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1 Introduction
The Mobile Network Computing Reference Specification, or MNCRS [Mon98] is an

extension of the Open Group’s  technical standard for network computing clients [Ope98] to
address issues unique to mobile devices, including primarily disconnected operation, power
management, communication over slow, expensive, and unreliable links, and support for a wide
variety of devices and network connections.  The MNCRS was developed by a consortium that
was established in June 1997 and came to include Alcatel, Apple Computer, Bellcore, Ericsson
Mobile, Fujitsu, Hitachi, Hugh Symons Group, IBM, Lotus Development, Matsushita, Mitsubishi
Electric, Netscape Communications, Nokia Mobile Phones, Nortel, Oracle's Network Computer
Inc. (NCI), Sharp, Sun Microsystems, and Toshiba.  The specification, posted at
http://www.mncrs.org, defines a common Java-based platform for communicating mobile
devices.  It includes hardware and software guidelines, as well as proposed standards for data
synchronization, mobile communications, the boot sequence, adaptivity, power management,
service discovery, security, smart card interfaces, and an application-programming interface (API)
for electronic phone books.

This paper is concerned with the MNCRS framework for data synchronization.  The heart
of the framework is a persistent synchronizable store, or sync store, which contains Java objects
retrievable by keys called sync IDs.  A sync ID is also a Java object.  There may be peer replicas
of a sync store on several different devices, which may be disconnected from each other most of
the time.  A process called synchronization brings two replicas into identical states (assuming that
no other changes were made to either replica during the synchronization).  Synchronization may
be initiated by an application, perhaps upon some action by the end user, or by a system utility
that awakens specified times or upon specified events, such as reestablishment of a network
connection.  Each Java object in a sync store belongs to an application-defined class.  This class is
required to implement an interface that includes several methods that the framework may invoke
during synchronization, including class-specific methods for resolving conflicts between
concurrent updates. 

The MNCRS Data Synchronization Working Group produced a document describing the
architecture of the framework, a Java API, and a tutorial for application programmers.  These
products reflect a consensus achieved after long deliberations by participants with different goals,
experiences, and approaches.  Compromises were necessary to reach this consensus, leaving every
participant generally satisfied, but no participant completely satisfied, with the framework.
Indeed, there were cases in which there was broad consensus in the working group that a problem
existed, but no consensus about how to solve it, and the problem was knowingly left unsolved
pending future revisions of the framework.  Some of the participating companies developed their
own implementations of the framework.  We shall describe the framework agreed upon by the
working group, some of the issues and alternatives debated by the working group in reaching this
agreement, and one implementation of the framework, by a team at the IBM Thomas J. Watson
Research Center.  The framework and the implementation described here reflect the work of many
people; the opinions presented here are the author’s own.

This monograph describes version 1.1 of the MNCRS data-synchronization framework,
published in March 1999.  Section 2 gives examples of sync-store-based applications.  Section 3
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explains the framework's fundamental assumptions about the nature of sync stores and the effect
of synchronization.  Section 4 presents the architecture of the framework and the role of its major
components, some of which are defined in the framework itself, some of which are defined
implementors of the framework, and some of which are provided by application programs.
Section 5 describes how applications using sync stores are written.  Sections 6 and 7 discuss the
IBM Research implementation of the MNCRS data-synchronization framework.  Section 8
presents alternative approaches that were considered during the design of the framework, but not
adapted.  Section 9 reevaluates some of the design goals that shaped the framework, and
describes follow-on projects.
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2 Application Examples
A wide range of applications can be built on top of the MNCRS data-synchronization

framework.  This section provides a few illustrative examples.

2.1 A Personal Information Manager Database

A database of personal information comprises several sync stores, for example a sync store
containing appointment-calendar entries and a sync store containing address-book entries.  There
are two replicas of each sync store, one in a handheld device and one in a personal computer.
There is a separate program used to edit and view the data in each sync store on the personal
computer.  These programs take advantage of the keyboard, mouse, and powerful graphical
interfaces available on the personal computer.  There is a single program on the handheld device,
tailored to the limited input and output mechanisms available on that device, that can be used to
edit or modify any of the sync stores on that device.  Pushing a button on the handheld device
causes all the sync stores on that device to be synchronized with the corresponding replicas on the
personal computer.

2.2 A Shared Address Book

A sync store containing contact information for customer prospects resides on a central
server and has several additional replicas in mobile devices used by members of the sales force.  A
program on the mobile device allows a salesperson to view the database of prospects, to edit
existing entries, to add new entries, and to exchange information with the central server.  When
commanded to exchange information with the central server, the program establishes a connection
to the server and synchronizes its replica with the replica on the server.

2.3 A Decentralized Discussion Database

There are replicas of a sync store containing newsgroup articles in some unknown number
of mobile devices.  The authors of articles compose those articles on their mobile devices,
specifying an expiration date for each article.  When two users of such mobile devices meet, they
may choose to synchronize their replicas.  In this way, articles propagate through the community
of users.  The sync store has no complete central replica, but as a user synchronizes with more
other users, his replica becomes a closer approximation to the set of all articles that have been
written and have not yet expired.

2.4 Mobile Access to an Enterprise Database

A company uses a central server to maintain a large database.  The company has mobile
workers who each maintain a subset of the data in the database on their mobile devices, in the
form of Java objects.  Each mobile worker has a sync store on his mobile device containing all the
objects in his subset of the database.  Each such sync store has a replica in a gateway machine tied
by local-area network to the server.  Whenever data is modified in the server database, a server
program propagates those changes to all the gateway replicas whose subsets include that data,
and this information is propagated to the corresponding mobile replicas during synchronization.
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Similarly, mobile workers may make modifications and additions to the sync stores on their local
devices, and these are propagated to the corresponding gateway-based replicas during
synchronization.  When the contents of a gateway-based sync store changes, an attempt is made
to update the server database accordingly.  If this attempt fails, an error-message object is added
to the sync store in the gateway, and propagated to the corresponding mobile replica at the next
synchronization.
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3 The Synchronization Model
A sync store is a collection of Java objects identified by sync IDs.  Two sync stores may

be synchronized.  A complete synchronization causes the two sync stores to have identical
contents.  That is, the two sync stores map the same set of sync IDs to objects, and map equal
sync IDs to objects having the same contents.

Two sync stores that are intended to be synchronized with each other are called replicas.
Unlike Bayou, which requires a replica to be created as a copy of a specified existing data store
[Pet97], the MNCRS data-synchronization framework allows any two arbitrary, independently
created sync stores to be synchronized with each other.  Such a synchronization merges the
contents of the two stores.  More typically, a replica will be created as a new, empty sync store,
and initialized by synchronizing it with some existing replica.

Replicas are peers.  There is no notion of a primary replica.  Some replicas may reside on
servers, but they are indistinguishable to the data-synchronization framework from replicas
residing on client devices.  Thus the framework allows two client devices to synchronize with
each other, using precisely the same mechanisms that are used when a client synchronizes with a
server.

Server data stores often hold far more data than can be replicated on a
memory-constrained mobile client device.  The user of a client device may be interested in only a
subset of the objects in the server data store.  Since synchronization replicates a sync store in its
entirety, the MNCRS data-synchronization framework accommodates such scenarios with
multiple sync stores on a server, each replicating a sync store on a different client device.  Figure
1 illustrates two ways in which this can be done.  In Figure 1(a), each client sync store has a
corresponding mirror sync store on the server.  A server application called an update monitor
watches for changes in each of these mirror sync stores and in the master server data store.  When
it observes a change in the master data store, the update monitor applies the corresponding
change to all applicable mirror sync stores.  When it observes a change in some mirror sync store,
the update monitor applies the change to the master data store (which may in turn cause it to be
applied to other mirror sync stores).  In Figure 1(b), sync stores on the server are implemented
using a special implementation of the framework that stores their contents in some larger, shared
persistent store.  A change to an object in one sync store is immediately reflected in other sync
stores that also contain that object.

3.1 Versions, Conflicts, and Reconciliation

If the object identified by a given sync ID is updated in more than one replica without any
intervening synchronization, the updates conflict.  During synchronization, a sync store may
receive an update for some object that conflicts with some other update to the object already
reflected in the receiving store.  The receiving sync store reconciles the conflict by invoking a
method of the object in question.  The method examines the state of the object in the sync store
and the state to which the received update would set the object, and sets the object to a state
reflecting the appropriate resolution of the conflict.  The class of the object, and thus the
reconciliation method, are provided by the application.  The reconciliation method reflects the
semantics of the class.  Reconciliation strategies include, for example, choosing one of the
conflicting updates based on its age or the identity of the user who initiated it, or merging the two
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Figure 1.  Replicating subsets of shared server data on client devices.  (a) Maintaining a
server-side mirror of each client sync store.  The update monitor is an application that
watches for updates in a mirror store and applies them to the master data store, and watches
for updates in the master data store and applies them to the appropriate mirror sync stores
on the server.  (b)  Implementing the server sync stores as subsets of some larger persistent
store.
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updates by taking maxima of corresponding numeric fields, or unions of corresponding set-valued
fields.

During a synchronization with one replica, a sync store will pass on updates it received
earlier from other replicas.  Therefore, an update can be received from a sync store other than the
one at which it was first applied.  A sync store may receive updates to the same object from two
different replicas during two different synchronizations, but these updates do not necessarily
conflict.  One update may have been applied at a sync store where the other update had already
been known, in which case the intent of the later update was to supersede the earlier one.
Consider the scenario in Figure 2.  In Step 1, x, y, and z are given values in replica A.  In Steps 2
and 3, the contents of  replica A are propagated to replicas B and C.  In Steps 4 and 5, x and z are
updated at replica B while y and z are concurrently updated at replica C.  In Step 6, the contents
of replica B are propagated to replica D.  In Step 7, the contents of replica C, including different
values for each of x, y, and z, are propagated to replica D.  At this point, replica D should ignore
replica C’s version for x (in fact, the synchronization algorithm can ensure that it will never be
sent), replace its value for y with C’s value (Y2), and invoke the method z.reconcile(Z3) to
resolve the conflict between its current value for z and the value received from replica C.

   Figure 2.  The propagation of superseding and conflicting updates.
A, B, C, and D are replicas, and x, y, and z are objects stored in
those replicas.  Updates are applied at A and sent to B and C during
synchronization, where further updates are applied.  Then B and C
both synchronize with D.  The update to x that D receives from B
supersedes the update to x that D receives from C.  The update to y
that D receives from C supersedes the update to y that D receives
from B.  The updates to z that D receives from B and C conflict.
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Conceptually, every object in a store has an object-state instance, reflecting not only the
state of the object, but a history of update actions.  (Two objects may have identical states but
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distinct object-state instances, resulting from different histories.  Multiple applications of the same
state transformation, even to identical states, are distinct update actions.)  An object-state
instance, i, reflects a set of updates.  This set, ReflectedBy(i), is defined as follows:

� If u is the update creating a new object and i is the resulting object-state instance,
ReflectedBy(i) = {u}.

� If an update is applied to object-state instance i, resulting in object-state instance j,
ReflectedBy(j) = ReflectedBy(i)4{u}.

� If u is an update applied to reconcile conflicting object-state instances i and j, resulting in
object-state instance k, ReflectedBy(k) = ReflectedBy(i)4ReflectedBy(j)4{u}.

Two object-state instances conflict if and only if each reflects at least one update not reflected by
the other.  Object-state instance i supersedes object-state instance j if and only if ReflectedBy(i) is
a proper superset of ReflectedBy(j).

Every set of update actions has a version associated with it, used to determine when one
object-state instance conflicts with or supersedes another.  There is a one-to-one correspondence
between versions and sets of update actions.  The version corresponding to set S is called
VersionForSet(S).  If i is an object-state-instance, it is sometimes convenient to speak of
VersionForSet(ReflectedBy(i)) as the version associated with i, or with the update action that
results in i (the most recent update action in ReflectedBy(i)).  A sync store retains the version of
the most recent update to each object it stores, and sends the version along with the update during
synchronization.  Versions are partially ordered by a relation later than obeying the following
rule:

VersionForSet(S2) later than VersionForSet(S1) if and only if S1 G S2

Thus, an update supersedes another update to the same object if and only if its version is later
than the version of the other.  Two updates conflict if and only if they have versions neither of
which is later than the other.  In Figure 2, the update to x at B has a version later than that of the
update to x at A, and the update to y at C has a version later than that of the update to y at A.
The updates to z at B and C each have versions later than that of the update to z at B, but
incomparable with each other by the later than relation.

Among the properties of the later than relation are the following:

�Whenever an application updates an object in a sync store, the update is assigned a version
that is later than the version previously associated with the object.

�The reconciliation of a conflict between two updates is itself an update, with a version that is
later than the versions of the two conflicting updates.

�For versions A, B, and C, if A is later than B and B is later than C, then A is later than C.

�Given the update sets u1, ..., un, the set of versions S = {VersionForSet(u1), ...,
VersionForSet(un)} of update-set versions has an earliest later bound, a version b such that
for all versions v in S, b is later than or equal to v, and any other version later than or equal
to all versions in S is later than b; specifically, b = VersionForSet(u1 4 ... 4 un).
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3.2 Selection and Ordering of Transmitted Updates

During synchronization, the sender ought to send only those updates that are new to the
receiver.  To determine which updates to send, the sender first needs to obtain a succinct
description of which updates are already reflected in the receiver.  This description takes the form
of a summary version, a version associated with the store as a whole and equal to
VersionForSet(R), where R is the set of all updates that have been applied to the store.  Each time
a new update u is applied to the store, the summary version is replaced with earliest later bound of
that update’s version and the previous summary version.  As noted at the end of Section 3.1, the
earliest later bound of VersionForSet(R) and VersionForSet({u}) is VersionForSet(R4{u}).

The sender transmits those current updates with versions later than or conflicting with the
receiver’s summary version.  (An update to a given object at a given store is current if it is the
most recent update applied to that object at that store.)  Since none of the updates already
reflected by the receiving store has a version later than or in conflict with the receiving store’s
summary version, but each of the transmitted updates does, none of the transmitted updates has
already been reflected by the receiving store.  Conversely, if a current update has not been
reflected by a receiving store, that update’s version is later than or in conflict with the receiving
store’s summary version, ensuring that any current update that has been applied to the sending
store, but not to the receiving store, is in fact selected for transmission.  (Suppose u is the update
in question, R is the set of updates reflected by the receiving store, and the summary version,
VersionForSet(R), is later than VersionForSet({u}).  Then, by the definition of the later than
relation, {u}GR, but this contradicts the assumption that u has not yet been reflected in the
receiving store.)

  The framework requires that updates selected for transmission be transmitted in the
sending store’s introduction order—the order in which they were introduced to the sending store,
either by an application running locally or  by a previous synchronization session.  Updates are
applied to the receiving store in the order in which they were sent.  (Thereafter, the received
updates, or the reconciliations they trigger, now come last in the receiving store’s introduction
order.)  It follows from induction on the number of updates that have been transmitted or applied
throughout the distributed system that if any update originally performed at some replica A is
reflected in replica B, then any updates performed earlier at replica A are also reflected in replica
B.  Following [Pet97], we call this the prefix property.

The prefix property allows sets of update actions, or equivalently their corresponding
versions, to be represented succinctly as version vectors [Par83].  As Section 7.4 will explain in
greater detail, a version vector specifies, for every replica, an integer indicating the last update
originating at that replica that is a member of the set.

The prefix property also ensures that if the transmission of updates is interrupted, so that
only those selected updates preceding a certain point in the introduction order are received, the
distributed system remains in a normal state.  As long as the receiving store advances its summary
version each time it applies a remote update, it will always be the case that an update reflected by
the sender is reflected by the receiver if and only if the receiver’s summary version is not later than
the version of the update.  No special recovery measures are necessary after an interrupted
transmission:  A subsequent transmission can be undertaken in the usual manner, by selecting
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those updates with versions later than or conflicting with the receiver’s summary version.  None
of the updates that was successfully applied before the interruption needs to be retransmitted.

3.3 Synchronization Phases

A synchronization consists of some number of phases, each of which sends updates in one
direction.  Conflicting updates are detected and reconciled at the receiving sync store, and the
result of the reconciliation is reflected in the state of the receiving store.  A synchronization phase
that completes without errors leaves the receiving store at least as up-to-date as the sending store
was at the start of the phase.

A complete synchronization, leaving two sync stores A and B with identical contents, can
be achieved by a phase sending updates from A to B followed by a phase sending updates from B
to A.  The results of reconciling conflicts at B during the first phase are sent back to A during the
second phase (along with any nonconflicting updates that were performed at B before
synchronization started).   A set of n sync stores can be completely synchronized by arranging the
sync stores in a ring and performing a sequence of 2n-2 one-phase synchronizations that
propagate updates from one sync store in the ring to the next, until each replica has received
updates from all other replicas, as shown in Figure 3.  One-phase synchronizations are also useful
in applications where information is known to flow in one direction, for example if a sync store
contains a price list that is updated each day at a server, and read but never updated on client
devices.

Synchronizations of more than two phases can be used to delegate responsibility for
conflict reconciliation, as in the following scenario, depicted in Figure 4:  In the first phase, a sync
store residing on a client sends updates to a sync store residing on the server.  If the server sync
store detects conflicting updates to a particular object, it “reconciles” the conflict by placing the
object in a special state that indicates that conflicting updates have occurred, and that contains
descriptions of the conflicting updates.  During the second phase, the object in this special state is
sent back to the client device and updated in the client sync store.  The client sync store responds
to an update placing an object in such a state by initiating a dialog with the user to determine the
appropriate way to resolve the conflict, and putting the object in a normal state that reflects the
user’s wishes.  During the third phase, the object in its normal state is sent back to the server sync
store, leaving the two sync stores with the same contents.

In each of these examples, the phases of a synchronization occur in sequence.  However,
nothing in the framework precludes a synchronization in which phases proceed concurrently.

A synchronization is initiated by one of its participants, called the requester.  The other
participant in the synchronization is called the responder.  The roles of requester and responder
are orthogonal to the roles of sender and receiver:  In a “push-pull” synchronization, the requester
will send updates to the responder during the first phase and receive updates from the responder
during the second phase, and conflicts will be reconciled by the responder.  In a “pull-push”
synchronization, the requester will ask the responder to send it updates during the first phase, and
will send its own updates back to the responder in the second phase, with conflicts resolved by the
requester.  A device capable of acting as a responder is called a synchronization server.
Depending on the underlying transport, a synchronization server may, for example, listen at a
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well-known TCP/IP port for an incoming synchronization request, check an in-box for SMTP
messages requesting synchronization, or check message queues for queued synchronization
requests.  Every sync store is identified by a uniform resource locator (URL).  An application
running on the requester initiates synchronization by specifying the URL of the remote replica.
This URL identifies the protocol to be used, the responder’s host name, and a name distinguishing
the remote replica from all other sync stores on the responding host.

3.4 Consistency Properties

A complete MNCRS synchronization establishes mutual consistency between two replicas
of a sync store.  That is, the contents of the two replicas correspond exactly.  Repeated
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synchronization, propagating updates to all replicas in the network, achieves eventual consistency
among these replicas.

However, Davidson, Garcia-Molina, and Skeen [Dav85] observe that mutual consistency
is neither a necessary nor a sufficient condition for disconnected replicas to be in what we would
intuitively consider a “correct” state:  Consider replicated copies of a checking-account balance,
each inaccessible to the other.  If the two copies are initially identical and a withdrawal transaction
for $100 is executed at each replica, each copy will hold the same incorrect value afterward.  If
$100 is withdrawn from only one replica, the two copies will have different values, but the
distributed database may be in a correct state if suitable precautions (for example, pessimistic
locking) are in place to protect against conflicting withdrawals, and if the system can recognize
the replica at which the withdrawal took place as more up-to-date.

According to [Dav85], a more intuitive notion of  “correctness” is based on serializable
execution of atomic transactions, possibly subject to integrity constraints.  For a replicated data
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base, a common criterion for correctness is one-copy serializability, meaning that the concurrent
execution of transactions on replicated data is equivalent to some serial execution of the same
transactions on nonreplicated data.  Nonetheless, among the approaches described in [Dav85] are
two that depart from one-copy serializability.  The first approach, weak consistency, allows for
nonserializable read-only transactions.  (For example, consider two mutually inaccessible replicas
containing items a and b.  At one replica, a is updated and then a read-only transaction is
executed whose outcome depends on the values of both a and b.  At the other replica, b is
updated and then another read-only transaction whose outcome depends on a and b is executed.
There is no serialization of the four transactions that is consistent with the outcomes of the two
read-only transactions.)  The second approach, data patch, uses integration programs, analogous
to MNCRS reconciliation methods, to resolve inconsistencies between disconnected replicas in a
manner consistent with any external effects that have already been observed by users.  (These
already observed effects might not correspond to any serial execution.) 

However, the MNCRS data-synchronization framework has no machinery to enforce
stronger forms of consistency.  A complete synchronization phase will preserve causality, but an
interrupted synchronization session can leave the contents of the store in a state inconsistent with
the order in which updates were performed:  The object states resulting from current updates are
transmitted in introduction order, but once an update to an object is superseded, the state
resulting from that update is not retained.  If an object has been updated twice since the last
synchronization, once before the last successfully received update and once afterward, only the
state resulting from the second update to that object will be recorded in the sending sync store, so
no indication of the first update will be transmitted.  We call this the missing-update anomaly.  An
example is depicted in Figure 5.

Figure 5.  An example of the missing-update anomaly.  When synchronization begins at time t4, the
update introduced at t1 is no longer the current update to object A,  so the first current update in
introduction order is the update to object B at time t2.  If the synchronization phase completes
normally, Replica 2 attains the same state as Replica 1 at time t7.  However, if the transmission of
updates is interrupted after t5 but before t7, the state of Replica 2 will reflect the update to B at time t3,
but not the update to A made earlier, at time t2.
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An implementation can protect against the missing-update anomaly by buffering incoming
updates and not applying any of them until all updates have been received.  However, the
framework allows implementations to apply updates one at a time, as they are received, to
accommodate practical constraints of mobile devices. First, buffering may be impractical on
memory-constrained devices.  Second, since the receiving store’s summary version at the start of
the next transmission will not reflect updates that were received and buffered, but never applied,
those updates will have to be retransmitted; all work achieved before the interruption will be lost.
Since wireless communication links are often unreliable, it is important to be able to make
incremental progress even if the link is lost before synchronization is complete.  Section 9.1.4 will
propose an alternative approach for coping with the missing-update anomaly.

The design of the framework anticipates transactional extensions. It specifies that during
synchronization, synchronizers exchange objects implementing an interface named SyncUpdate,
and that each such object specifies a set of updates to be applied atomically.  The framework
provides no methods for grouping operations into a single SyncUpdate object, but individual
implementations of the framework may provide such methods as nonstandard extensions.
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4 Architecture of the Framework
The fundamental components of the MNCRS data-synchronization framework are sync

stores and synchronizers.  A sync store is a persistent store containing Java objects that
implement an interface named Reconcilable.  Each Reconcilable object in a sync store is
identified by an object implementing an interface named SyncId.  A synchronizer is a component
that obtains updates from a local sync store, exchanges updates with a synchronizer on another
device, and applies remote updates.  A synchronizer is an active object, with its own thread.  It
may be activated by an application program or by a daemon.  Examples of daemons are one that   
initiates synchronization when the establishment of a communications link is detected, one that
initiates synchronization at certain intervals or times of the day, and one that initiates
synchronization when the user of a mobile device pushes a “Synchronize” button on the device.
In contrast to a synchronizer, a sync store is a passive object, acted upon by an application
program or by a synchronizer that is synchronizing it with a remote replica.  See Figure 6.

Figure 6.  The architecture of the MNCRS data-synchronization framework.  A sync store is a passive
object providing a persistent object store.  A synchronizer is an active object that manipulates sync
stores and communicates with remote synchronizers.  Application programs may manipulate sync stores
and activate synchronizers.  Synchronizers may also be activated by daemons.

synchronizer synchronizer

daemonapplication

SyncId 1 Reconcilable object 1

SyncId 2 Reconcilable object 2

. . . . . .

sync store

sync store

The MNCRS data-synchronization framework does not include classes implementing sync
stores.  Rather, the framework includes two interfaces, SyncStore and SyncStoreUpdater, that
declare methods for manipulating a sync store.  The SyncStore interface declares those methods
used by an application program.  SyncStoreUpdater extends SyncStore with methods used by a
synchronizer.  The vendor of an MNCRS device is expected to provide a class that implements
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SyncStoreUpdater (and hence SyncStore) in a manner appropriate to the device, exploiting
knowledge of the device’s file system or other persistent storage, for example.  Classes
implementing SyncStoreUpdater might also be provided by independent middleware vendors.
Particular classes might implement value-added extensions of the SyncStoreUpdater interface,
with additional features, such as the bundling of updates into transactions, sophisticated indexing
and query facilities, or the implementation of a sync store as a subset of a larger persistent store,
as depicted in Figure 1(b).  Of course an application using such extensions is not portable to other
implementations of the framework.

Similarly, rather than classes implementing synchronizers, the framework provides an
interface named Synchronizer.  Different classes implementing this interface handle different
underlying transports, such as sockets, messaging services, or e-mail, and different protocols for
the dialog that takes place during synchronization.  Classes implementing Synchronizer might be
provided by manufacturers of MNCRS devices, manufacturers of communications equipment,
service providers, middleware providers, consortia, and standards bodies, for example.

The framework includes a class named StoreManager responsible for the administration
of sync stores on the local device.  This class keeps track of the sync stores that exist on the
device and their locations in the device’s persistent storage.   The class has static methods for
creating new sync stores or opening existing sync stores so that their methods may be invoked,
for listing all sync stores on the device, and for removing a sync store from the device. 

The data-synchronization framework comprises three categories of Java types:

�Fixed classes.  These include both concrete and abstract classes.  The framework specifies
only the APIs, not implementations.  An implementation of the framework includes
definitions for each of these classes.  The StoreManager class falls into this category.

