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Long-range Coulomb interactions in small Si devices.
Part II: Effective electron mobility in thin-oxide structures

M. V. Fischetti
IBM Research Division, Thomas J. Watson Research Center

P. O. Box 218, Yorktown Heights, NY 10598, USA
(July 20, 2000)

In metal-oxide-semiconductor structures with poly-crystalline Si gates, electrons in the inverted chan-
nel of the substrate scatter with electrons in the gate via long-range Coulomb interactions. For thin
oxides, these interactions can cause a significant transfer of momentum from the channel to the gate,
thus reducing the effective mobility of the two-dimensional electron gas in the substrate. We present
calculations of the dispersion of the interface plasmons in poly-Si/SiO2/Si structures, comparing the
results obtained in the long-wavelength limit to those obtained using the random-phase approxima-
tion. Employing the former model, we compute the effect of plasmon scattering on the effective
electron mobility in Si inversion layers. We find a significant reduction of the mobility for oxides
thinner than about 3 nm.

I. INTRODUCTION

Electron-electron Coulomb interactions usually have
a small effect on the electron mobility. They do not
contribute directly to any momentum loss, but simply
alter the carrier distribution function, thus triggering,
indirectly, more collisions with momentum-dissipating
scatterers, mainly phonons. However, in metal-oxide-
semiconductor (MOS) structures, or, more generally, in
‘layered’ structures in which electrons are separated into
different layers (or ‘channels’), net momentum transfer
can occur via Coulomb interactions among electrons in
different layers resulting in a direct effect on the elec-
tron mobility in the layers. Indirect effects caused by
long-range Coulomb interactions between electrons in the
channel and those in the source and drain of small de-
vices have been considered elsewhere1, together with a
semiclassical study of these channel-gate interactions and
their effect on electron transport under high bias. Here
we are interested in the mobility of electrons in the inver-
sion layer of MOS structures: The gate material is typi-
cally another (poly-crystalline) Si layer, the thickness of
the insulating layer (typically SiO2) is at present as small
as 1.5 nm (Ref. 2), so that electrons in the channel of the
Si substrate can interact very strongly with the electrons
in the depletion layer of the gate. Since the electrons in
the gate are almost ‘at rest’, while the channel electrons
drift from the source to the drain under the action of the
applied bias, we can expect a ‘gate drag’, electrons in
the channel losing momentum to those in the gate. The
purpose of this paper is to show that this is indeed the
case in technologically relevant structures, and that the
reduction of the thickness of the gate insulator in small
Si n-channel MOS field-effect transistors (n-MOSFETs)
does indeed cause a reduction of the electron mobility in
the channel.3

Originally considered by Pogrebinskii4 and Price5, the
mutual drag between a two-dimensional electron gas
(2DEG) and a 3DEG in compound-semiconductor sys-
tems has been investigated theoretically early on by
Boiko and Sirenko6 and by Leikhtman and Solomon7,
at electron densities sufficiently low to justify the use of
static Coulomb interactions. The case of two interacting

2DEGs has been considered by Gramila and co-workers8,
by Zheng and MacDonald9, who have employed the zero-
temperature approximation for the dielectric response,
by Jauho and Smith10, who have also treated Coulomb ef-
fects in the static-screening approximation, and by Flens-
berg et al.11 using many-body techniques. The review
paper by Rojo12 provides a more comprehensive account
of work done on this subject. Jacoboni and Price13

have employed coupled Monte-Carlo/molecular dynamics
methods to investigate the inter-layer momentum trans-
fer caused by short-range interactions between 3D elec-
trons in two adjacent Si channels, finding that significant
energy transfer-rates are possible. What differentiates
these studies from the present one is not so much the
different system under investigation (the interaction be-
tween a 2DEG – the inverted Si substrate – and a 3DEG –
the depleted Si gate), since a coupled 2D/3D system has
been considered before6,7,14. Rather, it is the different fi-
nal result we seek (the calculation of the electron mobility
in real devices, rather than the temperature depedence
of the momentum-transfer rates or the relations between
Coulomb interactions, disorder and localization15); and,
most notably, the fact that none of the previous stud-
ies has accounted for the long-range, plasmon contribu-
tion to the drag, a notable exception being the work by
Flensberg and Hu16. Indeed, Coulomb interactions come
in two categories: Short-range, single particle effects for
wavelengths shorter than a cutoff value ∼ 1/qc, and long-
range, collective phenomena associated with plasmons.17

