
RC 21719 (97811) 7 April 2000 ComputerScience/Mathematics

IBM Research Report

PNrule: A New Framework for Learning Classifier Models in
Data Mining (A Case-Study in Network Intrusion Detection)

Ramesh Agarwal, Mahesh V. Joshi
IBM T. J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

PNrule: A New Framework for Learning Classi�er Models in Data

Mining (A Case-Study in Network Intrusion Detection)

Ramesh Agarwal� Mahesh V. Joshiy

March 2, 2000

Abstract

We have developed a new solution framework for the multi-class classi�cation problem in data mining.
The method is especially applicable in situations where di�erent classes have widely di�erent distributions
in training data. We applied the technique to the Network Intrusion Detection Problem (KDD-CUP'99).

Our framework is based on a new rule-based classi�er model for each target class. The proposed
model consists of positive rules (P-rules) that predict presence of the class, and negative rules (N-rules)
that predict absence of the class. The model is learned in two phases. The �rst phase discovers a few
P-rules that capture most of the positive cases for the target class while keeping the false positive rate
at a reasonable level. The goal of the second phase is to discover a few N-rules that remove most of the
false positives introduced by the union of all P-rules while keeping the detection rate above an acceptable
level. The sets of P- and N-rules are ranked according to certain statistical measures. We gather some
statistics for P- and N-rules using the training data, and develop a mechanism to assign a score to each
decision made by the classi�er. This process is repeated for each target class. We use the misclassi�cation
cost matrix to consolidate the scores from all binary classi�ers in arriving at the �nal decision. In this
paper, we describe the details of this proposed framework.

A real-life network intrusion-detection dataset was supplied as part of the KDD-CUP'99 contest. This
dataset of 5 million training records has a very highly skewed distribution of classes (largest class has 80%
of the records, while the smallest has only 0.001% records). We describe how we applied our framework
to this problem. As an aside, we also describe the controversy that we triggered after the contest and
how we proved the original test data labels to be wrong. We compare the results of our approach with 23
other contestants. For the subset of test data consisting of known subclass labels, our technique achieves
the best performance of all in terms of accuracy as well as misclassi�cation cost penalty.

�IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 (agarwal@watson.ibm.com)
yDepartment of Computer Science, University of Minnesota, Minneapolis, MN 55455 (mjoshi@cs.umn.edu). This work

was done when the author visited IBM Research during Summer'99.

1

1 Introduction and Motivation

Learning classi�er models is an important problem in data mining. Observations are often recorded as a set
of records, each characterized by multiple attributes. Associated with each record is a categorical attribute
called class. Given a training set of records with known class, the problem is to learn a model for class in
terms of other attributes. The goal is to use this model to predict the class of any given set of records, such
that certain objective function based on the predicted and actual classes is optimized. Traditionally, the
goal has been to minimize the number of misclassi�ed records; i.e. to maximize accuracy.

Various techniques exist today to build accurate classi�er models. These have emerged from research
in many �elds such as machine learning, neural networks, pattern recognition, statistics, etc [10, 19, 3].
Although no single technique is proven to be the best in all situations, techniques that learn rule-based
models are especially popular in the domain of data mining. Even other forms of models such as decision
trees or neural networks, are often post-processed to build a rule-based model. This can be contributed
to the easy interpretability of the rules by humans, and competitive performance exhibited by rule-based
models in many application domains.

A general rule-based model is a set of conditions on attributes, arranged in a disjunctive normal form
(DNF), which means it is a disjunction (or union) of rules where each rule is a conjunction (or intersection)
of conditions imposed on di�erent attributes. Learning rule-based models directly from the training data has
been studied in great detail in past couple of decades. The research so far has concentrated on developing
techniques that intermix di�erent search directions (general-to-speci�c or speci�c-to-general) with di�erent
performance metrics for rule evaluation and di�erent stopping criteria for the search (we review them in
Section 1.1 later). Their common goal is to discover small number of rules (low cardinality), which cover
most of the positive examples of the target class (high coverage) and very few of the negative examples (high
accuracy).

General-to-speci�c search techniques start with the most general rule, an empty rule, and progressively
add speci�c conditions to it. When conjunction of conditions is added, the accuracy of the rule increases
while its coverage and support decrease. Note that support is the total number records where rule applies,
whereas coverage is the number of positive examples covered by the rule. An ideal situation is when exactly
one conjunctive rule gives desired accuracy with entire coverage of the target class. But, this rarely happens
in the real-world because usually a class consists of multiple subsets each with unique signatures. This
especially occurs when a class consists of multiple distinct subclasses. Thus, disjunction of rules becomes
a necessity. Disjunctions are discovered iteratively. In each iteration, a high accuracy conjunctive rule is
discovered. Then the records covered by this rule are removed, and next iteration starts with the remaining
examples. The tolerance on rule accuracy is usually very tight in each iteration. These are called sequential
covering algorithms, and have found widespread use in rule-based modeling. However, they face a problem.
As the algorithm proceeds, the data from which the rules are learned decreases in size. Hence, the support
for the rules learned decreases. If the support is allowed to reduce substantially then the rules that are
found may be too speci�c, thus over�tting the training data, or they may be overly general, because of the
noise present in the data. Instead, if one stops the iterations after the remainder data size falls below some
threshold, the rare subclasses might be missed. Rules with small coverage, learned from small datasets, are
called small disjuncts. This was �rst identi�ed by [14], in which they show that such rules tend to contribute
more to the generalization error rate as compared to the large disjuncts (rules with high coverage). Detailed
scenarios under which it can occur are discussed in [27, 6].

One remedy to avoid this problem is to use speci�c-to-general search techniques [7], which start with
each record as the most speci�c rule, and progressively generalize the rule-set. Although it was shown [7]
that such techniques have better ability to learn complex models involving many small disjuncts, they su�er
because of too many speci�c conditions that they have to generalize. If each condition is to be generalized
exhaustively, then their computational complexity scales poorly for large training data-sets (quadratic in
training set size, and cubic in number of attributes [7]). An approach based on selecting few random
positive examples to generalize, is given in [20], but it was shown to avoid exponential complexity only by
imposing some restrictions on the types of rules learned while relying heavily on the background knowledge.
Hence, speci�c-to-general type of techniques are not suitable for real-life problems in today's data mining
applications involving large datasets.

2

So, let us concentrate on general-to-speci�c strategies, for which a few remedies are proposed in [14, 1]
to solve the problem of small disjuncts so far. One remedy is to relax the emphasis on generality of rules,
thus making them more speci�c for each of the iterations [14]. This has shown to reduce error rate of small
disjuncts at the cost of increased error rate of large disjuncts. Another solution proposed by [1] is to assign
probabilistic measures to the rules discovered in the hope of assigning lower measures to small disjuncts.
Some other solutions proposed [22] are based on estimating a generalization accuracy from the accuracy in
training data and use it to decide whether to retain or remove small disjuncts. But, all these solutions can
be considered as workarounds for the actual problem, which is that of the trade-o� between support and
accuracy of the rules discovered. We suspect that the problem occurs because of relatively tight accuracy
constraints used in all the iterations. This causes rules with small support to be discovered as algorithm
progresses, thus leading to the problem. We believe that if accuracy constraints are relaxed gradually as
required, then we can keep �nding rules with su�ciently large support until most of the positive examples
are covered. This is precisely the crux of our proposed approach.

In this paper, we propose a two stage general-to-speci�c framework of learning a rule-based model, which
handles the small disjunct problem in a more prescriptive and e�ective manner as compared to existing
methods. Also, our proposed method has a runtime that is linear in the number of training data records
and linear in number of attributes, for each of its iterations. We call our framework PNrule, because it is
based on �nding rules that predict presence of a target class (P-rules) as well as rules that predict absence
of a target class (N-rules). We handle the multi-class problems by learning binary classi�ers for individual
classes, which has been shown to be better [1] in handling small disjunct problems, than building a single
model for all classes. Also, we think that this approach is especially desirable for small classes, which might
be treated as noise by many performance metrics.

The key idea is to learn a set of P-rules that together cover positive examples with su�cient support
such that each rule covers large number of examples to maintain its statistical signi�cance. Initially, highly
accurate rules are selected, but later accuracy is compromised in favor of support. What di�erentiates our
method from all the previous approaches is its second stage. It learns N-rules that essentially remove the
negative examples collectively covered by the union of all the P-rules. The existence of this second stage
helps in making the algorithm less sensitive to the problem of small disjuncts in the �rst stage. Moreover,
we rank each of the P- and N-rules, and use their accuracy and support statistics to assign a score to each
decision made by the classi�er.

