.: stay five times in one month and earn 
500 bonus points), to reflect newly contracted partners, or other significant changes.  Another 
type of special program that would depend on code on the smart card itself would be bonuses if 
you fly the airline, stay at hotel H, and rent a car from B, all on the same day.  Tracking combined 
bonuses like that could be more easily done on the smart card itself, rather than requiring the 
central servers for the airline, the hotel, and the rental car companies to all communicate with one 
another.   

We define the following secrecy and integrity levels and categories for the loyalty application: 

  Integrity Levels:  E6 > E5 > E4 > E3 > E2 > E1 
  Secrecy Levels:  System-Low 
  Secrecy Categories: A, H, M, B, D 
 
There will be data files storing loyalty information for each company.  Each company will have a 
Bell and LaPadula secrecy category.  Initially, the customer goes to the airport to fly on airline A.  
The airline’s application with secrecy clearance A will run and grant some airline loyalty points. 
These are recorded in a file classified A.  The airline must also make today’s flight information 
available to all partners.  It wants to indicate that the customer has flown today, but it might not 
want to give full flight details, due to either company confidentiality concerns and/or customer 
privacy concerns.  Therefore, it writes into a different file that is classified system-low that the 
customer flew today, but with no further details.  Now any partner application can read that 
information.  (This assumes that there is only one airline on the card.) 

Now the customer rents a car from company B.  B’s application code runs with secrecy clearance 
B and computes how many airline loyalty points to grant.  It must communicate this information 
to the airline application, but it does not want the information to be known by rental car company 
D.  Furthermore, B may not want A to know everything about its customer, either.  Therefore, B’s 
application writes the number of points earned into a communications file.  It then upgrades the 
classification of that file to require both secrecy category A and secrecy category B.  It can do 
this, because that is a write-up operation from secrecy level B to secrecy level A and B.   Next, 
the B application code must start a B-downgrader process into operation that runs code at a higher 
integrity level.   The B-downgrader will hold a secrecy clearance for both categories A and B.  Its 
program code will be evaluated to a higher level as described in 3.5. The B-downgrader will 
inspect the communications file contents and ensure that the data being transferred to the airline 
does not compromise any of B’s confidential information.  It then downgrades the information by 
removing the B secrecy category and passes the information to the airline’s software which runs 
in another process with only the A secrecy-category.   

Figure 1 shows the procedure for communication between rental car company B and airline A 
through a guard or downgrader process.  Ovals are processes, and boxes are data files.  Arrows 
show the direction of information flow, and lightning bolts show Chain operations. 
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Figure 1.  Information flow through a downgrading guard. 

The net result is that only the program that actually inspects the information to be passed from B 
to A has to undergo a higher-level ITSEC evaluation.  The bulk of the applications code that runs 
on behalf of B and on behalf of A can be either unevaluated or only evaluated to a lower level. 

Now let us consider a more complex example.  Assume that A, B, and H have created a special 
bonus program in which if your fly A, rent from B, and stay at H, all on the same day, then you 
get extra bonus points.  To implement this, all three partners must share information, since the 
flight, car rental, and hotel stay could happen in any order. 

Each partner, A, B, and H would need to record in an individual file that a rental, flight, or hotel 
stay had occurred that day.  Each of these files would be marked with all three secrecy categories 
A, B, and H.  Writing these files is a write-up operation and does not require special privileges.  
They would then each start up a high integrity application that was cleared to read A, B, and H 
category information.  That application would check to see if all three transactions had occurred, 
and only if all three had occurred, then and only then would the high integrity application 
downgrade some information to category A only to award the bonus points.  Note that most of the 
code for implementing the bonus operation can be written by each of the partners and only has 
access to that partners data.  Only the downgrader needs access to data from all three partners, 
and it can be formally evaluated to the higher integrity level to ensure that it does not compromise 
data improperly. 

5 Formal Verification of the Model 
To be useful in the development of high assurance operating systems, this model needs to be 
written down in a formal language and verified to be correct and consistent.  We have been 
working together with colleagues from the University of Ulm and the German Artificial 
Intelligence Center (DFKI) to do this formal verification.  They have submitted a companion 
paper [31] to the 2000 ESORICS conference describing their formal verification of a smart card 
security model that is similar (although not exactly identical) to ours.   

 
6 Conclusions 
We have developed a new model for mandatory access controls that solves a number of problems 
in the existing Bell and LaPadula model for secrecy and the Biba model for integrity.   We solve 
the Biba problem how to assign integrity levels by using the results of ITSEC or Common 
Criteria evaluations.  We resolve the seeming contradiction that a high integrity program must be 
protected against contamination by low integrity data yet we need high integrity programs to 
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validate the quality of suspect data and we provide a model for trusted processes that have always 
been the bane of implementers of the Bell and LaPadula model by applying access rules from the 
GEMSOS model to constrain programs to downgrade or upgrade secrecy or integrity access 
classes.  Note that we do not eliminate the need for trusted processes.  Rather, we provide a 
formal mechanism for deciding which processes should be trusted and how much they should be 
trusted.  Furthermore, we show how to write policy in the style of the NSA yellow books to 
decide what level of integrity is required of programs that wish to downgrade or upgrade specific 
secrecy or integrity levels.  We also show how these models can be used in real commercial 
applications, such as smart card-based loyalty programs. 

Will this new model actually prove successful in the commercial world?  It is much too early to 
tell.  None of the previous commercial data integrity models have succeeded in the commercial 
world, so it would be presumptuous to claim that this new model will succeed where previous 
ones have not.   Even the GEMSOS model, which showed much promise and was applied in the 
design of the SeaView secure relational database system [27, 28], has not achieved real 
commercial success.  While SeaView has been very influential on subsequent database security 
research, it also has not been commercially successful.  The SeaView prototype was ultimately 
implemented [18, 26], not on the A1-evaluated GEMSOS [4], but rather on the B1-evaluated 
Trusted Oracle database management system running on a B1/CMW-evaluated Sun operating 
system.6  Neither Trusted Oracle nor the Sun CMW offered the same types of integrity policies 
that were found in GEMSOS.  The SeaView prototype was quite successful demonstrating the 
SeaView security policies for use within the database management itself, but the prototype could 
not show practical results for the underlying operating system security and integrity policy 
combinations that are relevant to this paper. 

We will only know whether the new model proposed in this paper will be commercially 
successful until the model has been exposed both to security experts and to real commercial 
developers.  This paper is a first step in that process. 
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