At large carrier densities short-range processes weaken
because of dielectric screening. On the contrary, long-
range effects, being ‘screening’ themselves, become dom-
inant, as also discussed by Pines18. Therefore, we should
expect that even stronger effects may be caused by the
long range process we consider here. Indeed, this is what
we find, as shown in Sec. III E below. Our results are
qualitatively similar to those of Ref. 16, but are relative
to a different system and have been obtained using a dif-
ferent – albeit ultimately equivalent – physical scheme:
At the large electron densities and temperature of in-
terest, plasmon effects dominate over short-range inter-
electronic Coulomb interactions.19 Neglecting the latter
will – hopefully – result in a clearer physical picture.
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In MOS geometries, long-range Coulomb effects are
characterized by quantized interface modes, called ‘in-
terface plasmons’. Thus, in this paper our goal is to
characterize the interface plasmons in realistic geometries
and evaluate the effect of scattering of channel electrons
by gate/insulator modes on the mobility of the electrons
themselves. In addition to pure interface plasmon modes,
long-range electronic oscillations can couple to the long-
range field of optical phonons present in the polar insu-
lator. Scattering with the phonon component of these
modes has been considered before20, but its effect on the
mobility appears to be small. Therefore, we consider only
scattering with pure plasmon modes.

The paper is organized as follows: In Sec. II
we calculate the dispersion of the interface plasmons
(and also coupled plasmon/optical-oxide-phonon modes)
for a general depleted-semiconductor/insulator/inverted-
semiconductor structure. We compare the results
obtained using the (numerically quite cumbersome)
random-phase approximation (RPA) for the dielectric
functions of the semiconductors to those obtained in the
simpler long-wavelength limit in order to assess the limi-
tations of the latter. In Sec. III we calculate the mobility
of electrons in the inversion layer in the substrate ac-
counting for scattering with the interface modes in addi-
tion to phonon and surface roughness. Finally, in Sec. IV
we discuss the relevance of our results to the performance
of small MOSFETs. One appendix deals briefly with the
dielectric properties of a 2DEG.

II. INTERFACE PLASMONS IN MOS
STRUCTURES

Interface plasma oscillations in MOS structures have
been considered in the past so extensively as to ren-
der impossible a full review of the subject21. Here
we follow mainly the work by Economou22 and Ngai
and Economou23, extending their analysis to account
for the dielectric response of the 2DEG, as studied by
Dahl and Sham24, as done, for example, by Eguiluz
and co-workers25. In Sec. II A we present the prob-
lem, considering in detail the boundary conditions at
the gate/insulator and insulator/2DEG interfaces in
Secs. II B and II C, respectively. In Sec. II D we deal
with the secular equation whose solutions yield the dis-
persion of the interface modes. In Secs. II E and II F,
respectively, we treat the dielectric functions of the semi-
conductor(s) in the RPA and long-wavelength limits. Fi-
nally, in Sec. II G we present results for the dispersion of
the plasmon and coupled plasmon/TO-phonon modes.

A. Boundary conditions in the non-retarded limit

The structure we consider here consists of a
degenerately-doped n-type semiconductor in the half-
space z < 0 (gate), an insulating layer for 0 < z < tox,
and a p-type semiconductor (in principle different from
the gate material) filling the half-space z > tox (sub-
strate). We shall ignore inhomogeneities on the (x, y)-
plane: For small devices of gate length Lg, this amounts
to ignoring corrections to the dispersion of the plasmons

for wave vectors q < L−1g , which usually represents a
small region of phase space. We are interested in sit-
uations in which a positive bias is applied to the gate,
bias sufficiently strong to induce an inversion layer in
the substrate, which will be viewed as a 2DEG. We refer
to this structure as a metal-oxide-semiconductor (MOS)
structure in order to comform to standard nomenclature,
although ‘semiconductor-insulator-semiconductor’ (SIS)
would be a more proper label. Specifically, we are in-
terested in cases in which the gate – consisting of poly-
crystalline Si (poly-Si, or ‘poly’ for short) – is idealized
as crystalline bulk Si, the insulator is SiO2, and the sub-
strate contains a Si 2DEG. We denote by R the two-
dimensional vector coordinate in the (x, y)-plane of the
interfaces.

