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Long-range Coulomb interactions in small Si devices.
Part I: Performance and reliability

M. V. Fischetti and S. E. Laux
IBM Research Division, Thomas J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598, USA
(July 20, 2000)

In the ever smaller silicon metal-oxide-semiconductor field-effect transistors of the present technol-
ogy, electrons in the conductive channel are subject to increasingly stronger long-range Coulomb
interactions with high-density electron gases present in the source, drain, and gate regions. We
first discuss how two-dimensional, self-consistent full-band Monte Carlo/Poisson simulations can be
tailored to reproduce correctly the semiclassical behavior of a high-density electron gas. We then
employ these simulations to show that for devices with channel lengths shorter than about 40 nm and
oxides thinner than about 2.5 nm, the long-range Coulomb interactions cause a significant reduction
of the electron velocity, and so a degradation of the performance of the devices. In addition, the
strong ‘thermalization’ of the hot-electron energy distribution induced by Coulomb interactions has
an effect on the expected reliability of the transistors.

I. INTRODUCTION

Conventional scaling rules1 for small silicon metal-
oxide-semiconductor field-effect transistors (MOSFETs)
demand increasing doping concentrations in the sub-
strate, drain, and source regions and a reduction of
the insulator thickness. This implies that, as devices
are scaled, electrons in the conducting channel of Si
n-MOSFETs are in ever closer proximity to the high-
density electron gases present in the source and drain
regions – separated from each other by as little as tens
of nanometers – and in the polycristalline Si gate – sep-
arated from the channel by as little as 1.5 nm of SiO2
(Ref. 2). It follows that long-range Coulomb interac-
tions between the channel and the heavily-doped re-
gions are expected to acquire increasing importance as
devices are scaled to smaller dimensions. Short-range
electron-electron interactions have been shown to play
a non-negligible role in determining the energy distribu-
tions of the hot channel electrons, particularly near the
channel/drain junction and at low applied bias.3–5 While
these effects have an impact on the ‘secondary’ charac-
teristics of the devices (such as substrate currents and,
possibly, reliability), they do not affect the raw perfor-
mance (such as mobility, current drive, and transconduc-
tance). On the contrary, the purpose of this paper and
of its companion6,7 is to show that long-range interac-
tions are expected to degrade (with respect to more näive
expectations) the transconductance and electron mobil-
ity of small devices: For short channels, the interaction
between the heavily-doped source/drain regions and the
channel, while not directing subtracting momentum from
the electron gas, induces a very strong and fast ‘thermal-
ization’ of the energy distributions of the hot electrons
in the channel. Electrons in the stronger high-energy
tails suffer more frequent collisions with momentum dis-
sipating scatterers (phonons, ionized impurities, band-
to-band ionization), thus losing velocity. This results in
a reduced drain current and transconductance. In struc-
tures with thin oxides, the interaction between the gate
and the channel, on the contrary, causes a direct transfer
of momentum from the channel to the gate, which also

affects the performance of the device in obvious ways.
We proceed as follows: Since our results are derived

using two-dimensional and semiclassical self-consistent
Monte Carlo/Poisson simulations8, in Sec. II we discuss
the expected behavior of a homogeneous semiclassical
high-density electron gas, we argue that quantum correc-
tions, while not negligible, are relatively small, and show
in Sec. III that two-dimensional (2D) simulations can
be tailored so to reproduce the three-dimensional (3D)
results. We also discuss how at high electron densities
the electron kinetic-energy distributions, while exhibit-
ing non-thermal high-energy tails, are actually consistent
with thermodynamic equilibrium. In Sec. IV we briefly
justify the applicability of 2D, semiclassical simulations
to the highly inhomogeneous situations encountered in
Si n-MOSFETs, and show that long-range Coulomb in-
teractions degrade the ‘effective’ electron velocity in the
channel of scaled devices at high source-to-drain bias. We
also discuss the impact of Coulomb interactions on the
expected hot-electron reliability. We hopefully render the
discussion more agile by discussing separately in three
appendices some algebraically cumbersome but neces-
sary details about the normalization of the plasmon field
(Appendix A), about the derivation of the unscreened
and screened Green’s function for the Poisson equation
in the semiconductor-insulator-semiconductor geometry
(Appendix B), and about the scattering rates for short-
range Coulomb interactions between 2D electrons in the
substrate (both in the 2D and bulk models) and bulk
electrons in the gate (Appendix C).
Despite our conclusions, reached in Sec. II, that semi-

classical and 2D simulations can mimic satisfactorily the
‘correct’ behavior of a high-density electron gas, it is de-
sirable to confirm our results with a three-dimensional,
quantum model. This is done in a companion paper6 in-
vestigating the effect of quantized interface plasmons in
an MOS geometry on the electron mobility in Si inver-
sion layers. While the 2D, semiclassical simulations em-
ployed here permit the study of off-equilibrium, highly
inhomogeneous, and high-bias situations, Ref. 6 must be
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confined to the study of the homogeneous linear regime,
but it complements the results obtained here by avoiding
some possible shortcomings of 2D Monte Carlo/Poisson
simulations by accounting for: i) the quantization of
the plasmon field, with the associated quantized energy
exchanged in long-range Coulomb interactions, ii) the
Bose-Einstein, as opposite to Maxwell-Boltzmann, ther-
mal population of plasmons, and iii) the possible differ-
ence between 3D and 2D models concerning the length-
scale over which plasma oscillations decay and time-scale
over which the electronic momentum relaxes.

II. HOMOGENEOUS ELECTRON GAS

A. The three-dimensional semiclassical electron gas

Consider a homogeneous electron gas of density n =
N/Ω, where N is the number of electrons and Ω the vol-
ume occupied by the gas. Ignoring Coulomb interactions,
the total energy W per electron is purely the Fermi ki-
netic energy KF :

W = KF =
2

n

∫
dk

(2π)3
E0(k) fFD[E0(k)] , (1)

where fFD(E) = {1 + exp[(E0 − EF )/(kBT )]}−1, is the
equilibrium Fermi function at temperature T , kB is the
Boltzmann constant, E0(k) is the electron dispersion,
and the Fermi energy EF is determined so that

n = 2

∫
dk

(2π)3
fFD[E0(k)] . (2)

In the simplest possible picture, the Hartee model,
the spatial distribution of both electrons and background
positive charge (donors), required by charge neutrality, is
assumed to be homogenous and uniform. In this model
the Coulomb interaction between electrons and donors
vanishes. The first correction to this model consists in
what Kittel calls the ‘modified Hartree’ approximation9.
In this model one assumes that the electrons still con-
stitute a uniform distribution of charge, but they are
now embedded in a lattice of background, positively
charged, pointlike donors. Customarily, one thinks of
the donor potential as statically screened by the elec-
trons according to the Debye-Hückel theory, resulting
in a Yukawa-like potential e−βsr/(4πε∞s r), where βs =
[(e2/ε∞s )(∂n/∂EF )]1/2 is the screening parameter, ε∞s
being the static (valence) permittivity of Si, and e the
magnitude of the electron charge. However, Mahan10,
employing quantum-mechanical variational calculations,
has shown that this picture is correct only at moderate
densities (∼ 1019 cm−3 or below in Si), but at higher
densities the assumption of a uniform electron distribu-
tion gives better agreement with the variational results.
This is because the Yukawa-model overcounts the elec-
trons: On the one hand, they are assumed to completely
screen the donors, and so to be fully localized around
each dopant ion. On the other hand, they are assumed
to be uniformly distributed.

In order to compute the Coulomb energy of this model
system, in principle one should follow a procedure sim-
ilar to what is required to compute the Madelung en-
ergy in crystals and derive the positions of the donors
by minimizing their total energy. Here we assume the
impurities frozen in a cubic lattice, and consider spher-
ical volumes of radius r0 = [3/(4πn)]1/3 around each
donor. Thus, the total energy per dopant (i.e., in a vol-
ume (4/3)πr30 around each impurity) of the electron gas
and background pointlike donors will be lowered by the
electron-impurity Coulomb attraction,

δWed ≈ − e2

(4/3)πr30

∫ r0
0

dr
r

ε∞s
= −3

2

e2

4πε∞s r0

= −3
2

(
4π

3

)1/3
e2n1/3

4πε∞s
≈ −2.418 κ n1/3 , (3)

where κ = e2/(4πε∞s ), and raised by the Coulomb re-
pulsion of the uniform electron distribution with itself
within an elemental spherical volume ,

δWee ≈ e2

[(4/3)πr30 ]
2

∫ r0
0

dr
4

3
πr3 4πr2

1

4πε∞s r

=
3

5

e2

4πε∞s r0
=
3

5

(
4π

3

)1/3
e2n1/3

4πε∞s
≈ 0.967 κ n1/3 . (4)

Note that the mutual donor-donor repulsion vanishes in
this model, since the impurities in different volume el-
ements are viewed as fully screened by the surrounding
electrons when frozen in their minimum-energy configu-
ration. Therefore, the total energy per impurity atom
due to the Coulomb interaction will be:

δWC = δWed + δWee ≈ −1.451 κ n1/3 . (5)

Depending on the configuration of the impurities, one
may actually obtain for the ‘Madelung coefficient’ 1.451
above a slightly different value of 1.444 for close-packed
fcc, hcp, or bcc lattices10,11. Here, we shall not worry
about these numerically small differences.
At densities low enough for the standard Debye-Hückel

screening to be valid, an expression given by Lanyon and
Tuft12 may more appropriately replace Eq. (5),

δWC = −3
4
κ βs . (6)

As discussed by Mahan10, the numerical values provided
by Eqns. (5) and (6) are very similar in the range of densi-
ties of interest here, since the three characteristic lengths
one can consider, the inverse wavevector at the Fermi
surface kF , the screening length β−1s , and the average
donor separations r0, are not too different in Si.
In the presence of random motion, induced by the

Fermi kinetic energy and, at nonzero temperatures, by
the electron-phonon interactions, the electrons will move
around their ‘frozen’ uniform configuration and set-up a
fluctuating potential whose spatial Fourier components
are identified with plasmons. We shall discuss these ‘po-
tential fluctuations’ below in Sec. III B. Here we are in-
terested in the net result of this thermal ‘agitation’ : The
total energy δWC will redistribute into a potential energy,
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δUC , and a kinetic energy component δKC . The virial
theorem13 can be used to estimate the time-average of
the kinetic energy δKC once δWC is known. Since for
N particles interacting via a central potential V (r), a
function only of the interparticle distance r,

< δKC > =
1

2
<
∑
i�=j
∇iV (ri − rj) · ri > , (7)

where the brackets < ... > denote time-average, for a
purely Coulomb system

< δKC > = −1
2

< δUC > , (8)

so that (dropping the time-average brackets here and in
the following, since we shall deal exclusively with time-
or ensemble-average, equivalent by the ergodic theorem)

δKC ≈ 1.451 κ n1/3 . (9)

The final quantity to consider is the shift of the chem-
ical potential, δµ, (in principle different from the Fermi
energy EF for interacting particles, as discussed below)
induced by the Coulomb interactions among the N elec-
trons and the ND donors. At zero temperature or, more
generally, in degenerate situations, δµ gives the electron
contribution to the narrowing of the energy gap. In gen-
eral the chemical potential µ of a grand canonical ensem-
ble is defined as:14

µ =
1

Ω

∂F

∂n
, (10)

at constant temperature and volume Ω, where F =
Wtot − TS is the (Helmholtz) free energy of the system,
Wtot being its total energy and S its entropy. Therefore,
at zero temperature the change of the chemical potential
caused by the Coulomb interactions will be:

δµ =
1

Ω

∂δWC,tot

∂n
, (11)

where δWC,tot = NDδWC is the total Coulomb energy of
the system. Keeping the volume Ω constant means that
the identity ND = N should be used only after having
taken the derivative. Thus

δµ =
∂

∂N
(ND δWC) = −0.481 κ n1/3 . (12)

Ignoring band-tailing and renormalization of the electron
dispersion, since the total number of particles remains
constant when accounting for Coulomb interactions, this
shift of the chemical potential must be accompanied by
an equal downward shift of the reference energy, that is,
the bottom of the conduction band, δECB = δµ.

B. Quantum corrections

The modified Hartree model considered so far ignores
the effect of the electron spin: Since Pauli’s principle pre-
vents electrons with parallel spins from getting too close
to each other, their mutual Coulomb repulsion will be

reduced by an amount known as exchange energy, δWx.
Following Haas15 and Mahan10, for Si the exchange en-
ergy per particle is given by

δWx = −3
4

e2ΛkF
4π2ε∞s

≈ −0.3861 κ n1/3 , (13)

where Λ = (ml/mt)
1/3 (tan−1 δ/δ), δ = [(ml/mt) −

1]1/2, mt/l denoting the transverse/longitudinal mass in
the six ellipsoidal valleys of the Si conduction band. This
second correction amounts to the Hartree-Fock results.
The difference between this result and the energy of the
ground state one would obtain performing an ‘exact’ cal-
culation is called ‘correlation’ energy: The electrons are
not uniformly distributed, but the energy of the system
is lowered when accounting for a correlation of electron
wavefunctions (or positions) which minimizes their mu-
tual Coulomb repulsion. In the range of densities con-
sidered here16, an expression for the correlation energy,
δWcorr has been given by Gell-Mann and Brueckner

17,

δWcorr = −0.096 + 0.00622 ln rs (14)

while Nozières and Pines18 give

δWcorr = −0.115 + 0.0031 ln rs , (15)

where the unit of energy is the Rydberg (≈ 32.1 meV in
Si) and rs is the average separation r0 in units of the Bohr
radius (≈ 1.92 nm in Si), so that rs ≈ 3.231 (n/1018)−1/3,
where the electron density n is measured in cm−3. Re-
expressing Eq. (5) in atomic units, we have

δWC = − 1.798

rs
, (16)

while the exchange term, Eq. (13), is

δWx = − 0.479

rs
, (17)

so we see that the correlation energy can be neglected,
while ignoring the exchange term, Eq. (13), amounts
to underestimating the Coulomb energy by about 26%.
Correspondingly, the kinetic energy of the system will be
modified only by a small term, usually called ‘correlation
kinetic energy’19.
Finally, note that these corrections to the total en-

ergy of the electron gas at high densities are some of
the causes of the well-known band-gap narrowing in
semiconductors: We have already noticed above how
the Coulomb interactions in a classical three-dimensional
electron gas cause a shift δECB = −0.481κn1/3 of
the bottom of the conduction band. Mahan10 has
evaluated the shifts of the chemical potential δµx =
[e2/(4π2ε∞s )]kFΛ ≈ −0.515 κ n1/3 and δµcorr associated
to exchange and correlation effects, and so the corre-
sponding shifts δECB. When accounting also for the con-
tribution to the Coulomb energies due to the (minority)
hole in the valence band (hole-donor and hole-electron
interaction), Mahan10 has accounted for all of the contri-
butions to the band-gap narrowing, with the exception
of band-tailing, discussed below. Clearly, the semiclassi-
cal model errs in ignoring exchange and correlation. As
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for its small contribution to the total energy, correlation
can be safely ignored. Not so for exchange terms: Since
the shift δµ due to the electron-donor and the hole-donor
interaction cancel, exchange is now a dominat contribu-
tion.