One more feature of our proposed framework is that it is cost-sensitive. In other words, it is suitable for
taking into account di�erent costs of misclassifying di�erent classes. For example, the cost of not identifying
a mailing responder is certainly more than that of not identifying a non-responder in direct marketing
applications. Various approaches have been proposed recently [25], either based on adjusting the distribution
of training data according to the cost matrix (called strati�cation-based approaches) [13], or based on adding
a cost-based framework on top of existing accuracy-driven classi�ers [8]. Our framework uses scores generated
by individual binary classi�ers and the misclassi�cation cost matrix, to arrive at predictions according to
Bayes optimality rule for minimum expected cost.

In order to validate our proposed framework, we applied it to a real-life dataset from the network
intrusion detection application. This data-set was supplied as a part of KDD-CUP'99 classi�er contest [12].
The dataset contained about 5 million records, each with 41 attributes (34 continuous and 7 categorical),
belonging to four attack classes and one normal (or no-attack) class. The contest was challenging in four
respects. One, training dataset had a wide distribution of class populations (80% for the largest class and
0.001% for the smallest class). Second, misclassi�cation cost was the evaluation criterion, with one of the
smallest classes having the highest penalty for getting misclassi�ed. Third, it was told beforehand that the
test data-set on which the contestants will be evaluated has a di�erent distribution of classes than training
data-set. Finally, the four attack classes consisted of 39 di�erent subclasses, out of which only 22 were
present in the training data, the rest were present only in the test-data. We participated in this contest.
As a matter of fact, the technique we are proposing in this paper evolved during and after our participation
in the contest. We applied our proposed PNrule framework to this dataset. We compare our results with
those of 23 other participants, hoping that many of them have used their own or other known state-of-
the-art techniques. For the subset of test-data that belonged to subclasses that are present in the training
data-set, our technique performs the best both in terms of accuracy and misclassi�cation cost. Especially,

3

our technique does substantially better for a class that is present in very small proportion and also carries
high misclassi�cation penalty. As an aside, we also mention the controversy about test-data quality that
we triggered after initial set of results were announced. We conducted a detailed analysis of test-data and
proved that the original test-data class labels were wrong.

1.1 Related Work

Various rule-based classi�cation algorithms have been proposed in the literature so far such as CN2[4], the
family of AQ algorithms[18], RAMP[2], RISE[7], RIPPER[5], CBA[16], and others[19].

Algorithms CN2, AQ, RIPPER are all sequential covering based techniques (often called separate-and-
conquer). CN2 and AQ run into the "small disjuncts" problem exposed extensively in section 1. The
RIPPER technique di�ers slightly from CN2 and AQ algorithms. After discovering (or growing) a highly
accurate rule, it immediately prunes it by estimating its generalization error using a separate prune-set. It
stops growing the rule-set when the description length of encoding the rule-set and the training data becomes
large (MDL principle). Essentially MDL principle allows to balance the generality of rules and their error
rate on the training data. RIPPER's intention behind using MDL is that the generality of rules will guard
against the small disjunct problems. This seems similar to the remedy based on controlling the speci�city
of a rule [14] discussed earlier. Techniques such as RAMP[2] combine the general-to-speci�c and speci�c-
to-general search directions into one single step of learning in an attempt to do annealing-like optimization.
RAMP simultaneously strives for minimality of the rule-set and perfect accuracy of the rules on training
dataset. Its predictive capabilities are based on keeping rule-set small and general, the underlying hypothesis
being the Occam's razor.

Most techniques that grow rules incrementally, di�er in their search stopping criterion. Usually the search
stops when improvement in some performance metric stops or becomes too small. This performance metric
is based on accuracy and coverage of the rule-set on training data, and on cardinality of the rule-set. As
with RIPPER and RAMP, most techniques rely on Occam's razor principle which implies that smaller set
of general rules generalizes better. The role of Occam's razor in data mining is still being debated [9, 23].
Irrespective of that, one thing remains true - that larger support rules have more generalization capability
than smaller support rules. This can be traced back to the early arguments from large-sample theories in
statistics. In our PNrule framework, our main emphasis in the rule discovery process is that the rule should
satisfy support requirements (along with a reasonable accuracy). We do not speci�cally strive for small set
of rules, but in cases where Occam's razor indeed applies, we believe that PNrule will discover a small set
of rules. The other measure that most techniques use is accuracy. The tolerance on accuracy is quite strict
in most of the algorithms, except for some algorithms [7] which allow more negative examples to be covered
depending on the expected noise in the training data. This is equivalent in some sense to PNrule, which
tries to reduce the emphasis on accuracy in favor of support in the �rst stage. But, our technique ensures
that accuracy is regained by removing many false positives in second stage.

Our proposed technique also di�ers from the decision-tree induction techniques in the following sense.
Consider a binary classi�cation problem. We grow all the P-rules to detect presence of the target class. Later
we gather all the records collectively covered by all the P-rules, and learn N-rules on them. Now assume
that the decision tree algorithm makes same splitting decisions as our P-rules in the same sequence. This
can be achieved by using same rule evaluation metric and restricting each rule to contain similar format
of conditions as used by our framework. Now, for low accuracy P-rules, it can be seen that decision-tree
algorithm will learn N-rules for individual P-rules. It does not have the ability to learn rules on the collection
of records covered by all P-rules. This inability, we believe, makes decision-tree algorithms more susceptible
to the small disjunct problems, because it has to learn from a smaller set of records. Moreover, our technique
has the ability to discover more general N-rules which span across the records covered by di�erent P-rules.

There is another class of techniques [16, 24] that use models based on constrained association rules. These
models use all the possible rules present in the training data satisfying some support and accuracy thresholds.
This allows them to possibly avoid the local optimas that other techniques might fall into because of their
greedy strategy, but proper ways of utilizing all the discovered rules have not yet been established [24].

4

1.2 Paper Outline

The rest of this paper is organized as follows. We give the details of PNrule framework for binary and
multi-class classi�cation problems in Section 2. In Section 3, we present our case study on application of our
framework to the KDD-CUP'99 intrusion detection dataset. The paper concludes with a section on research
directions.

2 PNrule Classi�cation Framework

PNrule framework is a two-stage process of rule-induction from training data starting with the most general
rule, an empty rule. Given a misclassi�cation cost matrix and a training data set with multiple class labels,
it learns multiple binary classi�er models, one for each class. The model for each class is represented using
two kinds of rules: P-rules and N-rules. P-rules predict presence of the target class, whereas N-rules predict
absence of the target class. We start this section by illustrating the concept behind our two-stage learning
approach. Later, we give detailed algorithms for various steps of the framework.

2.1 Conceptual Illustration of Learning Method

Consider a binary classi�cation problem. Given a training data-set, T , and target class C, a rule is found
using the records of T . The rule is of the form R : A ! C, where A is a conjunction of conditions formed
by di�erent attributes and their values. Let S denote the subset of T where R applies; i.e. where A is true.
R is said to cover S. Let S0 denote the subset of S where the class label is C. Support of the rule is de�ned
as jSj=jT j (jSj denotes the cardinality of set S). Accuracy is de�ned as jS0j=jSj.

Given this set of de�nitions, we will conceptually illustrate our framework using Figure 1. Part (a) shows
the entire training data-set, among which the target class is distributed as shown in the shaded region. Our
framework operates in two stages. The �rst stage starts with the entire training set, and �nds a rule that has
the highest combination of support and accuracy (to be de�ned later). Let the rule found be indicated by P0.
As part (b) of the �gure shows, P0 covers a good portion of the shaded area, with very small portion of the
unshaded region. Now, we remove the set that is covered by P0, and repeat the process on the remaining set
[part (c)]. Let P1 be found on this dataset. P1 still has high support and fairly high accuracy. As the process
continues, it becomes increasingly di�cult to �nd rules that have high support as well as high accuracy. In
such cases, we give preference to the support as illustrated in part (d), where P2 is preferred over q1 or q2.
We stop the process when we are able to capture a su�ciently large portion of the original shaded region
[part (a)] or we start running into rules which have very low accuracy. If the accuracy threshold is set higher,
then we would stop at P2, else we will cover the remaining positive examples with P3 as in part (e). P3 will
be chosen over q3, because despite its lower accuracy, it covers more positive examples as compared to q3.
Parts (f) and (g) of the �gure show the data-set covered by all the rules combined depending on where the
algorithm stops.