We look for transverse-magnetic solutions (TM- or p-
waves) of Maxwell’s equations in this geometry in the
non-retarded limit. Thus, the ‘usual’ boundary condi-
tions require that the components E‖(R, z, t) of the elec-
tric field E(R, z, t) on the plane of the interfaces be con-
tinuous across the two interfaces at z = 0 and z = tox,
and similarly for the component Dz(R, z, t) of the dis-
placement field D(R, z, t) normal to the plane of the in-
terfaces. Using the cylindrical symmetry of the problem
we can expand the electrostatic potential at frequency ω
as:

φ(R, z, t) =
∑
Q

φQ,ω(z) eiQ·R eiωt , (1)

where Q is the two-dimensional wave vector and it must
be understood that we shall take the real part of the
complex exponentials here and in the following. Retar-
dation effects are significant for Q ≤ κ1/2ω/c (where c
is the speed of light and κ the dielectric constant of the
medium), which, in our case is of the order of 104 cm−1.
Since we are ultimately interested in evaluating the elec-
tron mobility, we have to deal with wave vectors of the
order of the Fermi wave vector of the 2DEG, which are of
the order of 106 cm−1 to 107 cm−1 in the density-range
of interest. Thus, we can ignore retardation effects and,
employing the procedure and approximations described
in Appendix B of Ref. 1, finding solutions of Mawell’s
equations reduces to finding the solution of the Laplace
equation:

d2φQ,ω(z)

dz2
−Q2φQ,ω(z) = 0 . (2)

Since in the following we assume an isotropic dielectric
response everywhere, by symmetry φQ,ω(z) depends only
on the magnitude Q of the wave vector. A general phys-
ically acceptable (i.e., finite as z → ±∞) solution of
Eq. (2) is of the form

φQ,ω(z) =




aQ,ω eQz (z < 0)
bQ,ω e−Qz + cQ,ω eQz (0 ≤ z < tox)
dQ,ω e−Qz (z ≥ tox)

.

(3)

The boundary conditions
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E‖,ω(R, z = 0−, t) = E‖,ω(R, z = 0+, t)
E‖,ω(R, z = t−ox, t) = E‖,ω(R, z = t+ox, t)
Dz,ω(R, z = 0−, t) = Dz,ω(R, z = 0+, t)
Dz,ω(R, z = t−ox, t) = Dz,ω(R, z = t+ox, t)

, (4)

(having replaced E‖ with its magnitude, again thanks
to cylindrical symmetry) suitably rewritten in terms of
the Fourier-transformed potential φQ,ω determine a ho-
mogeneous linear problem in the four unknowns, aQ,ω,
bQ,ω, cQ,ω, and dQ,ω. The vanishing of the determinant
of the system (4) determines the dispersion ω(Q) of the
interface modes. For a given solution ω(Q) of the secu-
lar equation, three of the unknowns (say, bQ,ω, cQ,ω, and
dQ,ω, to fix the ideas) can be expressed in terms of aQ,ω.
Fixing this last unknown amounts to normalizing the po-
tential associated with that mode. This will be done as
described in Appendix A of Ref. 1

In order to proceed we must be able to reformulate
the boundary conditions (4) in terms of the electrostatic
potential φQ,ω . For the first two of the Eqns. (4) this
is trivially accomplished by Fourier transforming the in-
plane component of the electric field, as in Eq. (1):

E‖,ω(R, z, t) =
∑
Q

E‖,Q,ω(z) eiQ·R eiωt , (5)

with

E‖,Q,ω(z) = −i Q φQ,ω(z) . (6)

The connection between the displacement field Dz and
the potential φ is more complicated, since dielectric
screening enters at this stage.

