
RC 21781 Revised (98962) 3 May 2001 Computer Science/Mathematics 33 pages

IBM Research Report

Inventory-Service Optimization in Configure-to-Order Systems

Feng Cheng, Markus Ettl, Grace Lin

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

David D. Yao

IEOR Department, Columbia University
New York, NY 10027

June, 2000; revision: March, 2001

IBM
Research Division
Almaden � Austin � Beijing � Haifa � T.J. Watson � Tokyo � Zurich

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to
peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of
royalties).
Copies may be requested from IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598. email reports@us.ibm.com
Some reports are available on the Internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Inventory-Service Optimization in Configure-to-Order Systems

Feng Cheng, Markus Ettl, Grace Lin
IBM Research Division, T.J. Watson Research Center

Yorktown Heights, NY 10598
fcheng,msettl,gracelin@us.ibm.com

David D. Yao�

IEOR Department, 302 Mudd Building
Columbia University, New York, NY 10027

yao@ieor.columbia.edu

June, 2000; revision: March, 2001

Abstract

This study is motivated by a process-reengineering problem in PC manufacturing, i.e., to move
from a build-to-stock operation that is centered around end-product (machine type model) inven-
tory, towards a configure-to-order (CTO) operation that eliminates end-product inventory — in fact,
CTO has made irrelevant the whole notion of pre-configured machine types — and focuses instead
on maintaining the right amount of inventory at the components. Indeed, CTO appears to be the
ideal operational model that provides both mass customization and a quick response time to order
fulfillment. To quantify the inventory-service tradeoff in the CTO environment, we develop a non-
linear optimization model with multiple constraints, reflecting the service levels offered to different
market segments. To solve the optimization problem, we develop an exact algorithm for the impor-
tant case of demand in each market segment having (at least) one unique component, and a greedy
heuristic for the non-unique component case. Furthermore, we show how to use sensitivity analysis,
along with simulation, to fine-tune the solutions. The performance of the model and the solution ap-
proach is examined by extensive numerical studies on realistic problem data. We also demonstrate
that the model can generate considerable new insights into the key benefits of the CTO operation, in
particular the impact of risk pooling and improved forecast accuracy.

�Research undertaken while an academic visitor at IBM Research Division, T.J. Watson Research Center.

1 Introduction

A configure-to-order (CTO) system is a hybrid of make-to-stock and make-to-order operations: a set of

components (subassemblies) are built to stock whereas the end products are assembled to order. This

hybrid model is most suitable in an environment where the time it takes to assemble the end product is

negligible, while the production/replenishment leadtime for each component is much more substantial.

The manufacturing process of personal computers (PC’s) is a good example of such an environment.

By keeping inventory at the component level, customer orders can be filled quickly. On the other hand,

postponing the final assembly until order arrival provides a high level of flexibility in terms of product

variety, and also achieves resource pooling in terms of maximizing the usage of component inventory.

Therefore, the CTO system appears to be an ideal business process model that provides both mass

customization and a quick response time to order fulfillment.

Such a hybrid model is often referred to as an assemble-to-order (ATO) system in the research

literature (e.g. [6, 12]). In an ATO system, usually there is a pre-configured set of end-product types

from which customers must choose. In contrast, a CTO system takes the ATO concept one step further,

in allowing each customer to configure a product in terms of selecting a personalized set of components

that go into the product. Aside from some consistency check on the product so configured, there is no

“menu” of product types that limits the customer’s choice.

Our study reported here is part of a larger project that aims at helping IBM’s Personal Systems

Group (PSG) to migrate from its existing operation to a CTO system. The PC manufacturing at PSG

is traditionally a build-to-plan (or build-to-forecast) process, a process that is internally referred to as

the MTM (“machine-type model”) operation. There is a set of end products, or MTM’s. Demand

forecasts over a future planning horizon are generated for each MTM, and updated periodically for

each planning cycle (typically, a weekly cycle). An MRP-type (“material requirements planning”) of

explosion technique is then used to determine the requirements for the components over the planning

horizon based on the bill-of-materials (BOM) structure of each end product. Because of the random

variation involved in demand forecasts, safety stock is usually kept for each end product between the

channel partners and IBM in order to meet a desirable customer service level. However, holding finished

goods inventory for any length of time is very costly in the PC business, where product life cycle is

measured in months and price reduction takes place almost every other week.

To move from this business process to a web-based CTO operation (in particular, customer orders

will be taken from the internet), the finished-goods inventory will be eliminated, and the emphasis will

be shifted to the components, or “building blocks” (BB). Because of their long leadtimes, the BB’s

will be powered off a forecast and executed off a replenishment process. The focus of our study is on

2

the inventory-service trade-off of the new system, and on the performance gains, in terms of reduced

inventory cost and increased service level. There are other benefits as well: The CTO operation can

achieve better forecast accuracy through demand aggregation. Customer demand is expected to increase,

as orders will no longer be confined within a restricted set of pre-configured MTM’s. The optimization

model we develop below provides an analytical tool to quantify these performance impacts.

A brief review of related literature for the ATO system is in order. Song [11] and Song et al. [12]

focus on developing exact and approximate performance evaluation procedures that are computationally

efficient. Glasserman and Wang [6] study the leadtime-inventory tradeoff using a large deviations ap-

proach, and derive a linear relationship between leadtime and inventory in the limiting sense of high fill

rates. Wang [15] further applies this asymptotic result in an optimization problem to minimize average

inventory holding cost with a constraint on the order fill-rate. Swaminathan and Tayur [14] use stochas-

tic programming models to study three different strategies at the assembly stage: utilizing component

commonality, postponement (the “vanilla box approach”), and integrating assembly task design and op-

erations. Other related recent works, not necessarily in the ATO setting, include Aviv and Federgruen

[1], Garg and Lee [5], Li [8], Mahajan and van Ryzin [9], and Zipkin [16].

Whereas most studies in the literature focus on certain segments of the supply chain, modeled as

simple stand-alone queues, the recent work of Ettl et al. [4] aims at modeling large-scale, end-to-end

enterprise supply chains, such as those in the PC industry. In contrast, the model we develop in this

paper is simpler in the network configuration — there are only two levels of BOM: the components

and the end products; but more demanding in service requirement — the fill rate of each product is

essentially the off-the-shelf availability of all its components. To deal with this more stringent service

requirement, we use a lower bound as a surrogate for the analytically intractable fill rate. This treatment

is essentially in the same spirit as the approach in [3, 12, 13]. The novelty of our approach here is to

exploit the simpler BOM structure to come up with algorithms that solve the optimization problem in a

more efficient manner than the gradient search in [4].

The rest of the paper is organized as follows. In the next three sections we present details of our

model: the given data required as input to the model (x2), the base-stock control policy that we focus

on (x3), the modeling of the customer service requirement (x4). The optimization problem and the

algorithms that solve the problem are presented in x5. These are followed by x6, where the perfor-

mance of the model and the solution technique is examined in detail. The effect of risk pooling and the

comparison between CTO and ATO are also studied. Brief concluding remarks are presented in x7.

3

2 The Model and Given Data

We consider a hybrid model, by which each end product is assembled to order from a set of components,

which, in turn, are built to stock. In other words, no finished goods inventory is kept for any end product,

whereas each component (“building block”) has its own inventory, replenished from a supplier following

a base-stock policy.