C. Two-dimensional approximation

In a numerical simulation employing a two-dimensional
solution of Poisson equation, we typically encounter a
situation complementary to what described above. Now
electrons are idealized as ‘superparticles’ actually rep-
resented by line-charges of statistical weight s (i.e., of
charge density −es per unit length), while the donors
are described as a uniform background distribution of
positive charge (‘jellium’). Again, we can estimate the
Coulomb energy of the system by first assuming that the
electrons are distributed in a square lattice configuration
and are assigned the minimum kinetic energy compatible
with Pauli’s principle (that is, their momenta are chosen
from a Fermi-Dirac distribution). Thus, a snapshot of
the electron-jellium/donor system in this initial lowest-
energy configuration shows the electrons sitting at the
sites of a regular cubic lattice, and the total energy of
the system is given by the electron Fermi energy plus
the Coulomb energy we are about to discuss. Employing
mesh-elements of side-length ∆x to discretize the Poisson
equation, each element being centered around each par-
ticle, obviously must have n = s/∆x2. In the spirit of
the discussion above, we consider an average interparticle
separation R such that πR2 = ∆x2. Therefore, in each
area element there is one ‘particle’ with an associated
potential φ(2D)(r) which vanishes for r > R, while

φ(2D)(r) =
es

2πε∞s
ln
( r
R

)
, (18)

for r ≤ R. Since Monte Carlo simulations treat elec-
trons in 3 dimensions as far as their motion is concerned,
the Fermi kinetic energy is given by Eq. (1) above. The
change of total energy per unit length due to the Coulomb
interaction between the particles and the background
positive charge will be:

δW
(2D)
ed =

∫ R
0

dr2πr
es

πR2
es

1

2πε∞s
ln
( r
R

)
=

e2s2

πR2ε∞s

∫ R
0

dr r ln
( r
R

)
= −κ s2 , (19)

while the jellium-jellium repulsive interaction gives a con-
tribution

δW
(2D)
dd = −

( es

πR2

)2 ∫ R
0

dr 2πr πr2
1

2πε∞s
ln
( r
R

)
=

1

4
κ s2 , (20)

so that the change of total energy per electron due to the
Coulomb interaction is

δW
(2D)
C = −3

4
κ s . (21)

By requiring
s =

6

5
r−10 , (22)

and

∆x =

(
8π

5

)1/2
r0 ≈ 2.242 r0 , (23)

we recover the result of Eq. (5). In an actual simula-
tion the mesh employed to discretize the Poisson equa-
tion obviously cannot reproduce the ‘spherical’ arrange-
ment consider so far. When employing a uniform square
mesh, the conditions given by Eqns. (23) and (22) may
be satisfied approximately by chosing a mesh spacing
∆x ∼ n−1/3 and a ‘statistical weight’ s ∼ n1/3.
Note one major difference between two models: In the

three-dimensional gas we have assumed pointlike donors
embedded in a uniform distribution of electrons. On the
other hand, the actual two-dimensional simulation em-
beds line-charges into the positive background jellium.
Even if the expressions for the total energy, Eqns. (5) and
(21) are made to agree numerically with the proper choice
of s and ∆x, a crucial difference remains: When evalu-
ating the shift of the chemical potential, as in Eq. (11),
we must keep in mind that in the two-dimensional simu-

lation the energy δW
(2D)
C is now the energy per electron,

so that Eq. (12) is replaced by:

δµ =
∂

∂N
(NδW

(2D)
C ) = −1.935 κ n1/3 . (24)

In order to relate the results of the present discussion to
the band-gap narrowing effect, we must account for the
energy change of the minority holes due to their interac-
tions with the electrons and the donors. Often, when sim-
ulating electron transport with the MC algorithm, hole
transport is treated by a simpler drift-diffusion approx-
imation which regards holes as a fluid. In our homoge-
neous case, the Coulomb energy of this uniform jellium

of holes δW
(2D)
C,h , is due to the sum of the repulsive hole-

jellium interaction, δW
(2D)
hd , which is numerically equal

to the jellium-jellium term δW
(2D)
dd , and the attractive

electron-hole term, δW
(2D)
he , which is numerically equal

to δW
(2D)
ed . Thus, the Coulomb energy per minority hole

will be exactly of the form given by Eq (21). At the low
temperatures at which both the electron and the hole
gases are degenerate, the shift of the hole chemical po-
tential will be

δµh =
∂

∂Nh
(NhδW

(2D)
C,h ) = −1.451 κ n1/3 , (25)

and the total narrowing of the band-gap will be given by

δEG = δµ + δµh = −3.386 κ n1/3 . (26)

At higher temperatures in non-degenerate situations, in-
stead,

δEG = δE
(2D)
C + δE

(2D)
C,h = −2.902 κ n1/3 . (27)

If we now allow for the thermal agitation of the point-
like electrons, once again we must consider how much of
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the total energy δW
(2D)
C is converted into kinetic energy.

In this case, however, a simple use of the virial theorem
is less than obvious. Indeed, quantitatively more precise
statements can be made only by analyzing the algorithm
employed to assign the charge of the pointlike superpar-
ticles to the mesh nodes, and on the way the forces act-
ing on the particles are interpolated from the mesh to
the position of the superparticles, and by the way the
Coulomb interactions are handled in practice. Typical
complications we have in mind are the role played by
the electron-phonon interaction and by the short-range
electron-electron and electron-impurity interactions. The
resulting picture is so intricate that a validation of the al-
gorithm is best left to computer experiments. Numerical
results will be presented in the next section.
One final comment concerns the role played by

electron-phonon collisions. As the Coulomb energy,
Eq. (5), is converted into kinetic energy, Eq. (9), the elec-
tron phonon-interaction will attempt to damp this addi-
tional kinetic energy. Instead of being accelerated by the
potential fluctuations associated to the Coulomb inter-
actions, electrons will scatter and lose energy (in inelas-
tic electron-phonon collisions) and be redirected in ran-
domized directions. Thus, we expect that as long as the
potential fluctuation responsible for the Coulomb heat-
ing are of sufficiently low amplitude and at a sufficiently
low frequency, the Coulomb kinetic energy will not reach
the value expected from Eq. (9). This is a restatement
of the well-known collisional damping of plasma oscilla-

tions. Indeed, a fraction n′/(3n) ≈ 0.018 r2/3s of the elec-
tronic degrees of freedom of the 3n degrees of freedom
of the electron gas are associated with plasma collective
modes20, which are known to be damped whenever their
frequency ωP = [e2n/(mP ε

∞
s )]

1/2 is lower than the
momentum relaxation time, τm. (In the expression for
the plasma frequency we have used an effective mass mP
which, in an isotropic and nonparabolic band structure,
will be the conductivity effective mass averaged over the
entire electron distribution). Heuristically, we may de-
scribe this effect by damping the kinetic energy (9) as
follows:

δK
(ep)
C ≈ 1.451

e2n1/3

4πε∞s

1

[1 + 1/(ωP τm)2]1/2
. (28)

III. 2D MC/POISSON SIMULATION OF THE
HOMOGENEOUS ELECTRON GAS

In order to establish how well 2D semiclassical sim-
ulations can reproduce the expected behavior described
above, in this section we present results from semiclas-
sical 2D Monte Carlo/Poisson simulations of a homoge-
neous electron gas. We show that the model-system be-
haves in a sufficiently accurate way, being able to repro-
duce the expected change in kinetic energy and band-gap
narrowing effects, and showing the correct dielectric re-
sponse. In addition, the potential exhibits the plasma os-
cillations of approximately the correct amplitude at the
expected frequency.

We have simulated a homogeneous gas of electrons in
Si at the dopant and electron concentrations of 1019,
3×1019, 6×1019, and 1020 cm−3 using the self-consistent
Monte Carlo/Poisson algorithm described elsewhere8.
We have employed a square mesh of uniform spacing
∆x = ∆y = n−1/3 and a statistical weight s = n1/3,
consistently with the discussion of Sec. II C. At the low-
est density (and perhaps also at n = 3×1019 cm−3), the
validity of the Debye-Hückel theory in the nondegener-
ate limit would suggest instead ∆x = ∆y ∼ 2β−1s , and
s ≈ (1/2)βs. However, at these low densities Coulomb
effects are small anyway and we shall accept the slight
underestimation of δKC implied by the former choice.
At higher densities, as we have noted elsewhere8, there
are competing requirements for the selection of the mesh
spacing: First, we must approximate correctly δKC , as
just stated. Secondly, we must damp plasma oscilla-
tions at short wavelengths, by requiring ∆x ∼ q−1LD,
where qLD is the Landau-damping parameter defined
by E0(qLD + kF ) = h̄ωP + EF . Finally, we must
avoid double-counting the mutual Coulomb interactions
at short-range (treated as MC scattering processes) and
at long range (handled by the self-consistency between
the MC scheme and the Poisson solver), by now requiring
∆x ∼ β−1s . Thus, we have reached the conclusion that a
good compromise among these requirements is obtained
when setting ∆x ≈ 2β−1s in the nondegenerate situations,
and ∆x ≈ q−1LD in degenerate cases

8. It is intriguing that
for Si in the range n > 3× 1019 cm−3, the three charac-
teristic lengths associated with the requirements above,
respectively r0, q

−1
LD, and 2β

−1
s , are numerically very sim-

ilar: For example, at 300 K, for n = 1020 cm−3, q−1LD ≈
1.27 nm, 2β−1s ≈ 1.32 nm, while r0 ≈ 1.33 nm, so that,
for all practical purposes, for electrons in Si and at the
densities where Coulomb effects are important, the ‘com-
promise’ actually amounts to a satisfactory simultaneous
fullfillment of the three requirements. Finally, the use
of ∆x = n−1/3 instead of any of the other length-scales
is dictated by the attempt to approximate a spherical
3D geometry with a square 2D mesh. ‘Small’ factors of
‘2’ and ‘π’, definitely important when cubed, cannot be
resolved heuristically. As we said above, the results of
computer simulations are our only guide at this level of
precision.
We must comment about the model chosen to treat

the short-range interactions among electrons and be-
tween electrons and ionized impurities. We have already
remarked8 that Coulomb interactions at distances shorter
than the mesh spacing are suppressed by the numerical
coupling between the MC algorithm and the solution of
Poisson equation on the mesh. Therefore, the short-range
electron-electron and electron-impurity collisions have to
be treated as additional scattering processes in the MC
model. In the context of a homogeneous electron gas at
steady-state the short-range electron-electron scattering
is not expected to affect the results: Energy and momen-
tum are simply re-distributed among the superparticles.
The effect of this scattering process should manifest itself
as a reduced relaxation time towards equilibrium. There-
fore, the choice of the particular electron-electron scat-
tering model, here taken to be given by antisymmetrized
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Coulomb scattering screened by the dynamic dielectric
function5, is not critical, since the system is already at
equilibrium . On the contrary, the choice of the electron-
impurity scattering model is more troublesome. Note
that we are forced to change abruptly the physical pic-
ture, reverting now to pointlike donors embedded in a
plane-wave representation of the electrons. In this model,
a statically-screened Coulomb potential (Yukawa-like) is
usually employed to compute the electron-impurity scat-
tering rate in the Born approximation. This is commonly
known as the Brooks-Herring (BH) model21, which leads
to a matrix element

M (BH)(k′,k) =
e2

ε∞s

1

q2 + β2s
, (29)

with q = |k − k′|, (possibly replacing βs with a
momentum-dependent expression βs(q) = βsG(q) given
by Eq. (46) below, as in Ref. 5) for an electron transi-
tion from an intial state at wave vector k to a final wave
vector k′. For a dispersion described by ellipsoidal (with
masses mt and ml along the principal axes of the ellip-
soids) and nonparabolic (with nonparabolicity parameter
α) equi-energy surfaces, the scattering rate for an elec-
tron of wave vector k is:

1

τ (BH)(k)
=

NDγ(k)e
4

23/2πε∞s 2m
1/2
d E2β

1 − 2 α E0(k)

1 + 4γ(k)/Eβ
, (30)

where γ(k) = (h̄2/2)(k2t /mt + k2l /ml) is the parabolic
dispersion, kt and kl being the components of the k-
vector along the transverse and longitudinal axes of the
ellipsoid, respectively, md = (mlm

2
t )
1/3 is the density-of-

states effective mass, Eβ = h̄2β2s/(2md), and ND is the
concentration of ionized impurities. In the nondegenerate
limit this is indeed the appropriate model. But at higher
densities, the proper interaction potential to consider is
the bare (i.e., unscreened) Coulomb potential truncated
at the average separation r0 (or n

−1/3 for square meshes).
This is the well-known Conwell-Weisskopf (CW) model22

whose matrix element will be23:

M (CW )(k′,k) =
e2

ε∞s

1− cos(r0q)
q2

, (31)

which, for ellipsoidal, nonparabolic bands, results in the
scattering rate

1

τ (CW )(k)
=

3mde
4

(2πε∞s )2h̄
3 I(2kr0) , (32)

having recalled that NDr
3
0 = 3/(4π). The function I(x)

is defined by:

I(x) = 1

x

∫ x
xy

dt
(1 − cos t)3

t3
, (33)

where in the lower integration limit y = (E/Er)/[1 +
(E/Er)

2]1/2 with Er = e2/(8πε∞s r0). This results from
truncating the impact parameter to a maximum value
r0. A much smaller momentum relaxation time is ex-
pected from the BH model. This will enter Eq. (28) and
reduce the kinetic energy. Therefore, in order to avoid

this unphysical damping (caused by incorrectly double-
counting the electron-donor interaction), the BH model
should be used only in nondegenerate situations, while
the CW model, while far from prefect, is preferable at
high donor densities.
We have considered regions covered by a 100×100-

mesh, which resulted in the simulation of transport of
about 10,000 ‘superparticles’. In order to ensure an ac-
curate integration of the equations of motion during the
free flights between collisions and an accurate resolution
of the plasma oscillations , we have employed very small
time steps (10−17 s) for the Runge-Kutta integration in
free-flight, for the interval between successive solutions of
the Poisson equations, and for the time interval between
successive checks for scattering.8

In order to assign boundary conditions for the numeri-
cal Poisson solver and to mimic Ohmic contacts, our com-
puter program requires the definition of a ‘contact’ spec-
ified by the value of the electrostatic potential, φc, and
the carrier distribution in momentum space. Conven-
tional equilibrium boundary conditions are chosen. Thus,
the contacts will absorb – by removing them – particles
‘hitting’ them, while whenever the requirement of charge
neutrality in the mesh-elements next to the contacts asks
for the addition of negative charge, the contacts will in-
ject superparticles with energy distributed according to
an unperturbed Fermi-Dirac distribution at the lattice
temperature and with Fermi energy µ0 fixed by the con-
dition Eq. (2) with µ = µ0 + eφc. A similar distribu-
tion is assumed at the beginning of the simulation. It
follows that these boundary and initial conditions effec-
tively amount to an initial condition for the total energy
of the system, now described by a grand canonical distri-
bution: If we set the zero of total energy at the chemical
potential of the particle reservoir (i.e., µ = 0), the kinetic
energy of the superparticles will be simply KF , their po-
tential energy set by the bottom of the conduction band,

E
(0)
CB = −µ0, and so the total energy per electron will be−µ0+KF . In absence of electron-phonon scattering, the

total energy is conserved. Thus, as the electrons acquire
the Coulomb kinetic energy δKC , the potential energy
must change by an opposite amount. It is convenient
to ignore, for the time being, the renormalization of the
electron dispersion caused by the Coulomb interactions,
which is related to the fluctuations of the electrostatic
potential discussed below in Sec. III B. So, obviously, in
this approximation, also made by Mahan10, the bottom
of the conduction band must shift down by the amount
δECB = −δKC . (In the simulations discussed here the
contact was defined as a very short line covering only
2 mesh elements at the center of one side of the square
semiconductor region.) Indeed, in all cases we found that
the time-averaged total energy was ‘almost’ conserved,
phonon-losses causing the main deviation from ideality,
so that, if renormalization effects were really negligible,
δECB ∼ −δKC . The drop δWC = −δKC in total energy
per particle, expected from the preceeding discussions,
would require δECB = −2 δKC , but cannot be seen by
virtue of the initial conditions we have enforced. Dif-
ferently stated, instead of placing particles at random
positions, we should have ‘closed’ the system (described,
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in this case, not by a grand canonical but by a canonical
distribution) and should have chosen the lowest energy
configuration corresponding to superparticles distributed
at the sites of the regular square lattice discussed above.
The extra potential energy assigned by our initial condi-
tions and by our choice of an open system has to remain
in the system, if energy is to be conserved.
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FIG. 1. (a): Kinetic-energy shift δKC calculated from
Eq. (9) (solid line), total kinetic energy KF + δKC calculated
from Eqns. (9) and (28) (dashed line), and total kinetic en-
ergy obtained from simulations including the short-range elec-
tron-impurity scattering with the Conwell-Weisskopf (CW,
dots) or Brooks-Herring (BH, circles) models. The result at
the highest electron density has been extracted from the simu-
lation of the source and drain regions of the devices described
in Sec. IV. (b): Negative of the bandgap narrowing expected
from Eqns. (26) (solid line labeled ‘low-T’) and (27) (solid line
labeled ‘high-T’), from Mahan’s theory (Ref. 10, dashed line),
and experimental data for the ‘apparent electrical gap’ (open
symbols) and optical gap (solid symbols) from Refs. 24–26.
Note that the agreement between experimental electrical data
and our model is actually an accidental result, as explained
in the text.