B. Gate-insulator boundary

Let us start by considering the gate/insulator bound-
ary. As stated above, in the cases of interest the (poly-Si)
gate will be depleted, with the electron density dropping
from its charge-neutral value n = NDg (the doping con-
centration in the gate) at the edge of the depletion layer,
to a smaller value – which is function of the gate bias
– at the gate-insulator interface. We idealize this inho-
mogeneous situation with a homogeneous and isotropic
electron gas at a density given by the average electron
density, ng, in the depletion layer. Then, in terms of the
Fourier transform εg(Q, qz;ω) of the longitudinal dielec-
tric function of the gate we have:

Dz,ω(R, z = 0−, t) = − eiωt
∑
Q

eiQ·R

× aQ,ω

∫ +∞
−∞

dqz

π

εg(Q, qz;ω)

1 + (qz/Q)2
. (7)

For z → 0+, ignoring the wavelength-dependence of the
dielectric function of the insulator, but retaining its fre-
quency dependence (due to TO modes in the case of
SiO2), we can write:

Dz,ω(R, z = 0+, t)

= eiωt
∑
Q

eiQ·R εi(ω) Q [ bQ,ω − cQ,ω] . (8)

Thus, the boundary condition for the electric displace-
ment field at z = 0 (the third of the Eqns.(4)) can be
re-written as:

Q εi(ω)[ bQω − cQω] = − aQ,ω

∫ +∞
−∞

dqz

π

εg(Q, qz;ω)

1 + (qz/Q)2
.

(9)

As stated by Eq. (B20) of Appendix B of Ref. 1, we
shall approximate the right-hand-side of Eq. (9) with
−aQ,ω εg(2

√
Q;ω), where εg(q;ω) is the dielectric func-

tion of the gate, which, having been assumed isotropic,
depends only on the magnitude q of the wave vector q.

C. Substrate-insulator boundary

Dealing with the insulator-substrate boundary is
slightly more complicated. As shown by Dahl and
Sham24, the response of a 2DEG is both nonlocal and
anisotropic: nonlocal because a change of potential at z
induces a change of wavefunctions at locations z′ 
= z;
anisotropic because when a field E‖ is applied on the
plane of the interface, inter-subband transitions induce
a redistribution of the inversion charge also along the
z-direction, normal to the interface, resulting in a nonva-
nishing off-diagonal element εz,‖ of the dielectric tensor.
Here we retain the nonlocality, but since intersubband
transitions will be ignored, we consider only the longitu-
dinal (i.e., diagonal) response. Thus, using the results
and notation of Appendix A, the total potential result-

ing from an applied external potential φ
(0)
Q,ω(z) can be

written as:

φQ,ω(z) = φ
(0)
Q,ω(z) +

∫ ∞
tox

dz′ G(0)Q (z, z′)

×
∑
µµ′

βµµ′(Q,ω) φQ,ω;µµ′ ζµ(z′) ζµ′(z′) . (10)

Note that here we need the response of an ‘isolated’
2DEG in absence of the interfaces, whose presence is al-
ready accounted for when solving of Eq. (2) with the
boundary conditions (4). Thus, the Green’s function of
the Poisson equation appearing in Eq. (10) is the the

‘free’ Green’s function, G
(0)
Q (z, z′) = −e−Q|z−z′|/(2Q).

When considering only the longitudinal dielectric re-
sponse

Dz,Q,ω(z = t+ox) = −ε∞s
dφQω(z = t+ox)

dz
, (11)

thus, inserting Eq. (10) into Eq. (11) we obtain:

Dz,Q,ω(z = t+ox) = −ε∞s
dφ
(0)
Qω(z = t+ox)

dz

− ε∞s

∫ ∞
tox

dz′
dG
(0)
Q (z = t+ox, z

′)
dz

×
∑
µµ′

βµµ′(Q,ω) φQ,ω;µµ′ ζµ(z′) ζµ′(z′) . (12)

Now noticing that

Dz,Q,ω(z = t−ox) = εi(ω) Q [ bQ,ωe
−Qtox − cQ,ωe

Qtox ] ,

(13)
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we can rewrite the last of Eqns. (4) in the following form:

εi(ω) Q [ bQ,ωe
−Qtox − cQ,ωe

Qtox ] = ε∞s dQ,ω Q

×

e−Qtox + eQtox

∑
µµ′

βµµ′(Q,ω)