Each component inventory is indexed by i, i 2 S , where S denotes the set of all components.

Associated with each component is a “store,” where the inventory is kept.

In the CTO environment, there is no pre-specified product “menu”; in principle, every order can

require a distinct set of components. Let M denote the set of product/demand families that use the

same set of components. For instance, M = f low-end machines, high-end machines, servers g; or

M = f individuals, small business, corporations g. (Also, refer to Figure 1 for a numerical example

considered in x6.)

Time is discrete, indexed by t, with each time unit called a period. Let Dm(t) denote the demand

associated with product family m in period t. Each order of type m requires a random number of units

from component i, denoted as Xmi, which takes on non-negative integer values. Denote:

Sm := S � fi : Xmi � 0g; Mi :=M�fm : Xmi � 0g:

That is, Sm denotes the set of components used in type m products, whereasMi denotes all the product

families that use component i. (Here, Xmi � 0 means P(Xmi = 0) = 1.)

There are two kinds of leadtimes: those associated with the components, and those associated with

the end products:

� Lin
i

, i 2 S: the in-bound leadtime — the time for the supplier of component i to replenish to

store i once an order is placed. Assume this leadtime is known through a given distribution. For

instance, a normal distribution with mean and variance given.

� Lout
m , m 2 M: the out-bound leadtime — the time to supply a customer demand of type m,

provided there is no stockout of any component i 2 Sm. This time includes the order processing

time, the assembly/reconfiguration time, and the transportation time to deliver the order. The

distribution of this leadtime is also assumed known.

The first step in our analysis is to translate the end-product demand into demand for each component

i:

Di(t) =
X

m2Mi

Dm(t+Lout

m)X
k=1

Xmi(k); (1)

4

where Xmi(k), for k = 1; 2; :::; are i.i.d. copies of Xmi, and the inclusion of Loutm in the end-product

demand is a standard MRP type of demand-leadtime offset. Assume the mean and the variance of Xmi

are known. For instance, these can be derived from empirical demand data. Applying Wald’s identity

(refer to, e.g., [10]) and conditioning on Loutm , we can derive then derive the mean and the variance of

Di(t):

E[Di(t)] =
X

m2Mi

E(Xmi)E[Dm(t+ Lout
m

)]

=
X

m2Mi

E(Xmi)
X
`

E[Dm(t+ `)]P[Lout
m

= `]; (2)

and

Var[Di(t)] =
X

m2Mi

fE[Dm(t+ Lout
m)]Var(Xmi) + Var[Dm(t+ Lout

m)]E2(Xmi)g

=
X

m2Mi

Var(Xmi)
X
`

E[Dm(t+ `)]P[Lout
m

= `]

+
X

m2Mi

E
2(Xmi)

X
`

E[D2
m(t+ `)]P[Lout

m = `]

�
X

m2Mi

E
2(Xmi)

 X
`

E[Dm(t+ `)]P[Lout
m

= `]

!2

: (3)

The variance calculation above assumes the independence of the demands across product families. If

these are correlated, the above derivation can be modified without essential difficulties by incorporating

the covariance terms. Also note that in applying Wald’s identity to (1) certain dependence between Xmi

and Dm is allowed.

3 Base-Stock Control

As mentioned earlier, each store i follows a base-stock policy. Let Ri(t) denote the base-stock level

at store i in period t. Let Ii(t) and Bi(t) denote the inventory and backorder levels in period t. A

combination of standard inventory theory (e.g., [16]) and queueing analysis ([4]) yields the following

results. Denote:

Di(t� `; t) := Di(t� `) +Di(t� `+ 1) + � � � +Di(t);

and

�i(t� `; t) =

tX
s=t�`

E[Di(s)]; (4)

�2i (t� `; t) =

tX
s=t�`

Var[Di(s)]: (5)

5

Assuming that demands follow normal distributions, we write

Di(t� `; t) = �i(t� `; t) + Z � �i(t� `; t);

where Z denotes the standard normal variate; and write

Ri(t) = �i(t� `in
i
; t) + ki(t) � �i(t� `in

i
; t); (6)

where `in
i
:= E[Lin

i
] is the expected in-bound leadtime, and ki(t) is often referred to as the safety factor.

Then,

Ii(t) = [Ri(t)�Di(t� `in
i
; t)]+: and Bi(t) = [Di(t� `in

i
; t)�Ri(t)]

+; (7)

(Note that since time is discrete, we shall round up any real-valued `in
i

to the next integer.) Furthermore,

recall the following standard function in inventory theory (e.g., [16]):

G(x) := E[Z � x]+ =

Z
1

x

(z � x)�(z)dz = �(x)� x��(x); (8)

with Z denoting the standard normal variate, � and � denoting, respectively, the density function and

the distribution function of Z , and ��(x) := 1� �(x). A related function is:

H(x) := E[x� Z]+ = x+G(x) = �(x) + x�(x): (9)

We can then derive:

E[Ii(t)] = E[Ri(t)�Di(t� `in
i
; t)]+ = �i(t� `in

i
; t)H(ki(t)); (10)

E[Bi(t)] = E[Ri(t)�Di(t� `ini ; t)]
+ = �i(t� `ini ; t)G(ki(t)); (11)

and

P[I(t) = 0] = P[Di(t� `in
i
; t) � Ri(t)] = P[Z � ki(t)] = ��(ki(t)): (12)

To facilitate implementation, it is often desirable to translate Ri(t) into “days-of-supply” (DOS),

or more precisely, periods of supply. To do so, note that the �i part of Ri(t) simply translates into `in
i

periods (up to t) of demand. In addition, we can turn the safety-stock part of Ri(t) into

ki(t)�i(t� `in
i
; t)

�i(t� `in
i
; t)=`in

i

periods of demand. Hence, we can express Ri(t) in terms of periods of demand, or DOS, as follows:

DOSi(t) = `in
i

"
1 + ki(t)

�i(t� `in
i
; t)

�i(t� `in
i
; t)

#
: (13)

6

Note the intuitively appealing form of (13), in particular the safety-stock (or rather, safety time) part,

which is equal to the product of the safety factor and the coefficient of variation (i.e., the ratio of standard

deviation to mean) of the component demand over the (in-bound) leadtime.

Next, suppose demand is stationary, i.e., for each product family m, Dm(t) is invariant in distribu-

tion over time. Then, (4) and (5) reduce to the following (omitting the time arguments):

�i = `in
i
E[Di] and �2

i
= `in

i
Var[Di]: (14)

We can then write

Ri = `in
i
E[Di] + ki

q
`in
i

sd[Di]; (15)

and hence,

DOSi = Ri=E[Di] = `ini + ki�i

q
`in
i
= `ini [1 + ki

�iq
`in
i

]; (16)

where �i := sd[Di]=E[Di] is the coefficient of variation of the demand per period for component i.

(Hence �i=
q
`in
i

is the coefficient of variation of the demand over the leadtime `in
i

, which is consistent

with the general formula in (13).)

Sometimes it is more appropriate to adjust the demand distribution to account for non-negativity.