� Interfaces for pluggable infrastructure components.  The SyncStoreUpdater and
Synchronizer interfaces fall into this category.  An implementation of the framework
includes at least one implementation of each of these interfaces, but the implementation of
the framework should also be able to work with independently developed classes
implementing these interfaces.

� Interfaces and abstract superclasses for pluggable application components.  The
Reconcilable and SyncId interfaces are examples of interfaces in this category.  Concrete
classes implementing these interfaces are provided by application writers.  The framework
includes abstract classes partially implementing certain of these interfaces with default
behaviors.  An application writer has the option of implementing a pluggable component by
extending one of these abstract classes and inheriting the implementations of certain
methods.  An implementation of the framework includes implementation of the concrete
methods of these classes.

In addition, an implementation will include internal types that are not specified in the framework.

The framework was carefully designed to allow the implementation of the StoreManager
class, pluggable implementations of sync stores, and pluggable implementations of synchronizers
to be developed independently.  The framework includes a cluster of classes and interfaces whose
implementations can be viewed as part of the implementation of sync stores, and another cluster
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of classes and interfaces whose implementations can be viewed as part of the implementation of
synchronizers. The framework specifications enable efficient implementations in one cluster to be
built without a priori knowledge of implementations in the other cluster.  (An implementor of the
framework could also choose to tightly integrate implementations in both clusters, trading off the
ability to interchange components for premium performance.)  Furthermore, the framework
specifications enable the StoreManager class to be implemented without any a priori knowledge
of sync-store implementations, so that new, possibly independently developed, sync-store
implementations can be added to the device later.  Conversely, it is possible to implement sync
stores without any a priori knowledge of the implementation of the StoreManager class, so that
independent sync-store implementors can develop sync-store implementations that can be plugged
into any implementation of the framework.  Of course both clusters can be implemented without
any knowledge of how an application implements the Reconcilable and SyncId interfaces, and
an application can be written without any knowledge of how classes and interfaces in the
framework are implemented.

The implementation of the StoreManager class is necessarily device-specific, because it
must understand the device’s persistent-storage medium.  Unfortunately, implementations of sync
stores must also read from and write to persistent storage.  Had the framework included an
interface for a persistent-storage manager, it would have been possible for implementations of
sync stores to access persistent storage through the methods of this interface, avoiding
dependence on any particular form of persistent storage.  An implementation of the framework
would include one or more platform-specific implementations of the persistent-storage-manager
interface, for particular file systems, database management systems, nonvolatile memories, or
other persistent-storage mechanisms.  Indeed, our implementation of the framework includes such
an interface, to decouple implementation of sync stores from particular persistent-storage
mechanisms, making the sync-store implementation reusable on any device.  Implementations of
the framework by other consortium members include similar interfaces, with small differences.
Unfortunately, the MNCRS data-synchronization working group was unable to agree on a
common, standard definition for the persistent-store-manager interface, so no such interface is
defined in version 1.1 of the data-synchronization framework.

Figure 7 shows the relationships among the interfaces and classes defined by the
framework, by framework implementations, and by application programs.  The remainder of this
section discusses in greater detail the interfaces and classes associated with applications, sync
stores, and synchronizers.

4.1 Interfaces and Classes Associated with Applications

An object to be stored in a sync store belongs to a class that is part of an application, for
example a class representing employees, customers, or medical records.  The application
programmer declares this class to implement the Reconcilable interface, which allows it to be
passed to the SyncStore method for inserting new objects in a store.  This declaration obligates
the programmer to implement the methods declared in the Reconcilable interface.

Among the methods of the Reconcilable interface are a method to reconcile
update-update conflicts, a method to reconcile update-delete conflicts, and a method to set the
contents of an existing object to those of another object of the same class.  The framework

17



invokes these methods as necessary during synchronization.  Section 5 will discuss these methods
in greater detail.

In an earlier version of the framework, the Reconcilable interface extended the
Serializable interface of the standard Java library package java.io.  Thus the framework
could invoke the java.io.ObjectOutputStream method writeObject to write a byte-stream
representation of a Reconcilable object for transmission during synchronization or storage in
the local persistent store, and the java.io.InputStream method readObject to reconstruct a
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Reconcilable object from a byte-stream representation received during synchronization or read
from the local persistent store.  A programmer could control the byte-stream representation by
giving the Reconcilable class private writeObject and readObject methods with
object-stream parameters, or by declaring the class to implement the interface
java.io.Externalizable and overriding its writeExternal and readExternal methods.
However, a programmer willing to accept the default serialization behavior would obtain that
behavior automatically, by doing nothing.

The mandatory use of Java serialization was later abandoned because of concerns about
efficiency and flexibility.  The primary efficiency concern was that the classes that must be loaded
to perform serialization (which, in turn depends on the Java reflection API) are too large for some
memory-constrained mobile devices.  There was also concern about execution time and the
verbosity of the default byte-stream representations (a vital concern when the byte-stream
representation is to be transmitted over a slow or expensive communications link).  The flexibility
concern was that some applications would require distinct byte-stream representations for
transmission during synchronization and for persistent storage.  Some applications require
Reconcilable objects with both synchronized and unsynchronized fields, the unsynchronized
fields containing data of only local significance that is stored persistently but not exchanged
during synchronization.  Some applications might require a particular representation during
synchronization to facilitate interoperability with other synchronization systems.  Some
applications might require a particular representation in persistent storage for a sync store
implemented on top of an existing persistent store with contents in a predetermined format.

An earlier draft of the framework included two interfaces, named Transmittable and
Persistable, to address these problems.  The Transmittable interface declared two methods
to be invoked when transporting objects.  These methods, named writeRemote and readRemote,
were modeled after the writeExternal and readExternal methods of
java.io.Externalizable.  The Persistable interface declared two analogous methods to be
invoked when accessing the persistent store, writePersistent and readPersistent.  Types for
objects transmitted during synchronization were declared to extend or implement Transmittable
and types for objects stored persistently were declared to extend or implement Persistable.
(Typically, a type falling into one of these categories would also fall into the other, so that the
type would implement both of these interfaces.)  The Reconcilable interface was declared to
extend both these interfaces, thus obligating the programmer to implement writeRemote,
readRemote, writePersistent, and readPersistent methods for all Reconcilable classes.
To avoid burdening the programmer willing to accept Java’s default serialized representations for
both transmission and persistent storage, a new abstract class, DefaultReconcilable, was
included in the framework.  DefaultReconcilable is a partial implementation of the
Reconcilable interface, implementing writeRemote, readRemote, writePersistent, and
readPersistent by invoking default serialization, but leaving the other methods of the
Reconcilable interface abstract.  An application class that extends DefaultReconcilable can
inherit the serialization-based implementation of the four byte-stream-representation methods.

Objections were later raised to this approach on the grounds that the stream-oriented
methods writePersistent and readPersistent, while appropriate if the underlying persistent
store is a file system, are inappropriate if the store is an object or relational database.  For such
databases, it would make more sense to pass an entire object to a writing method than to write a
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sequence of bytes to a stream.  In fact, the way in which an object of a particular application class
should be written to a particular kind of persistent store depends in part on the application class
and in part on the persistent store.  Unable to agree on a solution to this problem, the MNCRS
data-synchronization working group decided to remove the Persistable interface from the
framework.  In version 1.1 of the framework, all types that had previously extended or
implemented Persistable extend or implement Transmittable instead.  Sync-store
implementations for which stream-oriented persistent-store operations make sense use the
Transmittable methods for writing and reading persistent storage as well.  However,
framework version 1.1 provides no standard way for an application to control persistent-storage
representations on other sync-store implementations.  A solution to this untenable situation is
proposed in Section 8.1. 

The SyncStore interface includes methods that generate sync ID values automatically.
These values are objects of some class, internal to the sync-store implementation, that implements
the SyncId interface.  An application can also provide its own classes implementing the SyncId
interface, and insert objects in a sync-store with specified sync IDs that correspond to natural
application keys.  Sync IDs are both stored persistently and transmitted during synchronization, so
the SyncId interface is declared to extend Transmittable.  In addition, the SyncId interface
overrides the hashCode and equals methods of class java.lang.Object with abstract methods.
Thus, an application writer implementing the SyncId interface must implement writeRemote,
readRemote, hashCode, and equals methods.  The equals method should report that two
objects of the class are equal if and only if they represent the same key, so that a given sync ID
will identify the same sync entry each time it is reconstructed from its byte-stream representation.
Two objects that are reported equal should have the same hash code.  The framework does not
provide a DefaultSyncId class analogous to DefaultReconcilable, but such a class would be
convenient for application programmers willing to use default serialization for sync IDs.

4.2 Interfaces and Classes Associated with Sync Stores

Section 3.1 described the versions associated with each update to a Reconcilable object.
A version is represented by an object of some class, internal to the implementation of sync stores,
that implements an interface named SyncVersion.  The SyncVersion interface declares methods
to compare two versions and determine whether one is later than the other.  The framework uses
SyncVersion objects for internal bookkeeping and for communication between sync stores and
synchronizers; they are not seen or manipulated directly by the application programmer.

Updates themselves are represented by objects of some class, internal to the
implementation of sync stores, that implements an interface named SyncUpdate.   The
SyncUpdate interface is empty, but is used to specify certain methods in the SyncStoreUpdater
interface that are invoked by synchronizers.  These include a method to extract pending updates
from a sync store so that they can be sent to a remote synchronizer and a method requesting a
sync store to apply to itself an update that has been received from a remote synchronizer.  The
application programmer does not see or manipulate SyncUpdate objects directly.

A sync store does not map a sync ID directly to a Reconcilable object, but rather to a
sync entry.  A sync ID and a Reconcilable object are associated with each sync entry.  A sync
entry is represented by an object of some class, internal to the implementation of sync stores, that
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implements an interface named SyncEntry.  The SyncEntry interface declares methods to
retrieve the associated sync ID and Reconcilable object.

A classic problem in replicated databases, pointed out by Fischer and Michael [Fis82], is
that the presence of an item in Replica A and its absence from Replica B can mean either that the
item was recently inserted in A and news of the insertion has not yet reached B, or that the item
was recently deleted from B and news of the deletion has not yet reached A.  Ratner, Popek, and
Reiher [Rat96] call this the create/delete ambiguity.  The MNCRS data-synchronization
framework resolves the create/delete ambiguity by retaining the sync entry for an object when the
object is deleted from the sync store, and recording the deletion in the sync entry.  The
SyncEntry interface includes a method indicating whether a given sync entry corresponds to a
deletion.  Of course deletion sync entries cannot be allowed to accumulate forever, especially on a
memory-constrained mobile device, so a deletion sync entry should be removed once news of the
deletion has reached every replica.  Section 7.5 discusses the difficult problem of determining
when a given deletion sync entry may be removed from the sync store.

As Section 3.1 explained, a sync store retains the version associated with the most recent
update to each object it contains.  This version is most naturally stored in a sync entry.  However,
the SyncEntry interface does not include methods to set or retrieve this version.  SyncEntry
objects are accessible to the application programmer, but SyncVersion objects should not be.
Therefore, any such methods, and perhaps additional methods such as one marking a sync entry as
a deletion entry, are declared in the class, internal to the sync-store implementation, that
implements the SyncEntry interface.

The SyncStore interface provides a method to retrieve the sync entry associated with a
given sync ID and a method to retrieve an iterator over all sync entries in the sync store, including
deletion entries.  Iterating over all objects in the sync store entails iterating over all sync entries,
testing whether each one is a deletion entry, and retrieving the Reconcilable object associated
with each nondeletion entry.  In retrospect, the application writer’s view of the framework is
unnecessarily complicated by the inclusion of deletion sync entries in the iterator, and the
provision of a method to test whether a given sync entry corresponds to a deletion.  There is no
reason an application programmer needs to be aware of the existence of deletion entries.  In fact,
it would have been possible to keep the application writer oblivious to all sync entries, as was
done with versions, thus simplifying the framework.  Since the SyncStore interface already
provides a method to retrieve the Reconcilable object associated with a given sync ID, the
capabilities provided by iterating through sync entries could have been provided instead by  a
method returning an iterator over all sync IDs corresponding to objects in the sync store.

The StoreManager class uses the abstract factory design pattern [Gam95] to create new
sync stores.  The framework includes an interface named SyncStoreFactory.  This interface
declares a single method, which attempts to create a SyncStore object consistent with a set of
attributes specified in the method call.  Each class implementing SyncStoreUpdater is
accompanied by a corresponding class implementing SyncStoreFactory.  A system property
defined on the command line invoking the Java virtual machine specifies the names of all classes
implementing SyncStoreFactory that are installed on the device.  To create a new sync store,
the StoreManager method open invokes an instance of each of these classes in turn, until one
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factory succeeds in constructing an object implementing the SyncStore interface.  If none of the
factories succeeds, the open method throws an exception.

4.3 Interfaces and Classes Associated with Synchronizers

A synchronizer is constructed to perform a single synchronization between a particular
local sync store and a particular remote replica.  The local sync store is specified by an object
implementing the SyncStore interface and the remote replica is specified by an object of a class
named SyncReplicaInfo.  A SyncReplicaInfo object specifies the URL of a remote replica
and the default schedule of phases to be performed when synchronizing with that replica.  An
application can construct a SyncReplicaInfo object with a given URL and default phase
schedule, and can change the default phase schedule.

A synchronizer can be activated to perform a synchronization consisting only of a sending
phase, a synchronization consisting only of a receiving phase, or a synchronization following the
phase schedule of its SyncReplicaInfo object.  In addition, an active synchronizer can be
requested to abort its synchronization as soon as possible.  (Depending on the protocol, aborting
a synchronization might not have any effect on the remote processing of updates that have already
been sent.)  The methods to start a synchronizer return immediately, allowing the synchronization
to proceed concurrently with the calling thread.  Likewise, the method requesting a synchronizer
to abort its synchronization returns immediately.  The Synchronizer interface also has a method,
waitUntilDone, that blocks until the synchronization has ended, either successfully or
unsuccessfully, or optionally until a specified time-out  period has elapsed.

Sometimes there is a need for a program—particularly a daemon responsible for
synchronizing all the sync stores on a device—to start, stop, or wait for a group of synchronizers
together.  A class named SynchronizerGroup, representing a group of synchronizers, provides
methods to activate each synchronizer in the group according to that synchronizer’s default phase
schedule, to request all synchronizers in the group to stop, and to wait until all synchronizers in
the group have stopped or a specified amount of time has elapsed.

An application program does not construct a Synchronizer or SynchronizerGroup
object directly, but uses one of the following facilities:

�The SyncStore interface provides the application with methods that synchronize a given
sync store with one or more replicas and return once the synchronization has succeeded,
failed, or, optionally, exceeded a time limit.  Behind the scenes, these methods create,
activate, and wait for Synchronizer or SynchronizerGroup objects.

�Static methods of a class named SyncManager provide applications with more intricate
control over synchronization, such as the ability to perform other activities while
synchronization proceeds concurrently.  These SyncManager methods return
SynchronizerGroup objects whose synchronizers are constructed to synchronize particular
sync stores with particular replicas.  The caller can then manipulate the SynchronizerGroup
object directly.

For even finer control, SynchronizerGroup has a method returning an array of the synchronizers
in the group, allowing synchronizers to be controlled individually.
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The SyncStore synchronization methods and the SyncManager class construct
synchronizers using an abstract-factory pattern similar to that used by StoreManager to construct
sync stores.  An interface named SynchronizerFactory has a method that attempts to create a
synchronizer appropriate for synchronizing a specified sync store with a specified remote replica,
returning a nonnull Synchronizer result if it succeeds and returning null if it fails.  For each
class C implementing the Synchronizer interface, there some class implementing the
SynchronizerFactory interface and constructing objects of class C.  A system property specifies
the names of all classes implementing SynchronizerFactory that are installed on the device.  A
new synchronizer is constructed by invoking an instance of each of these classes in turn, until one
succeeds.  If none succeed, an object of a class named FailureSynchronizer, which is defined
in the framework and implements the Synchronizer interface, is returned.  Any attempt to
activate a FailureSynchronizer object immediately fails, and sets the corresponding
SyncStatus object to reflect this failure.

On a synchronization server, an object called a synchronization request handler
continuously listens for an incoming synchronization request, obtains a synchronizer to handle
each request, and invokes the synchronizer.  A synchronization request handler belongs to some
class implementing an interface named SyncRequestHandler.  This interface provides methods to
start listening for incoming requests and to stop listening.  Different implementations of the
SyncRequestHandler interface handle different kinds of transport.  For example, one
implementation might listen at a well-known TCP/IP port for a socket connection request, a
second might monitor a message queue for incoming messages, and a third might periodically
check an e-mail in-box.

The processing of a synchronization protocol may be shared by a synchronizer factory, a
synchronization request handler, and synchronizers.  On the requesting side, a synchronization
factory may make the initial attempt to contact the responder.  If successful, it may engage in
preliminary handshaking to determine whether the responder is capable of communicating with
the kind of synchronizer this factory creates.  If so, the synchronizer factory will construct such a
synchronizer and activate it to process the remainder of the protocol.  On the responding side, a
synchronization request handler may engage in preliminary handshaking to indicate whether or not
the kind of synchronizer it constructs is capable of handling the incoming request.  If so, the
synchronization request handler will construct such a synchronizer and activate it to handle the
remainder of the protocol.  The appropriate division of labor depends on the protocol and on the
design of the three cooperating classes implementing SynchronizerFactory,
SyncRequestHandler, and Synchronizer.  These three classes will typically be implemented
together.  The point in the protocol at which the requester's synchronizer takes over from the
synchronizer factory that created it may or may not be the point at which the responder’s
synchronizer takes over from the synchronization request handler that created it.

An interface named SyncStatus provides methods for querying the progress that a
synchronization has made.  There is a SyncStatus object associated with every synchronizer at
the time the synchronizer is activated, and a method in the Synchronizer interface returning a
reference to this object, or null if the synchronizer has not yet been activated.  The SyncStatus
interface does not include any methods for setting the status.  A class implementing the interface
must provide such methods.  A class implementing the Synchronizer interface constructs a
SyncStatus object of a known class, so it can invoke that object’s status-setting methods.
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4.4 Package Structure of the Framework

The MNCRS data-synchronization framework consists of three packages,
org.mncrs.datasync, org.mncrs.datasync.sync, and org.mncrs.datasync.event.  As
Section 5 will explain more fully, the framework uses the JavaBeans event model [Ham97] to
inform the application of certain occurrences.  A number of types related to events, including
event-object classes, listener interfaces, and event-adapter classes, are packaged together in
org.mncrs.datasync.event.  The package org.mncrs.datasync contains the remaining types
needed to write application programs, including SyncStore, Reconcilable, Transmittable,
DefaultReconcilable, SyncId, SyncEntry, StoreManager, SyncReplicaInfo, SyncStatus,
and several exception classes.  The package org.mncrs.datasync.sync contains those types
that an application programmer should not know about, but writers of pluggable framework
components may have to know about, including SyncStoreUpdater, SyncVersion,
SyncUpdate, SyncStoreFactory, SynchronizerFactory, SyncRequestHandler, and
FailureSynchronizer.  Three types, Synchronizer, SynchronizerGroup, and SyncManager,
are not needed by an application writer willing to use the straightforward methods of the
SyncStore interface to perform synchronization, but may be needed by more sophisticated
application writers.  These types have been placed in org.mncrs.datasync.sync to keep the
org.mncrs.datasync package as simple as possible for elementary applications.  Those types
that are part of the framework implementation, but not named in the framework, belong to other
packages, determined by the implementation order.
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5 The Application Programming Model

5.1 Querying and Modifying the State of a Sync Store

A sync store is an associative store.  Reconcilable objects can be placed in the store in
association with some sync ID, and retrieved using that sync ID.  The SyncStore interface
includes methods named put, get, delete, and size.  The put method places objects in a sync
store and the get method retrieves the object associated with a given sync ID.  The delete
method removes an object from the sync store.  The size method returns the number of objects
currently in the sync store.

The put method establishes an association between a particular sync ID and a particular
Reconcilable object.  This association can only be broken by calling delete.  Until then, as long
as the sync store remains open, the contents of the object associated with a given sync ID may
change from time to time, but the object associated with that sync ID will always be the same
object.  (If objects of different classes, say Ellipse and Rectangle, are to be associated with the
same sync ID at different times, an extra level of indirection is required.  A “referring object” with
a member of some common supertype, say Shape, can be placed in the sync store.  A given sync
ID will always be associated with the same referring object, but the referring object may contain a
reference to an Ellipse object now and a reference to a Rectangle object later.)    There are
two versions of the put method.  One takes a sync ID and a Reconcilable object and associates
the specified sync ID with the specified object.  The other takes only a Reconcilable object,
automatically generates a new, unique sync ID belonging to some class defined by the sync-store
implementation, associates the sync ID with that object, and returns the generated sync ID.  (The
SyncStore interface has another method named, generateId, that returns a unique sync ID each
time it is called.)

The get method takes a sync ID and returns the corresponding Reconcilable object, or
null if there is no object associated with that sync ID.  (There is also a method named contains
that takes a sync ID and returns a boolean result indicating whether there is any object associated
with that sync ID.)  A call on get returns the same object reference that was passed as an
argument to put.  For example, suppose an application has a class Employee implementing the
Reconcilable interface and providing a method setName that modifies the contents of an
Employee object.  Suppose further that store belongs to a class implementing the SyncStore
interface, id belongs to a class implementing the SyncId interface, and emp is an object of class
Employee.  The statements

store.put(id, emp);
emp.setName(“Clark Kent”);

have the effect of modifying the contents of the object in the sync store, as do the statements

Employee e = store.get(id);
e.setName(“Lois Lane”);

The contents of the object referenced by emp may also be modified by a synchronizer.
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Whenever an application modifies the contents of an object in a sync store, it must call a
method in the SyncStore interface to inform the sync store of the change.  This is normally done
by calling a method named markAsUpdated, passing the modified object’s sync ID as a parameter.
To avoid the risk that an application will inadvertently modify an object in the sync store without
calling markAsUpdated, an application writer can declare all the fields of a class implementing
Reconcilable to be private and include a call on markAsUpdated in all of the class’s setter
methods.

An MNCRS-compliant device has some form of persistent memory in which data can be
saved when the device is powered off.  The contents of a sync store are saved in this persistent
memory when a sync store is closed, and restored when an existing sync store is opened.  The
SyncStore interface provides a method named flush that can be called to update the copy of a
sync store in persistent storage with the current state of the sync store.  If a system failure occurs
(other than the destruction of the persistent storage itself), then the state of the sync store as of
the last flush will be restored the next time the sync store is opened.  Some applications might
offer the end-user a mechanism for issuing a “Save” command, and call flush every time this
command is issued.  Other applications might call flush after each major update (e.g. after all the
changes involved in adding a single appointment, together with its subsidiary data, to an
appointment-book sync store).  Other applications might call flush after every n changes, or
every n minutes, for some suitable value of n.  (The flush method is not an appropriate
mechanism for committing transactions, because implementations are permitted to write updates
to persistent storage even before the method is called.  A device that stores Java objects in
nonvolatile memory might not have a separate persistent store.  The flush method need not do
anything on such a device, since the specified object is already in persistent storage.)

A call on markAsUpdated imposes two obligations on the sync store:

�The object must be marked as containing a newer variant, so that the new object state will
replace any remote copy of the old object state during synchronization.

�The copy of the object in persistent storage must be updated, no later than the next call on
flush, to reflect the updates.

On occasion, a Reconcilable object has fields whose values are only meaningful in the context
of the local sync store; replicas of the sync store may have different values for these fields.
Changes to such fields should not be propagated during synchronization.  Nonetheless, changes to
such fields should be written to the local persistent store, so that they will be preserved when the
sync store is closed and later reopened.  When such a field is changed, the application program
calls a SyncStore method named markForFlushing instead of markAsUpdated.  This call
imposes an obligation on the sync store to update the copy of the object in persistent storage, but
not to mark the object has having a newer variant.  More rarely, a Reconcilable object may have
fields that have no local significance, but are used to propagate some transitory information to
another sync store.  When such a field is modified, a SyncStore method named
markForSynchronization can be called instead of markAsUpdated.  This call marks the object
as holding a new variant, so that the new object state will be propagated to the remote replica
during synchronization, but it does not impose any obligation on the sync store to update the
persistent copy of the object.
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The SyncStore interface declares a method, named getSyncIdOf, that performs an
inverted lookup.  This method takes a reference to a Reconcilable object and checks whether
that object is stored in the sync store.  If it is, the associated sync ID is returned; otherwise null
is returned.  This method does not examine the contents of objects; it checks whether the object
whose reference is passed as a parameter, not some object with equal contents, is in the sync
store.

The SyncStore interface also has a method named getEntry, which takes a sync ID and
returns the corresponding sync entry (or null if there is no such entry), and a method named
entries, which returns an iterator over all entries in the store.  The SyncEntry interface has
methods named isDeleted, indicating whether a sync entry is for a deleted object, getId,
returning the sync ID associated with the sync entry, and get, returning a sync entry’s
Reconcilable object (or null if that object has been deleted).  When getEntry does not return
null, the expression

store.getEntry(id).get()

(invoking the get method of the SyncEntry interface) is equivalent to

store.get(id)

(invoking the get method of the SyncStore interface).

5.2 Application Classes for Stored Objects

The objects in a sync store belong to application-defined classes that implement the
Reconcilable interface.  The Reconcilable interface inherits the writeRemote and
readRemote methods from the Transmittable interface described in Section 4.1, and declares
three methods of its own, named setTo, reconcile, and reconcileWithDelete.  As Section
4.1 explained, an application programmer can extend the DefaultReconcilable class to inherit
default implementations of writeRemote and readRemote, using Java serialization.

An object’s setTo method sets the contents of that object to the contents of another
Reconcilable object passed as a parameter.  The programmer may presume that the parameter is
an object of the same class, and simply write a sequence of assignment statements, one for each
field of the class, assigning each field of the parameter to the corresponding field of the target
object.  During synchronization, when the variant of an object in one replica is newer than the
corresponding variant in the other replica, the setTo method of the object containing the older
variant is automatically invoked with a copy of the newer variant passed as a parameter.  