2Q
ΦQ,ω;µµ′ Φ

(0)
Q,µµ′


 ,

(14)

where ε∞s is the high-frequency dielectric constant of the
substrate. In practice this is the background dielectric
response of Si due to the valence electrons, ε∞s = ε∞Si ≈
11.7 ε0, where ε0 is the permittivity of the vacuum. (We
shall similarly define the high-frequency limits of the per-
mittivities of the gate semiconductor and of the insula-
tor, ε∞g and ε∞i , respectively. We take ε∞g = ε∞Si and

ε∞i = ε0ox ≈ 3.9 ε0 when ignoring the coupling to the SiO2
transverse optical (TO) phonons, or ε∞i = ε∞ox ≈ 2.5 ε0
– see Eq. (31) below – otherwise.) The factor 1/(2Q)

results from the evaluation of the term dG
(0)
Q (t+ox, z

′)/dz
under the assumption that the wavefunctions do not pen-
etrate into the insulator (i.e., ζµ(z) = 0 for z ≤ tox).

The unscreened ‘normalized’ form-factor Φ
(0)
Q,µµ′ is sim-

ply

Φ
(0)
Q,µµ′ =

∫ ∞
tox

dz e−Qzζµ(z) ζµ′(z) , (15)

and the screened form-factors ΦQ,ω;µµ′ are obtained from
the unscreened form-factors after inversion of the dielec-
tric matrix 1−Π(0), whereΠ(0) is the polarizability given

in Appendix A, but with the Green’s function G
(0)
Q in

place of G
(s)
Q , via Eq. (A11):

ΦQ,ω;λλ′ =
∑
µµ′

[1−Π(0)(Q,ω)]−1λλ′;µµ′ Φ
(0)
Q;µµ′ . (16)

D. Secular equation

We can now summarize our results by rewriting the
boundary conditions (4) as follows:


aQ,ω = bQ,ω + cQ,ω

bQ,ω e−Qtox + cQ,ω eQtox = dQ,ω e−Qtox

ε̃g(Q,ω) aQ,ω = εi(ω) (cQ,ω − bQ,ω)

εi(ω) [ bQ,ω e−Qtox − cQ,ω eQtox ] = ε̃
(2D)
s (Q,ω) dQ,ω e−Qtox ,

(17)

with the ‘effective’ dielectric functions

ε̃g(Q,ω) =
1

π

∫ +∞
−∞

d

(
qz

Q

)
εg(Q, qz;ω)

1 + (qz/Q)2
, (18)

and

ε̃(2D)s (Q,ω) =

ε∞s


1 + e2Qtox

∑
µµ′

βµµ′(Q,ω)

2Q
ΦQ,ω;µµ′ Φ

(0)
Q,µµ′


 .

(19)

The dispersion of the interface modes is given by the so-
lution of the secular equation (i.e., from the vanishing of
the determinant) associated with the linear homogeneous
system of equations (17):

eQtox [ε̃g(Q,ω) + εi(ω)][ε̃(2D)s (Q,ω) + εi(ω)]

− e−Qtox [ε̃g(Q,ω)− εi(ω)][ε̃(2D)s (Q,ω)− εi(ω)] = 0 . (20)

Finally, for a given solution ω(Q) = ωQ of Eq. (20),
the system (17) allows us to express the coefficients bQ,ω,
cQ,ω, and dQ,ω appearing in Eq. (3) in terms of aQ,ω:

bQ,ωQ =
εi(ωQ)− ε̃g(Q,ωQ)

2εi(ωQ)
aQ,ωQ , (21)

cQ,ωQ =
εi(ωQ) + ε̃g(Q,ωQ)

2εi(ωQ)
aQ,ωQ , (22)

dQ,ωQ =
εi(ωQ)− ε̃g(Q,ωQ)

εi(ωQ) + ε̃
(2D)
s (Q,ωQ)

aQ,ωQ . (23)

The coefficient aQ,ωQ can be determined by one of the

methods described elsewhere1. For example, integrat-
ing the electrostatic energy associated with the potential
(3), accounting also for the kinetic energy (equal in mag-
nitude), taking the time average of the total energy so
obtained, and equating it to the zero-point energy of the
interface-plasmons, (1/2)h̄ωQ, we get:

aQ,ωQ =

(
h̄ωQ

2QDQ

)1/2
, (24)

where

DQ = ε∞g + ε∞i

{
[εi(ωQ)− ε̃g(Q,ωQ)]2

4εi(ωQ)2
(1− e−2Qtox)