Specifically, instead of D = � + �Z , where Z is the standard normal variate, we should have ~D =

[�+ �Z]+. The adjusted mean follows from (8):

E[~D] = �E[Z � (��
�
)]+ = �G(��

�
): (17)

To derive the adjusted variance, note the following:

Ef[(Z � x)+]2g =

Z
1

x

(z � x)2�(z)dz

= x�(x) + ��(x)� 2x�(x) + x2 ��(x)

= ��(x)� xG(x);

where the last equation makes use of (8). Hence,

Var[~D] = �2Varf[Z � (��
�
)]+g

= �2Ef[(Z � (��
�
))+]2g � [E(~D)]2

= �2[��(��
�
) +

�

�
G(��

�
)�G2(��

�
)]: (18)

7

For moderately large x (say, x � 2), from (8), we have G(�x)�=x, and hence

E[~D]
�
=E[D]; Var[~D]

�
=Var[D];

from (17) and (18). Therefore, the above adjustment is only needed when the coefficient of variation

of the demand, �=�, is relatively large, say, 0.5 or above. (In the numerical examples of x6) we indeed

implement this adjustment in the relevant cases.)

From (6), (15) and (16), it is clear that to identify the base-stock policy is tantamount to specify-

ing the safety factor ki for each component inventory. In the following sections, we discuss how to

set the safety factor values so as to achieve the best inventory-service performance as specified in the

optimization problems below.

For ease of exposition, we shall focus on stationary demand. For non-stationary demand, we can

simply solve the optimization problems below period by period.

4 Service Requirement

4.1 Off-the-Shelf Availability

To start with, consider the special case of each order of type m requires exactly one unit of component

i 2 Sm. Let � be the required service level, defined here as the immediate (i.e., off-the-shelf) availability

of all the components required to assemble a unit of type m product, for any m. Let Ei denote the event

that component i is out of stock. Then, we require

P[[i2SmEi] � 1� �:

Making use of the well-known inclusion-exclusion formula (e.g., [10]):

P[[i2SmEi] =
X
i

P(Ei)�
X
i<j

P(Ei \Ej) +
X

i<j<k

P(Ei \Ej \Ek)� � � � ;

where the indices i; j; k on the right hand side all belong to Sm, we have, as an approximation,

P[[i2SmEi]
�
=
X
i2Sm

P(Ei) =
X
i2Sm

��(ki) � 1� �: (19)

Note the essence of the above approximation is to ignore the probability of simultaneous stockout of

two or more components.

There is another way to arrive at the above inequality. Suppose we express the service requirement

as follows:

Y
i2Sm

�(ki) � �: (20)

8

Note that the left hand side in (20) is, in fact, a lower bound of the availability (no-stockout probability)

of the set of components in Sm that is required to assemble the end product m, i.e., it is a lower bound

of the desired immediate availability. This claim (of a lower bound) can be argued by using stochastic

comparison techniques involving the notion of association. (Refer to, e.g., [10] for background materi-

als.) Intuitively, since the component inventories are driven by a common demand stream fDm(t)g, and

hence positively correlated, the chance of missing one or several components must be less than when

the component inventories are independent, which is what is assumed by the product on the left hand

side of (20).

Since

Y
i2Sm

�(ki) =
Y
i2Sm

[1� ��(ki)]
�
=1�

X
i2Sm

��(ki); (21)

combining the above and (20), we arrive at the same inequality in (19).

In the general setting, consider demand of product family m. Let A � Sm denote a certain config-

uration, which occurs in this demand stream with probability P(A). Then the no-stockout probability,Q
i2A �(ki), should be weighted by P(A). Hence, the service requirement in (20) should be changed to

� �
X

A�Sm

P(A)
Y
i2A

�(ki)

�
X

A�Sm

P(A)[1 �
X
i2A

��(ki)]

= 1�
X

A�Sm

P(A)
X
i2A

��(ki)

= 1�
X
i2Sm

 X
A3i

P(A)

!
��(ki):

Since

X
A3i

P(A) = P(Xmi > 0) := rmi; (22)

the service requirement in (19) can be extended to the following:

X
i2Sm

rmi
��(ki) � 1� �; (23)

where rmi follows (22).

Note that when the batch size Xmi is large, the stockout at component i should occur more often

than ��(ki) [cf. (12)]. To see this, first consider the case of unit (demand) arrivals, i.e., Xmi � 1. Then,

the stockout probability is P[Di > Ri], or P[Di + 1 � Ri]. In the general case of batch arrivals, the

9

stockout probability is

P[Di +Xmi � Ri] = P[Z � ki �
Xmi

�i
] = ��(ki �

Xmi

�i
);

which is larger than ��(ki). But this gap should be insignificant, since

Xmi

�i
=

Xmi

�i�i
;

where �i := �i=�i, with �i and �i following (14); and the batch size of an incoming demand is usually

orders of magnitude smaller when compared against �i, which is the mean of demand summed over all

product types m 2 Mi and over the leadtime. (Large-size orders will likely be processed via separate

contracts/channels, rather than in a CTO environment.) Hence, below we shall simply use ��(ki) as the

stockout probability. Also note that this underestimation of the stockout probability is compensated by

the overestimation involved in (20), since the latter is a lower bound of the no-stockout probability.

4.2 Response-Time Serviceability

We now relate the immediate availability discussed above to another type of customer service require-

ment, which is expressed in terms of order response time, Wm — the delay (waiting time) between the

time the order is placed and the time it is received by the customer.

Suppose the required service level of type m demand is:

P[Wm � wm] � �; (24)

where wm and � are parameters that specify the given requirement, e.g., fulfill the order within wm = 5

days with � = 99% probability.

We have the following two cases:

(i) When there is no stockout at any component i 2 Sm — denoting the associated probability as

�0m(t), the delay is simply Loutm , the out-bound leadtime.

(ii) Suppose there is a stockout at a component i 2 Sm. Denote the associated probability as �im(t).

Then, the delay becomes Loutm + �i, where �i is the additional delay before the stocked-out com-

ponent becomes available.

Hence, we can write

P[Wm � wm] � �0m(t)P[Lout
m
� wm] +

X
i2Sm

�im(t)P[Lout
m

+ �i � wm]

= [
Y
i2Sm

rmi�(ki)]P[Lout
m
� wm] +

X
i2Sm

rmi
��(ki)P[Lout

m
+ �i � wm]: (25)

10

Note that in the above approximation, we have again ignored the probability of two or more components

stocking out at the same time.

In most applications, it is reasonable to assume Lout
m
� wm. For instance, this is the case when the

outbound leadtime Loutm is nearly deterministic, and the delay limit wm is set to be “safely” larger than

Lout
m

.

On the other hand, �i, which is quite intractable, can be approximated as follows (refer to [4], eqn

(7)):

�i � `in
i
� E(Bi)

��(ki)(Ri + 1)
:

From (11), we have

E(Bi) = �iG(ki) = �i[�(ki)� ki ��(ki)]:

Note that the following holds:
�(x)� x��(x)

��(x)
�

��(x)

�(x)
� 1

x
;

for moderately large x (e.g., x � 3). Hence, making use of the above, along with (15), we have

�i � `ini �
�i

ki(Ri + 1)

� `ini �
�i

kiRi

=
`in
i

q
`in
i

sd(Di)

ki[`
in
i
E(Di) + ki

q
`in
i

sd(Di)]

=
`in
i

ki

q
`in
i
E(Di)=sd(Di) + k2

i

: (26)

The above allows us to set wm such that wm � Lout
i

+ �i, for all i 2 Sm, then the response-time

serviceability in (25) can be met at almost 100% (i.e., modulo the approximation involved in estimating

�i). In other words, aiming for a high immediate availability (say, 95%) will enable us to set a reasonable

response-time target (wm) and to achieve a near-100% service level.