A. Kinetic energy and band-gap narrowing

Figure 1 shows the results of our simulations. In
the top panel, (a), the solid line indicates the density
dependence of the additional kinetic energy δKC due
to Coulomb effects evaluated from Eq. (9), the dashed

line the total kinetic energy, KF + δK
(ep)
C , with δK

(ep)
C

now corrected for collisional damping, Eq. (28) with
τm ≈ 10−14 s. The dots are the numerical results ob-
tained by accounting for short-range electron-impurity
scattering in the Conwell-Weisskopf approximation, the
open circles using the Brooks-Herring model. As ex-
pected, the BH model behaves as an additional damping
term, although the effect is not very large.
The solid line in Fig. 1(b) shows the negative of the

band-gap narrowing δEG, evaluated from Eqns. (26) and
(27). It is interesting to compare this result with exper-
imental data relative to the band-gap narrowing effect.
We show with open symbols data relative to the ‘appar-
ent electrical gap’, with solid symbols data relative to
what is known as the ‘optical gap’. The data have been
taken from the collections of Ref. 24 (open diamond and
optical data), Ref. 25 (open squares) and Ref. 26 (cir-
cles). The theoretical result of Mahan10 is also indicated
by the dashed line. Note that this is a typical example
of a better theory (Mahan’s) yielding worse agreement
with data than a worse theory (ours). The agreement
between the experimental data for the apparent electri-
cal gap and our value from Eqns. (26) and (27) is indeed
the result of shear luck: The difference between Eq. (24)
and Eq. (12) is indeed crucial and is simply the result
of having switched the roles of point-like and jellium-like
charge between the electrons and the donors. In addi-
tion, quantum corrections are significant in the scale of
Fig. 1. From a shamelessly practical perspective, though,
we seem to be able to account in a quantitatively correct
way for the all-important bandgap-narrowing effect.

B. Potential fluctuations and dielectric response

So far we have presented only global energetic con-
siderations giving information on temporal, spatial, and
ensemble averaged energy of the system, as in Eqns. (5),
(8), and (9). However, as stated above, degeneracy and
collisions induce a thermal agitation of the electrons in
the gas, which, in turn, causes the potential to fluctuate.
These dynamic and spatially-varying phenomena are also
correlated to the momentum distribution of the electrons.
Fluctuations of the electron density and the self-

consistently associated fluctuations of the potential
(which are induced by and also induce the density-
fuctuations) are eigen-modes of the system. Their tem-
poral behavior is derived from their dispersion ωq which
is set by the vanishing of the (macroscopic) electric dis-
placement field, and so of the dielectric function (i.e.,
εs(q, ωq) = 0). In the long-wavelength limit, the den-
sity and potential fluctuations oscillate at the plasma
frequency, ωP = [e2n/(mP ε

∞
s )]

1/2. As far as their
spatial dependence is concerned, Appendix A presents
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the canonical decomposition of the system into these col-
lective degrees of freedom (plasmons) of various wave-
lengths, also leading to their quantization. From these re-
sults, as well as from additional semiclassical arguments,
we can derive qualitative estimates for the expected am-
plitude of these fluctuations. From the canonical quan-
tization of Appendix A, the root-mean-square (rms) am-
plitude | φq | of the field associated to plasmons of mode
q is:

| φq | = | aq |
q

=

(
h̄ωP

2ε∞s

)1/2
1

q

√
1 + 2nq . (34)

Accounting for all modes up to the cut-off wave vector qc,
separating long-wavelength collective modes from short-
wavelength single-particle excitations20, we get for the
total amplitude:

< φ >QM =

{∫
q<qc

dq

(2π)3
| φq |2

}1/2
=

(
h̄ωP qc

4ε∞s π2

)1/2 √
1 + 2nP , (35)

having assumed dispersionless plasmons (i.e., ωq = ωP ).
Semiclassically, as in the quantum case, the potential

has the form

φq(r, t) ≈ a

q
sin(q · r− ωP t) . (36)

1018 1019 1020 1021
101

102

103

2

3

4

5
6
7
8
9

2

3

4

5
6
7
8
9

semiclassical

quantum

300 K
77 K
simulation

ELECTRON DENSITY (cm–3)

<φ
2 >1/

2  (
m

eV
)

FIG. 2. Root-mean-square amplitude of the (plasma) fluc-
tuations of the potential as a function of the density of
a homogeneous electron gas calculated theoretically quan-
tum-mechanically from Eq. (35) or semiclassically from
Eq. (41), at 300 K (solid lines) and 77 K (dashed lines).
The symbols are the results of self-consistent two-dimensional
semiclassical Monte Carlo/Poisson simulations using mesh
spacing, number of superparticles, and time steps optimized
to yield the ‘correct’ results.
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FIG. 3. (a): Probability distribution for the potential due
to the space-dependent fluctuations caused by the Coulomb
interactions at 300 K. The solid lines are obtained from
the two-dimensional self-consistent MC/Poisson simulations,
while the dashed line is the empirical Gaussian fit from
Eq. (42). (b): Power spectrum |φ(q = 0, ω)|2 of the
time-dependent fluctuations of the space-averaged potential,
showing that the spatial average of the potential oscillates
at the plasma frequency. The arrows indicated the expected
positions of the peaks. A small red-shift is caused by non-
parabolicity of the band-structure, resulting in a heavier con-
ductivity mass.

The time-averaged electrostatic (self)energy Wq over a
volume Ω associated with mode q will be:

< Wq > =
1

2
ε∞s

〈∫
Ω

dr a2 sin2(q · r− ωP t)

〉
=

1

4
Ω ε∞s a2 . (37)

As in Eq. (35), accounting for all modes up the Debye
wave vector βs, which is the semiclassical cut-off for Lan-
dau damping, the total energy of all modes will be:

W =

∫
q<βs

dq

(2π)3
< Wq > =

ε∞s a2Ω
8π2

β3s
3

. (38)
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For harmonic oscillators, the time-averaged kinetic en-
ergy equals the time-averaged electrostatic energy. Thus.
Eq. (38) must be equal to the kinetic energy δKC (per
particle) given by Eq. (9), multiplied by the total number
of particles in a volume Ω:

W = n Ω δKC . (39)

This implies

a2 = 1.451
6πe2n4/3

ε∞s 2β3s
, (40)

so that the total amplitude of the potential fluctuations
will be

< φ >CL =

{∫
q<βs

dq

(2π)3
| φq |2

}1/2
=

(
1.451× 3

π

)1/2
e n2/3

ε∞s βs
. (41)

The lines in Fig. 2 shows the quantum-mechanical,
Eq. (35), and semiclassical, Eq. (41), rms amplitudes
of the potential fluctuations (or of the ‘plasmon field’)
at 300 K and 77 K. We have chosen qc ≈ βs also for
the evaluation of the quantum fluctuations. The quan-
tum mechanical fluctuations are weaker since, roughly
speaking, the electron wavefunctions spread over some
distance, unlike the point-like semiclassical picture, thus
reducing the spatial variation of the self-consistent field.
In order to compare these expectations with the results

of the simulations, we first show, in Fig. 3(a), the distri-
bution of the potential fluctuations, that is, the probabil-
ity S(φ) of finding the potential an amount δφ = φ− φ0
away from the global spatial and temporal average, φ0,
at any given time and location. Empirically, we find that
this fluctuation-distribution S can be approximated by
the Gaussian form:

S(φ) =
1

2π1/2η
exp

{
−
[
φ− φ0

η

]2}
. (42)

The magnitude of the variance, η/
√
2, of the distribution

S(φ) (i.e., the rms amplitude of the potential fluctua-
tions) compares favorably with the semiclassical theoret-
ical expectations, as shown by the symbols in Fig. 2 (See
note 27).
Figure 3(b) shows that the spatial average (that is,

the long-wavelength components) of the potential oscil-
lates in time at the plasma frequency, moving up and
down as the total charge is moved to the simulated region
from the contact and vice-versa, charge neutrality being
maintained only in a time-averaged way. Note that the
‘plasma peaks’ are broadened by collisions (with phonons
and impurities), the broadening increasing with density,
since the momentum relaxation time decreases with in-
creasing electron (i.e., plasma) energy. ‘Side bands’ at
frequencies lower than the bulk plasma frequency are
possibly due to the finite size of our simulation, since
the frequency of plasmons decreases at the boundaries
(Si-vacuum) of the simulated region.
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FIG. 4. (a): Frequency dependence of the long-wavelength
dielectric function obtained from the simulation (thin, noisy
lines) compared wiith the dielectric function of a damped
plasma, Eq. (44), (thick, smooth lines) at the two indicated
densities. (b): Wavelength dependence of the static dielec-
tric functions (thin lines) compared with the Thomas-Fermi
expression, Eq. (45) (thick solid lines) or with the more com-
mon approximation of setting G(q) = 1 in Eq. (45) (dashed
thick lines). Aliasing effects, visible as resonances, are caused
by the finite size of the simulated region and of the mesh
elements.

The relation between the potential and density fluctu-
ations permits an estimation of the (longitudinal) dielec-
tric function, ε(q, ω), via the dielectric susceptibility

χ(q, ω) = − e δn(q, ω)

q2 δφ(q, ω)
, (43)

as it follows from the fact that the charge fluctuations
are exclusively due to a polarization charge. This equa-
tion is valid at q small enough for mesh-size effects to be
negliglible (q < 2π/∆x where ∆x is the size of a mesh
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element) while also large enough to avoid artifacts due to

the finite size of the simulated region (q > 2π/(N
1/2
el ∆x),

where Nel is the total number of mesh-elements em-
ployed, ≈ 104 here). In Fig. 4(a) we show the frequency
depencence of the long-wavelength (q = 2π/(N

1/2
el ∆x))

limit of the magnitude of the dielectric function, labeled
εs(0, ω) for convienence, compared with the dielectric re-
sponse of a classical electron gas damped by a ‘viscous’
term 1/τm:

εP (0, ω) = ε∞s

(
1 − ω2P

ω2 + iω/τm

)
. (44)

The ‘plasma zero’ (or the ‘plasmon pole’ of εs(q, ω)
−1)

is clearly reproduced by the simulation. Indeed, since
as seen in Fig. 3(b), most of the oscillations occur at
the plasma frequency, the simulations yield more reli-
able (that is, with better stochastic noise) results at the
plasma frequency. As we move away from ωP , our sam-
pling ability decreases, as reflected in the noise of the
data. Note that in the limit ω → 0 the results of the
simulation do not diverge, simply because we have eval-
uated ε at a small but nonzero q. In the bottom panel
of the same figure we compare the low-frequency limit
εs(q, 0) with the conventional self-consistent-field result

εSCF (q, 0) = ε∞s

(
1 +

β2s G(q)

q2

)
, (45)

where G(q) is the function:

G(q) =
1√

πξF−1/2(ηF )

∫ ∞
−∞

dx ln

∣∣∣∣x+ ξ

x− ξ

∣∣∣∣
× x

1 + exp(x2 − ηF )
, (46)
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FIG. 5. Electron energy distributions obtained from the
simulation of 10,000 electrons in homogeneous Si regions at
the donor concentrations indicated. The lines refer to dis-
tributions obtained ignoring the short-range electron-electron
interactions, the symbols those obtained by accounting for
this additional process. The straight lines are associated with
exponentials at the indicated ‘equivalent’ temperatures.

where ξ = (βh̄2q2)/(8md), ηF = µ0/(kBT ), and Fν is the
Fermi integral of order ν. Note that the simulations are
meaningful only for q smaller than the size of the mesh el-
ement ∆x ∼ β−1s . At even smaller distances short-range
collisions – treated with the theoretical screening length
Eq. (45) – take over. A small amount of underscreening is
observed, consistently with the larger thermal velocities
of the electrons, caused by Coulomb effects.

C. Kinetic energy distributions and statistical
mechanics

So far we have established that Coulomb interactions
yield an average kinetic energy per particle larger than
its ‘thermal’ value, Eq. (1). This extra kinetic energy,
δKC , can be estimated using the semiclassical modified
Hartree model, Eq. (9), since exchange and correlation
effects can be approximately ignored. In addition, δKC
can be well approximated by 2D MC/Poisson self consis-
tent simulations, when a proper choice of mesh size and
number of particles is made.
It is clear that this ‘extra’ kinetic energy must be re-

flected in a modification of the kinetic-energy distribution
of the electrons, as also implied by the presence of the
potential fluctuations S(φ) resulting from the plasma os-
cillations. Figure 5 shows indeed that the distribution in
kinetic energy of the electrons are consistent with larger
average kinetic energy, KF + δKC , as shown in the top
panel of Fig. 1. This extra kinetic energy appears as
a stronger high-energy tail of exponential form (that is,
‘thermalized’ by the strong interparticle energy-exchange
caused by the Coulomb interactions), but at a tempera-
ture higher than the lattice temperature, quantitatively
consistent with the magnitude of δKC .
These results beg the question: Are these high-energy

tails, with the obvious appearance of being at odds with
thermal equilibrium at the lattice temperature, compat-
ible with basic expectations from statistical mechanics
and thermodynamics? Should not the high-energy tails
of the equilibrium electron energy distributions always
exhibit a Boltzmann-like behavior ∼ exp[−K/(kBT )] at
large electron kinetic energy K?
We should first remark that an ‘equilibrium’ dis-

tribution in kinetic energy should not be expected
for several reasons: First, as stated by Landau
and Lifshitz28, for a classical system of total energy
W (p, q) = K(p) + U(q) (where p and q are the gen-
eralized canonical momenta and coordinates, K and
U the kinetic and potential energy, respectvely) the
(Gibbs) canonical probability distribution dwqp in phase
space, dwqp ∝ dpdq exp[−W (p, q)/(kBT )] yields the
probability-distribution of the momenta (by integrating
over the coordinates), dwp ∝ dp exp[−K(p)/(kBT )], only
in the case of classical particles, not for Fermions obey-
ing Fermi-Dirac statistics. In our simulations degeneracy
enters in several ways: Contacts inject electrons with a
Fermi-Dirac distribution, and the same statistics is used
to accept or reject collision processes according to the
occupation of the final state.30 Secondly, for Fermions
(non spin-polarized) at equilibrium at temperature T ,
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Landau29 has shown that the probability-distribution of
the single-particle momentum p, n(p), obeys the expected
Fermi-Dirac law

n(p) =
1

1 + exp{[ w(p)− µ ]/(kBT )} , (47)

provided the energy w(p) is interpreted as the energy of
a ‘quasi-particle’. Thus, w(p) is the amount by which the
total energy of the system changes when adding an exci-
tation of momentum p. For non-interacting electrons one
obviously has w(p) = E0(p/h̄), where E0(k) is the unper-
turbed dispersion in the conduction band. For interact-
ing particles w(p) is formally given by the solution of the
Dyson equation w(p) = E0(p)+Σ(p, w(p)/h̄), Σ(p, ω) be-
ing the self-energy resulting from all interactions. Only
after having renormalized the dispersion of the particles
one can recover the ‘free’ dynamics and the equilibrium
properties following from Eq. (47). A different behavior
should be expected for the undressed particles. For ex-
ample, notice that even at zero temperature the function
n(p) does not have to be of the form n(p) = θ(p − pF )
where pF is the momentum at the Fermi surface, valid
only for noninteracting Fermions. This counterintuitive
form has been discussed by Pines31. Detailed quantum
Monte Carlo simulations of the electron gas19,32,33 at
equilibrium at zero temperature have actually allowed
the numerical evaluation of the function n(p), typically
fitted by power-law tails of the asymptotic form p−8 for
p >> pF .
We can now see how the ‘apparently non-equilibrium’

distributions in kinetic energy shown in Fig. 5 emerge
from an equilibrium distribution function in total energy,
using Fig. 6 as a visual reference. Here we follow a heuris-
tic argument similar to the one employed by Kane34 to
calculate another contribution to the band-gap narrow-
ing of heavily-doped semiconductors, namely, the Gaus-
sian tails of the density of states in the gap induced by
the random spatial fluctuation of the potential caused by
the random positions of the dopants. We should keep
in mind that while in this case the potential fluctuations
are static, since they are due to the randomly distributed
dopants, in our case they are dynamic, since they are due
to the (self-consistent) random electronic motion, and
only self-consistent schemes, such as the simulations de-
scribed above, can provide a quantitatively correct pic-
ture. Therefore, the the simple picture we shall obtain
will only be ‘suggestive’ of the basic physics.
Let us describe the electron gas by a global equilib-

rium Fermi-Dirac distribution of the form (47), and con-
sider the time-averaged fluctuating potential described
by the distribution S(φ), centered around its space- and
time-averaged value φ0. Then, the distribution in kinetic
energy, n(K), can be obtained by convoluting the equi-
librium Fermi-Dirac distribution as a function of the total
energy w = K + φ with the fluctuating potential:

n(K) =

∫ ∞
−∞

dw

∫ ∞
−∞

dφ fFD(w)