+
[εi(ωQ) + ε̃g(Q,ωQ)]2

4εi(ωQ)2
(e2Qtox − 1)

}

+ ε∞s

[
εi(ωQ)− ε̃g(Q,ωQ)

εi(ωQ) + ε̃
(2D)
s (Q,ωQ)

]2
e−2Qtox . (25)

E. Random-phase approximation

In evaluating the effective electron mobility we shall
make use of the long-wavelength (q → 0) approximation
for the bulk Si dielectric function εg(Q, qz;ω) and for the
two-dimensional screening wave vector βµµ′(Q,ω). How-
ever, before taking this limit, it is interesting to estimate
the range of validity of the long-wavelength approxima-
tion and to establish the range of Q-vectors in which
interface plasmons exist. Indeed, in the literature the
critical wave vector, qc separating long-range from short-
range excitations, as well as the wave vector, qLD, be-
yond which excitations become Landau-damped, are of-
ten taken to be of the order of the Thomas-Fermi screen-
ing parameter26,27 (β2s,3D = (e2/ε∞)(∂ng/∂EF ) for bulk
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FIG. 1. Real part of the bulk dielectric function εg(q, ω) for
Si at 300 K with an electron concentration ng = 1018 cm−3

evaluated in (a) as a function of q at ω = 0 and in (b) as a
function of ω at q = 0 using three different models: The solid
lines, labeled ‘numerical RPA’ show results obtained using the
numerical evaluation of the RPA expression Eqns. (26)-(27);
The dashed lines, labeled ‘high-T limit’, refer to the nonde-
generate, high-T limit expressed by Fetter and Walecka28 in
terms of the plasma dispersion function. Finally, the dot-
ted lines labeled ‘long-wavelength/TF limits’, have been ob-
tained using the Thomas-Fermi limit, Eq. (26) – with βs,3D in
place of the full β3D(q, ω) – in (a), the long-wavelength limit,
Eq. (33), in (b). Note the excellent accuracy of the numerical
evaluation of the RPA expression, which coincides with the
other results, as we should expect in the non-degenerate limit.

materials at density ng, βs,2D = [e2/(2ε∞)](∂ns/∂EF )
for the two-dimensional electron gas at a sheet density
ns), but more precise determinations of qLD are lacking.
Let us adopt the RPA expression

εg(q;ω) = ε∞Si

[
1 +

β23D(q, ω)

q2

]
, (26)

for the dielectric function of the (bulk) Si gate, where q
is the three-dimensional wave vector, and the screening
function β3D(q, ω) is given by:

0 1 2 3 4 5
101

102

103

104

Si  300K   ng = 1020 cm–3

high–T limit

long–wavelength/TF limits

numerical RPA

βs,3D

q (109 m–1)
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ω (1015 s–1)

ε g
(q

=0
,ω

) 
(ε

0)

FIG. 2. As in Fig. 1, but for degenerate Si (ng = 1020

cm−3). Note in (a) that the ’numerical RPA’ results correctly
match the degenerate TF-limit at low q and the q-dependence
of the high-T limit at larger q. In (b), the RPA yields a
slightly larger plasma frequency (i.e., the frequency at which
εg vanishes) than the other two approximations.

β23D(q, ω) = − lim
s→0+

gve
2

ε∞Si

1

4π2

∫ ∞
0

dp p2
∫ π

0

dθ sin θ

× f(p2)− f(p2 + q2 + 2pq cos θ)

E(p2)− E(p2 + q2 + 2pq cos θ) + h̄ω + ih̄s
, (27)

where gv is the degeneracy of the conduction-band valleys
(including spin) and E(p2) the dispersion in the first con-
ducton band, here assumed to be parabolic. The imag-
inary part of this expression vanishes (i.e., no Landau
damping) as long as the denominator in the integrand
does not vanish. Otherwise, the limit s → 0+ gives a
δ-function which allows a quick evaluation of the inner
(angular) integral: For a parabolic dispersion with effec-
tive mass m∗, and denoting by θ(x)the step function, we
have:
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lim
s→0+

mboxIm

∫ π

0

dθ sin θ
f(p2)− f(p2 + q2 + 2pq cos θ)