5 Inventory-Service Optimization

Our objective is to minimize the expected inventory cost, subject to meeting the service requirement for

each product family as expressed in (23). The problem can be presented as follows:

min
X
i2S

ci�iH(ki)

s:t:
X
i2Sm

rmi
��(ki) � ��m; m 2M

11

where rmi is the probability defined in (22), ci is the unit cost of the on-hand inventory of component i,

and ��m = 1� �m with �m being the required service level for product family m. Recall that �iH(ki)

is the expected on-hand inventory of component i; refer to (10), and �i follows the specification in (14).

To solve the above optimization problem, we first rewrite the constraints as follows:

X
i2Sm

rmi�(ki) �
X
i2Sm

rmi � ��m;

and (abusing notation) let

rmi rmiP
i2Sm

rmi � ��m
:

The optimization problem then becomes:

min
X
i2S

ci�iH(ki) (27)

s:t:
X
i2Sm

rmi�(ki) � 1; m 2M: (28)

Several remarks are in order:

(i) Note that H(�) is an increasing and convex function, as evident from the first equality in (9), while

�(�) is an increasing function.

(ii) For any two product types, m and m0, if Sm0 � Sm, and rm0i � rmi for i 2 Sm0 , then the

constraint corresponding to m0 becomes superfluous. We assume in the above formulation, all

such superfluous constraints have already been removed through preprocessing.

(iii) Suppose a product family m involves a unique component, denoted im, i.e., im 62 Sm0 when m0 6=
m. Then, the corresponding constraint must be binding. For otherwise, we can always decrease

the value of kim until the constraint becomes binding, without affecting the other constraints,

while decreasing the objective value (since H(�) is an increasing function as explained in (i)).

The Lagrangian corresponding to the above optimization problem is:

L =
X
i2S

ci�iH(ki)�
X
m2M

�m

0
@X
i2Sm

rmi�(ki)� 1

1
A ; (29)

where �m � 0, m 2 M, are the Lagrangian multipliers. Hence, taking derivatives and setting them to

zero, taking into account

H 0(x) = �x�(x) + �(x) + x�(x) = �(x); (30)

12

we obtain the following system of non-linear equations that characterizes the optimal solution:

X
m2Mi

rmi�m = ci�i
�(ki)

�(ki)
; i 2 S; (31)

X
i2Sm

rmi�(ki) = 1; m 2M and �m > 0: (32)

5.1 Unique Components

While solving the above system of non-linear equations is quite intractable in general, in the following

important case, we do have an efficient algorithm that solves the non-linear equations and generate the

optimal solution.

Suppose every product family m uses a unique component im that is not used in any other product

families. Then, as pointed out in the above Remark (iii), all the constraints in (28) must be binding; i.e.,

the equations in (32) holds for all m 2M, since all the Lagrangian multipliers are positive.

Focusing on the unique components in (31), i = im, we have Mim = fmg, a singleton set, and

hence,

�m =
cim�im
rmim

� �(kim)
�(kim)

; m 2M: (33)

Suppose we have derived the variables for all the unique compoments, kim , m 2 M. Then, all the

Lagrangian multipliers, �m, m 2 M, follow from (33). We can then derive ki, for all i that is not a

unique component, from the remaining equations in (31). That is,

�(ki)

�(ki)
=

1

ci�i

X
m2Mi

rmi�m; i 2 S; i 6= im: (34)

To close this loop, we still have to derive the variables kim that correspond to the unique components.

But these are readily derived from the equations in (32), each involving exactly one such variable, all

the other variables corresponding to the non-unique components have already been derived.

In particular, direct verification establishes that �(k)=�(k) is increasing in k. Hence, we know

the variables corresponding to the non-unique components, (ki)i2S;i 6=im , are increasing in those of the

unique components, (kim)m2M. Hence, denoting ym := �(kim) and y := (ym)m2M, we can write

(32) as

rmimym +
X
i6=im

rmihmi(y) = 1; m 2M; (35)

where hmi(y) are increasing functions. Therefore, we can solve this system of equations using a

bisection-like algorithm detailed below.

13

1. For each m 2M, set kim = 0; set yLm = 0 and yHm = 1.

Set � = 10�6 (or any other desired accuracy).

2. For each m 2M, compute �m following (33).

3. For each non-unique component, i 6= im, compute ki from (34). (This can be done by gradually

incrementing ki until the ratio on the left reaches the same value as the right hand side. Or, use

bisection.)

4. For each m 2M, set ym = �(kim), and compute the left hand side of (32), denoted LHSm:

� If LHSm > 1 + �, set yHm ym and ym (ym + yLm)=2;

� if LHSm < 1 + �, set yL
m
 ym and ym (ym + yH

m
)=2;

� derive kim = ��1(ym).

If maxm2M jym � y0
m
j � � (where y0

m
denotes the ym value of the previous iteration), stop; else,

go to 2.

While the above algorithm is guaranteed to converge, thanks to the bisection procedure, it may not

converge to the optimal solution. This can happen when, at convergence, the left hand sides of (35)

are not all equal to 1. This has been observed in our numerical studies, but the gap to optimality is

negligible.

On the other hand, convergence to the optimal solution is guaranteed if for each m, the increase or

decrease in the left hand side of (35) is dominated by the first term, i.e., a increase (resp. decrease) in

ym results in an increase (resp. decrease) in rmimym +
P

i6=im rmihmi(y), regardless of the increase or

decrease in the other components of y. This appears to be the case observed in many of the numerical

examples we have run.

5.2 A Greedy Heuristic

Although unique components is a prevailing case in CTO, it is still useful to examine the case when

there is not necessarily a unique component in every product family. This will become useful specially

for the ATO system, where there is a set or pre-configured end-products. We can treat the ATO system

as a special case of the CTO by modeling each end-product as a customer segment. But then, it is not

likely that each end-product will have a unique component. (Refer to the example in x6.3.)

Without the unique components, the main difficulty in solving the optimization problem in (27)

and (28), has to do with the combinatorial nature of the equations in (32): we have to consider all

14

possibilities of the Lagrangian multipliers being zero or positive. Hence, we propose a greedy heuristic

as follows. We gradually increase the left hand side of all the constraints to 1; at each step, we identify

a variable ki such that incrementing its value will yield the largest decrease in the objective value.

At each step in the algorithm, let �m denote the value of the left hand side of the constraint m in

(32), and let Æ := maxm2M �m. Denote

A := fi : �m < Æ; 8m 2Mig:

That is, the set A collects the indices of all variables that can be increased without increasing Æ. We

want to indentify

i� = argmax
i2A

fci�i[H(ki + Æi)�H(ki)]g;

where

Æi := min
m2Mi

�
Æ � �m

rmi

�
(36)

specifies how much xi can be increased (without exceeding the current value of the constraint Æ). Since

Æi is a small increment, we can approximate the above difference by the derivative (refer to (30)),

H 0(ki + Æi=2) � Æi = �(ki + Æi=2) � Æi:

To summarize, here is the algorithm:

1. For each i 2 S , set ki = 0.

For each m 2M, set �m = 0.