×ρ0(w − φ) S(φ) δ(w − φ−K)

= ρ0(K)

∫ ∞
−∞

dw fFD(w) S(w −K) , (48)

where ρ0(K) is the density of states (DOS) at kinetic
energy K, here taken from empirical pseudopotential cal-
culation for Si, fFD(w) = {1+ exp[(w− µ)]/(kBT )}−1,
and the global Fermi potential µ must be determined
from the condition

n =

∫ ∞
0

dK n(K) =

∫ ∞
−∞

dw fFD(w) ρ(w) . (49)

The ‘effective’ (or ‘renormalized’) density of states ρ(w)
at the total energy w is defined as

ρ(w) =

∫ w
−∞

dφ S(φ) ρ0(w − φ) , (50)

where ρ0 is the unperturbed DOS. Let’s embrace the
Gaussian approximation Eq. (42) for S(φ). It is interest-
ing to see the qualitative features of the effective density
of states in the case of six parabolic valleys described by
a DOS effective mass md:

ρ0(K) = 6
(2md)

3/2

2π2h̄3
K1/2 . (51)
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FIG. 6. Schematic diagram illustrating graphically the ori-
gin of the Coulomb kinetic energy δKC and of the associated
high-energy tails. If the gas is assumed to reach a global equi-
librium population fFD(w) in total energy w = K +φ, shown
by the curve at right, the presence of potential fluctuations
cause electrons even at moderate total energies to populate
regions of high kinetic energy K. The dot represents an aver-
age thermal electron of total energy of just about the Fermi
level, which will contribute to the large kinetic-energy tails,
since it is located at a position where the fluctuating potential
energy takes a large negative value. The zero of the ordinate
scale taken as the reference energy is the Fermi level of the
electron gas. As explained in the text (see Eqns. (59) and
(60)) the Fermi energy µ is related to the equilibrium chemi-
cal potential of the reservoirs µ0 via µ0 = µ + µP , where µ is
the ‘single particle’ Fermi energy EF and µP originates from
the collective plasma oscillations. Also shown are the renor-
malized DOS, ρ, at right, compared to the unperturbed DOS
(solid curve at left, shifted dotted curve at right). Note the
shift δECB = −δKC , of the bottom of the conduction band,
as required by conservation of total energy, and the equality
of the chemical potentials of the nointeracting gas in the con-
tact, µ0, and of the interacting gas in the simulated region,
µ′.
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FIG. 7. Effective density of states calculated from Eq. 50
with the potential fluctuations shown in Fig. 3
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FIG. 8. Kinetic energy distribution calculated from poten-
tial fluctutations, Eq. (48). The dashed lines are Boltzmann
factors at the same ‘Coulomb’ temperatures shown in Fig. 5.

In this case, similarly to what found by Kane34,

ρ(w) = 6
(2md)

3/2

2π2h̄3
1

π1/2η
Γ

(
3

2

) (η
2

)3/4
× exp

(
− w2

2η2

)
D−3/2

(
−2

1/2w

η

)
, (52)

where the ‘parabolic cylinder function’ Dν(z) is defined
as35

Dν(z) =
exp(−z2/4)
Γ(−ν)

∫ ∞
0

dx e−zx−x
2/2 x−ν−1 , (53)

for ν < 0. At large positive energies (w >> η; w > 0),

ρ(w) → ρ0(w)

(
1 − η2

16w2

)
, (54)

that is, the DOS approaches the unperturbed DOS. At
large and negative energies (−w >> η; w < 0),

ρ(w) → 3m
3/2
d

4π2h̄3
η1/2

(
η

−w
)3/2

e−w
2/η2 , (55)

which exhibits a Gaussian tail in the gap of the semicon-
ductor. Figure 7 shows the resulting effective density of
states ρ(w) obtained using in Eq. (50) the fluctuations
shown in Fig. 3 and the unperturbed DOS ρ0(w) ob-
tained from the pseudopotential band-structure used in
our simulations. Fig. 8 shows the kinetic energy distri-
butions similarly obtained from Eq. (48). A comparison
with Fig. 5 shows a striking similarity. Particularly no-
ticeable are the high-energy tails described by the same
large effective temperature observed in the ‘nonthermal’
tails obtained from MC simulations. The main difference
is that the distributions of Fig. 8 are slightly ‘hotter’, be-
cause of the heuristic nature of our arguments (a dynamic
self-consistent convolution should replace the static con-
volution (48)) and due to the fact that we have ignored
electron-phonon collisions. We have already accounted
qualitatively for this phonon damping in Eq. (28). Differ-
ently stated, the ‘exact’ Fermi-Dirac global distribution
can only be obtained by employing the ‘real’ total energy
w(p) = E0(p)+φ+Σsr(p, w(p)/h̄), where Σsr(p, ω) is the
electron self-energy due to all short-range interactions
accounted for by the Monte Carlo algorithm, electron-
phonon and short-range Coulomb scattering among elec-
trons and between electrons and ionized donors. For large
p this does indeed correspond to quasiparticle excitations,
since for q > βs the effective DOS in Fig. 7 can be thought
of as extracted from a renormalized dispersion w(p) with
a positive effective mass (i.e., (∂2w(p)/∂p2) > 0). For
small p, instead, the dressed excitations are collective
modes. Finally, note that the average potential φ0, in the
absence of electron-phonon interactions, adjusts itself so
that the average shift of the potential energy < δU >
of the ensemble compensates for the additional kinetic
energy acquired by the system, that is

< δU > =
1

n

∫ ∞
−∞

dw fFD(w)

×
∫ w
−∞

dφ φ ρ0(w − φ) S(φ) = − δKC . (56)

This relation replaces the expression we have employed
in Sec. III, δECB = −δKC , when ignoring the renor-
malization of the electron dispersion associated with the
fluctuations of the potential. Loosely speaking, one may
identify < U > with the renormalized bottom of the con-
duction band. Since also the minority carriers (holes)
will see their potential energy lowered by an amount
< δUh >≈< δU >, the fluctuations induce a renormal-
ization of the band-gap consistent with the results we
have obtained above, Eq. (27) when ignoring renormal-
ization effects. An additional feature, not accounted for
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by the simple analysis of Sec. II C, is the presence of
quasi-Gaussian band-tailing.
Fig. 8 represents the main result of this section: It

shows that global thermodynamical equilibrium at the
lattice temperature does indeed produce the high-energy
tails observed in the electron distributions in kinetic en-
ergy. In a way, the kinetic-energy distributions shown in
Fig. 5 are misleading. In a homogeneous electron gas,
there are no electrons at the very high total energies
which one could infer from a cursory look at the figure.
The ‘hottest’ electrons are actually sitting in troughs of
the potential fluctuations, at total energies fully consis-
tent with thermal equilibrium. In the inhomogeneous sit-
uations of Si devices the situation is different, since the
interaction between global-equilibrium electrons in the
heavily-doped contacts and the off-equilibrium electrons
drifting in the channel gives raise to interesting effects,
as discussed below.
Several comments are in order. First, note that

the Fermi potential µ entering Eqns. (48) and (49) via
fFD(w) is not the chemical potential of the gas. Indeed,
the chemical potential µ′ is the change of the total free
energy of the system as we change the number of par-
ticles. As we add one particle, we change the total free
energy in two ways: We modify the single-particle total
kinetic energy, as in a non-interacting system, but we
also enhance the fluctuations of the potential. To see
how these two contributions arise, let us express the to-
tal energy Wtot of the system as Wtot = Ω < w >, where
the time- and ensemble-averaged average energy density
< w > is

< w > =

∫ +∞
−∞

dw w fFD(w)

∫ w
−∞

dφ ρ0(w − φ) S(φ) .

(57)

Similarly, the entropy density of the gas, < σ >, will be:

< σ > = − kB

∫ +∞
−∞

dw fFD(w) ln[fFD(w)]

×
∫ w
−∞

dφ ρ0(w − φ) S(φ) . (58)

The chemical potential of the gas is, by Eq. (10):

µ′ =
∂ < w >

∂n
− T

∂ < σ >

∂n
, (59)

at constant T and Ω. Now notice that < w > and < σ >
depend on the density n via the Fermi potential µ, as
in the usual case of non-interacting particles, and via
the potential fluctuations. Since [∂(< w > +T < σ >
)/∂µ]/(∂n/∂µ) = µ, (as it can be verified numerically
or analytically in the nondegenerate, µ/(kBT ) << −1,
or in the low-temperature, 1/(kBT )→∞ limits) we can
write µ′ as µ+ µP where:

µP =

∫ ∞
−∞

dw fFD(w)[ w + kBT ln fFD(w) ]

×
∫ w
−∞

dφ ρ0(w − φ)
∂S(φ)

∂n
. (60)

This term is a reflection of the fact that the energy of the
interacting system results not only from the sum of the
single-particle energy, but also from the energy of collec-
tive excitations. Stated differently, in a non-interacting
system at zero temperature the minimum energetic cost
of adding a particle is just the single-particle Fermi en-
ergy µ. But in a system of interacting particles, adding a
particle at the single-particle Fermi energy µ (that is, in
the lowest available empty state) will also change the en-
ergy of all of the other particles in the system via the
long-range forces among particles. Thus, µP may be
viewed as the chemical potential of the ’collective modes’.
Secondly, in the zero-temperature limit, assuming the

Gaussian fluctuations Eq. (42), we obtain

n(K) =
1

2
ρ0(K)

[
1− Φ

(
K − µ

2η

) ]
, (61)

(where Φ(x) = 2π−1/2
∫ x
0
e−t

2

dt) which for K >> η ex-
hibits a Gaussian high-energy tail:

n(K) → π1/2
( η
K

)
ρ0(K) e

−(K/η)2 . (62)

On the contrary, as anticipated above, particles obey-
ing Boltzmann statistics will not exhibit the same ‘hot’
tails: Consider Eq. (48), but assume for simplicity the
parabolic DOS, Eq. (51), approximate the function S
of Fig. 3 with the Gaussian (42), and substitute the
Fermi-Dirac distribution fFD with the Boltzmann fac-
tor fB(w) ∝ exp[−w/(kBT )]. Then for K >> µ:

n(K) → ρ0(K) e
µ/(kBT )+η

2/(2kBT )
2

e−K/(kBT ) , (63)

showing that indeed the high-K behavior is still
Boltzmann-like at the lattice temperature. This is con-
sistent with Landau and Lifshitz’ observation we have
mentioned above28 and with the fact that at low carrier
densities, when Boltzmann statistics is a good approxi-
mation, no Coulomb heating is observed.

IV. SIMULATION OF SMALL SILICON
MOSFETS

A. Qualitative picture

In the previous sections we have analized the behav-
ior of a homogeneous electron gas at high density. It is
now easy to understand how the electron gases present
in the heavily-doped source (S), drain (D), and gate
(G) regions of small Si MOSFETs affect the transport
properties of electrons in the channel: As discussed in
Sec. III B, the long-range Coulomb interactions in these
regions cause the potential to fluctuate. Fluctuations in
the source and drain diffusions obviously do not vanish
abruptly at the S/channel or D/channel n+−p junctions.
Rather, they penetrate into the lower-density channel.
Viewed from the channel, the density and potential fluc-
tuations in the S and D-regions appear as oscillating
dipoles. Thus we expect the fluctuations to decay rather
slowly (as a power-law) with distance from the S and D
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regions. In Fig. 9 we show an extreme situation: We
have simulated a high-density Si region (ND = n = 1020

cm−3), as in Sec. III, exemplifying the drain of a MOS-
FET, and placed it adjacent to a lower-density region
(ND = n = 1017 cm−3), representing the channel. The
addition of an oxide layer separating the two regions
mimics, instead, the effect of potential fluctuations ex-
tending from the heavily-doped gate into the channel.
The figure shows the rms amplitude of the potential fluc-
tuations along the n+ − n junction. The presence of an
oxide layer forbids the creation of rather large ‘dipoles’
as electrons in the n+ region cannot ‘spill over’ into the
n-region. Thicker oxides (10 vs 3 nm) damp the fluctu-
ations more effectively. By removing the insulator, we
allow electrons to oscillate across the junction, creating
larger dipoles. This results in large fluctuations, even
larger than the homogeneous n+ case, across the junc-
tion. In addition, we see that the fluctuations decay as a
function of distance z from the n+-region as z−s, where
the power s is between 1 and 2. In 3D, integrating the
1/z3 potential of many dipoles uniformly distributed in
−∞ < z < 0, we would expect s = 2. Purely in 2D,
we would expect s = 1, which indeed occurs at large dis-
tances away from the n+ region, as illustrated in Fig. 9.
The situation illustrated in Fig. 9 is ‘extreme’ in the

sense that the fluctuations of the surface potential of a
MOSFET are strongly ‘clamped’ by the boundary con-
ditions at the gate, so that the results of Fig. 9 largely
overemphasize our point. Nevertheless, potential fluctu-
ations caused by Coulomb effects in the S and D-regions
penetrate into the channel. Their main effect is to cause
a fast termalization of the electron distribution function.
Consider again an extreme case: For very short channels,
of length comparable to the electron mean free path in
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FIG. 9. Simulated rms amplitude of the potential fluctua-
tions in a n=−n junction, without (dashed line) an interven-
ing SiO2 layer, and with an insulating layer 3 nm (solid line)
and 10 nm-thick (dotted line). In the absence of the insulator,
oscillations of electrons from the n+ region across the junction
cause large dipoles responsible for large fluctuations. Viewed
from the n-region, the fluctuations decay approximately as
the field of an ensemble of dipoles.
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FIG. 10. Differential scattering rate at which an electron
in the channel with an inital energy Ein = 1 eV loses en-
ergy between h̄ω and h̄ω + d(h̄ω) by a Coulomb excita-
tion in the heavily-doped (1020 cm−3) drain of a Si MOS-
FET. The rate has been computed employing a spheri-
cal, parabolic dispersion with an isotropic electron effective
mass m∗ = 0.32m0, an electron temperature Te = 300 K
(see Eq. (2) of Hess et al.36) and using either the static,
long-wavelength Thomas-Fermi screening parameter βs (solid
line), or dynamic, wavelength-dependent screening in the
high-temperature limit (open squares). The solid squares
have been obtained by employing a cut-off q > βs to iso-
late the short-range contribution of the total Coulomb rate.
Note the dominant contribution of long-range interactions for
energy losses around the plasma energy h̄ωP .