E(p2)− E(p2 + q2 + 2pq cos θ) + h̄ω + ih̄s

=
πm∗

h̄2qp

f [E(p2)]− f [E(p2) + h̄ω]

[1 + (m∗ω)2/(h̄qp)2 + (m∗ω)/(h̄p2) + q2/(4p2)]1/2

×θ
(

1−
∣∣∣∣m∗ωh̄qp

− q

2p

∣∣∣∣
)
. (28)

The integral over the momentum p can be easily per-
formed numerically. A numerical evaluation of the real
part of Eq. (27) requires more care, since taking the limit
s → 0+ requires the evaluation of the principal part of
the integral. Empirically, we have found that by giving ω
a small imaginary part (that is, fixing h̄s ≈ 1 µeV) and by
selecting sufficiently small integration intervals ∆θ sym-
metrically selected around the ‘pole’ of the integrand,
allows a sufficiently accurate evaluation of β3D(q, ω). We
have verified this by calculating εg(q;ω) for Si in various
cases and comparing it with known high-temperature,
long-wavelength, and static limits. In Figs. 1(a) and 2(a),
for example, we compare the wavelength-dependence of
the static dielectric response of bulk Si, εg(q, ω = 0),
computed from the numerical integration of Eq. (27) and
using Eq. (26) (labeled ‘numerical RPA’ in the figures),
with the nondegenerate high-temperature limit given by
Fetter and Walecka28 (labeled ‘high-T limit’), or the sim-
ple Thomas-Fermi (Debye-Hückel in the non-degenerate
case of Fig. 1) expression ε∞Si(1+β2s,3D/q

2). In the bottom
frames, the same three models are employed for the evalu-
ation of the frequency dependence of the long-wavelength
dielectric response, εg(q = 0, ω). As expected, in the non-
degenerate limit (Fig. 1), the results obtained from the
three models are virtually indistinguishable, while at a
larger electron density (ng = 1020 cm−3 in Fig. 2), the
static behavior obtained from the RPA approaches the
correct limits at long and short wavelengths. Figures 3
and 4 illustrate a similar comparison bewteen results ob-
tained from the RPA and the high-temperature limit for
the case of the wavelength dependence at the plasma fre-
quency εg(q, ω = ωP ), (top frames) and for the frequency
dependence at a wavelength corresponding to the screen-
ing length, εg(q = βs,3D, ω). The nonvanishing imaginary
part of the dielectric function is also shown.

In dealing with the response of the 2DEG, βµµ′ (Q,ω)
is similarly approximated by its RPA expression

βµµ′(Q,ω) = − lim
s→0+

e2

ε∞Si

1

4π2

∫ ∞
0

dP P

∫ 2π
0

dφ

× gµfµ(P 2)− gµ′fµ′(P
2 + Q2 + 2PQ cosφ)

Eµ(P 2)− Eµ′ (P 2 + Q2 + 2PQ cosφ) + h̄ω + ih̄s
, (29)

where gµ is the degeneracy of the µ-th subband, including
spin, which can be evaluated in the same way, the only
modification being Eq. (28) which, for the intra-subband
processes we consider (µ = µ′), becomes:

lim
s→0+

mboxIm

∫ 2π
0

dφ
fµ(P 2)− fµ(P 2 + Q2 + 2PQ cosφ)

Eµ(P 2)− Eµ(P 2 + Q2 + 2PQ cosφ) + h̄ω + ih̄s

=
πmµ

h̄2PQ
{f [Eµ(P 2)]− f [Eµ(P 2) + h̄ω]}

×θ
(

1−
∣∣∣∣mµω

h̄QP
− Q

2P

∣∣∣∣
)
, (30)
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FIG. 3. As in Fig. 1, but comparing the real and imaginary
parts of the bulk Si dielectric function at a non-degenerate
electron concentration of 1018 cm−3 computed using either
the numerical-RPA expression (solid lines) or the nondegen-
erate high-T expression (dashed lines) as a function of Q at
the plasma frequency (a) or at the Thomas-Fermi screening
wavelength βs,3D (b).

having assumed the dispersion in subband µ to be
isotropic with effective mass mµ.