Set Æ = �.

2. Identify the set A := fi : �m < Æ; 8m 2Mig.
If Æ = 1 and A = ;, stop; else, continue.

3. If A = ; and Æ < 1, set Æ Æ +�.

Find i� = argmaxi2Afci�iÆi�(ki + Æi=2)g, where Æi follows (36).

Set ki� ki� + Æi� .

4. For m 2Mi� , set �m �m + rmi�ki� .

Go to 2.

15

5.3 Sensitivity and Inventory-Service Tradeoff

As is well-known, the Lagrangian multipliers in the optimization model discussed above have the in-

terpretation of “shadow prices.” Specifically, suppose the right hand side of (28) is changed from 1 to

1� �, where � is a small positive quantity. Then, the change in the objective value, around optimality, is

approximately ��P
m2M

�m; and this is evident from (29).

On the other hand, from the formulation of the optimization problem, we can verify that the change

of the right hand side of (28) from 1 to 1�� corresponds to increasing ��m (the no-fill rate) by an amount

�(
X
i2Sm

rmi � ��m):

Hence, the Lagrangian multipliers returned by the algorithms developed earlier can be used to con-

duct sensitivity analysis. Specifically, we know that a reduction of the total inventory cost by an amount

d can be achieved by reducing the service requirement of product family m, provided � > 0, from �m

to

�m � �[
X
i2Sm

rmi � (1� �m)];

with � = d=�m.

This sensitivity analysis can also be used in another way. Since, the service level used in the op-

timization problem is a lower bound of the true value, the optimal solution is conservative, in that it

returns a service level that is higher than what is required. Our numerical experience shows this typ-

ically results in an objective value that is 10-15% higher (than if the true service levels were used).

Therefore, after solving the optimization problem, we can use the above sensitivity analysis to find the

reductions on the �m values (required service levels) that correspond to reducing the objective value

by say, 10%; and then re-solve the optimization problem using the reduced �m values. (Refer to the

discussions on the results in Tables 4 and 5 of the next section.)

6 Numerical Results

For our numerical studies, we consider a family of desktop computers which are assembled from a set

of 12 different components i = 1; 2; : : : ; 12 as illustrated in Figure 1.

FIGURE 1 ABOUT HERE

All components used in the assembly of an end product are purchased from external suppliers.

The supplier lead times are deterministic with E(Lin
i
) time units, which represent the time required to

manufacture the component and ship it from a supplier warehouse to the PC assembly plant. The lead

16

times, unit costs and demand configurations are summarized in Table 1. These are based on actual

data from a PC assembly system, with the necessary alterations to protect proprietary information. The

modified values, however, still provide a realistic product representation. As the final assembly process

for end products takes no more than a few hours, which is an order-of-magnitude shorter than the

component lead time, the system fits well within the framework discussed in x4.

P(Xmi > 0)

i category component lead time E(Lin

i) unit cost ci low-end mid-end high-end

1 shell Base unit 5 215 1.0 1.0 1.0
2 memory 128MB card 15 232 1.0 1.0 1.0

3 motherboard 450 MHz board 12 246 1.0 – –
4 motherboard 500 MHz board 12 316 – 1.0 –
5 motherboard 600 MHz board 12 639 – – 1.0

6 storage 7GB disk drive 18 215 1.0 0.4 –
7 storage 13GB disk drive 18 250 – 0.6 1.0

8 software Pre-load A 4 90 0.7 0.5 0.3
9 software Pre-load B 4 90 0.3 0.5 0.7

10 options CD ROM 10 126 1.0 1.0 1.0
11 options Video graphics card 6 90 – 0.3 0.6
12 options Ethernet card 10 90 – 0.2 0.5

Table 1: Bill-of-materials structure for example configure-to-order system.

We consider 3 customer segments, i.e., m = 1; 2; 3, representing low-end, mid-end and high-end

demands, respectively. Orders for end products differ by customer segment, in terms of the possible

selection of components that constitute the end product. We assume that each order requires no more

than one unit from component i. The random variables Xmi defined in x2 thus take on values of zero

or one. The marginal distribution of Xmi is displayed in the last three columns of Table 1 for each

customer segment. It determines the possible combination of components that can be selected by orders

from each customer segment. The distribution indicates the proportion of orders that request a specific

component. For instance, for high-end customers, 100% of the orders select a 13GB disk drive. For

mid-end customers, 40% of orders request a 7GB disk drive, and 60% request a 13GB hard drive.

Each order requests exactly one component from each component category. The only exception is the

”options” category of which more than one component can be selected.

We represent the customer orders per time unit as i.i.d. normal random variables with mean E(Dm) =

100, and coefficient of variation cv(Dm) = 0:25 and 0:50, for all m = 1; 2; 3.

Notice that end products from any given customer segment use a motherboard that is unique to

that customer segment. Therefore, we can use the algorithm described in x5.1 to compute the optimal

17

base-stock policies.

6.1 Validation of the Analytical Model

Here we examine two aspects of the analytical model developed in the previous sections, the solution

algorithm (of x5.1), and the lower bound (for the fill rate) involved in the service- level constraints.

For the first issue, recall the bisection procedure is guaranteed to converge, but it may converge to a

sub-optimal solution. More specifically, the convergent point (solution) is optimal if and only if all the

service constraints are binding. Hence, in Table 2 1, we present the solutions for two different demand

scenarios (in terms of the coefficients of variation), and several different levels of required service,

ranging from 80% to 98% (but uniform across customer segments). The column labeled ��analy reports

the fill rates corresponding to the solution returned by the algorithm, with the objective values reported

in the column labeled z�analy.

There are three solutions in each demand scenario that are sub-optimal, reflected by the gaps be-

tween � and ��analy For each of these solutions, we perform a random search of 5,000,000 points around

the neighborhood of the point that the bisection procedure converges to, and report under z�search the

best objective value among all the feasible points. We can see that the objective values match very well.

In particular, in the two cases where the algorithm over-achieves the require service level, the objective

value is only slightly above the best value returned by the search procedure.

cv(Dm) = 0:25 cv(Dm) = 0:50

� �
�

analy z
�

analy z
�

search rel.dev. �
�

analy z
�

analy z
�

search rel.dev.

.800 (.800,.800,.800) 437,637 – – (.800,.800,.800) 875,273 – –

.820 (.820,.819,.818) 450,311 451,121 0.2% (.820,.819,.818) 900,621 902,243 0.2%

.840 (.839,.837,.840) 462,308 463,088 0.2% (.839,.837,.840) 924,616 926,176 0.2%

.860 (.860,.860,.860) 477,489 – – (.860,.860,.860) 954,978 – –

.880 (.880,.880,.880) 494,050 – – (.880,.880,.880) 988,100 – –

.900 (.901,.900,.900) 513,383 512,050 -0.3% (.901,.900,.900) 1,026,766 1,024,199 -0.3%

.920 (.920,.920,.920) 536,004 – – (.920,.920,.920) 1,072,007 – –

.940 (.940,.940,.940) 564,446 – – (.940,.940,.940) 1,128,892 – –

.960 (.960,.960,.960) 602,862 – – (.960,.960,.960) 1,205,723 – –

.980 (.980,.980,.980) 664,478 – – (.980,.980,.980) 1,328,956 – –

Table 2: Quality of the algorithm: identical service target for all customer segments.