The reconcile method is invoked during synchronization when an object is found to
have been updated concurrently in the two replicas being synchronized.  The method determines a
new state for the object that appropriately reflects the two updates, either by selecting one of the
updates or by merging the two updates in an application-defined manner.  The method is invoked
on the object in the local replica, and a copy of the object in the remote replica is passed as a
parameter.  The method leaves the object in the local replica (“this”) holding the new state and
returns an integer code indicating whether the new state is identical to the old local state, identical
to the old remote state, or identical to neither.  The sync-store implementation may use this code
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as a hint that the variant of the local object in the persistent store is still valid, and need not be
rewritten; or that the result of the reconciliation is already present in the remote replica, and need
not be transmitted back to that replica.  It is always safe for the reconcile method to indicate
that the new state of the object is identical to neither of the old states, in which case neither of
these optimizations will take place.

The reconcileWithDelete method performs a function similar to the reconcile
method, except that it is called to resolve a conflict between a deletion from one replica and an
update in another replica.  The method has a boolean parameter, localDeleted, indicating
whether the deletion occurred in the local replica or the remote replica.  When the update occurs
in the local replica and the deletion is from the remote replica, the reconcileWithDelete
method of the object in the local replica is called, with the parameter localDeleted set to false.
When the deletion is from the local replica and the update occurs in the remote replica, a local
copy of the remote, updated object is constructed.  The reconcileWithDelete method of this
new object is called, with localDeleted set to true.  Like reconcile, reconcileWithDelete
returns an integer code indicating whether the object should be kept in the old local state or the
old remote state (one of which is the deleted state and one of which is a modified state), or in
some new modified state.  If the deletion is to prevail, the method examines localDeleted and
returns a code indicating that the object is to be kept in the local state if localDeleted is true, or
in the remote state if localDeleted is false.  If the update is to prevail, the method does just the
opposite.  If some new modified state is to prevail, the method sets its object (“this”) to that
modified state and returns the corresponding code.

There are no restrictions on the behavior of a reconcile or reconcileWithDelete
method, so MNCRS conflict resolution is quite flexible.  For example, an application could invoke
a dialog with the end user to resolve the conflict.  Alternatively, an application could place an
object in a special state that references copies of the two conflicting object states and marks the
object to be in conflict.  (The other methods of the object would have to specify some appropriate
behavior for an object in this state.)  Then the conflict might later be resolved manually, or
resolution could be deferred until the conflict object reaches a device where enough information is
available to resolve the conflict automatically, as in Figure 4.  Alternatively, a class implementing
the Reconcilable interface could include a field containing a “resolver” object with a method
invoked by the class’s reconcile method.  Such a scheme provides Bayou’s flexibility to apply
different reconciliation algorithms to different objects of the same type.

Nonetheless, certain reconciliation behaviors make more sense than others.  In particular,
a reconciliation function should be idempotent, having the same effect regardless of the number of
times a given remote object state is reconciled with a given local object.  Functions like union of
corresponding set-valued fields and maximum of corresponding numeric fields have this property,
but functions like averaging and summation of corresponding numeric fields do not.  When
reconciliation functions are not idempotent, the state to which an object’s replicas eventually
converge depends on the pattern of synchronization; the greater the number of paths by which
news of an update reaches a given store, the greater that update’s influence on the eventual state,
as illustrated in Figure 9.
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Figure 9.  The effect of nonidempotent reconciliation.  Initially, corresponding objects in replicas A,
C, and E each contain the value 0 in a particular field, and reconciliation consists of averaging the
contents of this field.  The objects in replicas A, C, and E are updated to hold the values 4, 12, and
8, respectively, and synchronization propagates the object in replica C to replicas B and D.  Replica
A synchronizes with replica B, replica D synchronizes with replica E, and then replica B
synchronizes with replica D.  Even though the average of the values set by the three updates is 8, the
final reconciliation (which is later than all other updates and will eventually propagate to all five
replicas) is 9, because the update at replica C contributed to the average twice.

5.3 Managing Local Sync Stores

To avoid confusion in the use of the term sync store, it useful to distinguish between an
object of a class implementing the SyncStore interface and the persistent collection of data that
can be accessed through such an object.  We shall refer to the former as a SyncStore object and
to the latter as a sync-store data collection.   A sync-store data collection is named by a URL that
includes a host name and a collection name.  Every sync-store data collection on a given host has
a distinct collection name.

The class StoreManager keeps track of all the sync-store collections on the local device.
names.  This class has static methods to construct a SyncStore object for a given sync-store data
collection, to delete a sync-store data collection from the device, and to obtain the collection
names of all sync-store data collections on the device.

The method that constructs and returns a SyncStore object for a given sync-store data
collection is named open.  A call on open may specify a sync-store collection that already exists
on the local device, or it may request that a new, empty sync-store data collection be created.
Optionally, the call on open may request that a newly created sync-store data collection have
specified properties, such as supporting a particular extension of the SyncStore interface or a
particular class of SyncUpdate objects; or verify that an existing sync-store data collection has
such properties.  A new collection can be populated by an application or by synchronizing it with
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a remote replica.  The SyncStore object returned by open has a method named getName, which
returns the collection name that was passed to open.  

Each call on open generates and returns a reference to a distinct SyncStore object.
However, several SyncStore objects may correspond to the same sync-store data collection, as
shown in Figure 10.  If the sync-store data collection is modified through a method of one
SyncStore object, the modification can be observed using a method of another SyncStore
object.

SyncStore
object

SyncStore
object

SyncStore
object

results of different
calls on open

   sync-store
data collection

SyncStore
object

   sync-store
data collection

Figure 10.  Sharing of sync-store data collections through multiple SyncStore
objects.  Each call on the StoreManager method open returns a reference to a
new SyncStore object.  Different SyncStore objects may refer to the same data
collection or to different data collections.

A SyncStore object has a method named close, intended to be called when an
application no longer needs the object.  (Any call on a method of a closed SyncStore object
throws an exception.)  If other SyncStore objects for the same data collection remain open, the
Reconcilable object references obtained or inserted through the closed SyncStore object may
still be shared by the holders of the other SyncStore objects.  If no such SyncStore objects
remain open, then the in-memory representation of the sync-store data collection may be
discarded, in which case the next SyncStore object constructed for that collection will yield
references to new Reconcilable objects, freshly reconstructed from their representations in the
persistent store.  In either case, it is generally prudent for an application closing a SyncStore
object to discard all Reconcilable references it obtained through that object.

5.4 Events and Listeners

Using the JavaBeans event model [Ham97], an application can register objects that listen
for certain events.  These objects, called listeners, can be used to track the progress of
synchronization or changes to a sync-store data collection by other applications or by
synchronizers.  Events that may be listened for include the insertion, modification, or deletion of
an object in the sync store, the opening or closing of a sync store, the flushing of a sync store into
persistent storage, and progress in synchronization.  For example, an application might listen for
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insertion events during synchronization to accumulate a list of all newly inserted objects, and
listen for completion of the receiving phase of synchronization to insert these objects in a data
structure; or it might update a graphical display of the current contents of a sync-store data
collection every time it changes.

For each kind of event, the data-synchronization framework provides a listener interface,
extending the interface java.util.EventListener and declaring one or more abstract methods,
each invoked in a different circumstance.  Each listener-interface method has a single parameter,
called an event object, that belongs to a subclass of java.util.EventObject and describes the
event.  An event object has a method that returns some object designated as the source of the
event, and may have other methods as well. Each object that may act as a source for a certain
kind of event has methods to register and deregister listeners for that kind of event.  When an
event of a certain kind occurs, an event object describing the occurrence is created.  Then the
appropriate method of each of the listeners currently registered to listen for that kind of event is
invoked, with the event object passed as a parameter.  The listener methods are invoked
synchronously, in some arbitrary order.  The data-synchronization framework catches and ignores
any exception thrown by a listener method.  To listen for a particular kind of event and handle it
in a particular way, an application programmer writes a class that implements the listener interface
for that kind of event, overriding the abstract methods of the listener interface with methods that
perform the desired event-handling actions, and registers an instance of the class as a listener.

A synchronizer can be the source of a sync-status event, which marks a milestone in a
synchronization phase.  A listener for a sync-status event has seven distinct methods, invoked in
the following circumstances:

� the start of a sending phase of a synchronization

� the start of a receiving phase of a synchronization

� the completion of some portion of a phase

� the successful completion of a sending phase

� the failure of a sending phase

� the successful completion of a receiving phase

� the failure of a receiving phase

A class implementing the Synchronizer interface determines its own policy for the points at
which a sync-status event is fired to report completion of some portion of a phase, perhaps based
on the number of updates or the number of bytes transmitted so far.  (A phase is considered to
have failed if it times out.)  The event object passed to each of the seven listener methods has a
method that returns a copy of the synchronizer’s SyncStatus object (see Section 4.3), providing
a snapshot of the synchronization status at the time of the event.  Every Synchronizer object has
methods for registering and unregistering listeners for the sync-status events it triggers.  In
addition, to avoid the need for an application programmer to keep track of Synchronizer
objects, the class SyncManager provides static methods to register and deregister listeners for all
sync-status events triggered by any Synchronizer object.  (In retrospect, a listener providing
only three methods, one called at the beginning of a phase, one called after completion of portions
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of a phase, and one called at the end of a phase, would have been easier for application
programmers to use.  Parameters to these methods could have distinguished between send and
receiving phases and between normal and abnormal termination.)

A SyncStore object can be the source of a sync-object event, which occurs when a
Reconcilable object is inserted, marked as updated, or deleted.  A listener for a sync-object
event has a distinct method for each of these three cases.  The event object passed to these
listener methods has methods that return the sync ID of the affected object and the object itself.  

A SyncStore object can also be the source of a sync-store event, which occurs when the
sync store is opened, flushed, or closed.  A sync-store event involves the sync-store data
collection as a whole rather than one particular Reconcilable object.  A listener for a sync-store
event has three distinct methods for opening, flushing, and closing events.

All SyncStore objects for a given sync-store data collection (see Figure 10) share a single
registry of sync-object-event listeners and a single registry of sync-store-event listeners.  Each
sync-object or sync-store event affecting the sync-store collection is reported to all registered
listeners.  The source of the event is the SyncStore object through which it was triggered.  By
examining the source of an event, an application can distinguish the events triggered through its
SyncStore object from those triggered through other SyncStore objects.  The sync-object-event
and sync-store-event listeners registered through a particular SyncStore object are automatically
removed when that SyncStore object is closed.

Event objects for the three different kinds of events belong to classes named
SyncStatusEvent, SyncObjectEvent, and SyncStoreEvent.  These are each subclasses of an
abstract class named SyncEvent, which is in turn a subclass of java.util.EventObject.

Listeners for the three different kinds of events belong to application-provided classes that
implement interfaces named SyncStatusListener, SyncObjectListener, and
SyncStoreListener. A class implementing one of these interfaces must provide definitions for
all of its methods, even those methods for which the desired action is to do nothing.  To make it
more convenient to write listeners in which many of the methods have no associated action, the
data-synchronization framework provides an adapter class for each listener interface,
implementing every method of the listener interface with a null body.  Rather than implementing a
listener interface directly, an application programmer can extend an adapter class, overriding only
those methods for which a nonnull body is desired.

5.5 Invoking and Monitoring Synchronization

The framework supports two programming styles for managing synchronization,
synchronous and asynchronous.  The synchronous style entails calling a method that does not
return until synchronization has completed, and then examining the synchronizer’s final status to
determine whether synchronization completed successfully or unsuccessfully.  The asynchronous
style entails registering listeners for sync-status events, then calling a method that initiates a
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synchronization thread, then returns, so that the calling thread can continue in parallel with the
synchronization thread.

As Section 4.3 explained, the remote replica with which synchronization is to take place is
specified by an object of class SyncReplicaInfo.  Associated with each sync-store data
collection is a registry of SyncReplicaInfo objects for the data collection’s known replicas.  A
SyncStore object has methods for adding SyncReplicaInfo objects to its data collection’s
registry and removing them.  The framework has methods to synchronize a sync store with all its
known replicas, as well as methods to synchronize a sync store with a particular replica (which
need not be in the registry).

The SyncStore interface provides two methods for synchronous synchronization.  One
attempts to synchronize with a replica specified by a SyncReplicaInfo parameter and returns a
SyncStatus result describing the outcome.  The other attempts to synchronize with all registered
replicas, and returns an array of SyncStatus objects, one for each attempted synchronization.
Each method has a parameter specifying a time limit after which all synchronization attempts will
fail by timing out, with zero indicating that no limit is imposed.

The SynchronizerGroup class described in Section 4.3 provides more flexibility, but is
more complicated to use.  The class is especially useful for writing daemons that synchronize all
the sync stores on a device.  The SyncManager class has static methods that construct and return
synchronizer groups with the following contents:

� a single synchronizer, to synchronize a specified sync store with a specified replica

� synchronizers to synchronize a specified sync store with each of its registered replicas

� synchronizers to synchronize each of several specified sync stores with a corresponding
specified replica

� synchronizers to synchronize each of several specified sync stores with all of their registered
replicas

The SynchronizerGroup class has a method named start to activate each of its synchronizers
and return.  Each synchronizer begins executing the default phase schedule specified in its
SyncReplicaInfo object.  Used by itself, the start method supports the asynchronous
programming style.  To support the synchronous programming style, a SynchronizerGroup
object also has a method named waitUntilDone, which blocks the calling thread until either all
synchronizers in the group have completed or a specified time limit expires, and then returns an
array of SyncStatus objects, one for each synchronizer in the group; a time limit of zero indicates
that the calling thread is to wait indefinitely for the synchronizers to complete.  Synchronizers are
not aborted upon expiration of the time limit, but another SynchronizerGroup method, named
stop, can then be called to stop all the synchronizers in the group.

Even more intricate control can be exercised over synchronization by calling a
SynchronizerGroup method that returns an array of Synchronizer objects, one for each
member of the group, and then using methods of the Synchronizer interface to manipulate
individual synchronizers.  These include start, waitUntilDone, and stop methods analogous to
the SynchronizerGroup methods of the same name, but applying to an individual synchronizer
rather than to a collection of synchronizers.  In addition to the start method, which initiates
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synchronization according to the default phase schedule of the synchronizer’s SyncReplicaInfo
object, there are short-cut methods to initiate a synchronization consisting of a single sending
phase or one consisting of a single receiving phase.  The Synchronizer interface also has
methods to retrieve the SyncStore and SyncReplicaInfo objects for, respectively, the local and
remote replicas being synchronized.  Another method returns the SyncStatus object associated
with a synchronizer that has been activated, or null if the synchronizer has not been activated.
There are methods to add and remove listeners that will be notified of sync-status events
generated by this synchronizer only.

The SyncStatus interface has a method returning a reference to its synchronizer, a
method reporting the number of phases the synchronizer was constructed to synchronize and
methods that, given an index into the phase schedule, return the following information about a
given phase:

�whether the phase is a sending phase or a receiving phase 

�whether the phase is not yet started, is in progress, has completed successfully, or has failed 

� the completed portion of the phase, as computed by the synchronizer (reported as an integer
in the range 0 to 100, representing a percentage) 

� a message describing the status of the phase, consisting of numeric codes in a fixed format
optionally followed by free-form text

Experience has shown that the SyncStatus interface is missing an important method:  It is
disconcertingly awkward to determine from a SyncStatus object whether a synchronization as a
whole has succeeded, failed, or not yet completed.  A synchronizer that executes its phases in
sequence may abort the synchronization after one phase fails, leaving subsequent phases marked
as not yet started.  However, a synchronizer that executes its phases in parallel may continue
executing other phases after one phase has failed, and a phase marked as not yet started may
become active even after another phase has failed.  Nonetheless, there is a roundabout way to
determine whether a synchronizer has completed:  The Synchronizer interface has a method for
determining whether a synchronizer is currently active.  This method returns false both before
the synchronizer has been activated and after it has terminated.  These two cases can be
distinguished by the fact that the Synchronizer method returning a synchronizer’s status returns
null before the synchronizer has been activated.  Once it is established that a synchronizer has
terminated, its SyncStatus object can be used to check phase-by-phase that each phase has
completed successfully.

The MNCRS data-synchronization working group struggled with the appropriate behavior
for methods invoking a group of synchronizers if one of those synchronizers should throw an
exception.  For some applications, it might be appropriate for the method to abort all other
synchronizations and throw an exception to its caller.  For other applications, it might be
appropriate to let the remaining synchronizations proceed normally, leaving the method’s caller
with the responsibility for checking the final status of each synchronizer in the group.  The
working group considered distinguishing between errors arising during the creation of
synchronizers, e.g. by the SyncManager methods, and errors arising within a synchronizer itself:  
A method activating multiple synchronizations would first attempt to construct all the needed
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synchronizers; if any of these attempts failed, none of the synchronizers would be activated and
the method would throw an exception; otherwise each synchronizer would be activated and
allowed to proceed independently, recording its success or failure in its SyncStatus object.  This
approach was rejected because it overly complicated the application programmer’s task of
checking the outcome of a synchronization attempt, and because the dividing line between the
handshaking performed to construct a synchronizer and the communication performed by the
synchronizer itself varies from one protocol to another.

To reduce the number of ways in which synchronization errors might manifest themselves,
it was decided that the construction of a synchronizer group always succeeds.  None of the
SyncManager methods returning a SynchronizerGroup result ever throws an exception, except
perhaps as a result of preliminary checks that its arguments are of the required form.  Since a
synchronizer is constructed by invoking each kind of synchronizer factory in turn until one returns
a nonnull value, there must be an error-proof way of constructing a synchronizer even when all
synchronizer factories return null.  The FailureSynchronizer class was added to the framework
to address this need.  The FailureSynchronizer constructor, invoked when all synchronizer
factories return null, never throws an exception.  Any attempt to activate a
FailureSynchronizer object immediately fails, and sets the corresponding SyncStatus object
to reflect this failure.

An earlier version of the framework allowed synchronizers to be reused for multiple
synchronizations, but this invited race conditions in the examination of a synchronizer’s
SyncStatus object.  To ensure that a synchronizer is used at most once, any attempt to activate a
synchronizer that has already been activated must be intercepted.  So that the methods activating
a synchronization will not throw exceptions, the framework stipulates that these methods have no
effect when invoked on an already-activated synchronizer.  

5.6 Dealing with Concurrency

A sync-store data collection can be opened for either exclusive access or shared access.
While it is open for exclusive access, any other attempt to open the sync-store data collection
throws an exception.  (Similarly, an exception is thrown upon an attempt to open a sync-store
data collection for exclusive access while it is already open for shared access.)  In contrast, a
sync-store data collection open for shared access may have several open SyncStore objects at the
same time.  On a synchronization server, a synchronization request handler that receives a request
to synchronize with a particular sync-store data collection must open that data collection before it
can construct a synchronizer to satisfy the request.  Thus an application that opens a sync-store
data collection for exclusive access blocks the servicing of incoming requests to synchronize with
that data collection.  

An application that opens a sync-store data collection for shared access must be careful to
account for the possibility of concurrent access by multiple threads.  The data collection may
opened by more than one application, or by an application and a synchronization request handler,
or it may be opened several times by the same synchronization request handler to service multiple
incoming synchronization requests (with each resulting SyncStore object passed to a
synchronizer executing its own thread).  An application with more than one thread accessing the
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same SyncStore object must be careful to account for concurrency even if it has exclusive access
to the sync-store data collection.

Since all users of a sync-store data collection share references to the same Reconcilable
objects (inserted in the sync store through calls on the SyncStore method put and retrieved
through calls on the SyncStore method get), race conditions can arise between two updates to
the same object, or between an update and an examination of the same object.  It is also possible
for one thread to delete an object from the data collection while another thread continues to
update or examine it as if it were still part of the data collection.

Race conditions can be avoided by using Java’s synchronized blocks to lock objects
while they are being manipulated.  There is a lock associated with every Java object.  The
execution of a synchronized block is associated with a particular object, and a thread about to
enter the block is forced to wait until it has obtained that object’s lock.  The lock is relinquished at
the end of the block.  (If a method consists only of a synchronized block for the method’s
object, this, the synchronized modifier can equivalently be placed on the method itself instead
of on the block.)

By declaring all fields of a class implementing Reconcilable to be private, the author of
the class retains complete control over access to those fields.  If there is a sequence of operations
on an object that ought to be executed indivisibly—that is, without interleaved examination or
modification of that object by another thread—the entire sequence of actions should be placed in
a synchronized block.  The data-synchronization framework allows a synchronizer to examine
or update a Reconcilable object or its sync entry only within a synchronized block for that
object.  (The deletion of an object is an update to its sync entry.)  If an application method
updates a Reconcilable object, the requisite call on markAsUpdated, markForFlushing, or
markForSynchronization should be enclosed in the same synchronized block as the update,
to ensure that a thread performing synchronization does not examine the object after it is been
modified by an application, but before it has been marked as containing a newer variant.  It is
possible for an object to be deleted from a sync-store data collection between the time an
application obtains a reference to it by calling get and the time the application makes some later
access to the object.  If the correctness of the later access relies on the object being in the sync
store, the application should perform a test, within the same synchronized block as the access,
to confirm that the object is indeed still there.  Multiple objects can be updated indivisibly by
nesting synchronized blocks for each of the objects, thus ensuring that all of the objects are
locked while the operation is in progress.  However, care must be taken to avoid deadlock, for
example by ensuring that any time a particular pair of objects is to be locked, the locks are
obtained in the same order.

5.7 Trusting the Application Writer

Like the MNCRS data-synchronization framework, Bayou and Coda run application code
to resolve conflicts.  Both Bayou and Coda take the view that this code is not to be trusted, and
take measures to protect the system and its data from malicious or erroneous application code.
Bayou merge procedures, which are roughly analogous to reconcile methods, are not allowed
to have any side-effects other than writing the database [Dem94].  This restriction protects a
device hosting against arbitrary actions by a merge procedure, which is, in effect, a mobile agent
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of the application writer.  A fundamental tenet of Coda is that server machines—shared assets
requiring strong protection —are trusted, and client workstations—used for a variety of
individual purposes by experts who develop and install much of their own software—are
untrusted ([Kum93], [Kum95]).  Conflicts are resolved by programs called application-specific
resolvers, which are executed on client machines with user privileges, thus protecting servers
against Trojan horse resolvers invoked by apparently innocuous file references.  To guard against
resolvers that run forever, or that incorrectly report they have successfully resolved a conflict
when they have not (which would cause the Coda client code to reinvoke the resolver forever),
there are configurable limits on how long a resolver may run and how much time must pass before
it is run again.

In contrast, following the network computing model, an MNCRS platform is intended as a
limited-function device whose software is provided by some central source rather than by the end
user.  Therefore, the MNCRS data-synchronization framework is far more trusting of application
code than Coda or Bayou.  For example, an application is expected to inform a sync store when it
changes the contents of a Reconcilable object in that store.  The application methods invoked to
resolve conflicts are expected to do no harm, to terminate, and to return an integer code
accurately describing whether the reconciliation is to keep the local state of the object, the remote
state of the object, or some other state.  Similarly, application implementations of the
Transmittable interface are expected to work correctly.  Applications are expected to discard
Reconcilable references obtained through a given SyncStore object when that object is closed,
as described at the end of Section  5.3, and to guard against race conditions as described in
Section 5.6.
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6 Implementation of Synchronizers
We now turn our attention from the MNCRS data-synchronization framework itself to the

implementation of that framework developed at IBM Research.

Our implementation initially included one class implementing the Synchronizer interface.
This class, designed for testing the framework implementation over a strongly connected LAN,
performs synchronization over TCP/IP sockets, and makes no provision for error recovery.
Section 6.3 discusses this form of synchronization, called simple socket synchronization, in
greater detail.  Later, as part of the Mobile Data Synchronization Service project [But00]
(discussed further in Section 9), we implemented a second synchronizer, which performs
synchronization over a reliable messaging service.  Section 6.4 discusses the implementation of
this synchronizer.  We begin by describing aspects of the implementation common to both kinds
of synchronizers:  Section 6.1 discusses our implementation of the SyncStatus interface and
Section 6.2 describes the creation and invocation of SynchronizerFactory objects.  Section 6.5
describes other kinds of synchronizers that have been contemplated, but which we have not
implemented.

6.1 Implementation of Synchronization-Status Objects

From the time it is activated, every object of a class implementing the Synchronizer
interface has associated with it an object of a class implementing the SyncStatus interface.
Although it is possible for each Synchronizer implementation class to use a different
SyncStatus implementation class that it understands (or even for a single class to implement both
the Synchronizer and SyncStatus interfaces), both of our Synchronizer implementation
classes use a SyncStatus implementation class named SyncStatusImpl.  This class extends the
SyncStatus interface with methods called by a synchronizer to modify the status.  The
SyncStatusImpl constructor takes a phase schedule as a parameter and constructs an object in
which each phase is marked as not yet started.  Four distinct methods allow a synchronizer to
modify the status to reflect the start of a specified phase, the completion of some percentage of a
specified phase, the successful termination of a specified phase, or the unsuccessful termination of
a specified phase for a reason indicated by some failure code.  For the convenience of the
synchronizer writer, this status-updating interface is oriented towards the milestones a
synchronizer encounters during synchronization rather than the components of a
SyncStatusImpl object that must be updated to reflect those milestones.