As can be seen, because of our preference for support in later iterations, we have covered quite a few
examples of the negative class, which are commonly referred to as false positives. These are shown in shaded
areas of (f) and (g).

Now, on the dataset consisting of records covered by the union of all P-rules, we start an inverse learning
process. The goal here is to learn rules that will cover (i.e. remove) most of the false positives collectively
covered by the P-rules. We follow similar steps as described above, but our new target class is now the
absence of original target class. In Figure 1(f), this is shown by a restricted universe with shaded portion
as the new target class. Again �rst rule N0 tries to capture as much of the positive examples of the new
target class with high accuracy. As iterations progress, we still give preference to the support of rules, while
closely monitoring the accuracy. The point to note is that a 100% accurate rule in this stage strictly removes
the false positives covered by the �rst stage, while a rule with less than 100% accuracy removes some of
the true positive examples of the original target class (that were captured in the �rst stage). We call this
phenomenon as introduction of false negatives. Our goal in this stage is to remove as many false positives
as possible, while not introducing too many false negatives. Choosing rules which have high combination of
support and accuracy, helps us achieve this goal. All the rules discovered during this stage are called N-rules.

5

positive examples
stagefor second

(a) (b) (c)

(d) (e)

(f)

P0

P2

q2q1

P1

P3

negative examples

positive
examples

negative
examples

N0

OR

OR

examples
removed

(g)

N0

q3

Figure 1: How PNrule works. (a) Original training set, (b) Discover �rst P-rule, (c) Discover Second P-rule
on remaining examples (d) Choice of Third P-rule. P2 chosen over q1 or q2, because of its support. (e)
If accuracy threshold is low, P3 will be selected. Again, P3 is chosen over q3 because of its support. (f)
Starting data-set for second stage if �rst stage stops after P2. (g) Starting data-set for second stage if �rst
stage stops after P3.

6

During each of the stages, higher accuracy large support rules are discovered in the beginning, and lower
accuracy rules are discovered towards the end. We rank the rules in the order they are discovered, the rules
at the beginning being more signi�cant than the rules towards the end.

At the end of this two-stage process, we expect to have captured most of the positive examples of the
target class, with few of the negative examples (false positives).

Most of the false positives still getting covered can be attributed to the lower accuracy P-rules. Similarly,
most of the positive examples missing from the coverage can be attributed to the lower accuracy N-rules.
Based on this observation, we design a scoring mechanism that allows to recover some of the false negatives
introduced by the low ranked N-rules. Also, the scoring mechanism will try to assign low scores to the
negative examples covered by low accuracy P-rules. Note that we can a�ord to be more aggressive by
keeping the �nal accuracy threshold low in each of the stages, because we rely on our scoring mechanism to
correct for the additional errors introduced.

The two-stage learning approach illustrated above and the scoring mechanism, elaborated in Section 2.4
later, are the two key novel features of our method.

2.2 Main Learning Algorithm and Model Format

The pseudo-code of the main algorithm for learning a binary classi�er model is given in Figure 2. The details
of subroutines ChooseBestRule and ComputeScores are given in following subsections. The points to note
from the main algorithm are the following.

. The algorithm is parametrized by the support and accuracy thresholds applied to each stage. From
our experience with the case-study problem, which had wide variation of class distributions, usually
the support thresholds in both stages are quite strict (higher). The accuracy thresholds can be relaxed
(lowered) depending on the characteristics of the target class. Especially for smaller target classes,
they might need to be lowered substantially for the P-stage, if the support thresholds are to be set
higher.

. If the scoring mechanism is absent, then our model will simply mean that if some P-rule applies
and no N-rule applies to a record, then the record belongs to the target class. Formally, this means
C = (P0 _ P1 _ ::: _ PnP�1) ^ :N0 ^ :N1 ^ ::: ^ :NnN�1, which is equivalently a DNF model of the
form

C = (P0 ^ :N0 ^ :N1 ^ ::: ^ :NnN�1)_
(P1 ^ :N0 ^ :N1 ^ ::: ^ :NnN�1) _ :::_
(PnP�1 ^ :N0 ^ :N1 ^ ::: ^ :NnN�1)

As can be seen this model is restrictive in the sense that all conjunctions have all but one conditions in
common. This might seem to restrict the kinds of functions we can learn using our model. However, as
we will see in section 2.4, our scoring mechanism allows to relax this restriction, by selectively deciding
to ignore the e�ects of certain Nj rules for a given Pi.

2.3 Choosing and Evaluating Rules

The steps of the ChooseBestRule subroutine called from main algorithm are given in Figure 3. It can be seen
from the algorithm that each rule is quite general in the sense that it involves no conjunctions. The rules
for categorical attributes are straightforward. For numerical attributes, mechanism to �nd the interesting
ranges of values is crucial in the formation of rules. Currently, we use a simple clustering mechanism. We
�rst start by forming a small number of ranges of equal span. We merge or split the ranges such that
the number of records in each range satisfy certain pre-speci�ed minimum and maximum requirements on
the cluster size. After this, we evaluate the strength of each range, and merge the adjacent ranges which
have similar strengths. A more sophisticated algorithm would be to use this simple algorithm to produce
promising ranges. Each of these promising ranges can then be systematically extended or reduced so as to
maximize the performance metric used for the rule.

We de�ne two performance metrics that are used for evaluating and comparing the rules. The attempt
here is to capture distinguishing capability of the rule for a given class, the support of the rule, and accuracy

7

C: Target Class
T: Training Set with 1 or 0 as class (1 when class = C, 0 otherwise)

LearnPNruleModel(T, C, MinAccuracyP, MinAccuracyN, MinSupportP, MinSupportN, MinSupportScore, MinZ)

|- First Stage (P-Stage): Discover P-rules
S = T
TargetClass = C
nP = 0
Nseed = empty
do

PnP = ChooseBestRule(S, TargetClass)
Q = records of S covered by PnP
Nseed = Nseed U Q
S = S � Q
nP = nP + 1

while(Accuracy(PnP�1) > MinAccuracyP && Support(PnP�1) > MinSupportP)

|- Second Stage (N-Stage): Discover N-rules
S = Nseed
TargetClass = not C
nN = 0
do

NnN = ChooseBestRule(S, TargetClass)
Q = records of S covered by NnN

S = S � Q
nN = nN + 1

while(Accuracy(NnN�1) > MinAccuracyN && Support(NnN�1) > MinSupportN)

|- Gather PNrule statistics
for(i = 0 ; i < nP ; i++)

for(j = 0 ; j < nN ; j ++)
SupportMatrix(i , j) = number of records in T where both Pi and Nj apply
ErrorMatrix(i , j) = number of records in T where Both Pi and Nj apply, but the class is 1

end for
SupportMatrix(i , nN) = number of records in T where Pi applies and no N-rule applies
ErrorMatrix(i , nN) = number of records in T where Pi applies and no N-rule applies,

but the class is 0
end for
ScoreMatrix = ComputeScores(SupportMatrix, ErrorMatrix, MinSupportScore, MinZ)

Output P-rules Pi (0 � i < nP), N-rules Nj (0 � j < nN), and ScoreMatrix
end

Figure 2: Algorithm to Learn PNrule Model for Binary Classi�cation

8

ChooseBestRule(S, C)
RS = empty;
for each Attribute-type pair (A,type)

if type is categorical
for each distinct value, v, of A in S,

Form rules, R1: (A = v) ! C and R2: (A != v) ! C
Compute strengths of R1 and R2 on S w.r.t. C
Add R1 and R2 to RS along with their strengths

endfor
endif
if type is continuous

Form Interesting Ranges of A's Values using S.
for each range [low,high)

Form rules, R1: (A in [low,high)) ! C and R2: (A not in [low,high)) ! C
Compute strengths of R1 and R2 on S w.r.t. C
Add R1 and R2 to RS along with their strengths

end for
endif

endfor
sort rules in RS in increasing order of their strength
return the rule R having highest strength

end

Figure 3: Algorithm to Choose Best Rules in Each Iteration

of the rule, all in one single metric. A rule with higher value of the metric should imply that it is statistically
more signi�cant in capturing the target class.