Table 3 extends the same study to allow different service requirements for different customer seg-

ments (one demand scenario only). The various combinations of service requirements are displayed

in the first three columns. For all the above examples, the number of iterations until convergence is

between 15 and 23, for a tolerance of � = 10�6.

18

cv(Dm) = 0:50

�1 �2 �3 �
�

analy z
�

analy z
�

search rel.dev.

.920 .950 .900 (.921,.950,.900) 1,083,953 1,085,977 0.2%

.920 .950 .920 (.920,.950,.920) 1,102,866 – –

.920 .950 .940 (.919,.950,.940) 1,128,973 1,131,144 0.2%

.920 .950 .960 (.919,.950,.960) 1,168,104 1,172,183 0.3%

.920 .950 .980 (.918,.948,.980) 1,239,232 1,244,627 0.4%

.920 .900 .980 (.918,.908,.980) 1,215,895 1,217,521 0.1%

.920 .920 .980 (.919,.925,.980) 1,224,201 1,226,235 0.2%

.920 .940 .980 (.916,.943,.980) 1,234,501 1,237,110 0.2%

.920 .960 .980 (.920,.964,.980) 1,256,906 1,255,050 -0.1%

.920 .980 .980 (.923,.980,.980) 1,292,961 1,290,429 -0.2%

.900 .950 .980 (.904,.947,.980) 1,233,337 1,238,372 0.4%

.920 .950 .980 (.918,.948,.980) 1,239,232 1,244,627 0.4%

.940 .950 .980 (.942,.949,.980) 1,251,034 1,254,381 0.3%

.960 .950 .980 (.958,.950,.980) 1,263,566 1,267,927 0.3%

.980 .950 .980 (.980,.955,.980) 1,298,052 1,297,527 0.0%

Table 3: Quality of the algorithm: different service targets for different customer segments.

To address the second issue, the quality of involving the lower bound on the fill rate (off-the-shelf

availability) in the service constraints, for every combination of the service requirements listed in Table

3, we determine the ”true” fill rate for each customer segment by using simulation to evaluate the

solution generated by the analytical method. Figures 2 to 4 show the comparisons between the analytical

and simulated values. (The coefficient of variation of demand was 0.50.) In each figure, we varied

the service requirements of one customer segment and held the other two constant. For example, the

service requirements (targets) for the high-end and mid-end customer segments in Figure 4 were 0.98

and 0.95, respectively, while the service target for the low-end segment varies between 0.90 and 0.99.

(The simulation point estimates are obtained by the batch-mean method, dividing every run into 10

batches of 5,000 arrivals per customer segment.) Clearly, the analytical values, being a lower bound of

the true fill rate, underestimate the achieved service level (i.e., over-achieve the service requirements).

Overall, however, the analytical curves track the simulated curves quite closely, and the gap decreases

as the service requirement increases.

FIGURES 2-4 ABOUT HERE

Next, we continue examining the second issue raised above, but from a different angle: Since the

lower bounds involved in the service constraints over-achieve the service requirements, what is the true

optimal solution that exactly meets the service requirements? To study this, we first apply simulation

to the cases in Table 2, and report the results in Table 4, where the column under ��analy lists the actual

19

(i.e., simulated) service levels achieved by the analytical solutions, and the column under z�analy lists

the corresponding objective values (which are the same as in Table 2). Next, we use the sensitivity

analysis in x5.3, combined with simulation, to search for the best solution that exactly meets the service

requirements (as verified by simulation). Specifically, we gradually decrease the service requirements

in the optimization model (i.e., the �m values), using the sensitivity analysis as a guideline; solve the

new optimization problem, and then use simulation to find the achieved service levels. This procedure

is repeated until the analytical solution returns a set of simulated service levels that are within a pre-

defined tolerance of the original service requirements. Furthermore, when this procedure terminates,

we generate 10,000 more points randomly around the neighborhood of the identified solution. The best

solution found in this procedure (i.e., the one with the lowest expected inventory cost) is reported under

the columns labelled ��search and z�search. The relative difference between z�analy and z�search is reported in

the column labelled �z. We applied the same study to the cases in Table 3, with the results summarized

in Table 5.

cv(Dm) = 0:25 cv(Dm) = 0:50

� �
�

analy z
�

analy �
�

search z
�

search �z �
�

analy z
�

analy �
�

search z
�

search �z

.800 .890 437,636 .805 372,116 15.0% .893 875,272 .813 744,232 15.0%

.820 .896 450,310 .839 385,133 14.5% .902 900,620 .828 767,392 14.8%

.840 .908 462,307 .852 398,653 13.8% .911 924,614 .844 792,946 14.2%

.860 .919 477,492 .877 414,776 13.1% .919 954,983 .865 823,529 13.8%

.880 .928 494,050 .893 428,233 13.3% .928 988,099 .895 856,465 13.3%

.900 .939 513,383 .915 452,212 11.9% .939 1,026,766 .915 904,428 11.9%

.920 .950 536,003 .934 477,074 11.0% .949 1,072,007 .931 954,148 11.0%

.940 .962 564,446 .947 503,809 10.7% .961 1,128,892 .950 1,011,283 10.4%

.960 .974 602,861 .969 553,908 8.1% .973 1,205,723 .968 1,107,816 8.1%

.980 .985 664,477 .982 610,014 8.2% .985 1,328,955 .982 1,220,027 8.2%

Table 4: Comparisons between the analytical and the search solutions: identical service target for all
customer segments.

As the numbers in the two Tables 4 and 5 illustrate, the objective values corresponding to the ana-

lytical solution are about 8-15% sub-optimal, due to the lower bounds used in the service constraints. In

practice, the analytical method can be used to quickly generate a starting solution. It can also be com-

bined with with simulation and sensitivity analysis, as outlined above, to fine-tune the starting solution

until optimality.

6.2 Effect of Risk-Pooling

In the examples presented above, the inventory of each common component forms a common buffers

from which the demand in all customer segments can draw upon (if the component is needed). Hence,

20

�1 �2 �3 �
�

analy z
�

analy �
�

search z
�

search �z

.920 .950 .900 (.947, .969, .930) 1,083,953 (.925, .959, .901) 922,025 14.9%

.920 .950 .920 (.945, .968, .945) 1,102,866 (.925, .961, .920) 948,462 14.0%

.920 .950 .940 (.945, .966, .962) 1,128,973 (.932, .951, .941) 978,332 13.3%

.920 .950 .960 (.942, .964, .977) 1,168,104 (.926, .955, .966) 1,013,516 13.2%

.920 .950 .980 (.940, .958, .989) 1,239,232 (.927, .953, .982) 1,077,292 13.1%

.920 .900 .980 (.944, .919, .991) 1,215,895 (.924, .902, .980) 1,046,427 13.9%

.920 .920 .980 (.943, .936, .990) 1,224,201 (.924, .921, .986) 1,112,248 9.1%

.920 .940 .980 (.940, .953, .989) 1,234,501 (.922, .940, .983) 1,123,316 9.0%

.920 .960 .980 (.941, .972, .988) 1,256,906 (.920, .960, .981) 1,094,290 12.9%

.920 .980 .980 (.938, .986, .986) 1,290,429 (.926, .981, .981) 1,114,633 13.6%

.900 .950 .980 (.930, .958, .990) 1,233,337 (.901, .951, .981) 1,071,165 13.1%

.920 .950 .980 (.940, .958, .989) 1,239,232 (.927, .953, .982) 1,077,292 13.1%

.940 .950 .980 (.959, .956, .989) 1,251,034 (.941, .955, .981) 1,118,018 10.6%

.960 .950 .980 (.972, .955, .988) 1,263,566 (.962, .958, .981) 1,141,255 9.7%

.980 .950 .980 (.987, .956, .987) 1,297,527 (.985, .956, .980) 1,129,761 12.9%

Table 5: Comparisons between the analytical and the search solutions: different service targets for
different customer segments.