absence of Coulomb interactions, we would expect bal-
listic transport. This would result in a very narrow en-
ergy distribution function along the channel, with width
controlled by the width of the electron distribution in
the source. Very strong thermalization effects due to the
channel/S and channel/D interactions would attempt to
drive the kinetic energy distribution towards an equilib-
rium with the non-thermal tails observed in the n+ re-
gions, illustrated in Fig. 5.
This semiclassical argument can be rephrased in

more conventional quantum-mechanical arguments. Re-
cently, Hess and co-workers36 have analyzed the electron-
electron interactions in the channel of a Si MOSFET
by decomposing the total scattering rate of an electron
of energy E, 1/τee(E), into its ‘spectral’ representation
d(h̄ω)/τ(E, h̄ω), representing the rate at which the elec-
tron scatters with any other electron while losing an
amount of energy between h̄ω and h̄ω + d(h̄ω). (A
similar decomposition relative to ‘absorption processes’
must also be considered in order to recover the total
scattering rate). When considering scattering with the
low-density gas present in the channel and using static,
long-wavelength screening, the rate 1/τee(E) is indeed
very small, as claimed by Hess et al.36. However, let us
consider the interaction between a hot electron in the
channel, of a typical initial energy E = Ein = 1eV, and
the electron gas in the drain. We plot in Fig. 10 the
differential emission rate, 1/τ(E, h̄ω), as calculated ac-
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cording to Eq. (2) (and plotted in Fig. 1) of Ref. 36.
The solid line shows the results of using Thomas-Fermi
screening, the open squares those obtained by using the
dynamic, wavelength-dependent dielectric function given
by Fetter and Walecka37, as also used in Ref. 5. Fi-
nally, the solid squares are obtained from the same model,
but restricting the integration over the variable y in
Eq. (2) of Ref. 36 to momentum-transfers q larger than
the Thomas-Fermi screening parameter βs in the drain.
This isolates the short-wavelength component of the in-
teraction. The main feature to notice is the huge effect
of dynamic screening: Very large emission rates occur for
energy transfer at the plasma energy of the drain, h̄ωP .
These obviously correspond to the emission of a plasmon
in the drain by the hot electron in the channel. These
are indeed long-range effects, active over a large frac-
tion of the channel of short devices, since the short-range
(short-wavelength, large momentum transfer) component
of the process (solid symbols) is two orders of magnitude
smaller for energy losses ≈ h̄ωP . Clearly, the physical
picture illustrated in Fig. 10 is fully equivalent to what
is implied by Fig. 9: Either figure shows the remark-
able strength of the long-range interaction between an
electron in the channel and the high-density gas in the
drain. A more stringent parallel between Figs. 9 and 10 is
drawn in Fig. 11. Here the total (emission+absorption)
electron-electron scattering rate is computed for two val-
ues of the intial electron energy by restricting the inte-
gration over momentum transfers q to increasingly larger
upper bounds qmax. Thus, the dependence of the scatter-
ing rate on qmax gives an indication of dependence of the
strength of the interaction on the distance 2π/qmax. For
small values of qmax, the scattering rate grows as q

s
max,

where 1 < s < 2, corresponding to a decay with distance
z going as z−s, as found in Fig. 9.
A comparison between Fig. 12 and Fig. 13 directly il-

lustrates the end result of these interactions. Figure 12,
adapted from Ref. 3, shows the kinetic-energy distribu-
tion of electrons along the channel of a relatively long
(effective channel length Leff ≈ 180 nm) Si-on-insulator
(SOI) MOSFET. At the chosen location, approximately
at the channel/drain junction, the potential is about 1
V below the Fermi energy of the source. Therefore, ‘bal-
listic’ electrons can acquire a maximum kinetic energy,
Kmax, of about 1eV. The solid line, obtained using sim-
ulations which suppress all inter-electronic Coulomb in-
teractions, shows three components: At energies of the
order of a few tens of eV one sees the thermal population
of electrons in the drain. At intermediate energies (0.25
< E < 1.0 eV), hot electrons in the channel are charac-
terized by a smaller slope (higher effective temperature),
determined by the field along the channel. Finally, the
distribution appears to be truncated at the applied bias,
exhibiting an exponential tail at higher energies. This
tail, dropping at the lattice temperature, has been the
subject of several investigations38–41, and we do not dis-
cuss it here. When all inter-electron Coulomb interac-
tions are included (symbols), the distribution exhibits a
significant thermalization. This is observed only in the
vicinity (relative to the channel length) of the channel-
drain junction and the magnitude of the effect is confined

to a relative size of 10−7 or so. When considering a de-
vice with a much smaller channel length (Leff ≈ 65 nm),
the situation changes dramatically. Figure 13 shows the
kinetic-energy distributions in a Si MOSFET at three
locations
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FIG. 11. Total electron-electron scattering rate computed
as in Fig. 10 for two values of intial electron energy but ac-
counting for both energy emission and absorption and restrict-
ing the integration to momentum transfers q smaller than a
maximum value qmax. The decay of the rate at large dis-
tance ∝ 1/qmax closely resembles the decay obtained from
semiclassical, 2D simulations as shown in Fig.9.
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FIG. 12. Computed distribution in kinetic energy of elec-
trons in a Si SOI MOSFET (Leff ∼ 180 nm) with a
source-drain bias of 1 V at a location along the channel for
which the maximum energy a ballistic carrier might acquire
is expected to be about 0.95 eV. The solid line has been
computed ignoring all Coulomb interactions and shows the
well-known ‘thermal’ tail above Kmax. The break at Kmax
disappears and the high-energy tail grows when accounting
for long- and short-range Coulomb interactions (dots).
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FIG. 13. Calculated electron energy distributions at three
locations along the 65 nm-long channel of a Si MOSFET. The
device is driven by a drain-to-source bias of 1.5 V, with 1.5 V
also applied to the gate across a 2.8 nm-thick oxide. Distribu-
tions are shown at two locations along the channel at which
the potential drops ∆V are 0.7 and 0.9 V, respectively, and at
a location deeper inside the drain implant. The peak doping
concentration in the drain is about 2.6× 1020 As atoms/cm3.

along the channel: As in Fig. 12 the distributions show
break-points at the energy corresponding the potential
drop from the source at that location (0.7, 0.9 and 1.5
V in the figure). But, unlike what is seen when neglect-
ing Coulomb effects, at energies above the break-point
the distributions inherit the ‘Coulomb temperature’ (see
Fig. 5) of the heavily-doped drain (ND = n ≈ 2.6× 1020
cm−3). Note how even at mid-channel, in this device
only 30 nm away from the drain and source, the distri-
bution (solid line) is affected at the 10−3 level. By plac-
ing carriers at high energies, the long-range S/channel
and D/channel Coulomb interactions do not remove mo-
mentum directly from electron gas, but indirectly enhance
momentum-dissipating process, mainly electron-phonon
collisions and impact ionizations. The G/channel inter-
actions, instead, can directly cause a transfer of momen-
tum from the electrons in the channel to those in the
gate. This ‘gate drag’ is also expected to depress the ef-
fective electron velocity in the channel. A quantitative
analysis of the importance of these effects is presented in
the next section.

B. Transconductance

Using our 2D, self-consistent Monte Carlo/Poisson
program8, we have simulated a set of n-channel MOS-
FETs. The ‘template’ device, described in Ref. 42, has
a metallurgical channel length, Lmet, of about 50 nm
(corresponding to an effective channel length, Leff of
≈ 65 nm), S and D peak doping concentrations of about
2.6 × 1020 As atoms/cm3, and an SiO2 gate insulator
of thickness tox ≈ 2.8 nm. This template-device has

been scaled to larger (Lmet ≈ 100 nm, tox = 5.6 nm)
and smaller dimensions, down to a (probably unrealis-
tic) 11.8 nm/0.7 nm device. While reducing the physical
dimensions (junction depth, position of the peak of the
retrograde substrate doping, oxide thickness, gate length)
according to conventional scaling1, we have also increased
the p-type substrate doping. The peak doping levels in
the S, D, and G regions, however, are already at the tech-
nological limit in the template device and have been kept
unchanged.
The transport model we have employed has been am-

ply described before. Simulations have been performed
either by accounting for quantization in the channel, as
in Ref. 43, or by treating all electrons according to a
bulk, 3D model. The major difference observed con-
cerns only the obvious difference in gate capacitance, and
so threshold voltage and transconductance. All results
given below either refer to simulations which account for
quantization effects, or, when a bulk 3D model (numer-
ically faster) was used, the transconductance has been
corrected for the different gate capacitance. Refs. 5 and
8 (Appendix A) describe the electron-phonon and short-
range Coulomb scattering models. We should add that
the discussion of Sec. II C has prompted us to employ the
‘conventional’ screened Brooks-Herring model to handle
scattering between electrons and ionized impurities only
in the low-density channel region, but the unscreened
Conwell-Weisskopf model in the high-density S, D, and
G regions. In addition, Ref. 43 describes transport in
inversion layers. As described in more detail in our com-
panion paper6, two major deviations from the model of
Ref. 43 should be noted: 1. Results from Ref. 44 have
prompted the use of different anisotropic intravalley de-
formation potentials for scattering with acoustic phonons
and also intervalley deformation potentials, now from
Ref. 46. The discouraging results of Ref. 43 regarding the
phonon-limited mobility are now much improved6,45. 2.
Short-range electron-electron scattering in inversion lay-
ers is now included improving on the model by Lee and
Galbraith47,48 by accounting for the anti-symmetrized
matrix element, dynamic multi-subband screening, and
the Green’s function for the Poisson equation appropri-
ate to the MOS system under study. As described in Ap-
pendix B, this accounts not only for polarization charges
at the interfaces, but also for screening by the near-by
gate. Details about the calculation of these processes is
given in Appendix C. This appendix also presents the
models used to account for the short-range interactions
between channel and gate electrons. Their implementa-
tion in the Monte Carlo program is described in Refs. 5
and 8. Finally, we have accounted for short-range scat-
tering between channel and gate electrons, but have ne-
glected scattering with remote ionized impurities in the
gate depletion layer, as discussed in Ref. 6. Scattering
with interface roughness, a scattering process whose nu-
merical implementation (as well as physical understand-
ing) still leaves much to be desired, has been treated
with the same formalism and parameters discussed in
Ref. 43 (with channel-quantization), or – when using a
bulk transport model in the channel – with an empirical
mixiture of specular/diffusive reflections at the Si-SiO2
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interface, with a 75% fraction of specular scattering. This
was found to provide the best agreement with both ex-
perimental data on the ‘template’ device and with the
‘less wrong’ 2D-model.
In all simulations the number of (super)particles and

the mesh spacing in the heavily-doped S, D, and G
regions has been chosen following the discussion in
Sec. II C. The poly-crystalline Si gate has been ap-
proximated by a region of bulk Si at the appropriate
doping. All short-range electron-electron processes have
been treated by calculating the scattering rates described
in Appendix C, but truncating the integrations over
the momentum-transfers q at short wavelengths, that is,
q > βs.
Finally, comparison has been made between ‘full

Coulomb’ simulations, ‘metal gate’ devices, and ‘no
Coulomb’ results. By ‘metal gate’ we mean simulations
performed by removing the Si gate from the simulation
region and placing the gate contact (that is, the constant-
potential boundary condition specifying the gate con-
tact) directly on the ‘upper’ surface of the SiO2 layer.
‘No Coulomb’ simulations have been performed by first
simulating the devices using a number of superparticles
much larger (by a factor of 10 or more) than dictated
by the discusion of Sec. II C. This already damps the
plasma oscillations almost completely. Having obtained
a steady-state result, the potential has been smoothened

101 1022 3 4 5 6 7 8 9 2 3 4 5
102

103

104

2

3

4

5
6
7
8
9

2

3

4

5
6
7
8
9 4.5nm–oxide

metal–gate
no Coulomb effects
metal–gate with poly–depletion
with full–Coulomb effects
high–ε

Mizuno 1996 (tox=4.0nm)
Momose 1996 (tox=1.5nm)
Sai–Halasz 1987 (tox=4.5nm)

METALLURGICAL CHANNEL LENGTH (nm)

g m
 (

S
/m

)

FIG. 14. Room temperature transconductance ob-
tained from two-dimensional Monte Carlo simulations
of n-MOSFETs scaled from a ‘nominal’ 50 nm chan-
nel-length/2.8 nm-thick oxide to smaller (11.8/0.7 nm) and
larger (100/5.6 nm) devices. Results obtained accounting
for Coulomb interactions with the S/D and G regions (dots,
‘full Coulomb’) are compared to results obtained by ignor-
ing the channel-gate interaction (open squares, ‘metal gate’),
and all long- and short-range Coulomb interaction (circles,
‘no Coulomb’). Results for a 23.5/1.4 nm device with a
high-dielectric-constant insulator (triangle), and simulation
results for 4.5 nm-oxide (open diamonds) devices are also
shown. The calculated results are no more than 10% accu-
rate, because of numerical noise and since gm is evaluated
from the difference in calculated drain current at G/S biases
of 1.0 V and 0.75 V. above threshold. Finally, comparison is
made with some published experimental data.

by taking a time average over a sufficiently long simula-
tion time (> 1 ps), and running the Monte Carlo sim-
ulation without both the short-range electron-electron
scattering processes and the self-consistent solution of
the Poisson equation. The transconductance, gm, has
been calculated by computing the drain current Ids at the
maximum value of drain-source bias, Vds = 1 V for two
values of gate bias, Vgs (= 0.75 and 1.0 V above thresh-
old), and taking the ‘numerical derivative’ ∆Ids/∆Vgs.
In all cases we have verified that this procedure yields a
value very close to the maximum transconductance.
Figure 14 presents our results: The computed

transconductance is plotted as a function of metallur-
gucal channel length of the devices. We show results ob-
tained with the ‘full Coulomb’ model (solid circles), with
the ‘metal gate’ devices (open squares) (thus separating
the effect of the S/channel and D/channel interactions
from the G/channel ‘drag’) and without any Coulomb
interactions (open circles): While for relatively large
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FIG. 15. Room temperature effective electron velocity,
gm/Cg, obtained from the transcondutance results shown
in Fig. 14. In (a) the dashed lines represent simple theo-
retical expectations in various limits: The long-device limit
(v = µVds/Leff ), the limit in which the performance is
limited by saturation velocity (vsat), and the ballistic limit
with velocity controlled by the Fermi velocity in the source
(v = vF ), as suggested by Datta et al.49.
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devices (Lmet ≥ 40 nm, tox ≥ 2.1 nm) Coulomb effects
appear to be small, in smaller devices they depress the
performance of the transistors by as much as a factor
of 2 or more at the shortest dimensions. We have also
performed simulations with a gate insulator having the
dielectric constant of Si (open triangle labeled ‘high-ε’).
Finally, note that since the ‘metal gate’ results benefit
from the absence of the potential drop in the gate deple-
tion layer, we have artificially rescaled the transconduc-
tance obtained in this case (inverted triangle) in order
to make a fair comparison with other results. We also
show our older simulation results50 (no channel/G inter-
actions) for devices having a 4.5 nm-thick oxide, as well
as some experimental data from Refs. 52 and 2.
While the results of Fig. 14 already show a clear

trend, the fact that we have scaled the channel length
while simultaneously reducing the oxide thickness (which
acts as an obvious transconductance booster) somewhat
hides the physical picture. Therefore, it is convenient to
plot the simulated ‘effective’ electron velocity, defined as
transconductance, gm, divided by gate capacitance, Cg.
Figure 15 shows this quantity as a function of device di-
mension, both in a log-log scale (a) and in a linear scale
(b). In Fig.15(a) we also show some of our ‘expectations’:
The dashed line represents the most naive expectations
for the electron velocity: In the conventional picture of
very long devices, the electron velocity is controlled by
the mobility and the longitudinal (source to drain) elec-
tric field. As the channel length shrinks, the velocity
increases linearly without limit. Clearly, velocity satura-
tion sets in, thus limiting this picture. However, account-
ing for velocity overshoot, one expects to see effective ve-
locities exceeding the saturated value, vsat. Ultimately,
since transport close to the source/channel junction con-
trols the device behavior, one may expect as an ‘ultimate
performance limit’, to see all electrons streaming at the
velocity they possess (the Fermi velocity in the source,
vF ) as they are injected into the channel.
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FIG. 16. Electron drift velocity along the channel of the
smallest of the devices considered in Fig. 15 obtained from
simulations perfomed at 300 K including all Coulomb interac-
tions (solid line labeled ‘Coulomb’), by suppressing the chan-
nel-gate interaction (dashed line labeled ‘Metal gate’), and by
suppressing all Coulomb interactions (dotted line).