� Z-number:

Let aR denote the accuracy of a given rule, R, and sR denote its support. Refer to the beginning of
section 2.1 for de�nitions. Let aC denote the mean of target class C, de�ned as aC = jSC j=jSj, where S
is the current training data set, and Sc is the subset of S where C is true. Let �C denote the standard
deviation of target class C. For the binary problem under consideration, �C =

p
aC(1� aC). Using

these notations, Z-number is de�ned as

ZR =
p
sR (aR � aC)=�C

This metric measures how many standard deviations away the mean of the rule is from the mean of the
target class. The farther away aR is from aC , better can R distinguish examples of class C. Weighing
this distance by sR gives more weight to the high support rules. Z-number is similar to the z-test or
t-test from the statistics, depending on the value of sR. A rule with high positive Z-number (aR � aC)
predicts presence of C with high con�dence. Similarly, a rule with high negative Z-number (aR � aC)
predicts absence of C with high con�dence. This metric is similar to the Z-test used in statistics.

� Y-number:

When the class mean, aC is closer to 1; i.e. when we are discovering rules for large classes, Z-number
de�ned above is not capable of distinguishing well between high accuracy rules. It tends to give a little
too much weight to the support. In such cases, we de�ne a Y-measure which computes the ratio of
how far away aC and aR are from ideal mean of 1.0 and weighs this ratio with support. The goal is to
assign more weight to the high accuracy rules.

YR =
p
sR min(

p
sR; (1:0� aC)=(1:0� aR))

To illustrate the necessity of Y-number, consider an example where aC = 0:95. A rule R1 has aR1 = 0:99
and sR1 = 10000, whereas another rule has aR2 = 0:98 and sR2 = 20000. Then ZR1 = 18:3532 and

9

ZR2 = 19:4666. Whereas their Y-numbers are YR1 = 500 and YR2 = 353:55. Based on Z-number we
would have given preference to R2, but it has lower accuracy rule as compared to R1, despite their
supports being of the same order. Y-number will choose the desired rule, R1. Note that this situation
is more likely to happen in the �rst few iterations of any stage, where PNrule strives for high accuracy
rules just like other rule-induction techniques do. Conversely, for small aC values (either target class is
small to begin with or in the later iterations), Y-number starts getting biased excessively more towards
high accuracy, low support rules because of larger 1=(1 � aR) term. For example, for aC = 0:75, if
R1 has aR1 = 0:98 and sR1 = 300, and R2 has aR2 = 0:90 and sR2 = 5000, we get ZR1 = 4:62,
ZR2 = 16:33, YR1 = 216:51, and YR2 = 176:78. Here, clearly R2 has more statistical support compared
to R1, reected accurately in Z-number. Hence, for low aC values, we revert back to Z-number.

2.4 PNrule Classi�cation Strategy and Scoring Algorithm

Once we have learned P-rules and N-rules for each class, �rst we describe how we use them to classify an
unseen record.

As indicated in section 2.1, P-rules and N-rules are arranged in decreasing order of signi�cance, which is
same as their order of discovery. Given a record consisting of attribute-value pairs, each classi�er �rst applies
its P-rules in their ranked order. If no P-rule applies, prediction is False. The �rst P-rule that applies is
accepted, and then the N-rules are applied in their ranked order. The �rst N-rule that applies is accepted.
We always have a default last N-rule that applies when none of the discovered N-rules apply. The reason
for having the last default N-rule will become clear little later in this section. If our classi�er has to make
a simple True-False decision, then we can predict a record to be True only when some P-rule applies and
no N-rule applies. However, this is not useful, especially in the multi-class framework, where we may need
to resolve conicts between True decisions of multiple classi�ers. We need a mechanism to assign a score to
each decision. Hence, depending on which P-rule and N-rule combination applies, we predict the record to
be True with certain score in the interval (0%,100%). This score can be interpreted as the probability of
the given record belonging to the target class. Scores from individual classi�ers are combined with the cost
matrix to decide the most cost-e�ective class for the given record. This is the overall classi�cation strategy.

In the light of this, we now describe how each classi�er determines the scores to assign to each P-rule,
N-rule combination.

The motivation behind the design of scoring mechanism is to weigh the e�ect of each N-rule on each
P-rule. Remember that the N-rules were learned on a set of records collectively covered by all P-rules.
So, each N-rule is signi�cant in removing the collective false positives. However, a given N-rule may be
e�ective in removing false positives of only a subset of P-rules. Moreover, some low accuracy N-rule may be
introducing excessive false negatives for some P-rules, possibly because its primary contribution is to remove
false positives of other lower accuracy P-rules. Such excessive false negatives can be recovered by assigning
them a correspondingly low score. Thus, we need to properly judge the signi�cance of each N-rule for each
P-rule.

The starting point of the scoring mechanism are the SupportMatrix and ErrorMatrix de�ned in Figure 2.
In SupportMatrix, entry (i,j) [j < nN] gives the number of records for which the true predictions made by
P-rule Pi were converted to false by N-rule Nj . Last entry in row i, SupportMatrix(i,nN) gives the number
of records where Pi applied but no N-rule applied. The ErrorMatrix reects the prediction errors made by
each (Pi,Nj) combination. Entries ErrorMatrix(i,j) [j < nN] give false negatives introduced by Nj for Pi's
predictions, whereas ErrorMatrix(i,nN) gives the number of false positives of Pi that none of the N-rules
was able to remove. The last column e�ectively corresponds to a rule which states "no N-rule applies". An
example of SupportMatrix and ErrorMatrix is shown in Figure 5. Look at the entries for [P1,N1] in both
matrices. They imply that among the records of training dataset covered by rule P1, rule N1 applied to 7
records (SupportMatrix[P1,N1]), out of which its decision to remove false positives was wrong for 2 records
(ErrorMatrix[P1,N1]). This means that it removed 5 false positives of P1, and introduced 2 false negatives
for P1.

Using the SupportMatrix and ErrorMatrix, our goal is to come up with a ScoreMatrix, such that
ScoreMatrix(i,j) (j < nN) gives a score to the record for which both P-rule Pi and N-rule Nj apply,
and ScoreMatrix(i,nN) gives a score when P-rule Pi applies and no N-rule applies. We use the algorithm

10

ComputeScores(SupportMatrix, ErrorMatrix, MinSupport, MinZ)
for(i = 0 ; i < nP ; i++)

TruePositiveVariation(i, nN) = SupportMatrix(i, nN) - ErrorMatrix(i, nN)
FalsePositiveVariation(i, nN) = ErrorMatrix(i, nN)
AccuracyVariation(i, nN) = TruePositiveVariation(i, nN) /

(FalsePositiveVariation(i, nN) + TruePositiveVariation(i, nN))
for(j = nN � 1 ; j � 0 ; j ��)

TruePositiveVariation(i, j) = TruePositiveVariation(i, j + 1) + ErrorMatrix(i, j)
FalsePositiveVariation(i, j) = FalsePositiveVariation(i, j + 1) + SupportMatrix(i, j) �

ErrorMatrix(i, j)
AccuracyVariation(i, j) = TruePositiveVariation(i, j) /

(FalsePositiveVariation(i, j) + TruePositiveVariation(i, j))
endfor

endfor
for(i = 0 ; i < nP ; i++)

for(j = 0 ; j < nN ; j ++)
parentSupport = TruePositiveVariation(i, j) + FalsePositiveVariation(i, j)
if(parentSupport < 2 * MinSupport)

Assign AccuracyVariation(i, j � 1) to ScoreMatrix(i, j..nN) and go to next i
leftTP = TruePositiveVariation(i, j) - TruePositiveVariation(i, j + 1)
leftFP = FalsePositiveVariation(i, j) - FalsePositiveVariation(i, j + 1)
leftZ = Z-number of left node w.r.t. Parent's distribution
if(leftTP + leftFP > MinSupport && jleftZj > MinZ)

ScoreMatrix(i, j) = leftTP / (leftTP + leftFP) �

else
ScoreMatrix(i, j) = AccuracyVariation(i, j) �

endif
endfor
ScoreMatrix(i, nN) = AccuracyVariation(i, nN) �

endfor
return ScoreMatrix

end

Figure 4: Algorithm for Constructing a Mechanism to Assign Scores to Decisions (�see section 2.4 for some
details)

11

given in Figure 4 to arrive at this ScoreMatrix.
Let us illustrate the idea behind the algorithm using the example given in Figure 5. We �rst construct

the matrices TruePositiveVariation, FalsePositiveVariation, and AccuracyMatrix. A P-rule captures some
positive examples (True Positives, or TP) and a few negative examples (False Positives, or FP), when it is
discovered �rst. These together give it its initial accuracy, TP/(TP+FP). Look at the Init columns in the
Figure. As N-rules are applied successively, the accuracy varies depending on how many false positives are
removed and how many false negatives are introduced by each N-rule. Precisely these variations are reected
in the three matrices. The matrices can be understood better via a decision tree for each P-rule. Figure
shows such a tree for rule P1. The root node A has all the records where P1 applies. There are 65 such
records for P1, out of which 53 are TPs and 12 are FPs (accuracy of 81.5%). Out of these records, �rst N-rule
N0 applies to 3 records (1 TP, 2 FP). Now, we determine the signi�cance of N0 speci�c to P1, by applying
our �rst criterion, which states that support of any decision should satisfy a MinSupportScore threshold. For
our example, threshold is 5, hence N0 has statistically insigni�cant support, and we decide to ignore its
e�ect on P1. The decision is reected in the ScoreMatrix by assigning the accuracy of the parent node to
the [P1,N0] location (81.5%). Now, we recalculate the TP, FP, and Accuracy statistics for the records where
N0 did not apply. We cannot propagate the statistics of root node to node B, even though we decide to
ignore N0's e�ect on P1. The reason is the sequential covering nature of the way N-rules are learned, which
implies that the decisions made by rule N1 (and later rules) are signi�cant only to the population of records
where rule N0 does not apply.