Each time a synchronizer generates a sync-status event, a clone of its SyncStatus object
must be placed in the event object, so that the event object will continue to reflect the same
snapshot of the status even as the synchronizer updates its SyncStatus object.  Since sync-status
events are generated inside a potentially critical synchronizer loop whenever the synchronizer has
progress to report, the SyncStatusImpl class is designed to make cloning as inexpensive as
possible.  As illustrated in Figure 11, a SyncStatusImpl object contains a reference to its
synchronizer and a reference to an array with one element for each scheduled phase.  Each array
element contains a reference to an object holding the status information for one phase.  Cloning
consists of copying the synchronizer reference, copying the array, and substituting a reference to
the array copy for the reference to the original array.  Once created, an object holding the status
information for one phase is immutable.  A SyncStatusImpl object is updated by creating a new
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object holding the updated information for the affected phase, and replacing the reference to the
old phase-status object in that SyncStatusImpl object’s array with a reference to the new
phase-status object.  The arrays of other SyncStatusImpl objects referring to the old
phase-status object remain unchanged.

synchronizer

phase-status
   object #1

phase-status
   object #2

synchronizer

phase-status
   object #3

phase-status
   object #1

phase-status
   object #2

SyncStatusImpl object #2

SyncStatusImpl object #1

SyncStatusImpl object #2

SyncStatusImpl object #1

(a)

(b)

Figure 11.  Cloning and modifying SyncStatusImpl objects.  In (a), SyncStatusImpl
object #2 is a clone of SyncStatusImpl object #1.  The clone has a reference to the same
synchronizer, and a reference to a distinct array containing references to the same
phase-status objects, as the original.  In (b), the status of the first phase of
SyncStatusImpl object #1 has been modified.  This is reflected by creating a new
phase-status object, #3, containing the revised phase information, and replacing the first
element of the array with a reference to the new phase-status object.  Existing phase-status
objects, and the arrays of other SyncStatusImpl objects, remain unchanged, so
SyncStatusImpl object #2 continues to reflect the same status as it did before
SyncStatusImpl object #1 was updated.

A string containing a textual description of the current status is passed as a parameter to
each of the four status-updating methods.  The SyncStatus method getPhaseMessage returns a
string consisting of a fixed-format prefix followed by this textual description.  The prefix reflects
other information in a phase-status object.  To avoid the expensive string manipulation required to
construct the phase-message string each time a status-updating method is called, the
status-updating methods simply save a reference to the string passed as a parameter, and
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construct the full phase message only on demand.  The first time getPhaseMessage is called to
obtain the phase message for a particular phase-status object, the full phase message is
constructed, and saved in the phase-status object for any future calls on getPhaseMessage. 

6.2 Creation and Invocation of Synchronizer Factories

In our reference implementation, a static initializer for the SyncManager class reads the
system property that lists installed classes implementing the SynchronizerFactory interface.  It
then constructs an array containing one instance of each class.  The SynchronizerFactory
interface has one method, getSynchronizer, which takes an open SyncStore object and a
SyncReplicaInfo object as parameters and returns a synchronizer to synchronize the given local
sync store with the given remote replica.  The SyncManager methods returning synchronizer
groups construct each group member by iterating over the array of factory objects, invoking the
getSynchronizer method of each array element, until a nonnull Synchronizer reference is
obtained or the end of the array is reached.  If the end of the array is reached, a
FailureSynchronizer object is constructed placed in the synchronizer group.

6.3 Simple Socket Synchronization

  The class implementing Synchronizer to perform simple socket synchronization, named
SynchronizerImpl, is part of a package named simpleSocketSynchronization.  That
package also includes corresponding implementations of the framework’s SynchronizerFactory
and SyncRequestHandler interfaces, named SynchronizerFactoryImpl and
SyncRequestHandlerImpl.  Because the data-management aspects of synchronization are
handled by the sync store, the implementation of the synchronizer is straightforward.

The protocol for performing a simple socket synchronization is illustrated in Figures 12
and 13.  A synchronization server constructs an SyncRequestHandlerImpl object and instructs it
to begin listening for connection requests at a well-known port.  The getSynchronizer method
of SynchronizerFactoryImpl extracts the remote-replica URL from its SyncReplicaInfo
parameter and requests a connection at the well-known port of the host named by the URL.  If
the connection request fails, because the URL is malformed or specifies an unknown host, or
because of some other communication error, getSynchronizer constructs and returns a
FailureSynchronizer object.  Otherwise, the synchronization request handler listening at that
port accepts the connection request and sets up a bidirectional socket connection.  Using this
socket, getSynchronizer sends the data-collection name from the URL and the default phase
schedule from the SyncReplicaInfo parameter to the synchronization request handler.  The
phase schedule is encoded so that the most common schedules—send/receive, receive/send, send,
and receive—are each specified by one byte, and any other schedule of up to eight phases is
specified by two bytes.  The synchronization request handler attempts to open the named data
collection on its platform, and sends back a one-byte code indicating success or failure.  In case of
failure, the code specifies the cause of the failure (typically that the named store does not exist, or
that it is already open for exclusive access) and the synchronization request handler goes on to
listen for future connection requests.  The getSynchronizer method examines this one-byte
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code.  If the code indicates failure, or if some communication error occurred during the
interchange, getSynchronizer constructs and returns a FailureSynchronizer object.

Construct SyncRequestHandlerImpl object.

Accept connection request.

Obtain internet address, port, and 
data-collection name from URL.

Send connection request to well-known port. 
(Construct FailureSynchronizer upon failure.)

connection request

bidirectional socket connection

data-collection name, phase schedule

Obtain remote data-collection name 
and synchronization phase schedule 
from SyncReplicaInfo object.

Attempt to open named data collection.

one-byte status code Report success or failure.

responder

Construct FailureSynchronizer upon failure.

Construct SyncReplicaInfo object using inverse of 
received phase schedule, remote host name from 
socket connection, and local data-collection name.

Construct synchronizer using SyncStore object from 
open, SyncReplicaInfo object just constructed, 
and data streams from socket connection.

Activate synchronizer.

Construct synchronizer using SyncStore 
object, SyncReplicaInfo object, and data 
streams from socket connection.

Return synchronizer to caller.
Activate synchronizer.

execute
phase

schedule

requester

Figure 12.  The protocol for initiating a simple socket synchronization.  A  synchronization server
creates a SyncRequestHandlerImpl object to listen for connection requests at a specified port.
The thread associated with this object executes an iteration of the loop at the right of the diagram
each time a connection request is received.  To initiate synchronization with a synchronization
server named by the URL in a given SyncReplicaInfo object, a requester executes the thread on
the left of the diagram.  The requesting and responding threads each construct a synchronizer
with a specified SyncStore object, SyncReplicaInfo object, input data stream, and output data
stream.  When activated, each synchronizer spawns a thread that executes a sequence of sending
and receiving phases specified by the SyncReplicaInfo object with which it was constructed.
Figure 13 depicts the protocol for a single phase.

If the sync store on the synchronization server is opened successfully, both the factory and
the synchronization request handler construct SynchronizerImpl objects.  The parameters of the
SynchronizerImpl constructor include a SyncStoreUpdater object for the local sync store, a
SyncReplicaInfo object for the remote replica, and input and output data streams for the socket
connection.  The factory’s getSynchronizer method obtains the first argument by casting its
own SyncStore parameter to SyncStoreUpdater, and returns the result of the constructor.
(The synchronizer returned by the factory will be activated later, when one of its methods, or the
start method of the synchronizer group containing it, is called.)  The synchronization request
handler casts the SyncStore object it just opened to SyncStoreUpdater, constructs a phase
schedule by inverting the sending and receiving phases of the phase schedule sent by the
requester, and uses this phase schedule to construct a SyncReplicaInfo object describing the
requester's sync store.  The URL for this SyncReplicaInfo is synthesized by getting a
java.net.InetAddress object from the socket connection, calling the InetAddress method
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getHostName to determine the requester's host name, and appending the local data-collection
name received from the requester (even though this is the name of the synchronization server’s
data collection, and the name of the requester's replica may be different).  After constructing its
SynchronizerImpl object, the synchronization request handler registers with it a
sync-status-event listener that closes the local sync store if the synchronization is complete.
Finally, the synchronization request handler activates the synchronizer and goes on to listen for
future synchronization requests.

The start method of SynchronizerImpl creates a SyncStatus object corresponding to
the default phase schedule and starts a thread that repeatedly executes either a sending phase or a
receiving phase, according to the schedule.  Once both synchronizers are activated, they execute
complementary phase schedules, so that one synchronizer is sending through its output data
stream while the other is receiving through its input data stream.  In each phase, the receiving
synchronizer invokes a SyncStoreUpdater method to determine the current summary version of
its store.  This is the earliest version later than or equal to all the versions associated with objects
in the store.  The receiving synchronizer sends the summary version to the sending synchronizer.
The sending synchronizer invokes a SyncStoreUpdater method to extract a collection of
SyncUpdate objects, one for each Reconcilable object in its store whose version is later than or
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sendStart event receiveStart event
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Get summary version from sync store.

receiveFailure event

sendFailure event

summary version

Generate later or conflicting updates.

sendFailure event

receiveFailure event

update
receiveSuccess event

syncStatusChange event

receiveFailure event

receiveFailure event

Apply update.

sendSuccess event

update count

syncStatusChange event

sendFailure event

All updates sent?

All updates received?

Figure 13.  The protocol for performing a single phase of a simple socket synchronization.  The
correspondence between the roles of sender and receiver depicted in this diagram and the roles of
requester and responder depicted in Figure 12 varies from phase to phase.  This diagram shows the
points at which sync-status events are triggered.  An exception may be thrown by an attempt to send a
message, receive a message, or apply an update, in which case the phase fails.



in conflict with the receiving store’s summary version.  Since the SyncUpdate interface extends
the Transmittable interface, it has writeRemote and readRemote methods.  The sending
synchronizer transmits the number of SyncUpdate objects in its collection, then calls the
writeRemote method for each of these objects to write the object’s byte-stream representation to
the synchronizer’s output stream.  The receiving synchronizer reads the update count, and then
invokes the SyncUpdate method readRemote the corresponding number of times to read the
byte-stream representations from its input stream and reconstruct the SyncUpdate objects.  As
the receiving synchronizer reconstructs each SyncUpdate object, it calls a SyncStoreUpdater
method to apply the update to the receiving store.

  Each synchronizer updates its SyncStatus object and then triggers a sync-status event at
several points in each phase.  An event marking the start of the phase is triggered before the
receiver’s summary sync version is transmitted or received.  An event marking progress is
triggered just before each individual SyncUpdate object is transmitted or received; the portion of
the phase completed so far is computed by dividing the number of updates that have already been
processed by the total number of updates.  An event marking successful completion of
synchronization is triggered after the last SyncUpdate object is transmitted or received.  If an
exception occurs during some phase, the synchronizer is marked as inactive, the synchronizer’s
SyncStatus object is updated, an event marking failure of the phase is triggered, and the
synchronizer’s thread terminates.  Such an exception can result from a communications failure, an
error in one of the application-provided methods, or, amazingly, from an error in the
implementation itself; in addition, the Synchronizer method stop invokes the
java.lang.Thread method stop for the thread performing synchronization, which causes the
exception ThreadDeath to be thrown within that thread.  The application-provided methods
invoked during synchronization include the writeRemote method for a Reconcilable object
contained in a SyncUpdate object, called by the implementation’s writeRemote method for the
SyncUpdate object; the corresponding readRemote method; the setTo method called when an
update is applied to the receiving store, to replace the contents of an object; and the reconcile
or reconcileWithDelete method called when a conflicting update is applied to the receiving
store.

6.4 Message-Queue Synchronization

Our second synchronizer implementation uses IBM’s MQ Series Everyplace product, a
lightweight message-queuing service with a small footprint suitable for memory-constrained
mobile devices, to provide reliable communication.  The class implementing Synchronizer is
named MQSynchronizerImpl, and the corresponding class implementing SynchronizerFactory
is named MQSynchronizerFactoryImpl.  The synchronizer is intended for use in an environment
where there is a central server running an MQ Series Everyplace queue manager.  In this
environment, it is unnecessary to exchange summary versions to determine which updates should
be transmitted.  A client can keep track of the latest version it previously sent to or received from
the server, and send only updates later than or conflicting with that version.  Similarly, the server
can track this latest-version information for each registered client, and send a particular client only
those updates later than or conflicting with the latest version previously sent to or received from
that client.  Our implementation of the SyncReplicaInfo class has methods beyond those
specified in the MNCRS framework, to save and retrieve the latest-version information for a
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given remote replica.  The URL identifying a sync-store data collection on the server includes the
names of a server input queue and a server output queue.

The getSynchronizer method of MQSynchronizerFactoryImpl creates a stub queue
manager on a client device, based on the input queue name in the URL, and passes a reference to
this object to the MQSynchronizerImpl constructor.  (The method returns a
FailureSynchronizer object instead of an MQSynchronizerImpl object if the
SyncReplicaInfo object passed as a parameter has a malformed URL, if certain required system
properties are not defined, or if MQ Series Everyplace fails to create a stub queue manager.)
When an MQSynchronizerImpl object is activated, it starts a thread that executes the scheduled
phases.  If the synchronizer’s stop method is invoked, the thread’s stop method is invoked,
causing ThreadDeath to be thrown within the thread; the thread handles this exception by
updating the synchronizer’s SyncStatus object, triggering an event marking the failure of the
phase, and terminating.

The sending phase updates the synchronizer’s status and generates a sync-status event to
reflect the start of the phase, then invokes a SyncStoreUpdater method to extract SyncUpdate
objects for each Reconcilable object with a version later than or in conflict with the
last-exchanged version in the remote replica’s SyncReplicaInfo object.  It creates a byte-stream
representation of the entire sequence of updates and invokes a method of the stub queue manager
to enqueue a message on the server input queue named in the remote replica’s URL.  This
message contains the byte-stream representation of the sequence of updates, the presumed
data-collection name of the remote replica, authentication information, and reports of any errors
encountered in a preceding receiving phase.  Finally, the status is updated and a sync-status event
is generated to reflect the end of the sending phase.  (No sync-status events reporting partial
progress are generated.)

The receiving phase updates the synchronizer’s status and generates a sync-status event to
reflect the start of the phase, invokes a method of the synchronizer’s stub queue manager to
dequeue the message from a server output queue named in the remote replica’s URL, then
reconstructs the collection of SyncUpdate objects from the byte sequence contained in the
message, then calls a SyncStoreUpdater method once for each update in the collection, to apply
the update to the receiving store, generating a sync-status event to report partial progress as each
update is applied.  Finally, the receiving phase updates the status and generates a sync-status
event to reflect the successful completion of the phase.  However, an event reflecting the failure
of the receiving phase is generated if the attempt to dequeue a message throws an exception, if a
dequeued message is not of the expected form, or contains an incorrect data-collection name or
invalid authentication information, if the message indicates that the previous phase in the other
direction resulted in a serious error, if an exception resulted from the attempt to apply some
update, or if some unanticipated exception occurred.

6.5 Other Synchronization Protocols

We conclude our discussion of synchronizer implementations by mentioning other kinds of
synchronizers that have been discussed within the MNCRS data-synchronization working group
and elsewhere, but which we have not yet implemented.  Recall that several different synchronizer
factories can be installed on a given device and listed in a system property.  The first listed factory
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that is able to construct a suitable synchronizer for a given local sync store and remote replica
does so, and the synchronization proceeds using that synchronizer’s protocol.

The working group had hoped to agree on a standard protocol, defined in terms of the
exchange of Java objects, that all MNCRS platforms would support, perhaps in addition to other
open or proprietary protocols.  While proprietary protocols might provide superior performance,
the standard protocol would guarantee that any two MNCRS platforms would be capable of
synchronizing with each other.  Unfortunately, the working group did not complete this work.
The protocol definition was to include a standard class implementing the SyncVersion interface,
used to define one or more standard classes implementing the SyncUpdate interface, both used to
define a standard class SyncMessage containing, among other information, a summary version, a
sequence of updates, or both.  A synchronization phase would consist of the transmission of a
SyncMessage object containing a summary sync version in one direction, followed by the
transmission of a SyncMessage object containing a sequence of updates in the other direction.
For a sending phase to be followed by a receiving phase, the sequence of updates for the sending
phase and the summary version for the subsequent receiving phase could be combined in one
SyncMessage object.  SyncMessage objects would be transmitted reliably through a wireless
implementation of the Java Message Service API [Hap98] that the MNCRS working group on
mobile communication recommended be supported on every MNCRS platform.

A synchronization protocol can be built on top of HTTP.  The principal attractions of
HTTP are that it is ubiquitous and that it can pass through firewalls.  Synchronization messages
might be encoded in XML or in binary form in the body of an HTTP POST request, or a more
extensive vocabulary of requests, such as that used in the WebDAV distributed authoring and
versioning extensions to  HTTP ([Whi98], [Gol99]), might be used.

Even the Simple Mail Transfer Protocol (SMTP) can be used for synchronization.  In
essence, synchronizers would e-mail their updates to each other.  Like HTTP, SMTP traverses
firewalls, but possibly in a less timely fashion.  However, in an environment with sporadic and
unreliable connections, it may be attractive to communicate by accumulating outgoing mail and
forwarding it in bursts when a connection is available.  The vision of an SMTP-based
synchronization disciplined the working group to design a data-synchronization framework that
would accommodate synchronization through asynchronous message passing as well as through
rigorously scripted dialogs.

Another attractive basis for a synchronizer is the Tuplink system [Emb98] built at IBM’s
Tokyo Research Laboratory.  The Tuplink project implemented a lightweight, fault-tolerant
communications buffer for small mobile devices based on the tuple space ([Gel85], [Wyc98],
[Jav99]) abstraction.  The tuple-space message-passing model is that a sender deposits tuples in a
shared data store and a receiver extracts them.  In the actual Tuplink implementation, there is no
shared store, just separate buffers on the sending and receiving devices.  When a communications
link is available, Tuplink platforms exchange newly deposited tuples, tolerating communications
failures by keeping track of which exchanges were successful and which must be retried the next
time a link is available.  Tuplink itself is a data-synchronization system in microcosm.  However,
by restricting access to a given tuple space to only two parties, by allowing the insertion or
removal, but not the in-place modification, of a tuple (thus precluding the need to detect or
reconcile conflicts), and by dealing with small chunks of data at a low level, Tuplink greatly
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simplifies its synchronization problem, facilitating fast data exchange and an extremely small
memory footprint.

With a spectrum of protocols available, ranging from highly optimized but narrowly
applicable protocols to nonoptimal but universally applicable protocols, it is natural to consider a
metaprotocol by which two synchronizer factories exchange information about the capabilities of
their devices, the speed and reliability of the communications link, and the preferences of users,
then negotiate a protocol to use for the synchronization proper.  The negotiation might select the
fastest protocol supported by both devices, the protocol that works best with a given sync-store
implementation, the protocol that works best over a fast and reliable connection, or the protocol
that works best with a weak connection, for example.  The two synchronizer factories would then
construct synchronizers to execute the agreed-upon protocol.
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7 Implementation of Sync Stores 

7.1 Sync-Store Data Structures

Each time a given data collection is opened, a new object implementing the SyncStore
interface is created, as Figure 10 illustrates.  In our implementation, a class named
SyncStoreHandle implements the SyncStoreUpdater interface, and hence also implements the
SyncStore interface, which SyncStoreUpdater extends.  For each data collection with open
SyncStoreHandle objects, there is one object of a class named SyncStoreState, holding the
shared state associated with the data collection.  All SyncStoreHandle objects for a given data
collection contain a reference to the same SyncStoreState object.

The principal components of a SyncStoreState object are:

� a forward hash table mapping sync IDs to sync entries

� a reverse hash table mapping Reconcilable objects to sync IDs

� an ordered log of updates

� a 64-bit globally unique identifier called a replica ID

� a summary version

� an update counter, acting as a virtual local clock

� registries for sync-object-event and sync-store-event listeners

� a registry of remote replicas

� a reference to a persistent-store manager

The forward hash table is used by the SyncStore methods put, get, delete,
markAsUpdated, markForFlushing, and markForSynchronization to insert, retrieve, delete,
or record a modification to a Reconcilable object with a given sync ID.  The reverse hash table
is used by the SyncStore method getSyncIdOf to look up the sync ID of a given Reconcilable
object.  The log of updates is an object of class java.util.Vector.  Conceptually, for each sync
ID known to the sync store, the log contains an update-info object describing the most recent
update corresponding to that sync ID; in reality, to avoid shifting the contents of the log each time
an update is superseded by a later update for the same sync ID, an update-info object is never
removed from the log vector, but is marked as superseded by setting a flag inside the object.   The
sync-entry objects found through the forward hash table each contain a reference to the
corresponding update-info object in the log vector, as well as flag indicating whether the
persistent store contains up-to-date information for the corresponding sync ID.  Every
update-info object contains a sync ID, a SyncVersion value, and a persistent store key that can
be used to retrieve the state of the corresponding Reconcilable object from persistent storage or
to delete it from persistent storage.  An update-info object that does not describe a deletion also
contains a reference to a Reconcilable object.  See Figure 14. 
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Figure 14.  SyncStoreState data structures.  A hash table maps sync IDs to sync entries
and an inverted hash table maps Reconcilable references to sync IDs.  An update log
contains an ordered sequence of update-info objects, including an update-info object
describing the most recent update for each sync ID in the hash table.  An update-info
object includes a sync ID, a version, a persistent-store key, and, except in the case of
deletions, a reference to the Reconcilable object.    Each sync entry includes a reference
to the corresponding update-info object.

7.2 Opening and Closing Sync Stores

Our implementation of the StoreManager class maintains a persistent record of the names
of data collections stored persistently on the device.  (A system property identifies the directory in
which these names are stored.  The persistent representation of each data collection resides in a
subdirectory of this directory whose path name corresponds to the hierarchically structured
data-collection name.)  The StoreManager class keeps a record of these data-collection names
solely to implement the framework method that returns these names to the caller.  The
StoreManager method open simply validates that the data-collection name passed to it is
well-formed, iterates over the installed SyncStoreFactory objects until a factory returning a
nonnull result is found, and adds the name of a successfully opened new data collection to its
persistent record.  The parameters to the SyncStoreFactory construction method include any
attributes that the application passes to open, to constrain the choice of sync-store
implementations; an exclusive flag indicating whether the store should be opened for exclusive
access; and a creation flag indicating the desired behavior—either throwing an exception or
creating a new, empty data collection—if the named data collection does not exist.
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Our implementation includes one class implementing the SyncStoreFactory interface.
This class, SyncStoreFactoryImpl, constructs and returns SyncStoreHandle objects.  A data
collection is active when there is at least one open SyncStoreHandle object for it; there is one
SyncStoreState object for every active data collection.  Through a static hash table, the
SyncStoreFactoryImpl class tracks the set of currently active data collections and their
SyncStoreState objects. The constructor for SyncStoreHandle takes a SyncStoreState
reference as a parameter.  To open a currently inactive or nonexistent data collection, the factory
first invokes a SyncStoreState constructor, then passes the resulting SyncStoreState reference
to the SyncStoreHandle constructor and returns the resulting SyncStoreHandle reference.  To
open an already active data collection, the factory finds the data collection’s SyncStoreState
object in the hash table, passes it to the SyncStoreHandle constructor, and returns the resulting
SyncStoreHandle reference.  The SyncStoreHandle constructor calls a method of its
SyncStoreState object to register itself with that object, allowing the SyncStoreState object
to track the number of open handles it has.

Figure 15 depicts the logic for opening a data collection.  When asked to open a sync
store, SyncStoreFactoryImpl first checks that any attributes passed to it are consistent with the
SyncStoreHandle implementation, then determines the path name for the persistent
representation of the named data collection.  A subdirectory with this path exists if and only if the
named data collection already has a representation in persistent storage.  If the data collection
already has a persistent representation, the factory enters a synchronized block where, with
exclusive access to the factory’s hash table, the executing thread determines whether the data
collection is already active.  If the data collection is already active, the factory extracts the
corresponding SyncStoreState object from the hash table and ensures that exclusive access was
not requested and that the data collection is not already open for exclusive access.  If the data
collection is not already active, the factory constructs a new SyncStoreState object from the
persistent representation of the data collection.  If the data collection does not already have a
persistent representation, the factory verifies that the create flag is set, creates the subdirectory
corresponding to the data-collection name, and constructs a SyncStoreState object for a new,
empty data collection.  The SyncStoreState object obtained in any of these cases is then used to
construct the SyncStoreHandle object that is returned.

The static hash table declared in class SyncStoreFactoryImpl controls access to the
persistent representation of a data collection from within the Java virtual machine (JVM) that
loaded the class.  However, to preserve consistency between a SyncStoreState object in a given
virtual machine and the corresponding persistent representation, it is necessary to ensure that
multiple virtual machines, each loading the SyncStoreFactoryImpl class and maintaining its own
static hash table, do not activate the same data collection simultaneously.  Separate virtual
machines can only communicate through shared system resources, such as the file system or
socket connections to a lock-granting server running on the device.  We experimented with both
of these approaches and found the use of the file system to be about 35 times faster.  In contrast
to the Unix convention of creating a zero-byte file to indicate that some resource is locked, we
create a zero-byte file to indicate that a resource is unlocked.  The delete method of class
java.io.File attempts to delete a file and returns a boolean result indicating whether or not the
attempt succeeded, providing us with the equivalent of a test-and-set primitive.  Whenever the
factory is about to activate an existing data collection, it first attempts to obtain a JVM lock for
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that collection by deleting a zero-byte file named “$jvm_lock” from the directory containing the
persistent representation of the data collection.  If this attempt fails, the factory throws an
exception, because the data collection is presumed to be in use by another virtual machine.  The
file is recreated when the data collection is deactivated.  When a new, empty data collection is
created, no JVM-lock file is placed in its subdirectory.  Thus the data collection comes into
existence already locked.  The JVM-lock file is created for the first time when the newly created
data collection is first deactivated.

A similar file-based lock, called the system-wide factory lock, is used to prevent race
conditions in which two threads, possibly in different virtual machines, simultaneously notice that
a data collection with a given name does not exist, and try to create it.  The statements that test
for the existence of the data collection’s subdirectory, and create it if it does not already exist, are
executed in a critical region enforced across all virtual machines accessing a given
persistent-storage directory subtree.  A single zero-byte file, residing in the root directory of this
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Figure 15.  Construction of a new SyncStoreHandle object.  The shaded areas represent critical
regions.  The one in the lower left, enforced by a synchronized block, ensures that at most one
thread at a time within a given virtual machine accesses the static hash table of that virtual machine’s
SyncStoreFactoryImpl class.  The one in the upper right, enforced by the system-wide factory lock,
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subtree, is deleted before the test is performed, and recreated after either the data collection’s
subdirectory is found to exist, or is found not to exist and is created.  Since this lock is held only
briefly and contention is expected to be rare, a thread that fails to obtain this lock simply spins and
tries again after sleeping for a short period of time.