demand for each component is an aggregate of the demand over all customer segments. To the extent

that the safety stock of the component inventory is determined, among other things, by the variability

of this aggregate demand (on the component), the required inventory level of this component to achieve

a give service target can be lowered by this aggregation, or risk pooling. In general, the impact of risk

pooling become more significant when the number of product configurations is large and the correlation

among demands is small (e.g., Aviv and Federgruen [1], Brown et al. [2], Lee [7]).

To understand how risk-pooling influences the performance of a CTO system, we compare some

examples studied above with their no risk-pooling counterparts. Specifically, we consider the cases in

Table 4, with the coefficient of variation of demand being 0.5. For the no risk-pooling scenario, we

apply the optimization to each customer segment separately, and then sum up the expected inventory

costs over all three customer segments. The comparison against the risk-pooling results are plotted in

Figure 5.

FIGURE 5 ABOUT HERE

In the figure, the service levels are the actually realized values obtained by simulating the analytical

solutions. We observe that risk-pooling results in a significant reduction of inventory investment: For

the same service target, the expected inventory cost is 20-25% lower with risk-pooling, with the largest

gap appearing at the high end: 25.8%. when � = 0:98. Our other experiments indicate that the gap also

increases with demand variability. For instance, when the coefficient of variation of demand is reduced

21

from 0.5 to 0.25, the relative difference at a service target of 0.98 is 18.4%.

days-of-supply (risk-pooling) days-of-supply (no risk-pooling)

i component all segments low-end mid-end high-end

1 Base unit 1.6 2.5 2.6 2.7
2 128MB card 2.4 3.8 3.9 4.2
3 450 MHz board 3.0 3.5 – –
4 500 MHz board 3.0 – 3.3 –
5 600 MHz board 2.9 – – 3.0
6 7GB disk drive 3.2 4.2 4.7 –
7 13GB disk drive 3.2 – 3.7 4.4
8 Pre-load A 2.3 2.3 2.7 3.1
9 Pre-load B 2.3 3.0 2.7 2.5

10 CD ROM 3.3 3.7 3.8 4.0
11 Video graphics card 2.5 – 3.6 3.2
12 Ethernet card 3.4 – 4.8 4.2

Table 6: Comparison between risk-pooling and no risk-pooling scenario, service target � = 0:90 for all
customer segments.

Table 6 shows the optimal component safety stock levels expressed in days-of-supply (as defined

in (16)) for both risk-pooling and no risk-pooling. As expected, risk-pooling requires a lower days-of-

supply value. Further, the amount of safety stock needed tends to be lower when the commonality of a

component is higher. For example, the 128MB memory card, which is used in all customer segments,

requires 2.4 days-of-supply, whereas the Ethernet card, which is used in the high-end and mid-end

segments, only requires 3.4 days-of-supply.

6.3 Comparison between CTO and ATO

As we mentioned in the introductory section, ATO differs from CTO in that it has a set of pre-configured

end-products for customers to choose from. Conceptually, we can treat ATO as a special case of CTO,

by letting each end-product represent a customer segment, associated with a degenerate distribution of

fXmig (i.e., with probability one for the designated configuration).

Hence, it would appear tempting to conclude that ATO can achieve the same level of service targets

at a lower inventory costs. After all, ATO supports a smaller variety of product types, and it does

not have the additional demand variation as CTO at the configuration level (i.e., those associted with

fXmig). This argument, however, has ignored an important fact: In a CTO system, demand forecast is

performed on customer segments, whereas in an ATO system demand forecast is done by end-product

types. And it is widely known in industry that forecast by customer segments is generally more accurate,

in terms of a smaller forecast error (typically measured by the coefficient of variation of the demand).

22

Therefore, in order to make a sensible comparison between the two systems, we need to first specify the

relationship between their associated demand forecast errors.

Let DCTO denote the demand per time unit of a product family (or customer segment) in the CTO

system. Let DATO
c

denote the demand for a pre-configured end-product c in the ATO system. Let c also

be a member of the product family in the CTO system. Then, to make a fair comparison between the

two systems, it is reasonable to assume the following relations:

E

�
DCTO

�
= E

 X
c

DATO
c

!
; Var

�
DCTO

�
= Var

 X
c

DATO
c

!
: (37)

To satisfy the above relations, we can further assume:

E

�
DATO
c

�
= �cE

�
DCTO

�
; Var

�
DATO
c

�
= �cVar

�
DCTO

�
; (38)

where

�c > 0; and
X
c

�c = 1:

From (38) it follows that the two coefficients of variation relate as follows:

cv
�
DATO
c

�
=

1p
�c

cv
�
DCTO

�
:

Since �c � 1, the above does capture the fact that ATO results in a larger forecast error (for each

end-product configuration) than CTO (for a customer segment).

Now, consider the demand for a certain component i over the leadtime, denoted Di; and for sim-

plicity, assume the leadtime is a constant, 1. Consider the CTO case, and suppose each order requires

one (resp. zero) unit of i with probability pi (resp. 1� pi). Then,

Var
�
DCTO
i

�
= E

�
DCTO

�
pi(1� pi) + Var

�
DCTO

�
p2i :

On the other hand, in the ATO case, suppose each order of configuration c requires one unit of compo-

nent i. Then, from (38), we have

Var
�
DATO
i

�
= Var

�
DATO
c

�
= �cVar

�
DCTO

�
:

To enforce the relations in (37), let pi = �c. Then, we can verify from the above relations that

Var
�
DCTO
i

�
� Var

�
DATO
i

�
i� E

�
DCTO

�
� Var

�
DCTO

�
: (39)

The above condition must hold in most cases. Exceptions will have to be some very special case in

which DCTO has zero or negligible forecast errors. The above also holds when the leadtime is random

(just apply conditioning on the leadtime).

23

We use the above formalism to compare a CTO system with a corresponding ATO system. The

CTO system is taken from the scenario of demand with a coefficient of variation of 0.5 in Table 2. For

the comparable ATO system, we take two machine configurations from the low-end segment, and four

configurations each from the mid-end and high-end segments. The �c values are: 0.7 and 0.3 for the

low-end machines; 0.1, 0.4, 0.2, and 0.3 for the mid-end machines; and 0.2, 0.3, 0.3, and 0.2 for the

high-end machines. In addition, we normalize the costs so that the average total component cost per

order is the same in both systems.