Now, when N1 is applied to the new set of records (52 TP, 10 FP), it applies to 7 of those (2 TP, 5 FP).
It satis�es our support criterion of signi�cance (� MinSupportScore). Now, we calculate the Z-number of N1
w.r.t P1, given by formula ZN =

p
nP (aN � aP)=�P , where nP is the support of parent node (TP+FP). aN

and aP are accuracies of N-rule's node and parent, respectively, and �P =
p
(aP)(1� aP) is the standard

deviation of parent's population. Our second criterion of signi�cance states that if the absolute value of ZN
is su�ciently high (� MinZ), then the decision made by the N-rule is signi�cant w.r.t. the given P-rule.
This test is similar to the z-test or t-test from statistics (depending on the value of nP). Point to note here
is that each N-rule had a signi�cant Z-number when it was discovered in the learning process because it was
computed over a collection of records covered by all P-rules. What we are determining here is its signi�cance
speci�c to a given P-rule. In our example, P1-speci�c jZj value of N1 is high (11.85 � MinZ=3.0), so we
decide that N1's e�ect on P1 is signi�cant. The decision is reected in the ScoreMatrix by assigning the
accuracy of N1's node to the [P1,N1] location (28.6%). So, whenever N1 applies to a record predicted true
by P1, we say that the probability of of that record belonging to the target class is only 28.6%.

The process continues for N2, where we �nd that N2's decision has signi�cant support, but it does not
have su�cient distinguishing capability w.r.t P1 (low jZj). Hence, we ignore its e�ect on P1, and assign the
ScoreMatrix[P1,N2] location the accuracy of N2's parent (90.9%). Finally, when no N-rule applies, we assign
the accuracy of N3's leaf to the last location in P1's row (92.0%). This entire process is repeated for P0
and P2. At every node of the decision tree, we determine whether a N-rule is signi�cant w.r.t. to the given
P-rule. If it is signi�cant, we use the accuracy of the N-rule to score the decision, or else we use the accuracy
of its parent. It can be veri�ed that for P0, none of the N-rules have statistically signi�cant support, and
for P2, every N-rule is signi�cant (support as well as the Z criterion).

Here are some more points to note about the algorithm, which are not illustrated by the above example.
First of all, if any node's support falls below MinSupportScore, we ignore its e�ect, and assign it the score
of its nearest ancestor having statistically signi�cant support. Second, we do not allow a perfect decision at
any node; i.e. our scores are never exact 100% or 0%. A score of 100% gets adjusted to n=(n + 1) where
n = TP , whereas a score of 0% gets adjusted to 1=(n+ 1), where n = FP . The reason for doing this is to
give less importance to the perfect decisions made on small population as compared to the perfect decisions
made on larger population. Also, the moment a parent node is found to be perfect (before adjusting scores),
we stop splitting it further and assign its adjusted score to all the remaining locations of its row. Finally, the
parameters MinSupportScore and MinZ can usually be �xed for most problems using statistical arguments.

The essential e�ect of this scoring mechanism is to selectively ignore e�ects of certain N-rules on a given
P-rule. At the end of it all, ScoreMatrix reects an adjusted probability that a record belongs to the target
class, if Pi, Nj combination applied to it.

12

53

26

52

26

50

25

99

46

23

102102 102

P2

P0

P1

N2N1N0Init

TruePositiveVariation

P2

P0

P1

N2N1N0Init

FalsePositiveVariation

2

12

1

4

420 12

10

8

5

22

P2

P0

P1

N2N1N0Init

AccuracyVariation

98.1 98.1 98.1 99.0

81.5 83.9 90.9 92.0

56.5 68.4 75.8 85.2

0

3

8

0

7

5

4

5

6

50

27

100

SupportMatrix

N0

P2

N1 N2 N3

P0

P1

ErrorMatrix

0

1

0

2

1

4

2

3 1

4

4

N0

P2

N1 N2 N3

P0

P1

0

Final Result: ScoreMatrix

N0

P2

N1 N2 N3

P0

P1

98.1

81.5

11.1

98.1

28.6

20.0

98.1

90.9

33.3 85.2

92.0

99.0

no N-rule
applies

[46,4,92.0]

[50,5,90.9]

Low Z!
|Z|=2.81

[4,1,80.0]

N3N2

Low Support

N1

[2,5,28.6]

[1,2,33.3]
|Z|=11.85

Parameters:

MinSupportScore = 5
MinZ = 3.0

Illustration for P-rule P1:

[53,12,81.5]

[52,10,83.9]

Format: [True Positives, False Positives, Accuracy]

N0

A

B

C

Figure 5: Illustration of Constructing the Scoring Mechanism (ScoreMatrix)

13

2.5 Making PNrule Cost-sensitive

Given a misclassi�cation cost matrix fC(s; t)g, where C(s; t) is the cost of predicting class s as class t, the
goal is to predict the classes of a given data set to minimize the total misclassi�cation cost penalty.

Given a record x, if the actual probability P (sjx) of the record belonging to class s is known, then Bayes
optimality rule [10] implies that assigning a class t to the record that minimizes

P
s P (sjx)C(s; t) gives the

least overall cost. We use the scores generated by our binary classi�ers as the estimation of P (sjx), and use
this formula to predict the class of x.

This strategy may not work well if the scores generated by our classi�er are not close estimates of
P (sjx). We have not analyzed this issue in detail, but plan to do so in the future. But, from preliminary
concept behind our scoring strategy, it can be seen that if test-data and training-data have similar class
distributions, then our scores will be closer to true estimates. In section 4, we discuss some possible ways of
handling situations where our scores are not close to true estimates.

3 Case Study: Applying PNrule to Detect Network Intrusions

In order to validate our PNrule framework, we applied it to a classi�cation problem from the domain
of network intrusion detection. The training and test data-sets were supplied as part of KDD-CUP'99
Contest[11]. We participated in the contest. In this section, we explain the problem and its challenges. We
describe the strategy that we used initially. We analyze the strategy critically to give reasons as to why it
did not do so well, but before that we also explain how we suspected the original test-data for its quality,
and how we proved it wrong. The PNrule framework proposed in this paper is an improved and automated
version of that original strategy. We �nally show that PNrule approach is promising, as it yields the best
performance under certain scenarios.

3.1 The Data-Set and Challenges

The network intrusion detection problem provided as part of the KDD-CUP-99 classi�er learning contest
[11] was as follows. Given a training data-set of close to 5 million records belonging to �ve classes and a
misclassi�cation cost matrix, goal was to learn a classi�er model so as to achieve least total misclassi�cation
cost of predicting the labels of the supplied test-data records. Here is the description of the data-set:

. The training and test-data were collected from a real-life scenario of a military computer network which
was intentionally peppered with various attacks that hackers would use to break in.

. Each record represents a connection between two network hosts. It is characterized by 41 attributes,
34 continuous-valued and 7 discrete-valued. Some exemplary attributes are duration-of-connection,
number-of-bytes-transferred, number-of-failed-login-attempts, network-service-to-which-connection-was-
made, etc.

. Each record represented either an intrusion (or attack) or a normal connection. There are four cat-
egories of attack: denial-of-service (dos), surveillance (probe), remote-to-local (r2l), and user-to-root
(u2r).

As can be seen, this data-set was quite large and it represented a real-world problem. Here are some
salient features of the problem and data-set that made this contest challenging:

. The goal was not mere accuracy, but misclassi�cation cost matrix. This cost matrix is given in Ta-
ble 1(a).