An application closes a sync store by invoking the SyncStore method close.  The
SyncStoreHandle implementation of this method calls a method of its SyncStoreState object
to deregister itself; this method call decrements the SyncStoreState object’s count of open
handles and returns the new count.  If the count has gone to zero, the update-log file is
compacted by rewriting it with all superseded updates removed, then a method of the
SyncStoreFactoryImpl class is called to deactivate the data collection by removing the
corresponding entry from the SyncStoreFactoryImpl hash table of active SyncStoreState
objects and releasing the JVM lock (i.e., recreating the corresponding zero-byte file).  Regardless
of the count, a sync-store event is generated with the SyncStoreHandle object as the source and,
after all notifications have been performed, all sync-store-event and sync-object-event listeners
added through this SyncStoreHandle object are removed.  (The deregistration of the
SyncStoreHandle object, the test of the new open handle count, and the possible deactivation all
take place within a synchronized block for the same object that controls concurrent access to
the hash table upon the opening of a sync store.)

An application can remove the persistent representation of an inactive data collection by
passing its data-collection name to a static method of the StoreManager class.  This method
opens the data collection for exclusive access, casts the resulting SyncStore object to
SyncStoreUpdater, invokes the SyncStoreUpdater method destroy, and prunes the
StoreManager persistent record of data-collection names.  The destroy method invokes a
SyncStoreFactoryImpl method to remove the entire directory subtree corresponding to the
deleted data collection.

7.3 Sync-Store Operations

7.3.1 Construction of Sync-Store States

By examining the creation flag passed to it, the SyncStoreState constructor determines
whether a new, empty data collection is to be created, or whether the state of an existing data
collection is to be constructed from its image in persistent storage.  A SyncStoreState object for
a new, empty data collection is constructed simply by setting each component of the object to an
appropriate initial value, then writing a persistent image of the initial state.

The representation of an existing data collection in persistent storage has three parts:

�  a state file holding a byte-stream representation of a state-variables object, which contains
the replica registry and singleton variables such as the replica ID, summary version, and
update counter

� a log file containing a sequence of byte-stream representations for each update-info object in
the update log, without any information about the contents of Reconcilable objects
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� a mapping, implemented by the persistent-store manager, from persistent-store keys to the
contents of corresponding Reconcilable objects

The first step in creating a SyncStoreState object for an existing data collection is to create a
state-variables object and fill it in from the byte-stream representation in persistent storage.  The
second step is to read through the sequence of update-info byte-stream representations.  For each
item in the sequence, a new update-info object is created and initialized from its byte-stream
representation, the object is appended to the in-memory update-log vector, a new sync entry
referencing the object is created, and a new hash-table entry, mapping the sync ID found in the
update-info object to the sync entry, is inserted in the forward hash table.

The contents of a Reconcilable object are not read from persistent storage when a
SyncStoreState object is created, but only when they are needed.  The Reconcilable reference
in each newly created update-info object is left null, and the reverse hash table is left empty.
When the get method of a sync entry or a SyncStore object is called, and the corresponding
update-info object is found to have a null Reconcilable reference, the persistent-store key in the
update-info object is passed to the persistent-store manager, which returns a reference to a new
Reconcilable object with the appropriate contents.  This reference is inserted in the update-info
object and a new entry is added to the reverse hash table, mapping the reference to the sync ID
found in the update-info object.

7.3.2 Associating Updates with Sync IDs

A primitive common to the implementation of both the application-invoked and
synchronizer-invoked operations on sync stores is the association of a new update-info object
with a given sync ID.  The primitive is invoked whenever the state associated with a given sync id
changes.  First, the sync ID is looked up in the forward hash table to find the associated sync
entry, if any.  If an existing sync entry is found, the update-info object previously referenced by
that sync entry is marked as superseded; otherwise, a new sync entry is created and inserted into
the forward hash table.  The sync entry is set to reference the new update-info object and the new
update-info object is appended to the update log.  Figure 16 illustrates the effect of this operation
in the case where there was a previously existing sync entry.  Update-info objects are appended to
the update log in introduction order (see Section 3.2).

7.3.3 Operations Invoked by Applications

The get method of the SyncStore interface uses the sync ID passed to it to find the
corresponding sync entry in the forward hash table, then calls the sync entry’s get method to
retrieve the corresponding Reconcilable object reference.  The get method of the SyncEntry
interface returns the Reconcilable reference in its sync entry’s update-info object, obtaining it
first from persistent storage, as described at the end of Section 7.3.1, if the reference had been
null.

When one of the SyncStore methods put, markForSynchronization, or delete is
called, a new update-info object, describing the change, is created and associated with the sync ID
passed to the method.  (The corresponding sync entry is created in the case of put, and already
exists in the case of markForSynchronization and delete.) In addition, the put method inserts
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an entry in the reverse hash table, mapping the newly inserted Reconcilable object to the sync
ID; the put and delete methods mark the sync entry as needing to be flushed.  A sync-object
event is generated.  The SyncVersion value in the new update-info object is computed by
incrementing the update counter and modifying a copy of the previous version to reflect the new
update-counter value.  In the case of put, the previous version is one indicating no updates by any
replica; in the case of markForSynchronization and delete, the previous version is taken from
the update-info object previously associated with the sync ID.

The markForFlushing method uses the sync ID passed to it to find the corresponding
sync entry in the forward hash table, marks the sync entry as needing to be flushed, and generates
a sync-object event.  The markAsUpdated method combines the actions of the
markForSynchronization and markForFlushing methods.  The flush method, using a marker
that indicates the last update-info object in the in-memory log vector whose byte-stream
representation was written to the log file, appends the byte-stream representations of the new, still
unwritten, update-info items to the log file, and updates the marker; writes the byte-stream
representation of the state-variables object to the state file; and iterates over all sync entries in the
forward hash table, invoking the persistent-store manager (with the key found in the sync entry’s
update-info object) to save the state of any Reconcilable object whose sync entry is flagged as
needing flushing.  However, when the last SyncStoreHandle object for a SyncStoreState is
closed, the log file is rewritten in its entirety, removing all superseded updates.
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The SyncStore method getSyncIdOf takes a Reconcilable reference as a parameter
and returns the sync ID, if any, with which that reference is associated, or null if the sync store
does not currently contain that reference.  (The put method checks that a Reconcilable
reference being inserted in the sync store is not already there, ensuring that a Reconcilable
reference corresponds to at most one sync ID.)  If the Reconcilable reference that an
application passes to getSyncIdOf is already in the sync store, then either the application must
have had access to the reference and passed it to a call on put, or the reference must have been
generated by the sync store and returned to the application by a call on the SyncStore or
SyncEntry method get.  Even though the reverse hash table starts out empty, an entry is made in
it every time put is called, and the first time get is called for a given sync ID.  Thus the
getSyncIdOf method can always obtain the required result simply by looking up the
Reconcilable reference in the reverse hash table.

7.3.4 Operations Invoked by Synchronizers

Synchronizers invoke the SyncStoreUpdater methods applyUpdate during a receiving
phase and generateUpdates during a sending phase.  The applyUpdate method takes a
SyncUpdate reference as a parameter and the generateUpdates methods returns an iterator over
SyncUpdate references.  Our implementation has one abstract class, SyncUpdateImpl,
implementing the framework’s SyncUpdate interface, and three concrete subclasses directly or
indirectly extending SyncUpdateImpl:

�ObjectContentsSyncUpdate.  An object of this class represents either an insertion or a
modification of an existing object, depending on whether an object with the same sync ID
already exists in the receiving sync store.  The object contains a sync ID, a version, and a
copy of a Reconcilable object.

�DeletionSyncUpdate.  An object of this class represents a deletion.  The object contains a
sync ID and a version.

�VersionSyncUpdate.  An object of this class represents an update to the version, but not
the contents, of a Reconcilable object.  The object contains a sync ID and the new version.

Section 7.3.4.1 discusses the application of updates and Section 7.3.4.2 discusses the generation
of updates, particularly those of class VersionSyncUpdate.

7.3.4.1 Applying Updates

As Figure 17 illustrates, the SyncStoreUpdater method applyUpdate invokes an
abstract method of the SyncUpdateImpl object passed to it, and this invocation dispatches, based
on the class of that object, to a specialized SyncStoreUpdater method that applies that kind of
update.  As Figure 18 indicates, the behavior of the specialized method depends on whether there
is currently a sync entry with the same sync ID as the update, and if so, whether the version
associated with that sync entry is earlier than, later than, equal to, or conflicting with the version
associated with the update.

Let us first consider the case in which there is no sync entry with the same sync ID.  The
method applying an object-contents update inserts the Reconcilable object from the update into
the local store, in the manner of the put method, but using the version contained in the update.
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The method applying a deletion update inserts a deletion sync entry into the local store, again
taking the version from the update; this case arises when an object is created in a remote replica
and then deleted before the creation is propagated to the local store.  (The method applying a
version update will be invoked only in the following unusual circumstance:

�The local store initially contains a deletion sync entry with the same sync ID.

�The remote store reconciles a conflict with this deletion by choosing to keep the deletion.

�After a determination that the deletion has been propagated to all replicas, the corresponding
sync entries are removed from all replicas, as part of a scheme that will be described in
Section 7.5.

�The remote replica propagates the result of the reconciliation back to the local replica as a
version update containing the version of the reconciliation.
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Figure 17.  Applying updates.  The SyncUpdate object passed to the SyncStoreHandle method
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The appropriate action for the local store is to insert a deletion sync entry into the local store,
taking the version from the update.)

If there is already a sync entry in the local sync store, but its version is later than or equal
to the version in the arriving update object, the update represents “old news”:  Either the update
was already received earlier at this sync store, or it was received and later superseded at another
replica, and the superseding update was already received at this sync store.  In either case, the
appropriate action is to ignore the update.  Our synchronizer implementations avoid sending
updates that were old news at the start of the synchronization, so this case arises only if multiple
synchronizations are in progress at the same time, and the application of an update from one
remote synchronizer turns some update that has been generated, but not yet sent, by the other
remote synchronizer into old news.  Since our sync-store and synchronizer implementations are
independent of each other, our sync-store implementation is designed to work even with
synchronizer implementations that generate old-news updates on a regular basis. 
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If there is already a sync entry in the local sync store, and its version is earlier than the
version in the arriving update object, the local Reconcilable object should be set to the state
specified in the update and the sync entry’s version should be advanced to the version specified in
the update.  Sometimes, this will entail replacing an object-contents update-info object with a
deletion update-info object or (if a deletion previously present in the local store was reconciled in
some remote replica with a conflicting update by keeping the object, and the update now being
applied is the result of that reconciliation) replacing a deletion update-info object with an
object-contents update-info object.  If the update object to be applied is a version update object,
the corresponding update-info object is assumed to specify the correct state already, and only the
version is updated.  (The local update-info object may be an object-contents update-info object,
and the update may be the result of an update-update conflict reconciliation that preserved the
contents of the Reconcilable object; or the update-info object may be a deletion update-info
object, the update may be the result of an update-deletion conflict reconciliation that kept the
deletion.)

Finally, if there is already a sync entry in the local sync store, and its version conflicts with
the version in the arriving update object, the conflict is resolved and the two versions are merged
to produce a new version, later than both, for the result of the resolution.  The merged version is
computed by incrementing the local sync store’s version counter, constructing the earliest version
later than both the local and remote versions, and advancing this version to reflect the new
version-counter value.  This version characterizes the result of the reconciliation as a new, locally
executed, modification, later than the two conflicting modifications that it replaces.  (Even if the
conflict is reconciled by preserving the effect of one of the two conflicting updates, the version is
updated to reflect that both of the conflicting updates were seen, and that the current state of the
object has taken both conflicting updates into account.)  If the sync entry references an
object-contents update-info object and the update is an object-contents update, the conflict is
reconciled by calling the reconcile method of the Reconcilable object in the local store,
passing the Reconcilable object in the remote update as a parameter.  If the sync entry
references an object-contents update-info object and the update is a deletion update, the conflict is
reconciled by calling the reconcileWithDelete method of the Reconcilable object in the local
store. If the sync entry references a deletion update-info object and the update is an
object-contents update, the conflict is reconciled by calling the reconcileWithDelete method of
the Reconcilable object in the remote update.  (A boolean parameter to
reconcileWithDelete distinguishes between the two ways in which the method can be called.)
If the sync entry references a deletion update-info object and the update is a deletion update, the
conflict is a delete-delete conflict, which is automatically reconciled by keeping the object deleted
(but merging the versions of the two conflicting deletions).  If the arriving update is a version
update, then a remote update preserving a Reconcilable object in some state x conflicts with an
update, already reflected in the local store, placing that object in some other state y.  Since the
update, or sequence of updates, that transformed the object to state y began with the object in
state x, we presume that the same sequence of updates would have occurred even if the update
preserving the object in state x had occurred earlier, at the same replica, instead of as a conflicting
update.  Therefore, we resolve the conflict by leaving the object state unchanged (perhaps in a
deleted state), in effect applying the version update and then the updates with which it conflicts;
versions are merged as for any reconciliation.
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7.3.4.2 Generating Updates

The generateUpdates method simply iterates over the nonsuperseded entries in the
update-log vector, constructing a collection that contains a corresponding SyncUpdate object for
each update-info object with an applicable version, and returns an iterator over that collection, in
introduction order.  (Introduction order was defined in Section 3.2.  The update log lists
update-info objects in introduction order.)

The version resulting from the reconciliation of a conflict is always later than the version
of the update received from the remote replica.  Thus the results of the reconciliation will always
be propagated back to the remote replica the next time that the local replica sends updates to it
(unless the remote replica receives the results of the reconciliation from some intermediary replica
first).  If the integer code returned by a call on reconcile asserts that the local Reconcilable
object was set to the state of the remote Reconcilable object, it suffices for the local replica to
send a VersionSyncUpdate object, containing the new version but not the Reconcilable object
contents, back to the remote replica.  When synchronizing with some third replica, however, it
may be necessary to send a full ObjectContentsSyncUpdate object.

Generating the appropriate kind of update is not a simple matter.  The sync store
generates updates in response to a call on its generateUpdates method by the synchronizer.  The
synchronizer has the context to determine that a call on generateUpdates takes place in the
sending phase of a synchronization whose earlier receiving phase triggered the reconciliation.
Similarly, the synchronizer is aware of the identity of the remote replica on whose behalf
generateUpdates is being called.  However, the MNCRS data-synchronization framework does
not provide a means to convey this information to the sync store. (In particular, the
generateUpdates method does not have parameters through which this information can be
passed.  In retrospect, the framework ought to have included such a parameter.)  Since our goal
was to develop a synchronizer implementation that works with other, independently developed,
sync-store implementations, and to develop a sync-store implementation that works with other,  
independently developed synchronizer implementations, our synchronizer and sync-store
implementations communicate with each other only through the features of the framework.

Our solution is to exploit the  parameter to generateUpdates that specifies the lower
bound on the versions for which updates should be generated (the starting version).  A
synchronizer always invokes generateUpdates with a starting version that is earlier than or equal
to the summary version of the receiving sync store.  (Otherwise, the synchronization could bypass
current updates in the sending store not yet reflected in the receiving store, violating the
introduction-order requirement described in Section 3.2.)  It follows that the receiving sync store
has already seen any (nonsuperseded) updates with versions earlier than or equal to the starting
version passed to the sending sync store’s generateUpdates method.

When the integer code returned by a call on reconcile asserts that the local
Reconcilable object was set to the state of the remote Reconcilable object, the update-info
object we log for the reconciliation is a version update-info object, a special form containing not
only a sync ID, new version, persistent-store key, and Reconcilable reference, but also the
previous version.  When generateUpdates encounters an update-info object of this form in the
update log, with a current version later than or conflicting with the starting version, it compares
the previous version in the update-info object with the parameter specifying the lower-bound
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version.  If the previous version in the update-info object is earlier than or equal to the starting
version, the receiving sync store has already received the object state corresponding to the
previous version, so a VersionSyncUpdate object is generated.  Otherwise, an
ObjectContentsSyncUpdate object is generated.

The decision about what kind of update object to generate is based not on the
correspondence between synchronization phases or on the identity of the recipient, but on
whether or not the recipient has yet received the old object state.  Consider the following
sequence of synchronization phases:

1. Replica A sends updates to Replica B, which receives object x for the first time.

2. Replica A sends updates to Replica C, which already has a conflicting update for object x.
Replica C reconciles the conflict by keeping the object state it received from A.

3. Replica C sends updates to Replica A.

Replica C can send a VersionSyncUpdate object for x in step 3, since Replica A has already seen
the same object state, and indeed our version-based approach generates such an object.  An
approach based on the phases of a synchronization or on the identity of the replica would generate
the larger ObjectContentsSyncUpdate object.

7.3.5 The Role of Sync-Store Handles

Most SyncStoreHandle methods simply verify that the sync store is not closed, then
invoke a corresponding method of the shared SyncStoreState object, or of a replica-registry or
listener-registry object associated with that SyncStoreState object.  SyncStoreState methods
accessing the hash tables, update log, summary version, or update counter are all declared
synchronized, to prevent race conditions.  However, the framework requires certain
SyncStoreHandle methods to notify listeners of sync-object or sync-store events.  These
notifications always take place in the SyncStoreHandle method, after the corresponding
SyncStoreState method has returned.  Thus the shared SyncStoreState object does not
remain locked as applications’ listener methods are executed.

Different calls on applyUpdate result in different kinds of events, and some result in no
event at all.  Whether an event should be generated, and if so, what kind, can only be determined
inside the synchronized SyncStoreState methods that applyUpdate indirectly invokes.  These
methods each return a reference to an object describing the kind of event applyUpdate should
generate, or null if no event is to be generated.  See Figure 19.

7.4 Implementation of Versions

Section 3.2 explained that by requiring updates to be transmitted in introduction order, the
MNCRS data-synchronization framework allows versions to be represented as version vectors
[Par83].  An early draft of the framework specified the behavior of SyncVersion methods
directly in terms of a version-vector model.  In this model, a SyncVersion object maps globally
unique replica identifiers to values of the local update counters of the identified replicas.  The
mapping is defined for all possible replica identifiers, including those that have never been
generated, or have never been seen by a given sync store; such replica identifiers are mapped to
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zero by default.  The version vector corresponding to the insertion of a newly created object in
replica r maps r to the just-incremented update counter of replica r, and maps all other replica
identifiers to zero.  Let v[i] be the value to which version vector v maps replica identifier i.
Versions v1 and v2 are merged upon resolution of a conflict by constructing a new version vm such
that vm[i] = max(v1[i], v2[i]) for each replica identifier i.  A version v is advanced to reflect an
update or reconciliation on replica i by constructing a new version va such that va[i] is the
just-advanced update counter on replica i and va[j] = v[j] for j ! i.  Two version vectors v1 and v2

are equal if and only if v1[i] = v2[i] for every replica identifier i.  Version vector v1 is earlier than v2

(and v2 is later than v1) if and only if v1 ! v2 and v1[i] [ v2[i] for every replica identifier i.  Two
version vectors v1 and v2 conflict if and only if there exist replica identifiers i and j such that v1[i] <
v2[i] and v1[j] > v2[j].  (Rather than update-counter readings, the original formulation of version
vectors in [Par83] uses successive integers for a given component of a given object’s version
vector, so that the version-vector component is equal to the number of times that object was
updated at the corresponding site.)

Associating a version vector with each object in a store consumes a considerable amount
of storage.  Furthermore, the amount of space required to represent a given object’s version
vector grows with the number of replicas that have ever updated that object.  Sync-store
implementations tailored to environments with restricted synchronization topologies can track
versions and detect conflicts with more space-efficient data structures.  For example, less
information needs to be stored if there is a central replica, and all other replicas synchronize only
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Figure 19.  A typical SyncStoreHandle method.  The method
checks that the handle is not closed, then invokes a synchronized
method that manipulates the corresponding SyncStoreState
method in a critical region and returns a deferred event,
indicating which event, if any, should be fired by the
SyncStoreHandle method upon return from the synchronized
method.  Deferred events avoid the invocation of event listeners
from within a synchronized block.  



with the central replica; even less has to be stored if there are two replicas that only synchronize
with each other.  Therefore, later drafts of the MNCRS data-synchronization framework
incorporated a more abstract specification of versions, stipulating only that the SyncVersion
interface provides methods to compare SyncVersion values.  The intent was to allow a wide
variety of version implementations.  Version vectors remain the natural implementation for fully
general sync stores supporting arbitrary peer-to-peer synchronization.

7.4.1 Defining a Universal Version Abstraction

Our implementation effort took on a more ambitious goal: to implement versions in a
variety of ways, appropriate for different synchronization topologies, but to define a common set
of operations meaningful for all of these implementations, so that a single sync-store
implementation could execute the same algorithms for all version implementations.  The
implementation includes an abstract class SyncVersionImpl, implementing the framework’s
SyncVersion interface and providing operations for reading and writing byte-stream
representations of sync versions.  Each byte-stream representation is prefixed with a one-byte tag
identifying the implementation class of a particular version object; the methods provided by
SyncVersionImpl examine this tag and dispatch to reading and writing methods of the individual
implementation classes.  SyncVersionImpl has two subclasses: VersionVector, for general
peer-to-peer synchronization topologies, and CentralizedSyncVersion, for central-replica
topologies.

In addition to the comparison operations declared in the SyncVersion interface, we
identified the following common methods needed by our sync-store implementation:

� a method to advance a version locally, i.e., to return a new version that is based on a given
version, but also incorporates a given new value for the local update counter

� a method to merge two versions, i.e., to construct the earliest version later than or equal to
two given versions

� a method combining the actions of the previous two methods, i.e. merging two given
versions and then advancing the result locally to incorporate a given local update-counter
value

� a method returning the version earlier than all other versions

� a method returning a pure local version, corresponding to a local update with a given
update-counter value and no remote updates

�methods to translate between various representations of the same version value

Each of these methods returns a SyncVersionImpl result, allowing us to apply the Abstract
Factory pattern of [Gam95] once again.  Rather than declaring these methods in
SyncVersionImpl, we declare them in an abstract class named SyncVersionFactory.  (Indeed,
the method to return the earliest possible version and the method to return a pure local version are
not naturally associated with an existing version object, so they would be naturally declared in
SyncVersionImpl as static methods; but static methods can not be overridden in different ways
by different subclasses of SyncVersionImpl.)  There are three concrete subclasses of
SyncVersionFactory—one that generates VersionVector objects, one that generates
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CentralizedSyncVersion objects on a central replica, and one that generates
CentralizedSyncVersion objects on subordinate replicas.  A parameter to the
SyncStoreState constructor specifies the network role of the replica—either a peer, a central
replica, or a subordinate replica in a central-replica topology.  Based on this parameter, the
SyncStoreState constructor creates a version-factory object of the appropriate class, and all of
the SyncStoreState object’s manipulations of versions use this version-factory object.

7.4.2 Implementation of Version Vectors

Abstractly, a VersionVector object maps replica identifiers to update-counter values, and
its methods follow the mathematical rules given in the first paragraph of Section 7.4.  This
mapping is implemented as a vector of pairs each consisting of a replica identifier and an
update-counter value.  There is one pair for each replica with a nonzero update-counter value.
The pairs are sorted by replica identifier to facilitate component-by-component comparisons and
the computation of component-by-component maxima.

7.4.3 Implementation of Centralized Versions

The implementation of the CentralizedSyncVersion class is more complex.  Our
scheme for maintaining versions in a central-replica topology is best explained by a series of
transformations from a version-vector-based scheme.  Suppose that we modify the central-replica
sync-store implementation so that each new update received from another replica is marked as
updated by the central replica as soon as it arrives.  We say that the central replica endorses the
arriving update.  (Endorsement is equivalent to the central replica modifying each object for which
it receives a new update by overwriting the object with itself.)

Since an endorsement does not change the contents of a Reconcilable object, it is
recorded in the central replica’s update log as a version update-info object.  Suppose the endorsed
update originated on subordinate replica s.  When the central replica generates all updates with
versions later than or conflicting with the summary version of s, a version update object will be
generated from the version update-info object; for all other subordinate replicas, an
object-contents update will be generated.  Thus, when updates are transmitted to s, the version for
the affected object is advanced to the new version that the central replica generated during the
endorsement.  When updates are transmitted to a subordinate replica other than s, both this new
version and the object contents received from s are transmitted.

Let sA and sB be the replica identifiers of two subordinate replicas, and let  c be the replica
identifier of the central replica.  Let vA be the version vector for a given object at sA, and vc be the
version vector for the same object at the central replica.  Using the notation introduced at the
beginning of Section 7.4, suppose vA[sB] < vc[sB].  This indicates that an update to the given object
from sB has reached the central replica, but the central replica has not yet propagated the update
to sA.  As soon as the update reaches the central replica, it is endorsed, which has the effect of
increasing the value of vc[c].  Since the endorsement has not yet reached sA, it must be the case
that vc[c] > vA[c].  Thus

vA[sB] < vc[sB] only if vc[c] > vA[c]. (1)
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Since vA[sA] and vc[sA] indicate the value of the update counter at sA at the time of the last update
to the given object at sA, and since an update at sA is recorded at sA before it is recorded at any
other replica, it is always the case that

vA[sA] m vc[sA]. (2)

Since an update at any replica r other than sA becomes known at sA only after it becomes known at
the central replica, it is always the case that

vA[r] [ vc[r] for r g sA. (3)

If v is a version vector and i and j are replica identifiers, let proj(v, i, j), the projection of v
onto i and j, be the version vector that maps i to v[i],  j to v[j], and all other replica identifiers to
zero. It follows from (1), (2), and (3) that to determine whether vA is earlier than, later than, equal
to, or in conflict with vc, it suffices to compare proj(vA, sA, c) with proj(vc, sA, c).  Consider the
four possible relationships between vA and vc:

� If vA is earlier than vc, then there is some replica i such that vA[i] < vc[i], and for each replica j
such that i g j, vA[j] [ vc[j].  It follows from (2) that vA[sA] = vc[sA], and that i g sA.  Letting i
play the role of sB in (1), it follows that vA[c] < vc[c].  Since vA[sA] = vc[sA] and vA[c] < vc[c],
proj(vA, sA, c) is earlier than proj(vc, sA, c).