FIGURES 6-7 ABOUT HERE

In Figure 6, we report the expected safety stock in days-of-supply, and the service levels, both from

the analytical model. To ensure a fair comparison, we use the greedy heuristic described in x5.2 to

generate the solutions to both systems, since the ATO system does not have unique-components. (In

this case, the solution generated by the heuristic for the CTO system is virtually identical to the optimal

solution generated by the algorithm in x5.1.) We then simulate the actual service levels achieved by the

analytical solutions, for both systems, and the results are reported in Figure 7. In both figures, the CTO

system is superior to the ATO system, in terms of a better inventory-service tradeoff: at the same service

level, it results in a lower inventory cost. (Note that the gap between the two systems is in fact wider in

the simulated curves in Figure 7.) The key to this result is the lower component variability in the CTO

system as explained in the inequality in (39).

7 Concluding Remarks

We have developed an analytical model for the configure-to-order operation, which has become an

important new business model in Internet commerce. We use the model to study the optimal inventory-

service tradeoff, formulated as a nonlinear programming problem with a set of constraints reflecting

the service levels offered to different market segments. To solve the optimization problem, we have

developed an exact algorithm for the important case of demand in each market segment having a unique

component, and a greedy heuristic for the non-unique component case. We have also shown how to use

the sensitivity analysis, along with simulation, to fine-tune the solutions. On the qualitative side, we

have highlighted several new insights to some of the key benefits of the CTO operation, in terms of risk

pooling and improved forecast accuracy.

As mentioned in the Introduction, our study was part of a larger project aimed at the reengineering of

IBM/PSG’s business process. Specifically, we have applied our model to study three factors, in terms of

their impact on reducing inventory capital and enhancing customer service: (i) manufacturing strategy –

24

the machine-type-model based operation versus the building-block based operation, (ii) the accuracy of

demand forecast at the end-product (machine configurations) level versus at the market segment level;

(iii) the effect of mass customization as a result of direct sales over the Internet. Details of the study will

be reported elsewhere.

Acknowledgements

We thank Maike Schwarz for her assistance in obtaining the CTO simulation results. We also thank

Lisa Koenig of the IBM Personal Systems Group for providing us with the opportunity to work on this

problem.

References

[1] AVIV, Y. AND FEDERGRUEN, A., The Benefits of Design for Postponement. In: Quantitative

Models for Supply Chain Management, S. Tayur, R. Ganeshan and M. Magazine (eds.), Kluwer

Academic Publishers, Norwell, 1999, 553-584.

[2] BROWN, A., LEE, H., AND PETRAKIAN, R., Xilinx improves its Semiconductor Supply Chain

using Product and Process Postponement, Interfaces, 30 (4), 2000, 65-80.

[3] CONNORS, D.P. AND YAO, D.D., Methods for Job Configuration in Semiconductor Manufactur-

ing, IEEE Trans. Semiconductor Manufacturing, 9 (1996), 401-411.

[4] ETTL, M., FEIGIN, G.E., LIN, G.Y., AND YAO, D.D., A Supply Network Model with Base-

Stock Control and Service Requirements, Operations Research, 48 (2000), 216-232.

[5] GARG, A. AND H.L. LEE, Managing Product Variety: an Operations Perspective. In: Quantitative

Models for Supply Chain Management, S. Tayur, R. Ganeshan and M. Magazine (eds.), Kluwer

Academic Publishers, Norwell, 1999, 467-490.

[6] GLASSERMAN, P. AND WANG, Y., Leadtime-Inventory Tradeoffs in Assemble-to-Order Systems,

Operations Research, 46 (1998), 858-871.

[7] LEE, H., Effective Inventory and Service Management Through Product and Process Redesign,

Operations Research, 44 (1996), 151-159.

[8] LI, L., The Role of Inventory in Delivery-Time Competition. Management Science, 38 (1992),

182-197.

25

[9] MAHAJAN, S. AND G.J. VAN RYZIN, Retail Inventories and Consumer Choice. In: Quantitative

Models for Supply Chain Management, S. Tayur, R. Ganeshan and M. Magazine (eds.), Kluwer

Academic Publishers, Norwell, 1999, 491-552.

[10] ROSS, S.M., Stochastic Processes, 2nd ed., Wiley, New York, 1998.

[11] SONG, J.S., On the Order Fill Rate in a Multi-Item, Base-Stock Inventory System, Operations

Research, 46 (1998), 831-845.

[12] SONG, J.S., XU, S. AND LIU, B. Order Fulfillment Performance Measures in an Assembly-to-

Order System with Stochastic Leadtimes, Operations Research, 47 (1999), 131-149.

[13] SONG, J.S. AND D.D. YAO, Performance Analysis and Optimization in Assemble-to-Order Sys-

tems with Random Leadtimes, submitted for publication, 2000.

[14] SWAMINATHAN, J.M. AND S.R. TAYUR, Stochastic Programming Models for Managing Product

Variety. In: Quantitative Models for Supply Chain Management, S. Tayur, R. Ganeshan and M.

Magazine (eds.), Kluwer Academic Publishers, Norwell, 1999, 585-624.

[15] WANG, Y. Service Levels in Production-Inventory Networks: Bottlenecks, tradeoffs, and Opti-

mization, Ph.D. Dissertation, Columbia University, 1988.

[16] ZIPKIN, P., Foundations of Inventory Management, Irwin/McGraw-Hill, New York, 2000.

26

1

2

3

4

shell

memory

motherboard

storage

software

options

6

7

12

8

9

10

11

5

high-end desktop

2

1

mid-end desktop

low-end desktop

3

Figure 1: A configure-to-order system with three product families.

27

✍✍✍✍ 1 = 0.92, ✍✍✍✍ 2 = 0.95

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

service target ✍✍✍✍ 3

or
de

r
fil

l r
at

e

high-end(sim) high-end(analy) mid-end(sim)

mid-end(analy) low-end(sim) low-end(analy)

Figure 2: Comparison between analytical and simulated fill rates.

28

✍✍✍✍ 2 = 0.95, ✍✍✍✍ 3 = 0.98

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

service target ✍ ✍ ✍ ✍ 1

o
rd

er
 f

ill
 r

at
e

high-end(sim) high-end(analy) mid-end(sim)

mid-end(analy) low-end(sim) low-end(analy)

Figure 3: Comparison between analytical and simulated fill rates.

29

✍✍✍✍ 1 = 0.92, ✍✍✍✍ 3 = 0.98

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

service target ✍✍✍✍ 2

o
rd

er
 f

il
l

ra
te

high-end(sim) high-end(analy) mid-end(sim)

mid-end(analy) low-end(sim) low-end(analy)

Figure 4: Comparison between analytical and simulated fill rates.

30

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

order fill rate (simulated)

in
ve

nt
or

y
co

st
 ($

)

no risk pooling risk pooling

Figure 5: Effect of risk pooling.

31

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

0.75 0.80 0.85 0.90 0.95 1.00

order fill rate (analytical)

s
a

fe
ty

 s
to

c
k

 (
d

a
y

s
-o

f-
s

u
p

p
ly

)

configure-to-order assemble-to-order

Figure 6: Comparison between CTO and ATO; analytical fill rates.

32

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

order fill rate (simulated)

sa
fe

ty
 s

to
ck

 (
d

ay
s-

o
f-

su
p

p
ly

)

configure-to-order assemble-to-order

Figure 7: Comparison between CTO and ATO; simulated fill rates.

33