. Each attack category had some subclasses of attacks. We were told that out of total 39 total attack
subclasses that appear in test-data, only 22 were present in the training data.

. The distribution of training records among attack categories as well as subclasses varied dramatically.
Table 1(b) shows the counts for some of the representative classes and subclasses. Moreover, the
misclassi�cation cost penalty was the most for one of the most infrequent classes, r2l.

. It was told that the test-data had a completely di�erent distribution of classes as compared to the
training-data.

14

2883370 (79.3%)
41102 (0.84%)
1126 (0.023%)
52 (0.001%)

dos
probe
r2l
u2r

2
2
2
2
0

2
2
2
0
2

2
2
0
2
2

1
0
1
2
2

0
1
2
3
4

normal
probe
dos
u2r
r2l

(b)

972781 (19.9%)normal smurf (dos)
neptune (dos)
back (dos)
teardrop (dos)
ipsweep (probe)
satan (probe)
warezclient (r2l)
buffer_overflow (u2r)

2807886
1072017
2203
979
12481
15892
1020
30

dos u2r r2lprobenormal

(a)

ac
tu

al
 c

la
ss

predicted class

CountClass Subclasses Count

Table 1: Characteristics of Problem and Training Data. (a) The misclassi�cation cost matrix. (b) Class and
subclass distribution in training data.

. We had only 25 days to submit results. And the evaluation criterion based on misclassi�cation costs
was announced only two weeks prior to the submission date.

3.2 Our Original Strategy: Results and Critique

This is the method we used for submitting our results to the contest. We describe it here because it has
the roots of PNrule framework in it. We developed it in a three week period starting from scratch, without
using any existing classi�ers. Here is the summary of our strategy.

1. We decided not to use any domain knowledge. We decided to evolve a rule-based model which has
rules with high support and good accuracy in training data. The underlying "bias" we assumed was
that such rules would yield the model better generalization capability.

2. We observed a peculiar behavior of the class labels in training data. Most of the labels were appearing
in bursts; i.e. large number of consecutive records had the same class label. In fact, 4,898,431 records
of training data appeared in only about 620 bursts.

3. Since the classes were distributed widely, we decided to learn a separate binary model for each class,
starting with the most frequent classes smurf, neptune, and normal. We observed that for smurf, one
single rule was capturing all the positive examples. It had a very high accuracy of 99.87%. When we
applied a burst analysis to this to remove records that did not occur in large bursts, we could bring the
accuracy up to 99.999%. We could also �nd a P- and N-rule based model for neptune with su�ciently
high accuracy in training data, 99.98%.

4. We could not �nd such high accuracy rules for any other class, hence we decided to remove all the
smurf and neptune records and learn the models for other classes on the remainder of the data. This
was done to increase the relative proportion of really tiny categories such as r2l and u2r.

5. For every class other than smurf, we could not �nd a set of rules that together could capture large
portion of positive examples with high accuracy. Hence, we formed rule-based model in two stages
similar to PNrule. We �rst found all rules based on single attribute in the manner described in
section 2.3. We ranked them based on Z-number. A few rules among those with very high positive
Z-number were hand-picked to cover the positive examples of the class. A few N-rules were similarly
hand-picked from the rules having very low negative Z-numbers, since such rules predict absence of the
target class with high con�dence. For each P-rule, we observed how many of its false positives were
getting removed by some N-rule. For each N-rule, we observed how many false positives it is removing
and how many false negatives it is introducing. Using these measures, we went through a few iterations
of adding, deleting, and reordering of P-rules and N-rules, to arrive at a �nal set which had su�ciently
low false positive rate and as high detection rate as we could achieve. The decision made using this
model was as follows: If some P-rule applies and none of the N-rules applies, we predict the class to
be true, or else it was predicted false.

15

59958
1968
6775
197
14759

normal

163078
7
60054
23
3

2
0
0
7
2

29.3% 21.6% 73.1% 36.4% 1.7%FP-rate

26.8%
52.6%
89.8%
3.1%
8.7%

22
0
0
1
1414

r2l

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 402000, Accuracy = 39.75%

Acc

534
2191
23
0
11

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 75998, Accuracy = 92.15%

Accnormal

534
2191
23
0
11

77
7
223055
23
3

2
0
0
7
2

r2l

22
0
0
1
1414

59958
1968
6775
197
14759

FP-rate 29.3% 21.6% 0.05% 36.4% 1.7%

99.0%
52.6%
97.0%
3.1%
8.7%

Figure 6: Results obtained with original two-stage strategy. (a) With corrupt test-data supplied initially.
We proved this test-data wrong. (b) With correct test-data.

Disputed Records
in Test

Normal in Test
Except those in DS4

normal: 163,004
smurf: 1,090

Description

Labels in Disputed Records

distinct values for Atr0 (duration)
Max value for Atr0
distinct values for Atr4 (src_bytes)

Normal in Training

972,781

9034
58,329
7,145

Max value for Atr4

60,590

Smurf in Training

89,581,520

#times our strong smurf model applies 19 (0.002%) 0 (0%) 2,805,850 (99.93%) 163,582 (99.69%)
164,091 (99.99%)2,807,886 (100%)173 (0.28%)3456 (0.35%)#times our simple smurf rule applies

Our Labels in Disputed Records

164,0962,807,886

DataSet3 (DS3) DataSet4 (DS4)DataSet2 (DS2)DataSet1 (DS1)

Counts

smurf: 164,096

6,291,668
2,354
54,451
224

1,032
2
0
1

1,032
8
0
1

Table 2: How we Proved the Original Test-Data labels wrong.

6. After forming the models, we applied burst analysis to remove bursts having small size and lower
accuracy. This appeared to work very well for training data, and also the predictions of our rules in
test-data seemed to exhibit bursty behavior, especially for large classes (smurf, etc).

7. We �nally brought in costs in an ad-hoc manner. Whenever there was a conict in decisions, we
decided to give preference to the classes in order of their misclassi�cation cost penalties.

When the results came out, we had 8th rank among 24 contenstants, and we had the confusion matrix
as shown in Figure 6(a). When the test-data labels were made available, we observed the following:

. Our assumption about similar "bursty" behavior in training and test data was wrong for most of the
classes. If we would not have done the analysis, and would have used the predictions made by our
models directly, we would have improved our misclassi�cation cost to 401008, and our rank could have
gone up to 5th place.

. The �rst thing that struck us in the confusion matrix was that our false alarm rate for dos was very
high. This led us to trigger a controversy about test-data quality issue, which we describe in next
subsection.

3.2.1 Test-Data Quality Issue: How we proved it wrong

Our very high false alarm rate for dos was quite surprising, given the very high accuracy models we had
found for smurf and neptune (two prominent subclasses of dos). In fact, we were quite accurate in predicting
neptune records in test-data, but apparantly almost all of the 164,096 records we had predicted to be smurf

were normal according to the test data labels. Our smurf model had a low false positive rate of 0.35%, but
was based on a rule with only one attribute. So, we added more conjunctions to the rule, and made it consist
of 31 attributes out of 41. With this stronger model, the false positive rate had gone down to 0.002%, and

16

we could still capture 99.93% of smurf in training. So, what are the statistical chances of a 0.002% false
positive rate blowing all the way upto 99.3% in test-data? If they are indeed very high, then it would make
almost every data-mining technique to fail.

Then, we did some more analysis. We tried to use domain knowledge. We observed the behavior of three
basic attributes: the duration of a connection, and bytes transferred from and to the source host. For a
normal connection, these attributes should vary all over their possible range of values, whereas for attack
connections, they should exhibit some standard pattern based on some hackers strategy of attack. Hence
we separated four data-sets, and observed the behavior of these basic attributes in them. The de�nition of
data-sets and results are shown in Table 2. As can be seen, The �rst two datasets (DS1 and DS2) are very
similar, whereas the last two datasets (DS3 and DS4) are very similar, making a case that most records in
DS4 (disputed data-set) should be smurf rather than normal.

Using this argument along with our statistically stronger model, we made our case that the test-data
labels, especially those in the disputed data-set, were wrong. And, indeed we were right. Our proof reached
just in time to hold the results announcements, and the people who had prepared the data agreed that they
had made a mistake in labeling the test-data. The new corrected test-data was supplied, and all contestants
were re-evaluated using it. Our rank had improved two notches, up to 6th, with this new test-data. The
new confusion matrix is shown in Figure 6(b). As can be seen, our false alarm rate for dos is almost close to
0.0%. In fact, all the labels in the disputed data-set were smurf.