� If vA is later than vc, then there is some replica i such that vA[i] > vc[i], and for each replica j
such that i g j, vA[j] m vc[j].  It follows from (3) that i = sA, so vA[sA] > vc[sA].  Since i = sA,
vA[j] m vc[j] for j g sA, but vA[j] [ vc[j] for j g sA by (3), so vA[j] = vc[j] for j gsA.  In particular,
vA[c] = vc[c].  Since vA[sA] > vc[sA] and vA[c] = vc[c], proj(vA, sA, c) is later than proj(vc, sA,
c).

� If vA = vc, then vA[sA] = vc[sA] and vA[c] = vc[c].  Therefore proj(vA, sA, c) = proj(vc, sA, c).

� If vA conflicts with vc, then there must be a replica i such that vA[i] > vc[i] and a replica j such
that vA[j] < vc[j].  By (3), i can only be sA, so vA[sA] > vc[sA].  If j=c, then vA[j] < vc[j] implies
vc[c] > vA[c].  Otherwise, j is some subordinate replica sB, so it follows from (1) that
vc[c] > vA[c].  Since vA[sA] > vc[sA] and vA[c] < vc[c], proj(vA, sA, c) conflicts with
proj(vc, sA, c).  

Thus it suffices for a subordinate replica to maintain a two-component version vector for each
object, with one component corresponding to itself and the other component corresponding to the
central replica.  The central replica maintains a full version vector for each object, but performs all
version-vector comparisons by comparing each subordinate-replica version vector with the
corresponding projection of its full version vector.

Since the replica identifier for the central replica is fixed, there are three variable pieces of
information in a two-replica projection of a version vector—the central replica’s update-counter
value, the subordinate replica’s update-counter value, and the subordinate replica’s replica
identifier.  However, all version vectors stored on a given subordinate replica specify that
replica’s identifier, so it is wasteful to store the subordinate-replica identifier with each version
vector on that device.  Rather, we adopt three distinct representations for
CentralizedSyncVersion values, illustrated in Figure 20:
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1. a full version vector, associated with each object in the central replica

2. a pair consisting of the central-replica update-counter value and the subordinate-replica
update-counter value, associated with each object in a subordinate replica and with each
update sent from the central replica to a subordinate replica

3. a triple consisting of the central-replica update-counter value, the subordinate-replica
update-counter value, and the subordinate-replica identifier, associated with each update
sent from a subordinate replica to the central replica

<R1:uc1 , ... , Rn:ucn>

central replica

<uccentral , uci>

subordinate
   replica Ri

<uccentral , uci>

<uccentral , uci , Ri>
Form 3:

Form 2:

Form 1 Form 2

Figure 20.  The three forms of CentralizedSyncVersion objects.  Ri is a replica
identifier, 1[i[n, and uci is a corresponding update-counter value.  Form 1, a full
version vector, resides in every sync entry of the central replica.  Updates sent from the
central replica to the subordinate replica are of form 2, which consists only of  
update-counter values for those two replicas, and this is the form in which versions are
stored in subordinate-replica sync entries.  Updates sent from a subordinate replica to
the central replica are of form 3, which consists of update-counter values for those two
replicas and the replica identifier of the subordinate replica.

CentralizedSyncVersion is an abstract class, with concrete subclasses for each of these forms,
as shown in Figure 21.  When an update is generated on a subordinate replica for transmission to
the central replica, a method of the subordinate replica’s version factory is invoked to create a
CentralizedSyncVersion object of form 3 equivalent to a given CentralizedSyncVersion
object of form 2.  The replica identifier for the subordinate replica is passed as a parameter to the
constructor for that replica’s sync-version factory, and remembered by the sync-version factory
for use in performing this transformation.  When the CentralizedSyncVersion object of form 3
arrives at the central replica, a method of the central replica’s version factory constructs an
equivalent full version vector, in which components for replicas other than the central replica and
the indicated subordinate replica are set to zero.  The subordinate replica’s summary version is
also stored in form 2 on the subordinate replica, and translated to form 3 for transmission to the
central replica.  When the central replica generates updates for all update-info objects with
versions later than or conflicting with some subordinate replica’s summary version, a method of
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the central replica’s version factory examines that summary version to identify the subordinate
replica for which the update is destined, and computes the appropriate projection of the
update-info object’s full version vector, to generate an update with a version of form 2.

SyncVersionFactory

VersionVectorFactory Form1VersionFactory Form3VersionFactoryForm2VersionFactory

factoryReplicaId

SyncVersion

SyncVersionImpl

VersionVector

CentralizedSyncVersion

Form2CentralizedSyncVersion

Form3CentralizedSyncVersion

Form1CentralizedSyncVersion

centralUpdateCounter

subordinateUpdateCounter

subordinateReplicaID

vector

Figure 21.  Interfaces and classes for versions and version factories.

For a pair of replicas that synchronize only with each other, all versions can be represented
in form 2, since the identity of both replicas remains fixed.  There is no need for endorsement of
updates.
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7.4.4 Obstacles to More Efficient Version Management

Form 2 and form 3 of centralized sync versions are, in essence, optimized representations
of version vectors.  In abandoning the version-vector-based specification of the SyncVersion
interface for a more general specification, the MNCRS data-synchronization working group had
envisioned more varied representations of versions.  In the central-replica topology, it appears at
first glance that a single integer, corresponding to the central replica’s update counter, should
suffice to record the version of each object on the central replica, while an integer corresponding
to a central-replica version plus a one-bit flag indicating whether an object had been updated on
the subordinate replica should suffice to record the version of each object in a subordinate replica.
In the paired-replica topology, it appears at first glance that a one-bit flag should suffice to record
the version of each object.  (There would be two possible version values—modified and
unmodified.)

In fact, these highly efficient version representations work only if synchronization
protocols are constrained to use synchronous request/response dialogs; but as Section 6.5
explained, the MNCRS data-synchronization framework is designed to accommodate
asynchronous protocols as well.  A one-bit flag indicating that the state of an object has been
modified must be cleared at the same time that an update is generated for that object, as part of an
atomic operation, so that any subsequent modifications will result in new updates the next time
that generateUpdates is called.  However, if two replicas concurrently execute conflicting
updates to the same object, then concurrently initiate synchronization phases sending updates to
each other, the conflict will go unnoticed, as shown in Figure 22.

modify object and set flag

generate update and clear flag

send update

receive and apply update

modify object and set flag

generate update and clear flag

send update

receive and apply update

Figure 22.  Incompatibility of modification flags and asynchronous
exchange of updates.  Two paired replicas concurrently update the
same object, then concurrently transmit updates.  Although the updates
are conflicting, neither replica notices the conflict, because each resets
its own modification flag for the object before the other replica’s
updates are received and applied.

By requiring a sync-store implementation to accommodate asynchronous exchange of
updates, the MNCRS data-synchronization framework precludes the use of space-efficient version
representations.  In light of this unexpected consequence, the importance of asynchronous
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exchange of updates should be carefully evaluated.  The manipulation of these space-efficient
versions is quite different from the manipulation of version vectors, so it would be difficult to
formulate a single update-application algorithm and a single update-generation algorithm that
works with both full version vectors and space-efficient versions, with all differences in behavior
encapsulated in the implementations of the SyncVersion methods.  (Indeed, we did not quite
achieve that goal in our implementation even using full version vectors at the central replica:  
Because the endorsement of arriving updates occurs only at a central replica, the
update-application logic includes an explicit test of the sync store’s network role to determine
whether an incoming update should be endorsed.)

7.5 Deletion Tombstones

As Section 4.2 explained, when an object is deleted from a sync store, a deletion sync
entry remains behind, to resolve create/delete ambiguities.  In our implementation, a
corresponding deletion update-info remains in the update-log vector and in the persistent image of
the update log.  The data structures left in place after a deletion are called tombstones.

Tombstones cannot be allowed to accumulate, especially on memory-constrained mobile
devices.  Once news of an object’s deletion has reached every replica that was aware of the
object’s existence, the tombstones can be safely removed from all these replicas.  The
SyncStoreUpdater interface of the MNCRS data-synchronization framework includes a method,
trimHistory, that is called to notify a sync store that all deletion tombstones with versions
earlier than a specified version may be removed.  The response to this notification is up to the
sync-store implementation; our implementation immediately removes all applicable tombstones.

It is the responsibility of a synchronizer to communicate with other replicas, to determine
that all deletions with versions earlier than a particular version have reached all replicas that had
learned of the corresponding insertions, and to call the trimHistory method of the local sync
store.  However, the MNCRS data-synchronization framework does not specify the distributed
algorithms or protocols that synchronizers should use to determine that trimHistory should be
called.

In a central-replica or paired-replica topology, it is easy to determine when tombstones
can be removed.  A replica can remove a tombstone for a given deletion after observing that each
replica with which it synchronizes has requested updates with versions later than the version of
the deletion.  (For a central replica, the requests of all subordinate replicas must be tracked; for a
subordinate replica, only the requests of the central replica need be tracked; for a paired replica,
only the requests of the other replica in the pair need be tracked.)  Were it not for the need to
accommodate asynchronous exchange of updates, matters would be even simpler:  A subordinate
replica or paired replica would be able to drop deletion sync entries as soon as updates were
generated from them; a central replica could track the version of the most recent update it had
sent to each subordinate replica, and remove a tombstone as soon as all these versions were later
than the version of the deletion.

In a general peer topology, matters are not so simple.  There is a two-phase distributed
algorithm, analogous to those described by Sarin and Lynch [Sar87] and by Ratner, Reiher, and
Popek [Rat97], in which one phase determines the latest version earlier than or equal to the
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summary versions of all replicas, and another phase informs all replicas that it is safe to invoke
trimHistory with this version.  However, such algorithms are not well-suited to a network in
which many nodes are weakly-connected mobile devices.  High communication costs may make
the message volume required by the algorithm untenable.  More seriously, many nodes in the
network may be unreachable for long periods of time, blocking the convergence of each phase.  In
the worst case, the user of a mobile device goes on a long vacation (and leaves the device behind,
for the sake of family harmony), preventing all other nodes in the network from removing their
deletion tombstones.

To make matters worse, the membership and topology of the network are dynamic,
defined not by some recorded state, but by the act of synchronization.  In particular, it is possible
for a sync store to be synchronized with replicas other than those in its registry.  There is no
mechanism by which a sync store announces that it has joined the network, or that it is leaving.
(Bayou supports fluid replication [Dem94], in which individual users can create new replicas
without any central registration.  However, the status of an MNCRS replica is closer to that of a
Lotus Notes client [Kaw92], which is aware only of the replicas that have been registered directly
with it, and with which it may synchronize directly.  In contrast, the Ficus update-distribution
algorithm described in [Rat96] appears to require that all peers be aware of each others’
existence; indeed, [Guy90] states that each Ficus host is assigned a unique identifier “prior to
system installation”.)  Suppose a replica that has not yet received a particular deletion, but has
executed an update that conflicts with that deletion.  Suppose further that the replica performing
the update is presumed to have left the network because of a prolonged period in which it did not
synchronize, allowing the deletion to be trimmed from other replicas; if the long-lost replica then
initiates a synchronization, the deleted object will be incorrectly restored to the other replicas as a
new insertion, rather than detected as a conflict.

One solution to the problem of inactive nodes is a time-out mechanism:  If a particular
replica is not heard from after a specified number of hours or days, it is considered to be out of
date.  Any attempt at synchronization with such a  replica is rejected; the only recourse for the
holder of an out-of-date replica is to destroy it, create a new empty replica, and populate it by
synchronizing with some up-to-date replica.  However, not being heard from, and being out of
date, are in the eye of the beholder.  The user of a device that has not recently synchronized may
be on a working vacation on a remote island, disregarding family harmony and busily creating
updates that are intended to be preserved, and propagated to the network, at the end of the
vacation.  Alternatively, the network may be partitioned into two groups (perhaps teams assigned
to work on two separate projects), with frequent synchronization within each group, but with no
synchronization between members of different groups for a long period.

Resorting to an expensive reinitialization of a sync store to correct for overly aggressive
trimming is reminiscent of the approach taken by Bayou [Pet97], in which each store may drop
the oldest committed entries in its write log.  If it is determined during an anti-entropy session that
a sending store has dropped entries that have not yet been seen by the receiving store, the state of
the sending store must be copied in its entirety to the receiving store, a process far more
expensive than the usual incremental propagation of recent, unseen updates.  A Bayou store may
choose its own criteria for trimming its log, for example conservatively estimating how long it will
take a write to propagate through the network, or freeing space as needed.
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The MNCRS data-synchronization framework provides mechanisms by which a
synchronizer can implement a speculative log-trimming strategy similar to Bayou’s.  The
SyncStoreUpdater interface has a method returning the latest version for which trimHistory
has been called.  A synchronizer can invoke trimHistory according to its own criteria, but
compare the versions of all incoming updates with the latest trimmed version.  If an
object-contents update with a version earlier than the earliest trimmed version is received, and the
sync store does not contain an object with the same sync id, there are two possibilities:

�The incoming update was superseded by a later deletion, which was then trimmed from the
local sync store, so the update should be ignored.

�The incoming update reconciles a conflict between an update and a deletion that was
trimmed from the local sync store, so the update should be applied to restore the object.

Since there is no way to distinguish these two possibilities, corrective action must be taken.  For
example, the receiving synchronization phase can be aborted, a sending phase can be initiated to
ensure that the remote replica is at least as up to date as the local replica, and the local replica can
be destroyed and recreated from scratch by another receiving phase.  However, this recovery
scheme fails if both replicas have been too aggressive in trimming their histories, and the remote
replica aborts the sending phase for the same reason that the local replica aborted the initial
receiving phase.

7.6 The Persistent Store

As Section 7.3.1 explained, the persistent representation of a sync-store data collection
includes a mapping from persistent-store keys to the persistently stored contents of individual
Reconcilable objects.  In our initial implementation, each Reconcilable object’s byte-stream
representation was stored in a separate file, and the file’s name was used as the persistent-storage
key.  File names were generated automatically in lexical order (“A” through “Z”, “AA” through
“AZ”, “BA” through “BZ”, ...), and the files resided in the subdirectory created by
SyncStoreFactoryImpl (as described in Section 7.2) to hold the persistent representation of the
data collection.  An additional file in that subdirectory stored the next file name to be generated.
We thus delegated to the underlying file system the details of allocating space in the
persistent-storage medium.

This approach accelerated construction of our initial prototype, but we realized it would
be inefficient because each file would consume a whole number of file-system allocation
units—1,024 bytes each in our run-time environment—even to store a byte-stream representation
only a few bytes long.  Therefore, we defined two interfaces, PersistentStoreKey and
PersistentStoreManager, to isolate our implementation of persistent-storage keys and the
storage and retrieval of persistent object representations from the rest of our sync-store
implementation.  The PersistentStoreKey interface declares only overriding methods for the
hashCode and equals methods of class Object.  The principal methods of the
PersistentStoreManager interface write the persistent representation of a given
Transmittable object using a given PersistentStoreKey value and return the Transmittable
object whose persistent representation was stored with a given PersistentStoreKey value.
There are also methods to generate a new PersistentStoreKey value and to delete the
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persistent-store entry associated with a given PersistentStoreKey value.  Finally, there are
methods that mediate between the persistent representation of the update log and its in-memory
representation as a Vector object whose elements are update-info objects:  One method, called
when a new SyncStoreState is constructed, returns a new vector corresponding to the persistent
log.  Another, called when a sync-store is flushed, appends to the persistent log the updates in a
specified suffix of the vector.  Another, called when a sync-store state is deactivated, rewrites the
entire persistent log from the contents of the vector, omitting superseded updates.

(Section 4.1 described the evolution of the MNCRS data-synchronization framework
interfaces for classes whose objects are transmitted during synchronization or stored persistently.
In the first stage, all such classes were required to implement the Serializable interface.  In the
second stage, all classes whose objects are transmitted during synchronization were required to
implement the Transmittable interface and all classes whose objects are stored persistently were
required to implement the Persistable interface.  In the third stage, the Persistable interface
was eliminated and all classes formerly implementing that interface were required to implement
the Transmittable interface instead.  The types of the objects written and read by the first two
PersistentStoreManager methods underwent a parallel evolution, from Serializable to
Persistable to Transmittable.)

We expect implementations of the PersistentStoreManager and PersistentStoreKey
interfaces to be paired.  For example, our prototype implementation included a class
FilePerObjectPersistentStoreManager implementing PersistentStoreManager and a
corresponding class FileNamePersistentStoreKey implementing PersistentStoreKey.  We
later wrote two other pairs of classes, each providing a more space-efficient implementation of the
persistent store.  The SyncStoreState constructor invokes a constructor for some class
implementing PersistentStoreManager, and the persistent-storage implementation used
depends only on which class’s constructor is invoked; it would be a simple matter to make this
choice dependent on a property specified when a given data collection is opened for the first time.

Our second persistent-storage implementation uses the boundary-tag/first-fit
storage-allocation mechanism described in Section 2.5 of [Knu73] to allocate and deallocate
blocks of bytes within a random-access file.  Each block holds one object, and the file is expanded
as necessary.  The persistent-storage key is an integer index into a table of storage-block offsets,
as shown in Figure 23.  When a byte stream of a given length is to be written using a given
persistent-storage key, the persistent-store manager first checks whether an offset is currently
stored in the offset-table entry associated with that key.  If not, a block of the required size is
allocated, and the offset returned by the allocator is placed in the offset-table entry.  If the
offset-table entry already has an offset stored in it and the byte stream fits snugly in that block, it
is stored there. (A byte stream fits snugly in a block if the size of the block is at least 1.00, but no
more than 1.25, times the size of the byte stream.)  Otherwise, the block is deallocated, a new
block of the required size is allocated, and the offset returned by the allocator for the new block is
placed in the offset-table entry. When a block is deallocated, it is merged with any adjacent
unallocated blocks.
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Figure 23.  Persistent-storage management using boundary tags.  A
persistent-storage key is an index into an offset table.  When the size
of a persistent representation changes, the storage block may be
deallocated and replaced with a newly allocated block elsewhere in
the random-access file.  When this happens, the corresponding
offset-table entry changes, but the persistent-storage key remains the
same.

In our third persistent-storage implementation, byte streams to be stored persistently are
appended to a random-access file.  The persistent-storage key is an integer index into a mapping
table that records the length and offset of the most recent byte stream written for a given key, and
also contains a flag that indicates whether the persistent-storage entry with that key has been
deleted.  The random-access file can be compacted in place by visiting table entries in offset order,
sliding each undeleted byte stream up to the lowest unused position and adjusting the offset
accordingly.

In a few contexts, for example, when reading the persistent copy of the registry of replicas
to construct a SyncStoreState object, the framework reads the byte-stream representation of an
object of a known class, by constructing an object of that class and invoking its readRemote
method to set the object state.  More often, however, the framework reads an object of some
class that is not known a priori.  For example, a receiving synchronizer reads the byte-stream
representation of an object of type SyncUpdate, which may be of class
ObjectContentsSyncUpdate, DeletionSyncUpdate, or VersionSyncUpdate; a persistent-store
manager reads a byte-stream representation of a Reconcilable object, which belongs to some
application class unknown to the framework.  For objects whose class is not known a priori, a tag
indicating the class of an object is always written to a byte stream before the representation of the
object itself.  For objects belonging to classes defined in the framework, for example objects
belonging to subclasses of the abstract classes SyncUpdateImpl or SyncVersionImpl, the tag
consists of a single byte; for objects belonging to application Reconcilable or SyncId classes,
the tag consists of the UTF representation of the fully qualified class name. 
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Reading a tagged object representation entails reading the tag, constructing an object of
the class indicated by the tag, and invoking that object’s readRemote method.  For framework
classes, the one-byte tag serves as an index into a fixed array of objects of class Class, and the
newInstance method of the indexed object is invoked.  For application classes, the class name is
passed as a parameter to the static method Class.forName to obtain an object of class Class
whose newInstance method is invoked.  For example, a simple socket synchronizer receiving a
SyncUpdate object would first read a one-byte tag.  If this tag indicates that the representation of
an ObjectContentsSyncUpdate object follows in the byte stream, it would construct such an
object and invoke its readRemote method.  An ObjectContentsSyncUpdate object contains a
SyncId reference, a SyncVersion reference, and a Reconcilable reference. Its readRemote
method would first read the name of the application SyncId class, construct an object of the
named class, and invoke its application-defined readRemote method.  Next, it would read the
one-byte tag for a SyncVersion object; if this were the tag for class VersionVector, it would
construct a VersionVector object and invoke its implementation-defined readRemote method.
Finally, it would read the name of the application Reconcilable class, construct an object of the
named class, and invoke its application-defined readRemote method.

There are a number of exceptions, besides IOException, that can occur during the
reading of a tagged object representation for reasons beyond the control of the framework.  The
Class.forName method will throw ClassNotFoundException if the class named in the input
stream is not present anywhere in the local class path.  If the named class is found, but the
application programmer has failed to make it, or its zero-argument constructor, public, the
newInstance method will throw IllegalAccessException.  If the name found in the input
stream refers to an interface rather than to a class, or if the application programmer has declared
the class abstract, or if the construction of an object of the specified type fails for some other
reason, the newInstance method will throw InstantiationException.  If the definition of the
class has changed, the call on newInstance may throw NoSuchMethodError.

If nothing special is done, these exceptions will manifest themselves in a stack trace,
through several levels of calls on the readRemote methods for various implementation and
application classes, with no clear indication of the underlying problem.  Since the exceptions
typically arise from application-programming errors, it is important to report these errors in a way
that is readily understood by the application programmer, without forcing the application
programmer to understand the framework implementation.  Each of the framework’s calls on an
application-defined readRemote method is enclosed in a try-catch block that catches these
exceptions and throws IOException instead, providing a message that names the class that could
not be found or instantiated, and the original exception that had resulted from the attempt.  The
persistent-store manager, in turn, catches this exception and throws a different exception,
PersistentStoreException, with a message conveying the same information.
(PersistentStoreException, defined in our implementation of the framework, extends
SyncException, defined in the framework and potentially thrown by any SyncStore operation
that may need to access the persistent store.)  Synchronizers catch the IOException, cause the
current synchronization phase (and possibly any later-scheduled phases) to fail, and generate a
failure event with a message conveying the same information as the IOException message.
Application programmers reading messages from unhandled PersistentStoreException
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occurrences, or examining the final status of failed synchronizations, will be directly informed
about errors in the classes they wrote.

7.7 Replica Identifiers

Section 7.4 explained that version vectors map globally unique replica identifiers to values
of local update counters.  In our implementation, these replica identifiers are random 64-bit
integers, generated when a data collection is first created.  We are aware of other implementations
that derive 64-bit replica identifiers from the data collection’s URL.  Both implementations are
compatible with the MNCRS data-synchronization framework, which makes no mention of
replica identifiers.  However, there are subtle semantic differences.

Our approach allows a given replica to retain its identity when the subdirectory containing
persistent representations is moved elsewhere on the same machine or to a new machine.  It also
allows multiple URLs—perhaps using different host names for the same machine, or different path
names linked to the same subdirectory—to name the same data collection.  Unfortunately, there is
no way to prevent a  replica from being cloned, with both copies retaining the same replica
identifier and each copy being updated and synchronized independently.  Since updates on both
copies would update the same version-vector components, this misuse of our implementation
would corrupt the sync store.

Similar problems arise if the same random number is generated for the identifier of more
than one replica of the same data collection.  Since there are over 1.8%1019 possible 64-bit
identifiers, the probability of a clash seems minuscule compared to the probability of other events
that can cause system failure.  However, as illustrated by the well-known Birthday Paradox, the
probability of a clash grows surprisingly quickly with the number of random selections.  For a data
store with 100 million replicas, there is a 0.03% probability of a clash, and for one billion replicas,
there is a 2.67% probability of a clash.  (See Figure 24.)  Given the catastrophic consequences of
a clash, these are significant probabilities.  However, for one million replicas, the probability of a
clash is only 0.000003%, for 100 thousand replicas, it is only 0.00000003%, and for ten thousand
replicas, it is only one in 4 trillion.  The probability of a clash can be reduced by increasing the
length of a replica identifier, but for the scale of replication we envision, the resulting increase in
the size of version-vector representations does not seem worthwhile.
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Figure 24.  The probability p of at least one clash
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8 Roads Not Taken
In this section we discuss two issues that stymied the MNCRS data-synchronization

working group—controlling the persistent representation of Reconcilable objects and
synchronizing transformations to object states rather than synchronizing object states themselves.
We explain the issues that created difficulty for the working group and propose our own
solutions.

8.1 Transmittable and Persistent Representations of Application Objects

Section 4.1 described the Persistable interface that was present in an earlier version of
the MNCRS data-synchronization framework, but removed because it constrained sync-store
implementations to deliver representations of objects to the persistent-storage implementation a
byte at a time through an output stream.  The working group designing the framework was unable
to design a standard counterpart to out implementation’s PersistentStoreManager interface
accommodating, for example, both persistent stores in which a byte-stream representation of an
object is stored in a file and persistent stores in which an object is written to a relational-database
record using the Java Reflection API to determine the structure of the object.  Had such an
interface been included in the framework, it would have made sync-store implementations easily
portable to platforms with a wide variety of persistent stores.  More important, applications
would have been portable from sync stores using byte-stream-based persistent stores to sync
stores using relational or object databases as persistent stores.  In the absence of the
Persistable interface, an application using a sync store with a database-based persistent store
must provide sync-store-implementation-specific counterparts to the Persistable methods
writePersistent and readPersistent, for the sync-store implementation to invoke when
writing to or reading from the persistent store.