A maximum velocity is obtained for a channel length
between about 40 nm and 23.5 nm. At the minimum
simulated dimensions (11.8 nm channel length, tox =
0.7 nm), the device is probably ‘unrealistic’ and semiclas-
sical transport is likely to be inapplicable. Yet, within the
theoretical and practical assumptions, its performance
lies well below any ‘ballistic limit’49. Coulomb interac-
tions depress the electron velocity by more than a factor
of 2, S/D-channel and G-channel interactions sharing the
blame almost equally51. More conventional scattering
mechanisms (surface-roughness and scattering with ac-
ceptors in the channel) are responsible for the remaining
performance degradation seen in the ‘no Coulomb’ re-
sults at lengths below 23.5 nm. While Fig. 15 shows the
‘effective velocity’ obtained from the simulated transcon-
ductance, perhaps an indirect measure of the physical
carrier velocity, these results are directly confirmed in
Fig. 16 which shows the ‘real’ electron velocity along the
channel of the smallest device. The velocity has been
obtained from the Monte Carlo simulations by consid-
ering the component of the electron velocity parallel to
the Si/SiO2 interface and taking its average, weighted by
the electron density, along the direction perpendicular
to the interface. Consistently with the results shown in
Fig. 15, both the peak velocity as well as the velocity in
the proximity of the source/channel junction – in whose
neighborhood the drain current is fixed – appears to be
strongly depressed in equal measure by channel/gate and
channel/source-channel/drain interactions.

C. Reliability

With the scaling of Si metal-oxide-semiconductor field-
effect-transistors (MOSFETs), and the associated reduc-
tion of the supply voltage, it was hoped that a signifi-
cant reduction of hot-electron degradation effects would
take place. These hopes have been proven unwarranted
both experimentally54,55 and theoretically39,3: Even in
relatively ‘large’ devices, effects caused by electrons at
energies above the maximum applied bias have been ob-
served and predicted, such as the presence of substrate
currents at source-to-drain biases below the Si band-
gap54 and of gate currents at biases below the Si-SiO2
barrier55. Short-range electron-electron interactions have
been identified as the cause of carriers at energies above
the supplied voltage via a redistribution of kinetic energy
among carriers.39,3 It is clear that long-range Coulomb
interactions and the induced high-energy tails in the ki-
netic energy distribution of electrons in the channel con-
stitute another reason why concerns regarding hot-carrier
reliability should not be alleviated by the smaller dimen-
sions and applied bias of scaled Si MOSFETs. Here we
concentrate on the ‘template’, 50 nm-long device of the
previous section. For this device we have performed four
different types of simulations: 1. ‘Full Coulomb’ simula-
tions, now employing the Monte Carlo algorithm to han-
dle both electron and hole transport (with the parameters
given in Ref. 56), and accounting fully for Coulomb ef-
fects. The use of a Monte Carlo model to treat hole trans-
port allows us to account also for the ‘impact-ionization
feedback’ process57. 2. A similar set of self-consistent
simulations, but now treating hole transport with a sim-
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pler drift-diffusion approximation and suppressing hole-
initiated impact ionization. This allows us to estimate
directly the role of the impact-ionization feedback pro-
cess. 3. Non self-consistent simulations using a Monte
Carlo scheme to treat electron and hole transport, as
in 1. above, but now employing a ‘frozen’ field (ob-
tained from a suitable time average of the results from
the self-consistent runs), and suppressing the short-range
Coulomb processes. 4. Finally, non self-consistent runs
with drift-diffusion holes.
Figure 17 shows the electron energy distributions – ob-

tained from the four simulation conditions just described
– at a gate-source and drain-source bias of 1.5 V and
at a lattice temperature of 300 K. The distributions have
been gathered over a region surrounding the surface chan-
nel/drain junction. The non self-consistent results show
the expected thermal fall-off at an energy given roughly
by the applied bias. The effect of the impact-ionization
feedback is clearly seen in this case. The introduction of
the Coulomb interactions results in the expected build-up
of high-energy tails at the temperature TC ≈ 2900K cor-
responding to the total kinetic energy (Fermi + Coulomb,
KF + δKC) at the large electron density (≈ 2.6 × 1020
cm−3) present in the drain region. Results of simulations
performed accounting for the long-range Coulomb inter-
actions (via the Poisson/Monte Carlo self-consistency),
but suppressing the short-range interparticle collisions,
show that the latter ones are not the dominant effect,
unlike what is found in devices with longer (>150nm)
channels. In any event, Coulomb interactions, short- and
long-range, dominate over the impact-ionization feed-
back in enhancing the high-energy tails of the electron
distributions58. The short-range interparticle collisions
have already been shown to be more important than
impact-ionization feedback59. Here we find that for very
small devices even more important are long-range collec-
tive modes excited in the drain and penetrating well into
the channel.
To further assess the importance of Coulomb effects,

we have employed the degradation data of Stathis and
DiMaria60 to estimate the generation of defects in the
oxide: During the Monte Carlo simulation, we have gath-
ered the energy distribution of electrons hitting the Si-
SiO2 interface and of those emerging into the gate after
tunneling across the gate insulator, as described in Ref. 5.
The probability of generating defects at either interface
was estimated using the model of Ref. 60 expressing the
generation rate as a function of electron kinetic energy
at either interface. An example of the results is shown in
Fig. 18: The rate at which interface states are generated
along the Si-SiO2 interface is shown to be significantly
higher, particularly at the drain-side of the channel, when
accounting for Coulomb effects.

V. CONCLUSIONS

We have shown that long-range Coulomb interactions
in aggressively scaled Si n-MOSFETs have a significant
impact on the performance and reliability of the devices.
Our results have been obtained using two-dimensional,

semiclassical self-consistent Monte Carlo/Poisson simula-
tons. We have argued that, when properly implemented,
these simulations can reproduce the semiclassical behav-
ior of a homogeneous electron gas: Coulomb energy, di-
electric response, band-gap narrowing, and amplitude of
the (plasma) potential fluctuations obtained from the
simulations compare favorably with theoretical expecta-
tions. Moreover, we have argued that quantum correc-
tions are relatively small, albeit not negligible.
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FIG. 17. Calculated electron energy distribution integrated
over a region close to the channel/drain junction of a 65
nm-long channel Si MOSFET. The ‘colder’ distributions have
been obtained from non self-consistent simulations neglecting
Coulomb interactions, while the ‘hotter’ distributions show
the effect of the (mainly long-range) Coulomb processes. The
small effect of impact-ionization feedback is also shown.
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FIG. 18. Generation rate of defects at the Si-SiO2 inter-
aface calculated using the data of Ref. 60. The results ob-
tained accounting for (long- and short-range) Coulomb inter-
actions are compared with those obtained ignoring Coulomb
effects.
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Moving to the highly inhomogeneous situations of MOS-
FETs, we have shown that the plasma-fluctuations
present in high-electron-density regions (source, drain,
and gate) penetrate into the channel of the device to
distances of the order of tens of nanometers. In short-
channel devices, this is a significant fraction of the entire
channel, so that transport is affected significantly: By
‘thermalizing’ the electron distribution to the elevated
S/D effective temperature over the entire length of the
channel, momentum dissipating processes are enhanced
by the interactions between the electrons in the channel
and those in the (close by) source and drain. Similarly,
plasma fluctuations in the gate strongly couple with the
channel for small thicknesses of the gate insulator and
trigger a transfer of momentum (and so velocity) from
the conduction electrons to the electrons in the gate. The
net result is that for devices shorter than about 40 nm
and oxides thinner than 2.5-3 nm the effective electron
velocity can be depressed by as much as a factor of 2. In
absolute terms, for all but the smallest dimensions con-
sidered, the transconductance of the devices continues to
improve as device length (and oxide thickness) shrinks,
but not at the pace expected when neglecting the long-
range Coulomb interactions. Finally, we have also shown
that hot-electron reliability is expected to be strongly in-
fluenced by Coulomb interactions.
Conceptually, the use of 2D Monte Carlo/Poisson

simulations allows the study of inhomogeneous, off-
equilibrium situations. Reservations remain about the
range of validity of these simulations: The ‘semiclassi-
cal’ nature of the simulations should render them suffi-
ciently accurate in the limit of strong injection and large
plasma excitations we have considered here. Concerns
about the use of two dimensional simulations should be
mitigated by the slow (power-law) spatial decay of the
fluctuations (seen in Fig. 9) and by the remarkable agree-
ment between the the results of Figs. 9 and 11. Ad-
ditional support to the conclusions reached here is pro-
vided by the results of the companion paper6. There,
results obtained using three-dimensional, quantum me-
chanical calculations are presented focussing only on the
role played by MOS interface-plasmons on reducing the
effective mobility of electrons in the channel of thin-oxide
structures. These calculations complement those pre-
sented here, since they are restricted only to the linear,
near-equilibrium, homogenous regime, but account for
the quantum-mechanical nature of the plasmons. The
qualitative agreement between the two sets of results con-
firms our major conclusions: The performace of scaled Si
devices should not be expected to improve at the pace
we have been witnessing during the past decades.
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APPENDIX A: CANONICAL QUANTIZATION
OF THE BULK PLASMON FIELD

In this appendix we describe the canonical quantiza-
tion procedure for plasmons in a homogeneous, bulk elec-
tron gas. We compare the resulting normalization of the
plasmon field with the result of simpler semiclassical en-
ergetic arguments.
Following Ngai and Economou61, the Lagrangian den-

sity of the electron gas can be written as:

L(r) = 1

2
n m π(r) · π(r) − 1

2
δρ(r) φ(r) , (A1)

where en = ρ is the uniform charge density, m the
electron mass, φ(r) is the potential, and π(r) is the
momentum-density

π(r) =
∂u(r)

∂t
. (A2)

The displacement field u(r) is related to the charge fluc-
tuations δρ(r) via

δρ(r)

ρ
= −∇ · u(r) . (A3)

Thus, Poisson equation can be written as:

∇2φ(r) = δρ(r)

ε
= −ρ

ε
∇ · u(r), (A4)

where ε is the permittivity. Using the Fourier decompo-
sitions

φ(r) =
∑
q

φq e
iq·r , (A5)

and

u(r) =
∑
q

uq e
iq·r , (A6)

Eq. (A4) implies

−
∑
q

q2φqe
iq·r = −iρ

ε

∑
q

q · uq eiq·r (A7)

Since plasmons are longitudinal oscillations, q·uq = quq,
so that φq = −iρuq/(εq). The kinetic energy can be
written as:

T =
1

2

∫
dr n m π(r) · π(r) = 1

2
n m

∑
q

u̇q · u̇−q ,

(A8)

where the dots indicate derivatives with respect to time.
The potential energy is

U =
1

2

∫
dr δρ(r)φ(r) = −1

2

e2n2

ε

∑
q

uq · u−q .

(A9)

Defining the canonical conjugate momentum
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πq =
∂L

∂u̇q
=

∂T

∂u̇q
= n m u̇−q , (A10)

the Hamiltonian becomes

H =
1

2

∑
q

{
1

enm
πq · π−q +

e2n2

ε
uq · u−q

}
.

(A11)

Quantization can be now performed imposing the canon-
ical commuation rules (CCR)

[ui,q, πj,q′ ] = ih̄ δij δqq′ . (A12)

Following a standard procedure, we rewrite the Hamilto-
nian as

H =
1

2

∑
q

[ PqP−q + QqQ−q ] , (A13)

having set:

Pq =
πq

(enm)1/2
, (A14)

Qq =

(
e2n2

ε

)1/2
uq . (A15)

Defining now:

c†q =
1

(2h̄ωP )1/2
(Q−q − iPq) , (A16)

cq =
1

(2h̄ωP )1/2
(Qq + iP−q) , (A17)

where we have defined the plasma frequency ωP =
[(en)/(εm)]1/2, the Hamiltonian Eq. (A11) becomes

H =
h̄ωP

2

∑
q

{
c†qcq + cqc

†
q

}
. (A18)

Using the definitions (A14)-(A17) and the CCR (A12),
the only nonvanishing commutator for the operators c†q
and cq is

[c†q, cq] = −
1

ωP

( en
εm

)1/2
= −1 . (A19)

This shows that the operators c†q and cq behave like rais-
ing (creation) and lowering (annihilation) operators, so
that the Hamiltonian Eq. (A18) becomes a collection of
harmonic oscillators

H = h̄ωP
∑
q

{
c†qcq +

1

2

}
, (A20)

while the displacement field and the potential can be ex-
pressed in terms of the creation and annihilation opera-
tors

uq =

(
h̄ωP ε

2e2n2

)1/2
(c†−q + cq) , (A21)

φq = − i
q

(
h̄ωP

2ε

)1/2
(c†−q + cq) . (A22)

The root-mean-square (rms) amplitude of the field associ-
ated with the Fock state | nq >= (nq! )−1/2 (c†q)nq | 0 >
(where | 0 > is the vacuum) containing nq plasmons
of wave vector q can be obtained from the expectation
value:

< nq | φ†−qφq | nq > =
h̄ωP

2ε

1

q2
(1 + 2nq) . (A23)

Equation (A23) is our final result: Setting nq = 0 above,
it shows that plasmon zero-point motion at wave vector
q is associated with a field of rms amplitude

| φq | =
(
h̄ωP

2ε

)1/2
1

q
. (A24)

Can we obtain this result without going through
the procedure of canonical quantization? Stern and
Ferrel62 have provided the following semiclassical argu-
ment, based on energetic considerations: Let us write the
magnitude of the plasmon field at wave vector q as

Eq,ω(r, t) = aq cos(q · r− ωP t) , (A25)

so that the electrostatic potential is

φq,ω(r, t) = − aq

q
sin(q · r− ωP t) . (A26)

For harmonic oscillators such as plasmons, the time-
averaged kinetic energy, < T >, is equal to the time-
averaged potential energy, < U >. Thus, the total en-
ergy, W , associated with the zero-point plasmon field
over a volume Ω, including its own self-energy (which ex-
plains the absence of the factor 1/2 in front of the integral
below), will be:

W = < T > + < U > = 2 < U >

= 2

〈∫
Ω

dr φ∗q,ω(r) ρq,ω(r)
〉
= ε | aq |2 Ω , (A27)

where ε must be understood to be ε∞ in our case, since
ρq,ω(r) is just a microscopic polarization charge, so that
only the background (i.e., valence) dielectric response
should be considered. Quantum mechanically, this en-
ergy must represent the zero-point plasmon energy within
the volume Ω, so that W = 1

2 h̄ωPΩ, which implies

| φq | = | aq |
q

=

(
h̄ωP

2ε

)1/2
1

q
, (A28)

in agreement with Eq. (A24).
Another example is given by plasmons at the interface

between a dielectric with permittivity ε1 for z < 0 and a
semiconductor with a model dielectric function ε2(ω) =
ε∞2 (1 − ω2P,2/ω

2) for z ≥ 0. The electrostatic potential
associated with an interface plasmon of frequency ωSP
has the form

φQ,ωSP (z,R, t) = aQ e−Q|z| cos(Q ·R− ωSP t) .