3.3 Applying PNrule and Results

The original strategy we used had two main shortcomings. First, the rule-based models were formed using
hand-picked P- and N-rules. It took us a few iterations of choosing good rules that give low false positive
rate as well as high detection rate. Second, the decision made by each classi�er model was binary, 0 or 1.
So, all N-rules had equally strong inuence on each P-rule. Also, a binary decision has a score of either 0%
or 100%, which means putting too much con�dence in the decision of each classi�er.

The PNrule framework of section 2, was developed after noticing these shortcomings. Main deviations in
PNrule framework from the pre-PNrule strategy are the systematic automated way of �nding P-rules and
N-rules using sequential covering strategy, and the scoring mechanism. The usual criticism of sequential
covering based algorithms, regarding small disjunct problem, was elaborated upon in section 1.

Apart from these di�erences in the algorithm, we did following things di�erently while applying PNrule
to the network intrusion detection data-set of KDD-CUP'99 contest:

1. First obvious thing we did was not to rely on any burst analysis. This required learning a 2-stage
PNrule model for smurf also, in order to remove the false positives of the P-rule.

2. We �rst developed models for smurf and neptune using the entire training set T , but now instead of
removing every record where smurf and neptune were predicted true, we removed only those records
which had a score greater than 99.9% for these classes. We refer to the �ltered training data-set as T1.

3. Two prominent classes remaining were normal and probe. The other remaining classes, r2l, u2r, and
remaining subclasses of dos, were really tiny. We formed a 10% subset of T1. This subset, refered
to as T110%, had every record belonging to these classes, but only around 10% sample of the records
belonging to normal and probe. The goal was to increase the statistical signi�cance of the tinier classes.
We learned P-rules for normal and probe using entire T1. But, we learned N-rules for normal and probe,
and entire models (P- and N-rules) for other smaller classes using T110%.

4. We used scores of each of the classi�ers along with the misclassi�cation cost matrix, to make �nal
decisions according to the procedure given in section 2.5.

Before describing the overall results, let us illustrate how the scoring mechanism works. The model
formed for r2l consists of 5 P-rules and 15 N-rules. Scores for individual PN rule combinations are formed
using the T110% data-set. The matrices formed during the ComputeScores algorithm are shown in Figure 7.
The parameters used are MinSupport=10 and MinZ=5.0. The variations of true and false positives illustrate
how N-rules work to improve the accuracy by removing false positives. All locations of ScoreMatrix in the

17

274
733
51
12
39

264
689
44
10
38

P0
P1
P2
P3
P4

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N13N12 N14Init

274
710
51
12
39

274
710
51
12
39

274
710
51
12
39

274
709
51
12
39

274
703
45
10
39

274
698
44
10
38

274
698
44
10
38

274
697
44
10
38

274
689
44
10
38

264
687
44
10
38

264
663
34
9
38

264
642
32
8
34

254
640
32
8
19

254
639
31
4
19

P0
P1
P2
P3
P4

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N13N12 N14Init

0
21
1
0
2

0
3818
6
0
380

0
1496
6
0
380

0
918
6
0
378

0
885
6
0
291

0
652
4
0
256

0
370
4
0
245

0
276
4
0
242

0
276
4
0
138

0
276
2
0
59

0
209
2
0
59

0
167
2
0
44

0
130
2
0
41

0
60
2
0
38

0
59
1
0
2

0
29
1
0
2

FalsePositiveVariation

99.6
0.9
89.5
92.3
9.3

99.6
0.1
89.5
92.3
9.3

99.6
3.0
89.5
92.3
9.3

99.6
4.3
89.5
92.3
11.8

99.6
2.1
92.7
92.3
13.2

5.1
99.6

91.8
92.3
13.7

99.6
71.7
91.7
92.3
21.6

99.6
25.5
95.7
92.3
48.1

99.6
91.7
94.4
92.3
10.0

99.6
6.3
97.0
92.3
94.4

99.6
95.7
97.0
92.3
90.5

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N13 N15N12 N14

P0
P1
P2
P3
P4

TruePositiveVariation

ScoreMatrix

99.6
71.7
91.7
92.3
13.9

99.6
10.7
95.7
92.3
39.2

99.6
2.4
95.7
92.3
39.2

99.6
5.1
95.7
92.3
46.3

99.6
96.8
96.9
92.3
90.5

Figure 7: Scoring Mechanism in Action for r2l.

normal
probe
dos
u2r
r2l

probe dos u2r Acc

22

7
2
4

normal

97203
146
20
13
76

6
0
3441
0
0

7
0
1
27
6

r2l

40
0
1
10
1040

99.9%
96.5%
99.2%
51.9%
92.4%

FP-rate 0.26% 0.88% 0.17% 34.2% 4.59%

3961

Figure 8: The performance of the models on T110% data-set. Note that this data-set contains very few smurf

or neptune records. See text for detailed description of how this data-set is formed.

18

60244
458
5595
177
14994

Contest Runner-up

Contest Winner Contest Winner

Contest Runner-up

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 74058, Accuracy = 92.59%

Acc

175

57
3
12

normal

60316
889
6815
195
14440

75
26
222874
0
1

13
3
106
15
6

r2l

14
206
1
15
1730

99.5%
73.2%
96.9%
6.6%
10.7%

FP-rate 27.0% 7.5% .05% 89.5% 12.0%

3042

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 72500, Accuracy = 92.71%

Acc

FP-rate

normal r2l

25.4% 35.2% 0.1% 28.6% 1.2%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 18338, Accuracy = 98.28%

Accnormal r2l

FP-rate 7.2% 8.3% .04% 71.0% 1.3%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 18734, Accuracy = 98.19%

Accnormal r2l

FP-rate 6.7% 26.0% .03% 33.3% 0.9%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 73243, Accuracy = 92.92%

Accnormal r2l

FP-rate 29.3% 21.6% 73.1% 36.4% 1.7%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 19790, Accuracy = 98.22%

Accnormal r2l

FP-rate 7.4% 9.6% .04% 41.9% 1.5%

60316
25
392
22
4248

175
2349
24
1
12

75
3
222874
0
1

13
0
7
9
2

14
0
1
7
1730

99.5%
98.8%
99.8%
23.1%
28.9%

60262
0
2
15
4339

243
2374
304
0
289

78
3
222992
0
0

4
0
0
18
5

6
0
0
6
1360

60262
511
5299
168
14527

243
3471
1328
20
294

78
184
223226
0
0

4
0
0
30
8

6
0
0
10
1360

99.5%
83.3%
97.1%
13.2
8.4%

239
3521
227
18
4

85
187
224029
4
0

9
0
2
27
6

16
0
0
2
1185

99.4%
84.5%
97.5%
11.8%
7.3%

60244
4
10
19
4804

239
2370
10
0
3

85
3
223278
0
0

9
0
0
18
4

16
0
0
2
1182

99.4%
99.7%
99.9%
46.2%
19.7%

99.5%
99.9%
99.9%
46.2%
22.7%

(a) (d)

(b) (e)

(f)(c)

PNrule PNrule

Results on subset of test-data with known subclassesResults with entire test-data

Figure 9: Comparing PNrule results with the winner and runner-up of the KDD-CUP'99 contest.

19

rows of perfect rules P0 and P3 are assigned adjusted scores (refer to section 2.4); decision made with P0
gets scored higher than P3, because of its larger support. For rule P1, e�ects of almost all N-rules are taken
into account (i.e. assigned-score=accuracy-of-left-node), except for rules N6, N7, N12 and N14. Out of these
N6, N7, and N14 do not satisfy support requirement, while the left node for N12 cannot be signi�cantly
distinguished from its parent (jZj=0.64 < MinZ). For rule P4, most left node distributions have a low Z-
number. Parent's statistics are used for such combinations. The only N-rule that has prominent e�ect on
P4 is N12.

Figure 8 shows the accuracy and false positive rates of the models, when they are applied to the training
data-set T110%. These statistics are computed after combining the scores from individual classi�ers in a
cost-sensitive manner. As can be seen, except for u2r, all the other models have good recall (high detection
rate or Accuracy) as well as good precision (low False Positive rate). The model for u2r is di�cult to learn
because there are only 52 training cases available for the whole class (out of close-to 5 million records).
Moreover, these 52 records are further divided into four subclasses with 30, 9, 3, and 10 records each. These
numbers are too small to give much statistical signi�cance to the decisions made using them. Despite this, we
are able to identify signatures for around 52% records with only 34% false positive rate. However, PNrule's
performance is quite good for the r2l class, which also has very small number of records overall (1126 out
of close-to 5 million). As a matter of fact, conceptually PNrule is well-suited to handle very small (but
statistically signi�cant) classes.