The working group’s dilemma was how to satisfy two apparently contradictory needs
simultaneously:

�There is an application-determined scheme for mapping the contents of a Reconcilable or
SyncId object to data that is to be stored persistently, and for using data retrieved from
persistent storage to reconstruct the contents of such an object.  It should be possible for an
application to specify this scheme independently of the persistent-storage implementation.

�There is a scheme determined by the implementation of a persistent store for storing and
retrieving representations of objects.  It should be possible for the persistent-store
implementation to implement such a scheme without any knowledge of the objects being
written by particular applications, and without using the heavy Java Reflection API.

One way to resolve this dilemma is with a standard intermediate representation.  Application
methods analogous to writePersistent and readPersistent would be responsible for
mapping between the contents of Reconcilable or SyncId objects and this intermediate
representation.  Persistent-store implementations would be responsible for storing and retrieving
instances of this intermediate representation.  Then, given m application classes and n
persistent-store implementations, it would not be necessary to write m$n distinct adapters, each
adapting one application class to one persistent-store implementation, but only m+n adapters, m
of them each adapting one application class to the intermediate representation and n of them each
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adapting the intermediate representation to one persistent-store implementation.  More important
than the number of adapters to be written is the separation of concerns:  The author of a new
application class need write only one adapter, and need not be concerned with individual
persistent-store implementations; the author of a new persistent-store implementation need write
only one adapter, and need not be concerned with individual application classes.

After the MNCRS data-synchronization working group completed its work, we
encountered a similar dilemma in adapting the data-synchronization framework to the Mobile
Data Synchronization Service (MDSS) project [But00].  In this case, the problem was adapting
the application’s transmittable object representation to the requirements of the synchronizer.  The
MDSS synchronizer transmits updates as part of a stylized XML document.  This document
contains both elements with synchronization-control information and elements describing the
field-by-field contents of Reconcilable and SyncId objects.  It would have been possible to
implement a special-purpose parser for the XML document, which constructs a new application
object upon encountering the element specifying the object’s class, then calls the object’s
readRemote method to read and parse the XML text contained in that element describing the
object’s contents, and fills in the object accordingly.  However, it was our goal to use a
high-performance off-the-shelf XML parser and, more important, not to impose any burden on
the readRemote method to parse XML text.

MDSS departed from the MNCRS framework by requiring each Reconcilable class in
an MDSS application to provide writeRemoteDOM and readRemoteDOM methods, analogous to
writeRemote and readRemote, but using tree representations of XML text (the Document
Object Model [App98], or DOM) rather than byte streams to describe object contents.  During a
receiving phase, the MDSS synchronizer invokes the off-the-shelf parser once, to build a DOM
representation of the arriving XML document.  The synchronizer then traverses the DOM tree to
find the classes of the Reconcilable objects to be constructed, constructs those objects, and
invokes their readRemoteDOM methods, passing the appropriate subtrees of the DOM tree, to fill
in those objects.

Had the MNCRS framework included an intermediate representation for transmittable
application data, the MDSS project would have been able to provide an XML-based synchronizer
within the framework.  Instead of writeRemoteDOM and readRemoteDOM methods, application
classes would provide standard methods to translate object contents to and from the intermediate
representation; these would be invoked by MDSS synchronizer methods to translate the
intermediate representation to and from DOM subtrees.

A suitable representation is an ordered sequence of name-value pairs, where each name is
a string and each value is of one of the following forms:

� a value of one of the elementary Java types (boolean, byte, char, short, int, long,
float, and double)

� an array of values in one of the elementary Java types

� an array of similar name-value pairs

Specifically, under our proposal, the contents of a SyncId or Reconcilable object is represented
by an array of objects belonging to an abstract class DataAttribute, declared as follows:
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public abstract class DataAttribute {

   public static final int BOOLEAN_TYPE = 0;
   public static final int CHAR_TYPE = 1;
      ...
   public static final int FLOAT_ARRAY_TYPE = 8;
   public static final int DOUBLE_ARRAY_TYPE = 9;
   public static final int DATA_ATTRIBUTE_ARRAY_TYPE = 16;

   public String getName();
   public int getType();  
   public String getValue();
   public void read(DataInputStream dis);
   public void write(DataOutputStream dos); 

}

The getName method returns the pair’s name component, the getType method returns one of the
17 integer codes indicating the type of the pair’s value component, the getValue method returns
a String representation of the pair’s value component, the read method sets the pair’s value
component by reading a byte-stream representation of the value from a given data input stream,
and the write method writes a byte-stream representation of the pair’s value component to a
given data output stream.  There are 17 concrete classes extending DataAttribute, one for each
of the possible forms of a value.  Each declares an additional method returning the value as the
result of the appropriate Java elementary or array type.  For example, the class corresponding to
values of type int is declared as follows:

public class IntDataAttribute extends DataAttribute {
   private String name;
   private int value;
   public IntDataAttribute(String attrName, int attrValue) 
      { name = attrName; value = attrValue; }
   public String getName() { return name; }
   public int getType() { return INT_TYPE; }
   public String getValue() { return Integer.toString(value); }
   public void read(DataInputStream dis) { value = dis.readInt(); }
   public void write(DataOutputStream dos) { dos.writeInt(value); }
   public int getIntValue() { return value; }
}

(IntDataAttribute extends DataAttribute with the getIntValue method.)

The Transmittable interface declares the following methods:

DataAttribute[] getTransmittableState();
void setTransmittableState(DataAttribute[] attributes);

If the getTransmittableState method of a newly constructed, default-initialized object is
called, the elements of the result array should have default-initialized values, with types that
reflect the logical structure of the object.  The object’s setTransmittableState method should
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accept an array of DataAttribute objects with the same sequence of types.  There is a separate
Persistable interface with analogous getPersistentState and setPersistentState
methods.

The Reconcilable and SyncId interfaces extend both Transmittable and
Persistable.  (For convenience, the framework could provide abstract DefaultReconcilable
and DefaultSyncId classes implementing the Persistable methods in terms of the
Transmittable methods.)  An application writer implements the getTransmittableState and
setTransmittableState methods in much the same way as the writeRemote and readRemote
methods, except that getTransmittableState appends a DataAttribute object to the end of
the result sequence instead of writing the binary representation of an elementary-type value to a
data output stream, and setTransmittableState examines the next element in the
DataAttribute[] parameter instead of reading the binary representation of an elementary-type
value from a data input stream.

A sequence of DataAttribute objects is a convenient intermediate representation for a
wide variety of synchronizers and persistent-store managers.  In particular:

�A synchronizer that uses byte-stream representations of objects (in the style of the
Transmittable interface of framework version 1.1) could work as follows:  A byte-stream
representation of an object is written by writing the object’s class name, calling the object’s
getTransmittableState method to obtain an array of DataAttribute objects, and calling
the write method of each of those objects in turn.  This representation is read by first
reading the string containing the class name, using the forName and newInstance methods
of java.lang.Class to construct an object of that class, calling the
getTransmittableState method to obtain an array of default-initialized DataAttribute
objects, calling the read method of each DataAttribute object in turn to set their values,
and calling the object’s setTransmittableState method to fill in the object itself.  For
both reading and writing, the names in DataAttribute objects are ignored.

�A persistent-store manager that stores byte-stream representations of objects in files could
work in the same way, but using the getPersistentState and setPersistentState
methods instead.

�A synchronizer that uses XML documents could work as follows:  A DOM subtree
representing an object’s contents is constructed by calling the object’s
getTransmittableState method to obtain an array of DataAttribute objects, and calling
the getName and getValue methods of each of those objects in turn to obtain strings that
can be passed to the DOM methods constructing the desired subtree.  An object is filled in
with contents specified by a DOM subtree by traversing the subtree nodes to obtain a
sequence of elementary-type values and build an array of corresponding DataAttribute
objects, then passing the array to the object’s setTransmittableState method.

�A persistent-store manager that uses a relational database could work as follows:  The
persistent-store manager maintains a one-to-one correspondence between application class
names and database tables; the class implementing PersistentStoreKey identifies both a
table and a database key for a row of that table.  A record reflecting an object’s contents is
written by using the name of the object’s class to identify the corresponding table, calling the
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object’s getPersistentState method to obtain an array of DataAttribute objects, and
calling the getName and getValue methods of each of those objects in turn to obtain strings
that can be used to construct an SQL command (either through direct string manipulation or
through JDBC calls).  An application object is constructed from a database record by using
the table name to determine the class name, using the forName and newInstance methods
of java.lang.Class to construct an object of that class, calling the getPersistentState
method to obtain an array of default-initialized DataAttribute objects, calling the read
method of each DataAttribute object in turn to set its value, and calling the object’s
setPersistentState method to fill in the object itself.  Each call on read obtains its input
from a ByteArrayOutputStream that is constructed from the contents of the corresponding
field of the database record.

The array of default-initialized DataAttribute objects returned by a call on the
getTransmittableState (or getPersistentState) method of a newly constructed object acts,
in a sense, as a program specifying the order in which values of various types are to be obtained;
the application class determines the form of this “program” and the synchronizer (or
persistent-store manager) “executes” it by calling the read method of each array element in turn.
However, the “programming language” of DataAttribute sequences is clearly less expressive
than Java itself.  For example, the conditional reading in the following readRemote method is
unattainable:

class TimeOfDay implements Reconcilable {

   private byte hours, minutes, seconds;
   private static final int HH=0, HHMM=1, HHMMSS=2;

   ...
   public void readRemote(InputStream is) {
      DataInputStream dis = new DataInputStream(is);
      byte format = is.readByte();
      switch(format) {
         case HH:
            hours = is.readByte();
            minutes = 0;
            seconds = 0;
            break;
         case HHMM:
            hours = is.readByte();
            minutes = is.readByte();
            seconds = 0;
            break;
         case HHMMSS:
            hours = is.readByte();
            minutes = is.readByte();
            seconds = is.readByte();
            break;
      }
   }

}
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Such constructs are rare, and probably dispensable.  However, variable-length homogeneous
sequences are common and often unavoidable.  DataAttribute implementation classes for arrays
of elementary-type values address this need.  An object of  class FloatArrayDataAttribute, for
example, acts as an “instruction” to obtain a variable-length sequence of float values.  The
synchronizer or persistent-store manager executing this instruction uses its own conventions for
generating and interpreting representations of such sequences, for example by preceding the
elements of the sequence with an integer giving its length.  (Classes such as
FloatArrayDataAttribute are also useful for sequences whose length is fixed, because a
FloatArrayDataAttribute object containing a reference to an array of 100 float values, for
example, requires much less space than an array of 100 references to FloatDataAttribute
objects each containing a single float value.)  A DataAttribute object for an array of
DataAttribute objects allows interleaved sequences (such as n repetitions of an int, a float,
and a char) or variable-length sequences of variable-length sequences.

DataAttribute objects for arrays of DataAttribute objects also allow an application to
generate an intermediate representation that preserves hierarchical structure, but this is unlikely to
be useful, because the application cannot assume that the synchronizer or persistent-store
manager is capable of exploiting that hierarchical structure.  Rather, the array of DataAttribute
objects returned by getTransmittableState or getPersistentState should be viewed as the
representation of an object’s state as a flattened sequence of named elementary-type values, just
as serialization or the writeRemote method generates a representation as a flattened sequence of
byte values.  By constructing the sequence at higher level of abstraction, we facilitate a clear
separation of concerns:  Application classes are responsible for the representation of an object’s
state as a flattened sequence of named, typed values (without prejudice as to whether the order of
the elements or their names is more significant) and synchronizers and persistent-store managers
are responsible for the sending and receiving or storing and retrieving of some representation of
these sequences (without regard to the objects that the sequences represent).  Some synchronizers
and persistent-store managers will pay attention only to the order of DataAttribute objects, and
ignore the names associated with them, while others will use the names but attach no significance
to the order.

8.2 Differential Updates

Version 1.1 of the MNCRS data-synchronization framework synchronizes at the
granularity of an entire object.  The markAsUpdated method applies to objects rather than fields,
and does not indicate the manner in which a field has changed.  If an object is marked as updated,
a copy of the entire updated object is transmitted during the next synchronization.  If we were to
ship a description of the way in which the object was updated, rather than the entire updated
object, we would generally have less data to ship over the potentially slow and expensive
connection.  In addition, there are applications in which appropriate behavior depends on the
transmission of transformations rather than the states resulting from those transformations.  In
particular, when an application increments or decrements a shared count, such as an inventory or
account balance, the appropriate reconciliation of a conflict cannot be inferred from the values of
the counts after conflicting increments or decrements, but rather from the amounts of the
increments or decrements themselves.  Early drafts of the framework included provisions for
synchronizing based on transformations to objects, but these provisions were dropped when
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complications came to light.  In this section, we describe the initial proposal, explain the problems
that arose, and offer a revised proposal that addresses these problems.

8.2.1 The Initial Proposal

In the initial proposal, an object in a sync store can belong to a class implementing either
the Reconcilable interface we have already seen, or another interface named Diffable.
Synchronization of Reconcilable objects is based on the exchange of whole objects and
synchronization of Diffable objects is based on the exchange of transformations, or differences.
The Reconcilable and Diffable interfaces extend a common supertype named
Synchronizable, as shown in Figure 25.  Many of the methods in the SyncStore interface are
defined in terms of this supertype.  For example, put takes a Synchronizable parameter and get
returns a Synchronizable result.

Synchronizable

Reconcilable
setTo

reconcile

reconcileWithDelete

Diffable
setTo

reconcile
reconcileWithDelete

purgeDiffHistory

Figure 25.  The initial proposal for a hierarchy including the
Diffable interface.  Reconcilable and Diffable are
interfaces extending the Synchronizable interface.  Objects
in a sync store belong to application-defined classes
implementing one of Reconcilable and Diffable.

Like Reconcilable, Diffable is meant to be implemented by an application-provided
class, whose instances may be stored in a sync store.  There is also an interface named Diff,
containing no declarations, but meant to be implemented by an application-provided class whose
objects represent transformations to objects of a corresponding Diffable class.  One of the
methods declared in the Diffable interface, and implemented by the application writer in a class
implementing Diffable, is a method named applyDiff, which takes a parameter of type Diff
and applies the transformation specified by the Diff object to this Diffable object.  For example,
an application might contain a class Calendar implementing Diffable, and classes
AppointmentInsertion, AppointmentEdit, and AppointmentRemoval implementing Diff.
The applyDiff method of Calendar would expect its Diff parameter to be either an
AppointmentInsertion, AppointmentEdit, or AppointmentRemoval object, and it would
apply the corresponding transformation to its Calendar object.

The sync store maintains both the current state of a Diffable object and a history of
transformations that were applied to the object to place it in that state.  The history includes a
Diff object and a version for each transformation.  The trimHistory method described in
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Section 7.5, which removes deletion sync entries that have been propagated to all replicas, also
removes transformations that have been propagated to all replicas.

The SyncStore interface has two overloaded markAsUpdated methods.  The first is the
method that was described in Section 5.1 and has a single parameter, of type SyncId.  It is used
to mark a Reconcilable object as updated, and throws an exception if the Synchronizable
object identified by the specified sync ID does not implement the Reconcilable interface.  The
second has a parameter of type SyncId and a parameter of type Diff.  It is used to mark a
Diffable object as updated by a particular transformation (specified by the Diff parameter),
which is appended to the object’s history; the method throws an exception if the
Synchronizable object identified by the sync ID does not implement the Diffable interface.
(An application may modify a Diffable object in the sync store directly, construct a Diff object
describing the modification, and call the second markAsUpdated method to inform the sync store
of the modification; or it may first construct a Diff object describing the change to be made to a
particular Diffable object, pass the Diff object as a parameter to the Diffable object’s
applyDiff method, and then pass the same Diff object to markAsUpdated.)

Three different kinds of SyncUpdate objects may be transmitted for a Diffable object
during synchronization:

�An update corresponding to the insertion of the object into a sync store by a call on put.
Such an update contains the state of the entire object.  A sync store applies a remote update
of this kind by inserting a local copy of the Diffable object. 

�An update corresponding to a transformation of the Diffable object.  Such an update
contains a Diff object describing that transformation.  To apply a remote update of this kind
to a local copy of the Diffable object, a sync store compares the update’s version to the
version in the corresponding local sync entry.  If the update version is older, the update has
already been applied, and is ignored.  If the update version is newer, the sync store calls the
Diffable object’s applyDiff method with the Diff object contained in the update.  If the
two versions are in conflict, the sync store invokes one of the Diffable object’s methods to
resolve the conflict.

�An update corresponding to the deletion of the Diffable object.  To apply a remote update
of this kind, a sync store first checks whether the object has already been deleted locally, in
which case it simply updates the version  in the corresponding local sync entry to be later
than or equal to both the version of the remote update and the previous version in the sync
entry.  Otherwise, the sync store compares the update’s version to the version in the
corresponding sync entry.  If the update version is earlier, the update has already been
applied, and is ignored.  (This can only happen if the local Diffable object’s history
includes an earlier reconciliation of a transformation with the same deletion, received from
some other replica.)  If the update version is newer, the sync store deletes the object locally.
If the two versions are in conflict, the sync store invokes one of the Diffable object’s
methods to resolve the conflict.

Like the Reconcilable interface, the Diffable interface has methods named reconcile
and reconcileWithDelete.  However, the methods in the Diffable interface have different
parameter types and different behavior.  The reconcile method is invoked to resolve a conflict
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between a remote transformation and one or more local transformations.  Its parameters include
the remote Diff object received in the update and an array of all local Diff objects for this
Diffable object that conflict with the update.  The method is expected to place its Diffable
object in a state that reflects the resolution of the conflict and to return a Diff object describing
this modification that will be propagated to other replicas.  The reconcileWithDelete method is
invoked to resolve a conflict between a remote deletion and one or more local transformations.
Its parameters include an array of all Diff objects for the local Diffable object that conflict with
the remote deletion.  The method either returns an integer code indicating that the deletion is to
prevail, or places its Diffable object in a state that reflects the resolution of the conflict and
returns an integer code indicating that the object is to be reinstated in the remote replica.  

A conflict between a remote transformation and a local deletion is problematic, because
the entire object state is no longer present locally, and only the Diff object describing the
transformation is received from the remote replica.  In this case, the conflict is left temporarily
unresolved.  During the next synchronization phase that transmits updates from the local sync
store to the remote replica (either as part of the current synchronization or as part of a later
synchronization), the deletion will be transmitted to the remote replica, and the
reconcileWithDelete method will be invoked there.  If the update-delete conflict is resolved by
retaining the object, the entire object will be transmitted from the remote replica back to the local
sync store during the next synchronization phase in that direction, and it will be reinserted.  (See
Figure 26.)

8.2.2 Problems with the Initial Proposal

It is difficult for the application writer to implement the reconcile method of the
Diffable interface to determine the desired reconciled state and to ensure that the two
conflicting Diffable objects are placed in that state.  After setting the local Diffable object to
the desired reconciled state, the method must return a Diff object describing the way in which the
local Diffable object was changed (or null if it was unchanged).  When the Diff object is
propagated to the remote sync store, another conflict is detected there, and reconcile is invoked
again on the remote sync store, to determine how the transformation produced by the
reconciliation at the first sync store should be reconciled with conflicting transformations at the
second sync store to bring the two versions of the Diffable object into the same reconciled state.
Achieving the desired behavior is complicated at best, and in some cases it is impossible.

For example, consider a Diffable object representing a command to a VCR to begin
recording a program on a specified channel at a specified time.  Initially, sync stores A and B both
contain a command to begin recording on channel 2 at 8:00pm, as shown in Figure 27.  At Sync
Store A, a transformation is applied to change the channel to 4, resulting in a command to record
channel 4 starting at 8:00pm.  Meanwhile, at Sync Store B, a transformation is applied to change
the starting time to 9:00pm, resulting in a command to record channel 2 starting at 9:00pm.  The
two stores synchronize and the reconcile method of the VCR-command object is invoked at A.
The remote transformation changes the time to 9:00pm, the local transformation changes the
channel to 4, and the object itself contains start time 8:00pm and channel 4.
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There are three plausible reconciliation policies:

1. Keep the local user's command, to record the program on channel 4 at 8:00pm.

2. Keep the remote user's command, to record the program on channel 2 at 9:00pm.

3. Revert to the last agreed-upon command, to record the program on channel 2 at 8:00pm.

(It does not make sense to change the command contents to channel 4 at 9:00pm, which would
result in the recording of a program in which nobody expressed any interest!)  To implement
Policy 1, the local reconcile method should leave the object unchanged and return null, but
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Figure 26.  Resolving a conflict between a remote transformation and a local deletion.  In the
first synchronization phase, a Diff object arrives at a sync store from which the corresponding
Diffable object has been deleted, and the Diff object is ignored.  In the second phase, the
deletion is propagated back to the replica containing the conflicting transformation, and
reconcileWithDelete is invoked to resolve the conflict between a local transformation and a
remote deletion.  If reconcileWithDelete determines that the deletion should prevail, the object
is deleted from that replica as well.  Otherwise, in a third synchronization phase, the Diffable
object, possibly altered by its reconcileWithDelete method to resolve the conflict, is
transmitted in its entirety to the replica from which it had been deleted, where the object is
reinserted.



then the remote reconcile method will have no clue about the need to change its time from 9:00
to 8:00.  Similarly, to implement Policy 2, the local reconcile method must change its channel
back to 2, but no information indicating this is available:  The channel to be restored is not present
in the remotely generated transformation because the remote sync store never changed the
channel, and it is not present locally because the old channel value has been overwritten.
Similarly, neither sync store has enough information to implement Policy 3:  Each has overwritten
a piece of information about the old state. The information overwritten by each sync store is not
recorded in the transformation generated by the other sync store, because the other sync store has
left this information unchanged.

The task of the application writer is further complicated by the fact that the reconcile
method of the Diffable interface is invoked once for each conflicting remote transformation, so
the behavior of the method cannot depend on the collective effect of all conflicting remote
transformations.  For example, suppose a Diffable object represents a drawing that contains
many graphical objects, and Diff objects represent graphical editing operations.  Starting with a
common object state, the drawing is modified locally by deleting a particular rectangle (adding
one transformation to the local object's history); the drawing is modified remotely by first filling
the interior of the rectangle (adding one transformation to the remote object’s history) and then
creating a copy of the rectangle elsewhere in the drawing (adding a second transformation to the
remote object's history).  A reasonable reconciliation is to keep the copy of the newly-filled
rectangle, but to delete the original rectangle.  The conflict results in two calls to reconcile,
each passing one remote transformation.  The first call will try to reconcile the local deletion of
the rectangle with the remote filling of the rectangle.  With no further context available, this
reconciliation would likely keep the deletion, ignoring the filling.  The second call will then try to
reconcile the deletion of the rectangle with the copying of the rectangle, but in a state in which the
rectangle is no longer present in the drawing!  See Figure 28.
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Figure 27.  Lack of sufficient information to resolve conflicts among transformations.  The only
information available at Sync Store A is that the channel value was changed locally from some
unknown value to 4, the current local start-time value is 8:00pm, and the start time was changed
remotely from some unknown value to 9:00pm.
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Figure 28.  Difficulty of resolving remote transformations one at a time.  The desired net effect is
to remove the original rectangle but to keep the filled copy.  However, when the local
transformation deleting the rectangle is reconciled in isolation with the remote transformation
filling the rectangle, the sensible reconciliation is to preserve the deletion.

The MNCRS data-synchronization working group considered a number of changes to the
framework to resolve the difficulties that were discovered.  However, the consensus of the group
was that the proposed changes made the application writer’s use of the interface even more
complicated.  The group decided to omit differential updates from version 1.1 of the framework.
However, the Synchronizable interface was retained as a superinterface of Reconcilable to
allow for the possible reintroduction of other extensions of Synchronizable in the future.

8.2.3 A Counterproposal  

The proposed Diffable interface was difficult for application programmers to use
because it tried to solve too general a problem.  Meaningful reconciliation of differential updates
is impossible unless the updates are constrained to have certain nice algebraic properties.
Interfaces analogous to Diffable, but relying on such properties, would reduce the difficulty of
specifying application-based reconciliation.  We proposed two such interfaces, extensions of
Synchronizable named Cumulative and Revertible, to the MNCRS data-synchronization
working group, and described one possible implementation of a sync store accommodating these
interfaces.  However, in the interest of quickly completing a workable framework, the working
group deferred consideration of these proposals to a future version of the framework.

Reconciliation is easy to handle if all transformations are commutative, i.e., if a set of
transformations has the same effect regardless of the order in which they are applied.  Common
examples of commutative transformations include increasing some count by a specified amount or
adding some element to an unordered set.  If a set of transformations has the same effect
regardless of the order in which they are applied, a transformation can be meaningfully applied
regardless of the state of the Synchronizable object beforehand.  Transformations with
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conflicting versions are naturally reconciled by applying them both (in either order).  In other
words, every transformation to a given Synchronizable object, originating at any replica, is
applied to that object.  The object’s state reflects the cumulative effect of all the transformations
that have been applied to it.  We proposed that objects of this kind implement an extension of the
Synchronizable interface named Cumulative.  The Cumulative interface has an applyDiff
method, but no reconcile method, because there are no conflicts to reconcile!  (Strictly
speaking, all conflicts are reconciled automatically, by applying all the conflicting updates, in an
order that does not matter.)  The absence of a reconcile method simplifies the application
programmer's task and enables sync-store implementations to apply remote updates more quickly.
(The principle that transformations must commute has an interesting consequence for the behavior
of deletions.  If a deletion is just a special kind of transformation, and if transformations can be
applied in any order, it should be possible to apply any transformation to a deleted object.  The
effect should be simply to leave the object deleted, as if the transformation had preceded the
deletion.  There is no need for a reconcileWithDelete method because, in effect, a deletion
always prevails over other updates.)