(A29)
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Here upper-case letters denote the two-dimensional vec-
tors on the plane of the insulator-semiconductor in-
terface, while z is the coordinate of the axis normal
to this plane. The continuity of the ‘in plane’ elec-
tric field and of the ‘normal’ displacement field re-
quires ε1 + ε2(ωSP ) = 0, which implies an interface
plasma frequency lower than its bulk value ωP,2, ωSP =

ωP,2/(1 + ε1/ε
∞
2 )
1/2. The total energy associated with

the field Eq. (A29) over an area A will be, as in (A27)
above,

W = | aQ |2 ε1 + ε∞2
Q

A . (A30)

Setting W = (1/2)h̄ωSPA, we have

| φQ | =
[

h̄ωSP

2(ε1 + ε∞2 )

]1/2
1

Q1/2
, (A31)

in agreement with the result obtained by Ferrel63.

APPENDIX B: GREEN’S FUNCTION FOR THE
MOS GEOMETRY

In this appendix we derive the Green’s function for the
Poisson equation in the MOS geometry described by a
medium of permittivity εg for z < 0 (gate), an insulator
with permittivity εi for 0 < z < t, and a semiconducting
substrate with εs for z > t. We consider first the ‘bare’
Green’s function, i.e. the case of constant (valence-
electron only) permittivities. Next, we shall consider
the Green’s function screened by bulk free (conduction)
electrons in the gate and substrate.
i) Bare Green’s function. We must solve the equation

d2G
(j)
Q (z, z′)
dz2

−Q2G
(j)
Q (z, z

′) = δ(z − z′) , (B1)

whereQ is the two-dimensional wave vector in the plane
of the interface, and j = g when the source is in the gate
(z′ < 0), j = s when the source is in the substrate

(z′ > t). The boundary conditions are:
G
(j)
Q (z = 0

−, z′) = G
(j)
Q (z = 0

+, z′)
G
(j)
Q (z = t−, z′) = G

(j)
Q (t = 0

+, z′)

ε∞g
dG

(j)

Q
(z=0−,z′)
dz = ε∞i

dG
(j)

Q
(z=0+,z′)
dz

ε∞i
dG

(j)

Q
(z=t−,z′)
dz

= ε∞s
dG

(j)

Q
(z=t+,z′)
dz

, (B2)

with the supplemental condition

dG
(j)
Q (z = z′−, z′)

dz
− dG

(j)
Q (z = z′+, z′)

dz
= − 1 , (B3)

expressing the presence of the delta-function at z = z′. We consider first the case of the source-term in the gate, that
is, z′ < 0, which applies to the case of the interaction between an electron in the channel (Si substrate) and one in the
gate. For convenience, let us look for a general solution expressed in the form:

G
(g)
Q (z, z′) = − 1

2Q
×

aQ e−Q|z−z

′| + bQ e−Q|z+z
′| (z < 0)

cQ eQ(z+z
′) + dQ e−Q(z−z

′) (0 ≤ z < t)

fQ e−Q(z−z
′) (z ≥ t)

. (B4)

Equation (B3) immediately implies aQ = 1, while the set of Eqns. (B2) become:
1 + bQ = cQ + dQ
cQ eQt + dQ e−Qt = fQ e−Qt

1− bQ =
ε∞i
ε∞g

(dQ − cQ)

cQ eQt − dQ e−Qt = − ε∞sε∞
i
fQ e−Qt

. (B5)

Solving this system and inserting the results into Eq. (B4) we find:

G
(g)
Q (z, z′) = − 1

2Q
×


e−Q|z

′−z| + HQ
CQ e

−Q|z′+z| (z < 0)
2ε∞g
CQ
[
(ε∞i − ε∞s )e−QteQ(z

′+z) + (ε∞i + ε∞s )eQteQ(z
′−z)
]
(0 ≤ z < t)

4ε∞g ε
∞
i

CQ eQteQ(z
′−z) (z ≥ t)

, (B6)

with

CQ = eQt(ε∞s + ε∞i )(ε
∞
g + ε∞i ) − e−Qt(ε∞s − ε∞i )(ε

∞
g − ε∞i ) , (B7)

and
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HQ = eQt(ε∞s + ε∞i )(ε
∞
g − ε∞i )− e−Qt(ε∞s − ε∞i )(ε

∞
g + ε∞i ) . (B8)

When the source term is in the substrate (z′ > t), the case of interest when dealing with short-range interactions
among electrons in the channel or with the dielectric response of the 2DEG, following the same procedure we find:

G
(s)
Q (z, z′) = − 1

2Q
×


4ε∞s ε

∞
i

CQ eQte−Q(z
′−z) (z < 0)

2ε∞s
CQ eQt

[
(ε∞i − ε∞g )eQ(z

′+z) + (ε∞i + ε∞g )eQ(z
′−z)
]
(0 ≤ z < t)

e−Q|z
′−z| + EQ

CQ e
2Qte−Q|z

′+z| (z ≥ t)

, (B9)

with

EQ = eQt(ε∞g + ε∞i )(ε
∞
s − ε∞i ) − e−Qt(ε∞s + ε∞i )(ε

∞
g − ε∞i ) . (B10)

ii) Screened Green’s function. We now consider the Green’s function screened by bulk free electrons in the gate
and in the substrate. Assuming their response is isotropic and homogeneous, the constant permittivities ε∞g and ε∞s
are replaced by ε∞g [1 + βg(q, ω)/q

2] and ε∞s [1 + βs(q, ω)/q
2], respectively, βj(q, ω) (for j = g, s) being the dynamic

and wavelength-dependent screening parameter in the random-phase-approximation (RPA). We can proceed in two

alternative ways. The first approach consists in recalling that eG
(j)
Q (z, z

′) exp[iQ·(R−R′)]/ε∞j , as derived above, is the
bare potential due to a charge e at (R′, z′). Proceeding as usual, we consider the potential due to the ‘external’ charge
eδ(2)(R−R′)δ(z − z′) plus the potential caused by the polarization charge induced by G(j)Q (z, z

′) exp[iQ · (R−R′)]
itself. Thus we derive for the Green’s function G̃

(j)
Q (z, z

′) screened by free electrons in region j′ (=g, s) the integral
equation:

G̃
(j)
Q (z, z

′) = G
(j)
Q (z, z

′) +
∑

qz ,j′,j′′
β2j′ (Qz, ω)

∫
Ωj′

dz′′
∫
Ωj′′

dz′′′ G(j
′)

Q (z, z′′) eiqz(z
′′−z′′′) G̃(j)Q (z

′′′, z′) , (B11)

where Ωj is the range of z associated with region j and Qz = (Q2 + q2z)
1/2. This integral equation is hard to solve

and may require the use of the Hartee approximation (that is, lowest-order in screening replacing G̃
(j)
Q (z

′′′, z′) with

G
(j)
Q (z

′′′, z′) inside the integral) and/or ignoring the frequency and wavelength dependence of the screening parameter
β2j (Qz, ω) (that is, by restricting the analysis to the Thomas-Fermi or Debye-Hückel limits). The former approximation
mistreats the small-Q region, where screening is strong, the latter the high-Q region. A preferable approach is to
solve – albeit with additional approximations – the fully-screened problem

∇r ·
[∫

dr′′ε(r, r′′) ∇r′′G̃(j)(r′′, r′)
]
= δ(3)(r− r′) . (B12)

Let us write:

G̃(j)(r, r′) =
∑
Q

eiQ·(R−R
′) G̃

(j)
Q (z, z

′) , (B13)

(understanding that in the following we must take the real part of the complex exponentials) and let’s make the first
major approximation of neglecting higher-order terms expressing the effect of polarization charges in region j on the
potential in region j′ �= j. Thus, we retain self-consistent screening within each region j′, but assume linear screening
across regions. Then, for z ∈ Ωj′ and z′ ∈ Ωj :

∇r ·
[∫

dr′′ε(r, r′′) ∇r′′G̃(j)(r′′, r′)
]
=

∑
Qqz

∫
Ωj′

dz′′ eiQ·(R−R
′) eiqz(z−z

′′) εj′(Qz , ω)

[
−Q2G̃(j)Q (z′′, z′) + iqz

dG̃
(j)
Q (z

′′, z′)
dz′′

]
. (B14)

Solving Eq. (B12) amounts to setting the term within the square brackets in Eq. (B14) above equal to δjj′δ(z
′′ −

z′)/εj′(Qz , ω). In order to reduce the problem to a form similar to the unscreened case, we make the second major
approximation of replacing in Eq. (B14) the qz-dependence of εj′(Qz , ω) with an average value which, by analogy with
the following, we take to be ε̃j′(Q,ω) defined by Eqns. (B18) and (B20) below. Integrating by parts the second term
inside the integral over z′′ and noticing that the ‘interface’ terms cancel by the boundary conditions (B16) below,
thanks to our approximation, solving Eq. (B11) is now reduced to finding a solution of the equation

d2G̃
(j)
Q (z, z

′)
dz2

−Q2G̃
(j)
Q (z, z

′) =
1

ε̃j(Q,ω)
δ(z − z′) , (B15)
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which is identical to Eq. (B1) with the exception of an overall multiplicative factor 1/ε̃j(Q,ω) and, more important,
by the different boundary conditions, still expressing continuity across the interfaces of the parallel component of the
electric field and the normal component of the electric displacement field:

G̃
(j)
Q (z = 0−, z′) = G̃

(j)
Q (z = 0

+, z′)
G̃
(j)
Q (z = t−, z′) = G̃

(j)
Q (t = 0

+, z′)∑
qz

∫ 0
−∞ dz′′eiqz(z−z

′′) εg(Qz;ω)
dG̃

(j)

Q
(z′′,z′)
dz′′

∣∣∣∣
z→0−

= εi(ω)
dG̃

(j)

Q
(z=0+,z′)
dz

εi(ω)
dG̃

(j)

Q
(z=t−,z′)
dz

=
∑
qz

∫∞
t

dz′′eiqz(z−z
′′) εs(Qz;ω)

dG̃
(j)

Q
(z′′,z′)
dz′′

∣∣∣∣
z→t+

, (B16)

having assumed a frequency dependence also for the insulator dielectric function. Typically, this may be due to the TO
phonons in polar insulators, such as SiO2. The solution is formally very similar to Eq. (B6). When the source-term is
in the gate (z′ < 0), in analogy with the unscreened case we define the Green’s function as the solution of Eq. (B15),
but multiplied by the ‘constant’ ε̃j(Q,ω). Thus we have:

G̃
(g)
Q (z, z′) = − 1

2Q
×


e−Q|z

′−z| + H̃Q
C̃Q e

−Q|z′+z| (z < 0)

ε̃g(Q,ω)+ε̂g(Q,ω;z
′)

C̃Q

{
[εi(ω)− ε̃s(Q,ω)]e

−QteQ(z
′+z) + [εi(ω) + ε̃s(Q,ω)]e

QteQ(z
′−z)
}
(0 ≤ z < t)

2[ε̃g(Q,ω)+ε̂g(Q,ω;z
′)] εi(ω)

C̃Q eQteQ(z
′−z) (z ≥ t)

,

(B17)

where we have defined ‘effective’ (i.e., averaged over the normal direction) dielectric functions

ε̃j(Q,ω) =
1

π

∫ ∞
−∞

dqz
Q

Q2z
εj(Qz, ω) , (B18)

ε̂j(Q,ω; z
′) =

1

π

∫ ∞
−∞

dqz
2qze

Q|z′| sin(qz |z′|)−Q

Q2z
εj(Qz, ω) . (B19)

Note that in the long-wavelength limit (ε(q, ω) independent of q) these equations imply ε̃j(Q,ω), ε̂j(Q,ω; z
′)→ εj(ω).

On the contrary, in the Thomas-Fermi limit (βj(q;ω)→ constant), we have

ε̃j(Q,ω) , ε̂j(Q,ω) → εj(
√
2Q,ω) . (B20)

In order to simplify the evaluation of the qz-averaged dielectric functions ε̃j and ε̂j, we retain this approximations
even when going beyond the Thomas-Fermi limit, namely, when employing the Fetter-Walecka37 expression for the
dielectric functions.64

Similarly, when the source is in the substrate (z′ > t), we have in complete analogy with Eq. (B9):

G̃
(s)
Q (z, z′) = − 1

2Q
×


2[ε̃s(Q,ω)+ε̂s(Q,ω;z

′)]εi(ω)
CQ eQte−Q(z

′−z) (z < 0)

ε̃s(Q,ω)+ε̂s(Q,ω;z
′)

C̃Q eQt
{
[εi(ω)− ε̃g(Q,ω)] e

Q(z′+z) + [εi(ω) + ε̃g(Q,ω)]e
Q(z′−z)

}
(0 ≤ z < t)

e−Q|z
′−z| + ẼQ

C̃Q e
2Qte−Q|z

′+z| (z ≥ t)

,

(B21)

The quantities ẼQ H̃Q and C̃Q are identical to those defined in Eqns. (B7) and (B8), with the dielectric constants ε∞j
replaced by the ‘normal’ averages ε̃j(Q,ω). Note, finally, how electrons do screen the source term even when this is
on the other side of the insulator. This effect weakens, as expected, as the insulator thickness increases.

APPENDIX C: SHORT-RANGE
ELECTRON-ELECTRON INTERACTION

In this appendix we present the short-range electron-
electron scattering rates we have employed in our simu-
latons. Since transport in Si inversion layers is modeled
by representing low-energy electrons as quantized, 2D

carriers, and high-energy electrons as bulk particles, as
described in Ref. 43, the co-existence of 2D and 3D
model-electrons in the channel implies that we must con-
sider several types of ‘pairs’ of scattering particles: 2D
electrons in the channel scattering among themselves,
2D electrons in the channel scattering with bulk elec-
trons in the gate, bulk electrons in the channel scatter-
ing with bulk gate-electrons, etc.
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Details about the implementation of short-range
electron-electron scattering in Monte Carlo simulations
are given in Refs. 8 and 5. In essence, for each ‘pri-
mary’ electron, a ‘partner’ is selected among those parti-
cles within a screening length from the primary particle.
The rate between these two electrons is computed using
the local density. This procedure amounts to a stochastic
evaluation of the integration over the local distribution
in k-space of partner electrons. Note that the scattering
probability employed in the Monte Carlo code is com-
puted using only one half of the ‘correct’ scattering rates
(as given in Refs. 8 and 5 and below), in order to ac-
count for the fact that two particles scatter at each event.
Note also that, as described in the text, in order to avoid
double counting the long-range Coulomb interactions, all
short-range scattering rates are obtained by restricting
the integration over the matrix element to values of the
momentum transfer larger that the screening length, so
that we account only for scattering at ‘impact parame-
ters’ – or inter-particle distances - smaller than the mesh-
spacing used to solve the discretized Poisson equation.
This effectively suppresses the long-range plasmon con-
tribution to the interaction rate, since it precludes the
squared Coulomb matrix element in Eqns. (C5), (C14),
and (C16) from reaching its small-Q poles along the dis-
persion of the interface plasmons, expressed mainly by
the vanishing of the factor C̃2Q, defined in Appendix B
(cf. Eq. (20) of Ref. 6).
Scattering among bulk electrons in the channel and

among those in the gate is treated as in bulk Si (i.e., us-
ing the bulk Green’s function of the Poisson equation).
Indeed, scattering between two bulk electrons in the sub-
strate occurs mainly in the ‘pinched-off’ region of the
channel, where quantization effects are weak and the car-
riers are sufficiently far from the interface to warrant a
bulk description of their properties, while the choice of
scattering model to treat the collision between two elec-
trons in the gate is largely immaterial, since the gate
remains very close to thermal equilibrium. In addition,
scattering between a pair of electrons in the channel de-
scribed by different transport models (one electron as a
bulk electron, the other one as a 2D electron), is a rela-
tively rare event and we (mis)treat it by converting the
2D electron to a bulk electron, as described in Ref. 43, let-
ting the pair scatter as in a bulk process, and converting
one or both of the final bulk states to 2D-states when-
ever the energy of the final states is below the threshold
identifying the boundary between 2D and bulk transport
models in the channel. This has been typically set by the
energy of the bottom of the 10-th unprimed subband. On
the contrary, scattering between different ‘types’ of pairs
is strongly affected by the presence of the interfaces and
by screening at either side of the insulator, so these pro-
cesses are treated using the Green’s function for the MOS
geometry, as follows.
i) Interaction among 2D-electrons in the chan-
nel. We follow Lee and Galbraith47,48, but extend
their result using dynamic screening and wave-function
(anti)symmetrization. Let us consider an electron of two-
dimensional wave vectorK in subband µ interacting with
an electron of wave vector P in subband ν. Ignoring

dielectric screening and spin for now, the Coulomb ma-
trix element for a transition |Kµ >→ |K′µ′ >, |Pν >→
|P′ν′ > will be:

<K′µ′;P′ν′|V |Kµ;Pν >
=

e2

ε∞s
G(s)Q;µµ′,νν′ δ(2)(K+P−K′ −P′) , (C1)

where Q = |K −K′| and G(s)Q;µµ′,νν′ is the ‘form-factor’
(see Eq. (A10) of Ref. 6):

G(s)Q;λλ′;µµ′
=

∫
dz

∫
dz′ ζλ(z) ζλ′(z) G

(s)
Q (z, z

′) ζµ(z′) ζµ′(z′) . (C2)

G
(s)
Q (z, z

′) being the Green’s function of the MOS sys-
tem given by Eq. (B9) of Appendix B. Acccounting for

screening by the 2DEG we must replace G(s)Q;µµ′,νν′ with
the screened quantity G̃(s)Q,ω;µµ′,νν′ solution of the system
G̃(s)Q,ω;µµ′,νν′ = G(s)Q;µµ′,νν′ +∑

λλ′
G(s)Q;µµ′,λλ′ βλλ′(Q,ω) G̃(s)Q,ω;λλ′,νν′ , (C3)

where h̄ω = Eµ(K)−Eµ′(K′) is the energy exchanged in
the interaction and the other symbols are as in Appendix
A of Ref. 6. In order to account for screening by the bulk
electrons in the gate and in the substrate (often present in
our MC simulations in which bulk and two-dimensional
electrons may artificially coexist at the same location)

we must replace the ‘bare’ Green’s function G
(s)
Q (z, z

′) in
Eq. (C2) with its ‘bulk-screend’ expression, Eq. (B21).
This assumes that the various components of the electron
gas in the substrate (bulk and quantized electrons) screen
independently, so that the self-consistency of screening is
lost and we are reduced to a linear screening approxi-
mation. Obviously, double-counting the screening effects
of the channel must be avoided. Therefore, in Eq. (C3)
screening is limited to those electrons actually treated as
2D carriers in the simulation, while the bulk dielectric
function of the substrate accounts only for those elec-
trons represented as bulk particles at the selected loca-
tion. Their distribution is assumed to be characterized
by an effective temperature consistent with their average
kinetic energy, a density and Fermi level obtained from
integrating the RPA expression only above the cut-off en-
ergy separating the bulk from the 2D transport models,
so to obtain the density of bulk electrons in the channel
at the selected location.
Accounting now for the possibility of scattering be-

tween pairs of electrons in the triplet and single spin-
states, we must replace the squared amplitude of the
matrix element (C3) with its symmetrized expression:∣∣∣∣∣ G̃

(s)
Q,ω;µµ′,νν′

ε̃s(Q,ω)

∣∣∣∣∣
2

→ |VQ,ω;µµ′,νν′ |2 =∣∣∣∣∣ G̃
(s)
Qd,ωd;µµ′,νν′

ε̃s(Qd, ωd)

∣∣∣∣∣
2

+

∣∣∣∣∣ G̃
(s)
Qx,ωx;µν′,νµ′

ε̃s(Qx, ωx)

∣∣∣∣∣
2

−

G̃(s)Qd,ωd;µµ′,νν′ G̃
(s)
Qx,ωx;µν′,νµ′

ε̃s(Qd, ωd)ε̃s(Qx, ωx)
, (C4)
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where Qd = Q = |K−K′| = |P′ −P|, Qx = |K−P′| =
|K − P − Q|, h̄ωd = Eµ(K) − Eµ′(K

′), and h̄ωx =
Eµ(K)−Eν′(P′) are the ‘direct’ and ‘exchange’ momen-
tum and enegy transfers, respectively. For intervalley
processes, the appropriate valley separation ∆K must be
added to the transfer wave vectors and the Bloch over-
lap factors at the valley bottoms – evaluated using the
k · p approximation as in Appendix B of Ref. 3 – must
multiply each term of Eq. (C4). Finally, for a given ‘pri-
mary’ electron in the channel, we evaluate the scatter-
ing rate by selecting one ‘partner’ electron stochastically
from those – of concentration ns – which are within a
screening length from the primary electron. Using the
Born approximation we have:

1

τ (2D−2D)(Kµ,Pν)
=

e4ns

4πh̄

∑
µ′ν′

∫ π
0

dφ Q0(φ)

×|VQ0(φ),ω(φ);µµ′,νν′ |2
∣∣∣∣dEtotdQ

∣∣∣∣−1
Q=Q0(φ)

, (C5)

where Q0(φ) is a solution of Etot(K,P, φ,Q0) = 0,
Etot = Eµ(K)+Eν(P)−Eµ′ (K′)−Eν′(P′) being the to-
tal energy-transfer, expressed as a function of wave vector
transfer Q in polar coordinates (i.e., of the magnitude Q
of the transferred wave vector and of the angle φ between
Q and the x-axis). Finally, h̄ω(φ) is the energy transfer
expressed as a function of Q0(φ) and φ. Using ellipsoidal
nonparabolic dispersions for the subband structure, so
that each subband µ is described by in-plane massesmµx
and mµy along the x and y axes, respectively, and by a
nonparabolicity parameter α (= - 0.5 eV−1), after rather
laborious algebra we find for Etot the following expression
of fourth degree in Q:

Etot(K,P, φ,Q) = ∆Eµµ′νν′(K,P)

+ 2Q [Nµ′(K)Hµ′ (K, φ) − Nν′(P)Hν′(P, φ)]

− Q2{Nµ′(K)Lµ′(φ) + Nν′(K)Lν′(φ) +

4α[H2µ′(K, φ) + H2ν′(P, φ)]}
+4 α Q3[Hµ′(K, φ)Lµ′ (φ) − Hν′(P, φ)Lν′ (φ)]

−α Q4[L2µ′(φ) + L2ν′(φ)] , (C6)

where:

∆Eµµ′νν′(K,P) = Eµ(K) + Eν(P) − Eµ′(K) + Eν′(P) ,

(C7)

Hλ(K, φ) =
h̄2

2

(
Kx

mλx
cosφ +

Ky

mλy
sinφ

)
, (C8)

Lλ(φ) =
h̄2

2

(
cos2 φ

mλx
+

sin2 φ

mλy

)
, (C9)

Nλ(K) = 1 + 2αγλ(K) + 2α < E
(0)
λ − V >λ ,

(C10)

where < ... >µ denotes the expectation value in sub-

band µ, γλ(K) = (h̄2/2)[K2x/mλx + K2y/mλy] is the
parabolic dispersion, and V (z) is the confining poten-
tial in the channel. Standard methods65 can be used to

solve the quartic algebraic equation Etot = 0, retaining
only positive and real solutions Q0(φ). Finally, the high-
temperature limit of Fetter and Walecka, as described in
Ref. 43 (Eq. (73)) is employed to approximate the intra-
and inter-subband two-dimensional screening parameter
βλλ′(Q,ω).
ii) Interaction between 2D-electrons in the channel and
3D electrons in the gate. The Coulomb matrix element
between a two-dimensional electron in the channel with
2D wave vector K in subband µ and a bulk electron of
wave vector p = (P, pz) in the gate can be calculated in
a similar way, obtaining:

< p′;K′, µ′|V |p;K, µ > =

δ(2)(K+P−K′ −P′) 2e2εi(ω)

Q C̃Q (Q− iqz)
F̃µµ′(Q,ω) , (C11)

whereQ = K−K′ = P′−P is the momentum-transfer on
the plane of the interface, and qz = p′z − pz is the change
in the normal component of the wave vector of the gate
electron. This quantity is not conserved, because of both
the ‘fuzzy’ nature of the normal-momentum of the 2D
electron and the presence of the interface which breaks
the symmetry under translations along the z-axis. Also,
h̄ω = Eµ(K) − Eµ′ (K

′) = E(p′) − E(p) is the energy

transfer, and F̃µµ′(Q,ω) is the screened form-factor solu-
tion of the linear problem (using once more the notation
and results of Appendix A of Ref. 6):

F̃µµ′(Q,ω) =
∑
λλ′

[1−Π(Q,ω)]−1µµ′,λλ′ Fλλ′(Q) (C12)

where the unscreened form factor is

Fλλ′(Q) =
∫ ∞
t

dz ζµ(z) e
−Q(z−t) ζµ′(z) . (C13)

Thus, the scattering rate, assuming the gate electron is
chosen stochastically from a population of gate electrons
at density ng, will be:

1

τ (2D−3Dg)(Kµ,p)
=

e4ngεi(ω)
2

h̄π2

×
∑
µ′

∫
dp′
|F̃µµ′(Q,ω)|2
Q2 C̃2Q Q2z

δ(Etot) , (C14)

where Etot = Eµ(K)+E(p)−Eµ′ (K′)+E(p′). Note that
the matrix element is not (anti)symmetric, since we as-
sume that electrons in the gate (substrate) remain in the
gate (substrate), so no exchange can take place as they
are viewed as distinguishable. For very thin insulators
where tunneling becomes significant this approximation
may break down. Note also that all components of the
electron gas (2DEG, bulk substrate and bulk gate elec-
trons) are active in screening the interaction: Screening
by the 2DEG is accounted for via the 2DEG polarizabil-

ity, Πλλ′;µµ′(Q,ω) = G(s)Q;λλ′ ;µµ′ βµµ′(Q,ω) in Eq. (C12).
Screening by gate and substrate bulk electrons is implicit
in the definition of C̃Q arising from the screened Green’s
function. Here, the same comments given above after
Eq. (C3) apply concerning the approximations used to
handle ‘mixed’ bulk and 2D screening in the substrate.
Finally, for large insulator thickness, t, the factor C̃−1Q de-

creases as e−Qt. In the unscreened case, integrating over
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Q gives the expected 1/t dependence of the interaction.
In the screened case, the other factors in the matrix el-
ement vanish quickly for small (as (Q/t)2) and large (as
1/Q2) values of Q, so that only Q-vectors in a limited
range contribute and the interactions decreases exponen-
tially at large t. In the range of electron concentration
in the substrate of technological interest, screening by
substrate electrons strongly weakens the strength of the
short-range Coulomb interaction between gate and sub-
strate. This should be compared to the long-range plas-
mon effects which, being screening themselves, grow in
strength at larger electron concentrations.
The evaluation of the rate (C14) must be performed

numerically with a trivial modification of the algorithm
described in Ref. 5, since the dispersion E(p) of bulk
(gate) electrons is treated using the empirical psudopo-
tential band structure.
iii) Interaction between 3D-electrons in the substrate
and 3D electrons in the gate. The analysis of this pro-
cess requires some care and approximations. We consider
here a bulk electron in the substrate (with wave vector k)
scattering with the potential induced in the substrate by
an electron of wave vector p in the gate (or, equivalently,
the case of the gate electron scattering with the potential
induced in the gate by the substrate electron). It would
be tempting the compute the matrix element of this pro-
cess by describing both electrons with plane waves eik·r
(with r = (R, z)) and eip·r

′
(with r′ = (R′, z′)) nonvan-

ishing only in the half-spaces z > t and z′ < 0, respec-
tively. However, there are difficulties with this view: In
first place, the cross section for this interaction is not
properly defined whenever kz and pz are nonzero: Since
the problem is not invariant under translations along the
z-axis, the z-component of the momentum is not con-
served. Roughly speaking, this is due to the reflections
suffered by electrons hitting the interfaces. Moreover, in
our self-consistent Monte Carlo/Poisson simulations, re-
laxation of the z-component of the momentum can occur
via two processes: Via reflections (specular and/or diffu-
sive) at the interfaces and via dynamic fluctuations of the
potential. Indeed, the mesh spacing along the z-direction
is chosen to be much smaller than the screening length
in order to resolve the potential itself with sufficient nu-
merical accuracy. Thus, the Poisson/particle coupling
already accounts (albeit semiclassically) for changes of
the normal component of the electron velocity due to the
Coulomb interaction across the insulator. In addition,
while describing a gate electron by a plane wave is con-
sistent with our assumption of a homogenous situation
in the depletion layer of the gate, a similar assumption
for the electron in the substrate is clearly at odds with
the highly inhomogeneous situation in the substrate. Fi-
nally, bulk electrons are pictured as ‘semiclassical’ parti-
cles. In the absence of interfaces, electron-electron scat-
tering is viewed as a homogeneous scattering problem,
electrons being represented by plane waves traveling from
infinitely far, interacting, and continuing along deflected
path to infinity. Deviations from homogeneity, as always
in the semiclassical Boltzmann picture, are assumed to be
significant only over length scales much larger than the
electron wavelengths, so that the homogeneous picture is

adapted to this ‘weakly’ inhomogeneous case. In the pres-
ence of interfaces, clearly we wish to maintain a similar
semiclassical view and keep track of the distance of the
substrate electron from the gate, inhomogeneities along
this direction being very strong over short distances.
Accordingly, we idealize bulk electrons in the gate as

plane waves, as in ii) above, but a bulk electron in the
substrate at a distance d− t from the substrate/insulator
interface is idealized by a wavefunction of the form δ(z−
d)eiK·R/(2π)2. The matrix element for this process can
be calculated trivially to be

< p′;K′|Vd|p;K > =

δ(2)(K+P−K′ −P′) 2e2εi(ω)

Q C̃Q (Q− iqz)
e−Q(d−t) , (C15)

where, smilarly to Eq. (C11), Q = K − K′ = P′ − P
is the momentum-transfer on the plane of the interface,
qz = p′z − pz is the change in the normal component of
the wave vector of the gate electron (which is not con-
served, because of lack of translational invariance along
the z-axis), h̄ω = E(K, kz)− E(K′, kz) = E(p′)− E(p)
is the energy transfer. The scattering rate in the Born
approximation will be:

1

τ (3Ds−3Dg)(k,p)

=
e4ngεi(ω)

2

h̄ π2

∫
dp′

e−2Q(d−t)

Q2 C̃2Q Q2z
δ(Etot) , (C16)

where Etot = E(K, kz) +E(p)−E(K′, kz) +E(p′). It is
interesting to note that in the limit t→ 0 for qz = 0 the
squared matrix element takes the form

δ(2)(K+P−K′ −P′) e4 e−2Qd

2[εg(Q,ω) + εs(Q,ω)]2Q4
.

(C17)

In addition to the factor e−2Qd influenced by the distance
of the substrate-electron from the gate, the squared ma-
trix element is approximately (for εg = εs) a factor 4
smaller than its bulk counterpart, since we are not let-
ting the gate (substrate) electron ‘spill over’ into the sub-
strate (gate), thus reducing the strength of the Coulomb
energy. Also note in Eq. (C17) the effect of both gate-
and substrate-screening. As in Eq. (C14), at the large
electron concentrations in the substrate of practical in-
terest the strength of the short-range electron-electron
scattering across the insulator is expected to be domi-
nated much weaker than the long-range (plasmon) inter-
action.
Once more, the rate (C16) must be evaluated numeri-

cally using the tabulated full-band dispersion E(k). Fi-
nally, screening is treated as a fully bulk problem, em-
ploying the screened factor C̃Q, assuming that all elec-
trons in the substrate are bulk particles.
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