When these models were applied to the corrected test-data of the contest, we obtained the results shown
in Figure 9(a). According to these results, our rank would be 4th among 24 contestants. This is certainly
an improvement over our previous technique (�gure 6(b)). We also show the results of the winner[21] and
runner-up[15] entries of the contest in �gures 9(b) and 9(c) respectively. As can be seen we are not very
far away in misclassi�cation cost from the winning entry. As a matter of fact, PNrule has the best detection
rate for r2l among all the contestants.

The peculiar thing to observe is the large numbers in the �rst column of the confusion matrices. Almost
all the contestants seem to have misclassi�ed a large number of r2l and dos records as normal. This happens
because there are 6% records in the test-data (18,729 out of 311,029) belonging to 17 subclasses that were
completely absent in the training data, and none of the contestants does a good job of capturing these
unknown subclasses.

Hence, for a fair comparison, we decided to remove these 18,729 records. For the remainder of test-data
bearing known class labels, we show the confusion matrices of three entries in the right half of Figure 9.
PNrule results are in part (d). As can be seen, PNrule performs better than other entries in terms of
misclassi�cation cost as well as accuracy. The number of records misclassi�ed by PNrule is almost 3.7% less
than the second best (part (f)). PNrule's misclassi�cation cost penalty is about 2.2% better than the second
best (part (e)).

Since we can safely assume that many contestants have applied many di�erent techniques to solve the
problem, and our PNrule method performs better than the best two, we can conclude that PNrule certainly
has promise to be an e�ective classi�cation technique for problems which have similar nature to the network
intrusion detection problem studied in detail here.

4 Concluding Remarks and Future Research

We proposed a new framework, PNrule, for multi-class classi�cation problem. The key novel idea used in
PNrule is that of learning a rule-based model in two stages: �rst �nd P-rules to predict presence of a class
and then �nd N-rules to predict absence of the class. We believe that this will help in overcoming the
problem of small disjuncts often faced by sequential covering based algorithms. The second novel idea in
PNrule is the mechanism used for scoring. It allows to selectively tune the e�ect of each N-rule on a given
P-rule.

We have shown via a case-study in network intrusion detection, that proposed PNrule framework holds
promise of performing well for classi�cation problems, especially the ones which have a wide variation of
class distributions.

The proposed framework opens up many avenues for further testing and improvement. We are currently
in process of testing PNrule on various datasets from di�erent domains. In particular, we plan to analyze

20

its behavior for data-sets where other sequential covering problems have faced the small disjuncts problem.
One more aspect of the proposed framework needs more work, with regards to the choice of support and

accuracy thresholds in each of the phases. In our case-study application, we decided these thresholds after
observing the behavior of each stage for each target class. Primary factor was the size of the class being
learned, and the rate at which the support and accuracy of the newly discovered rules varied. Automated
techniques need to be developed that encode these heuristics.

Also, there is a possibility that despite our e�orts of learning N-rules on a collection of P-rule covered
records, the second phase can face the small disjunct problem. In such cases, possible solutions include use
of pruning mechanisms or generalization the framework to a multi-phase framework.

The scoring mechanism proposed here has many possibilities of improvement. Especially when the test-
data and training-data distributions are di�erent and we already know the test-data (a scenario similar to
transduction [26]), we can modify our mechanism such that the scores reect the true probability of a class
given a record, thus justifying the use of Bayes optimality rule. Another possibility to try is to use estimates
of generalization errors while scoring the PN rule combinations. There is always a possibility of imposing a
framework such as MetaCost[8] on top of PNrule to make it more cost-sensitive.

The possibility of replacing the scoring mechanism by a di�erent technique can also be explored. As
an example, after the P- and N-rules are learned, PNrule's classi�cation strategy can be encoded into a
functionally equivalent decision tree where P-rules and N-rules form the decisions at the nodes. This tree
can then be pruned using some decision-tree pruning method (MDL [17], for example).

Currently, PNrule uses only rules with one attribute. There is nothing that restricts the framework from
using rules having more conditions in conjunction, such as rules formed using frequent sets of association rules.
Also, our current mechanism to form clusters of ranges for numerical attributes has scope for improvement.

References

[1] Kamal Ali and M. Pazzani. Reducing the small disjuncts problem by learning probabilistic concept
descriptions. In T. Petsche, S. J. Hanson, and J. Shavlik, editors, Computational Learning Theory
and Natural Learning Systems in Knowledge Discovery and Data Mining. MIT Press, Cambridge, Mas-
sachusettes, 1992.

[2] C. Apte, S. J. Hong, J. Lepre, S. Prasad, and B. Rosen. RAMP: Rule abstraction for modeling and
prediction. Technical Report RC-20271, IBM Research Division, 1996.

[3] V. Cherkassky and F. Mulier. Learning from Data. John Wiley and Sons, 1998.

[4] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261{283, 1989.

[5] William W. Cohen. Fast e�ective rule induction. In Proc. of Twelfth International Conference on
Machine Learning, Lake Tahoe, California, 1995.

[6] Andrea Danyluk and Foster Provost. Small disjuncts in action: Learning to diagnose errors in the local
loop of the telephone network. In Proc. of Tenth International Conference on Machine Learning, pages
81{88. Morgan Kaufmann, 1993.

[7] Pedro Domingos. The RISE system: Conquering without separating. In Proc. of Sixth IEEE Interna-
tional Conference on Tools with Arti�cial Intelligence, pages 704{707, New Orleans, Louisiana, 1994.

[8] Pedro Domingos. MetaCost: A general method for making classi�ers cost-sensitive. In Proc. of Fifth
International Conference on Knowledge Discovery and Data Mining (KDD-99), pages 155{164, San
Diego, California, 1999.

[9] Pedro Domingos. The role of Occam's razor in knowledge discovery. Data Mining and Knowledge
Discovery, 3(4), 1999.

[10] R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, New York, 1973.

21

[11] Charles Elkan. KDD'99 classi�er learning competition. In http://www.epsilon.com/kdd98/harvard.html,
September 1999.

[12] Charles Elkan. Results of the KDD'99 classi�er learning contest. In http://www-
cse.ucsd.edu/~elkan/clresults.html, September 1999.

[13] Wei Fan, Salvatore J. Stolfo, J. Zhang, and Philip K. Chan. AdaCost: Misclassi�cation cost-sensitive
boosting. In Proc. of Sixth International Conference on Machine Learning (ICML-99), Bled, Slovenia,
1999. To appear.

[14] Robert C. Holte, L. Acker, and B. Porter. Concept learning and the problem of small disjuncts. In
Proc. of Eleventh International Joint Conference on Arti�cial Intelligence (IJCAI-89), pages 813{818,
1989.

[15] Itzhak Levin. Kernel miner takes second place in KDD'99 classi�er learning competition. In
http://www.llsoft.com/kdd99cup.html, October 1999.

[16] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classi�cation and association rule mining. In Proc.
of Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), New York
City, 1998.

[17] M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. In Proc. of the First Int'l
Conference on Knowledge Discovery and Data Mining, pages 216{221, Montreal, Quebec, 1995.

[18] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremental learning system AQ15
and its testing application to three medical domains. In Proc. of Fifth National Conference on AI
(AAAI-86), pages 1041{1045, Philadelphia, 1986.

[19] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[20] S. Muggleton and C. Feng. E�cient induction of logic programs. In Proc. of First Conference on
Algorithmic Learning Theory (ALT-90), Ohmsha, Tokyo, 1990.

[21] Bernhard Pfahringer. Results on known classes. In private communication with authors, October 1999.

[22] J. Ross Quinlan. Improved estimates for the accuracy of small disjuncts. Machine Learning, 6(1):93{98,
1991.

[23] J. Ross Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learning. In
Proc. of Fourteenth International Joint Conference on Arti�cial Intelligence (IJCAI-95), pages 1019{
1024, Montreal, Canada, 1995.

[24] Kapil Surlaker. Classi�cation strategies based on association rules. In M.S. Plan B Project Report,
Department of Computer Science, University of Minnesota, 1999.

[25] P. Turney. Cost-sensitive learning bibliography. In http://ai.iit.nrc.ca/bibliographies/cost-sensitive.html,
1997.

[26] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

[27] Gary M. Weiss. Learning with rare cases and small disjuncts. In Proc. of Twelfth International Con-
ference on Machine Learning, pages 558{565, Lake Tahoe, California, 1995.

22