 Reconciliation is also reasonably straightforward if it is possible to revert to the state a
Synchronizable object was in before the last n transformations in its history were applied.  This
is possible if each transformation has a corresponding inverse that can be applied to undo it.
Alternatively, an application programmer with memory to spare can revert to previous object
states by maintaining a log of object contents before each transformation.  An application
programmer willing to make the application dependent on a particular sync-store implementation
might use a version-archiving service provided by that implementation.  We proposed that objects
of this kind implement an extension of the Synchronizable interface named Revertible.
Reconciliation of Revertible objects works by, in effect, reverting to the most recent common
version in the history of the local and remote objects and then applying the transformations
required to go from that common ancestor state to the desired reconciled state.  The framework
provides one special class implementing Diff, named RevertDiff.  A RevertDiff object
specifies the modification to a Revertible object that would result from undoing all the
transformations applied since a given sync version, specified by the RevertDiff object.  The
RevertDiff class has one method—

Diff[] annulledDiffs()

—returning an array of the transformations to be undone.  The application-defined applyDiff
method must be able to apply a RevertDiff.  If it is relying on a special extended service of an
archiving sync-store implementation, it can simply ask the sync store to roll back the state of the
object by the specified number of versions.  If the application knows how to compute an inverse
for each application-defined Diff object, it can apply the inverses of the transformations in the
array returned by annulledDiffs, starting with the most recent transformation.  In many
common cases, the application can be more direct.  For example, if the only application-defined
Diff class represents the addition of a specified amount to a remaining-inventory field, a
RevertDiff can be applied by summing the amounts in the array returned by annulledDiffs,
and subtracting that amount from the field.  The Revertible interface has a reconcile method
whose contract is to determine the desired reconciled state, to place this Revertible object in
that state, and to return an array Diff objects that would transform the common ancestor state
into the desired reconciled state.  The reconcile method can determine the common ancestor
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state by examining an array, passed as a parameter, that contains a Diff object for each
transformation that has been applied to the local Revertible object since the Revertible object
was in the common ancestor state.  (If necessary, the reconcile method can actually restore the
object to that state as an interim step in its execution, by manipulating the array of Diff objects in
the same way that the applyDiff method treats the array returned by the annulledDiffs
method.  However, it will often be possible for the application to directly compute a
transformation that would change the common ancestor state to the desired reconciled state, by
somehow combining all the conflicting local and remote transformations.)

There are examples of Diffable classes for which the reconcile method is simple to
implement, but we conjecture that this simplicity usually arises from Cumulative or Revertible
properties that the application writer consciously or unconsciously exploits to write the
reconcile method.  Such classes can be rewritten to extend the Cumulative or Revertible
interfaces.  Indeed, any Diffable class can, at the cost of space, be made into a Revertible
class, by modifying each Diff class that would not otherwise be invertible to specify not only the
new information it is placing in the object, but the old information it is obliterating.  Returning to
the VCR-command example, if the Diff object specifying “change the channel to 4” instead
specified “change the channel from 2 to 4”, and the Diff object specifying “change the starting
time to 9:00pm” instead specified “change the starting time from 8:00pm to 9:00pm”, these Diff
objects would have inverses, and the VCR-command class could be written as a Revertible
class.

One can envision extending the Synchronizable interface in other ways as well,
unrelated to differential updates.  For example, the framework could provide an Immutable
interface for objects that will be inserted in and removed from the sync store, but never modified
while they reside in the store.  This would save the application writer the work of writing
reconcile, reconcileWithDelete, and setTo methods that would never be called.  The writing
of applications and the implementation of a sync store supporting differential updates might be
simplified by treating Reconcilable updates as a special kind of differential transformation, whose
effect is to replace the contents of the object with a specified complete new object state.
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9 Conclusions
For a variety of business reasons, MNCRS consortium members’ interest in a standard

Java platform for mobile devices waned, and the activities of the consortium subsided after the
release of MNCRS version 1.1 in March 1999.  Some of the consortium’s valuable work was
handed off to the Internet Engineering Task Force, the Network Computer Management Group,
and the Java Community Process.  Consortium leaders proposed submitting the
data-synchronization API to the Java Community Process for adoption as a Java extension, but no
volunteer came forth to lead this effort.

Nonetheless, important lessons were learned from the specification and implementation of
the framework, and we expect the framework to inspire and influence future data-synchronization
research.  There have already been two spinoffs of the MNCRS data-synchronization work at
IBM: the COSMOS state-machine model of data synchronization and the Mobile Data
Synchronization Service.  These are discussed in Sections 9.2 and 9.3, respectively.

Had the MNCRS data-synchronization effort continued, the first priority of the working
group would have been to specify the standard Java-object-based protocol described in Section
6.5.  The working group seemed to be converging on a consensus approach, and we were not
aware of any fundamental problems with the approach.  Such a protocol, required to be supported
by all implementations of the framework, would have ensured interoperability among all
implementations.

The data-synchronization framework has no explicit security mechanisms, but it
comfortably accommodates implementation-provided security mechanisms.  For example, the
implementation-defined properties passed to the open method of the StoreManager class (see
Section 5.3) might include a password or certificate establishing a user’s right to access the store.
A security-oriented synchronizer might encrypt transmitted data or use secure transport such as
SSL.  A persistent-store manager might encrypt data stored on a mobile device to protect its
privacy in the event that the device is lost or stolen.

The major unsolved problem preventing industrial use of the framework is that of
determining when the trimHistory method should be called to remove deletion tombstones, and
with what version.  Section 7.5 explained the difficulty of this problem, especially in a network
with a dynamic, unrecorded topology.  It remains an important area for future research.

Early in its deliberations, the MNCRS data-synchronization working group adopted
several fundamental principles, which were accepted as axioms and which constrained the design
of the framework.  In retrospect, in the light of our specification and implementation experience,
some of these principles are questionable, because of their impacts on the conceptual simplicity of
the framework and the performance of implementations.  Section 9.1 revisits the most important
assumptions.
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9.1 Fundamental Assumptions Revisited

9.1.1 Synchronization as Replication

Synchronization maintains sync stores as replicas.  We rely on the two approaches
depicted in Figure 1 to enable different mobile devices to maintain different subsets of a central
data store.  This precludes a simple archiving function, in which an object is deleted from a store
on a memory-constrained device without deleting it from the corresponding remote store.  The
overlapping subsets depicted in Figure 1(b) pose difficult semantic issues that must be resolved
before such a scheme can be implemented.  For example, if an object is deleted from a sync store
that is a subset of some containing store, should the object be removed from the subset, but
retained in the containing store?  How should membership in a given subset be defined?  If
membership is determined based on a predicate that forms part of the data-store URL, what
restrictions should be placed on the predicate?  If the predicate is allowed to refer to aspects of
the external environment, such as time and date, we gain the useful capability of objects that
expire, but we must deal with the possibility of objects spontaneously joining and leaving a sync
store without any synchronization or local updates to the store.  How and when should these
spontaneous membership changes be reported, and what is the effect on the event model?  Can a
modification to the contents of an object have the side effect of deleting the object from the store
in which the modification was performed, and causing the object to be passively deleted from
other stores as well?

9.1.2 Support for Peer-to-Peer Synchronization

The framework supports peer-to-peer synchronization.  We presumed that if we solved
the most general form of the synchronization problem, appropriate solutions for more restrictive
topologies would fall out as a byproduct.  As Section 7.4.4 explained, we were disillusioned by
the difficulty of describing a wide variety of version-management schemes through a single
SyncVersion abstraction.  The simplest and most efficient implementation approaches for more
restrictive topologies are fundamentally different from the approaches necessitated by
peer-to-peer synchronization.  [Rat97] points out that version vectors are not merely expensive;
they do not scale well over time, because version vectors can grow arbitrarily long.  Even a single
exceptional update of an object at a site where it is not usually updated permanently burdens the
object’s version vector with a nonzero component for that site.  The presence of a central server
simplifies the management of deletion tombstones (which need not be maintained at all on clients,
and can be removed from the central server after the server has sent the deletion to all clients).  A
central server also facilitates archiving of objects removed from a client store to recover storage.

We were hard pressed to come up with compelling applications for peer-to-peer
synchronization. Like the developers of Ficus [Rat96] and Bayou [Dem94], we initially envisioned
mobile workgroups with devices disconnected from any fixed network, but able to communicate
with each other by infrared, radio, or even the exchange of diskettes.  Peer-to-peer networks
would also seem to be more robust in the face of network failures, because of the larger set of
potential synchronization partners.  However, emerging mobile devices tend to depend on
common carriers, such as telephone lines, cellular infrastructure, or RF services like Palm.Net and
Ricochet, to communicate.  The common carrier can connect mobile devices with a central server
as easily as with each other.  Ad hoc networks that form when devices are brought into proximity
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with each other tend to be asymmetric, with one device acting as a controller and other devices
providing services such as printing or data entry.  (Bayou takes a hybrid approach, allowing
synchronization among any two stores, but treating one of the stores asymmetrically as the
primary replica of the data.)

9.1.3 Support for Asynchronous Protocols

The framework supports asynchronous synchronization protocols.  For example, updates
might trickle to a mobile device through a pager throughout the day, and updates from the device
might be sent in a burst once a day over a phone line; alternatively, if communication is only
possible during rare, relatively short windows, a mobile device might synchronize by a full-duplex
exchange of incoming and outgoing pending updates in concurrent bursts, followed by immediate
disconnection.  Section 7.4.4 explained how the need to accommodate asynchronous protocols
complicates version management.  Detection of, and recovery from, communication errors is also
complicated.  However, in some application environments, the flexibility and robustness attainable
through asynchronous synchronization may be worth the price.

9.1.4 Order of Update Transmission

The framework dictates that updates be transmitted in introduction order.  This restriction
allows versions to be represented by version vectors, and facilitates incremental progress when the
transmission of updates is interrupted.  However, it would be useful in many circumstances to
deliver updates in some order specified by applications or end users.  For example, mail messages
marked urgent, or sent by Very Important People, might be assigned a higher priority; very large
objects might be assigned a low priority, so that other updates do not get blocked behind them.
For synchronization over an unreliable link, it might be preferable to transmit higher-priority
messages first, in case the link goes down before synchronization is complete.  An end user with a
limited amount of time available before catching a plane might prefer to receive as many updates
as possible in five minutes, in priority order, before deliberately disconnecting.

The effect of prioritized delivery of updates can be achieved within version 1.1 of the
MNCRS data-synchronization framework by placing objects with different synchronization
priorities in different sync stores, and synchronizing those sync stores in priority order.  The use
of multiple sync stores is inconvenient for an application writer, because a reference to a stored
object no longer consists of a sync ID, but a sync id plus the identity of the sync store containing
the object.  A revised framework could remove the bookkeeping burden from the application
writer, providing a put method that assigns a priority to an object when it is inserted in the sync
store and maintaining a distinct summary version for each priority level.  Updates would be
generated from highest priority to lowest, following introduction order within each priority level.
In effect, synchronization would proceed as if objects of different priorities resided in different
stores.  Priority values could be included in SyncUpdate objects and propagated during
synchronization.

There are certain limitations to each of these approaches.  Both approaches assume a small
number of discrete priority levels.  Furthermore, both approaches require a priority to be assigned
statically at the time an object is inserted into a sync store.

93



9.1.5 Eventual Consistency

The framework ensures that conflicts between writes to a single object are reconciled, and
that complete synchronization results in mutually consistent replicas.  Given a sufficient set of
synchronization sessions without any intervening updates by applications to local replicas, all
replicas eventually become mutually consistent.

The framework considers a conflict to have occurred if and only if there are two
object-state instances for the same object, whose update histories each contain at least one update
not contained in the other.  The existence of conflict depends only on the mechanics of updates
and synchronizations, and not on the semantics of the data; the detection of conflict is entirely the
responsibility of the sync-store implementation, and not the application programmer.  In contrast,
the notion of conflict in Bayou is based on application semantics, and conflicts are detected by
dependency checks [Ter95] supplied by the application.  Application definitions of conflict can be
quite sophisticated.  [Kum95] gives the example of a write-write conflict between two versions of
a file containing calendar information.  If the conflicting updates create appointments that are two
hours apart, and the two appointments are not in distant locations, the application can resolve the
conflict by accepting both updates.  As [Ter95] points out, a system that detects semantic
conflicts can be programmed to detect mechanical conflicts.  An application writer could (perhaps
with the aid of helper classes provided by the framework) explicitly embed version vectors in
application data objects, advance them as a part of the application’s update and reconciliation
operations, and examine them to detect conflicts.  Clearly, there are applications for which the
added flexibility of semantic conflict detection is useful.  Furthermore, if applications requiring the
detection of mechanical conflicts are rare, it makes sense for the storage burden of version vectors
to be borne only by those applications requiring them.  On the other hand, if such applications are
common, it makes sense for the data-synchronization framework to relieve the programmer of
responsibility for the bookkeeping.

The MNCRS data-synchronization working group deliberately chose not to enforce as
strong a consistency condition as serializability.  Fischer and Michael [Fis82] observe that there is
an inherent conflict between serializability and availability in a distributed system, but that
availability is a principal reason for deciding to replicate data in the first place.  They assert that
for applications such as appointment calendars, distributed e-mail in-boxes, and distributed file
systems, availability is more important than serializability.  They propose a synchronization model
in which insert, delete, send and receive operations are causally ordered.  Causal ordering is a
weaker consistency condition than serializability, but it is precisely defined, and Fischer and
Michael argue persuasively that it is intuitive and useful in practice.

Ladin, Liskov, Shrira, and Ghemawat [Lad92] extend the work of [Fis82], classifying
update and query operations on replicated data as causal,  forced, or immediate.  The invocation
of a causal update specifies the other operations on which it depends (and which therefore must
be applied earlier), and the invocation of a causal query specifies the operations that must be
executed before the query is processed.  Causal operations at a node are blocked, if necessary,
until all the updates that must precede that operation have been applied.  Forced updates are
totally ordered with respect to each other, and applied at each node in accordance with this order.
The order is determined by one particular node, accessible to a majority of the nodes, designated
as the primary node.  Network partitions may cause different nodes to act as the primary at
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different times.  Immediate operations are executed with the same set of preceding operations at
each node, using a three-phase protocol involving all nodes.  Bayou session guarantees [Ter94]
build on the notion of causal operations, associating updates with sessions so that dependencies
can be computed automatically in accordance with user-controlled policies; and Bayou’s total
order for write operations [Pet97] achieves the effect of forced updates.  However, immediate
updates are inappropriate for a primarily disconnected network.

[Par83] notes that version vectors can be used to detect conflicts in updates to a single
data item, but cannot detect nonserializability of a set of updates to different data items.  That
paper presents the example of two transactions, each of which read items f and g, one of which
writes f and one of which writes g.  These two transactions are in conflict in the sense that they
cannot be serialized, but the version vectors for f and g do not indicate any conflict.

[Dav85] classifies strategies for ensuring correctness as pessimistic or optimistic and,
orthogonally, as syntactic or semantic.  Pessimistic strategies prevent conflicts, thus ensuring
correctness, by limiting availability of data.  Optimistic strategies allow replicas to be updated
independently, but provide for the detection and resolution of conflicts that may result.  Syntactic
strategies define consistency purely in terms of one-copy serializability, based on the sets of items
read and written by each transaction.  Semantic strategies consider the contents of the data itself.
It is widely agreed ([Guy90], [Kaw92], [Lu94], [Ter95]) that pessimistic approaches are
inappropriate in a network with a significant number of primarily disconnected mobile devices.
Pessimistic consistency algorithms generally presume that disconnection is a rare, transient state
rather than a typical, long-lasting state.  This presumption may be manifested in a number of
different ways:

�A multiphase protocol may rely on timely communication with all nodes in the network.

�Writes, or reads and writes, may be blocked at a node that is not connected to a majority of
the nodes, or to a designated primary node.

�Data may be protected from concurrent access by locks.  A disconnected device can access
such data only if it obtains the lock before it disconnects and releases the lock after it
reconnects, making the data unavailable to the rest of the network for the entire period of
disconnection, and requiring the user of a mobile device to hoard locks in anticipation of
disconnected access.

As Section 3.4 explained, the cost of a strong consistency model is not restricted to
reduced availability.  A weaker model may be more appropriate for mobile replication because it
frees up storage on a memory-constrained device, or because it allows incremental progress over
unreliable links.  Rather than preventing the missing-update anomaly depicted in Figure 5, a more
practical compromise would be to alert the user to the presence of the anomaly.  Just as Bayou
data stores provide full and committed views of their data [Ter95], a sync store could provide a
view of its data in which an object is flagged as being in a suspicious state if it is missing updates
that occurred earlier than some update (to another object) that is reflected in the data store.  The
data-synchronization framework could provide the application with a means to determine which
objects have suspicious states, and the application writer could choose to display the values of
those objects to the end user in a special way.  Suspicious states disappear by the next time the
data store completes an uninterrupted synchronization with any replica that has received the

95



missing updates.  Synchronization of a sync store containing suspicious states might be blocked to
prevent propagation of suspicious states to other replicas; alternatively, objects in suspicious
states might be propagated along with the suspicious-state flag.

Flagging of suspicious states could be achieved with only minor changes to our sync-store
implementation.  Upon marking an update-log entry as superseded, we would retain the log entry,
but not the old object contents associated with the entry.  During synchronization, as the update
log was traversed in introduction order and updates were generated, SyncUpdate objects  
corresponding to superseded update-log entries would be generated at the appropriate points.
These objects would belong to a new class, SupersededSyncUpdate.  SupersededSyncUpdate
objects would convey the sync ID of the updated Reconcilable object and the version of the
update (but not the object contents, which have been discarded).  A sync entry would contain two
SyncVersion values:  One would be advanced, as in the current implementation, each time an
ObjectContentsSyncUpdate, DeletionSyncUpdate, or VersionSyncUpdate is applied, or an
application marks the object as updated; the other would be advanced in each of these cases, but
also when a SupersededSyncUpdate is applied.  These two SyncVersion values would be equal
except when the most recent remote update received for the corresponding Reconcilable object
was a superseded update.  This is precisely the case in which the object is in a suspicious state.  It
is safe to purge update-log entries for superseded updates when the superseding updates have
been successfully transmitted to any potential recipient; the problem of determining when this
condition holds is essentially the same as the problem discussed in Section 7.5, of determining
when a deletion tombstone can be purged.  In environments where communication failures are
rare and storage is plentiful, a receiving synchronizer that batches all incoming updates before
applying any of them can ignore SupersededSyncUpdate objects, sacrificing incremental
progress to prevent missing-update anomalies; a sending synchronizer known to be
communicating with such a receiving synchronizer need not transmit these objects.

9.1.6 Pluggable Components

The framework allows sync stores, synchronizers, and applications to be independently
programmable.  There is no doubt that we paid a performance penalty for the resulting
information hiding.  Nonetheless, this architecture facilitates the implementation of portable
applications and the implementation of the framework on multiple platforms and communication
media.  It allows protocols to be chosen dynamically in response to application needs or currently
available bandwidth.  By restricting interdependencies among parts of the framework, it leaves
flexibility for future extensions.  The architecture does not preclude closely integrated
implementations of multiple components.

9.1.7 Java-Centric Specifications

The framework is Java-centric.  The Java orientation is manifested in the single-reference
model of object storage and retrieval that was presented in Section 5.1.  When a call on the
SyncStore method get hands a reference to a stored object, the sync store loses the capability to
count live references to the object.  Neither the sync-store implementation nor the application
program can safely free the object’s storage.  This is acceptable in a garbage-collected language
like Java, but precludes a useful transliteration of the data-synchronization API to a language like
C.   Concern about the time and space efficiency of Java on small mobile clients was a major
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reason that the MNCRS was not widely adopted.  (A second consequence of the single-reference
model is that the application programmer must be trusted to mark an object as updated.)

9.2 COSMOS State-Machine Models of Synchronizable Data Stores

Several parties expressed interest in the underlying MNCRS data-synchronization
mechanisms without the Java API.  Unfortunately, the behavior of these mechanisms was
specified only indirectly, in terms of the behavior of the Java methods in the framework.  This
interest was expressed in questions like the following:

� “Can I use MNCRS data synchronization to synchronize with data on a non-Java device?”

� “Can MNCRS data synchronization form the basis of an enterprise-wide
data-synchronization strategy accommodating non-Java data servers?”

� “Can I implement an MNCRS sync store in C?”

� “I want to synchronize MNCRS sync stores with other data stores, but I’m not interested in
providing the application interface to sync stores.  What does it mean to ‘conform’ to
MNCRS without conforming to the full API?”

� “I’m trying to design a protocol for synchronizing MNCRS sync stores, but it is hard to
deduce from the data-synchronization API what I can assume about the relationships among
sync versions before a synchronization, or what relationships must be true after a
synchronization.  Can you provide a rigorous specification?”

In response to these concerns, we undertook to separate the underlying logic of data
synchronization from the details of creating, maintaining, and querying data stores.  We defined a
formal state-machine model of a synchronizing data store, called the Co-Operative State Machine
for Object Synchronization, or COSMOS.

The state of a COSMOS state machine includes the contents of a data store that is to be
synchronized with other data stores.  Such data stores contain values associated with keys.  The
contents of a data store may be modified by a local mutation (typically performed by an
application program running on the platform that hosts the data store).  Synchronization brings
two state machines into states such that there is a one-to-one correspondence between the keys in
one data store and the keys in the other, and also a one-to-one correspondence between the
values associated with these keys.  (Thus, COSMOS synchronization brings two state machines into
isomorphic, but not necessarily identical, states.)

When the value associated with a given key is modified independently in two different
state machines and synchronization propagates the change from one state machine to the other,
the receiving COSMOS must reconcile the conflict, determining a value that should be associated
with that key.  There is a function reconcile(v1,v2), defined individually for every COSMOS, which
takes a local value v1 and a conflicting remote value v2, and yields the value that should be used to
reconcile the conflict.  The reconcile function may evaluate either to one of its arguments or to
some third value.

A COSMOS state-machine definition defines the set of updates generated by a COSMOS in a
given state (in some cases, filtered to include only updates later than a specified version); the
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latest update version already reflected in the state of a given machine; and the state transition that
occurs when a remote update is applied to a machine in a given state.  It does not define the form
of the messages in which these versions and updates are conveyed or the transport conveying
them.  Neither does it specify the implementation of the reconcile function.  The COSMOS model
does not specify an application-programming interface for performing local mutations or
determining the value currently associated with some key.  Indeed, a COSMOS state machine acting
only as a synchronization server need not have any such interface.

Questions about “non-Java MNCRS synchronization” can be understood as questions
about non-Java implementations of the COSMOS state machine.  An MNCRS sync store can be
understood as a Java object implementing COSMOS rules, storing bound values in Java
Reconcilable objects, and computing the COSMOS reconcile function by invoking an object’s
reconcile method.   However, it is possible to implement a COSMOS state machine that has no
connection to Java.  Any two COSMOS implementations can synchronize with each other, provided
that they use agreed-upon message formats and protocols.

We soon recognized the value of extending the COSMOS approach to data-synchronization
models other than the MNCRS model.  We developed simplified state-machine models for data
stores synchronizing in a star topology and for pairs of data stores synchronizing only with each
other.  In fact, there are many topologies of interest.  Among them, in order of increasing
generality (and thus increasing complexity and overhead), are:

� the dedicated-pair topology (two stores synchronizing only with each other)

� star topologies

�hierarchical topologies with synchronization only between immediate parents and children

�hierarchical topologies with synchronization between arbitrary ancestors and descendants

�peer-to-peer topologies (the model originally derived from the MNCRS model)

We also recognized that each of these models reflected certain policy decisions.  One such
decision is whether transport should be assumed reliable (leading to a simple model) or unreliable
(leading to a model that explicitly addresses error detection and recovery, and allows for the
integration of error detection and recovery algorithms with synchronization algorithms).  Other
policy decisions involve tradeoffs between efficiency of normal operation and efficiency of error
recovery.  Work is currently underway to define families of COSMOS models and synchronization
dialogs reflecting a wide variety of policies and topologies.  This effort should lead to a better
understanding of the performance implications of various policy decisions.  The COSMOS effort will
also provide a catalog of synchronization schemes that can be used to foster interoperability
among independently developed products.  Finally, COSMOS state machines provide a formal basis
for proving properties of synchronization protocols.

9.3 The Mobile Data Synchronization Service

The Mobile Data Synchronization Service, or MDSS, is discussed in detail in [But00], so
it will be described only briefly here.  The MDSS architecture allows a variety of clients, including
a Java object store, to synchronize with a variety of central enterprise databases.  The architecture
includes a mid-tier server that accepts query and update requests from mobile or desktop clients
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and passes them on to a database-specific adapter.  Clients and adapters communicate through the
Mobile Data Synchronization Protocol, or MDSP.  MDSP defines the form of an XML document
for data exchange.  Insertions, modifications, and deletions of items in a data store can be
described in MDSP documents.  MDSP documents are transmitted between the client and the
mid-tier server by MQ Series Everyplace, a lightweight message queuing facility that provides a
subset of MQ Series functionality.  In particular, MQ Series Everyplace provides guaranteed
delivery to and from mobile platforms.  MDSP documents are encoded into WBXML [Mar99], a
succinct encoding of XML submitted to the World Wide Web Consortium, and the WBXML byte
stream is sent by enqueuing it on an MQ Series Everyplace queue as a single message object.
When this message object is dequeued at the receiving end, the WBXML byte stream is decoded
into an MDSP XML document.

We used our reference implementation of the MNCRS data-synchronization framework as
the starting point for the MDSS Java object-store client.  However, the MNCRS framework
provides more general capabilities than are needed by MDSS.  In MDSS, all synchronization is
with a central server, and MDSS blocks updates to a client data store while synchronization is in
progress.  As a consequence of this restriction, and of the structure of an MDSS synchronization
session, concurrent-update conflicts will never arise at an MDSS client.  Therefore, the MNCRS
conflict-detection and conflict-resolution capabilities are not needed in MDSS.  We modified our
implementation of the MNCRS framework to exploit the restricted way in which MDSS clients
will use the framework, improving the client’s efficiency.  In addition, we plugged in the new
implementation of the Synchronizer interface described in Section 6.4, which uses MQ Series
Everyplace to send and receive updates encapsulated in WBXML-encoded MDSP documents.
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