Attempting to account for inter-subband excitations
(µ 
= µ′) results in a large number of solutions of Eq. (17),
actually too many to be correctly distinguished during
the numerical search for the solutions of the secular equa-
tion. Thus, we have ignored the inter-subband modes,
whose importance has been argued by Price29 to be small,
and considered only the intra-subband excitations. Fi-
nally, for the insulator we have used a model dielectric
function appropriate to SiO2:

εi(ω) = ε∞ox + (εiox − ε∞ox)
ω2TO2

ω2TO2 − ω2

+ (ε0ox − εiox)
ω2TO1

ω2TO1 − ω2
, (31)

where ωTO2 ≈ 138.1 meV and ωTO1 ≈ 55.6 meV are
the frequencies of the TO-modes, and ε∞ox ≈ 2.5ε0, ε

i
ox ≈

3.05ε0, and ε∞ox ≈ 3.9ε0 are the permittivities of SiO2 at
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FIG. 4. As in Fig. 3, but in a degenerate case (ng = 1020

cm−3).

small frequencies (ω << ωTO1, at intermediate frequen-
cies (ωTO1 << ω << ωTO2), and high frequencies
(ω >> ωTO2), respectively.

F. Long-wavelength limit

In the limit of long-wavelength perturbations (q → 0),
the imaginary part of the dielectric functions vanishes.
Thus, setting s = 0, and expanding in powers of q, we
can rewrite Eq. (27) as:

β23D(q, ω) = −gve
2

ε∞Si

∫
dp

(2π)3
f(p)− f(p+ q)

E(p)− E(p+ q) + h̄ω
→

− e2gvq
2

ε∞Sim∗ω2

∫
dp

(2π)3
f(p) = −ω

2
P

ω2
q2 , (32)

where ω2P = (e2ng)/(m∗ε∞Si) is the plasma frequency at
a bulk electron density ng. The bulk dielectric function
of the semiconductor, Eq. (26), becomes the plasma ex-
pression

εg(q→ 0;ω) = ε∞Si

(
1 − ω2P

ω2

)
. (33)

Finally, the ‘effective dielectric function’ ε̃g(Q,ω) in
Eq. (18) simplifies to

ε̃g(Q,ω) → εg(Q→ 0;ω)

∫ +∞
−∞

dqz

qπ

1

1 + (qz/Q)2

= εg(q→ 0;ω) . (34)

Obtaining a similar simplification for ε̃
(2D)
s (Q,ω) in

Eq. (19) at long wavelengths requires some additional
approximations. First, let us ignore the extension of
the wavefunctions ζµ(z) along the z-direction, assum-
ing that the electron gas in the inversion layer is a two-
dimensional sheet of charge. Thus, we assume ζµ(z) →
δ(z). In this limit, Φ

(0)
Q,µµ′ → δµµ′ e

−Qtox . Treating

screening at the lowest-order (Hartree approximation),

ΦQ,ω;µµ′ ≈ Φ
(0)
Q,µµ′ → δµµ′ e

−Qtox . Finally, expanding

βµµ′(Q,ω) in powers of Q, as done in Eq. (32) above,
from Eq. (19) we obtain:

ε̃(2D)s (Q→ 0, ω) = ε∞s

{
1 −

∑
µ

e2nµQ

2ε∞Simµω2

}

= ε∞Si

[
1 − ω2P,2D(Q)

ω2

]
, (35)

where mµ and nµ are the effective mass and electron
density in subband µ, respectively, and we have defined
a two-dimensional plasma frequency

ω2P,2D(Q) =
∑
µ

e2nµQ

2ε∞Simµ
. (36)

G. Dispersion of the interface modes

In order to illustrate the basic properties of the inter-
face modes, in this section we specify typical values of
the average electron concentration in the depletion re-
gion of the poly-silicon gate, ng, and for the electron
sheet density, ns, in the inverted region (channel) in the
Si substrate. Furthermore, here and in the following we
shall use the depletion approximation in the Si gate and
the triangular well approximation for the channel. Thus,
we use the following equations relating i) the surface po-
tential in the gate and substrate, ∆Vg and ∆Vs, respec-
tively, ii) the width of the depletion regions, tg and ts,
respectively, iii) the electric fields in the oxide and at the
surface in the substrate, Fi and Fs (see Ref. 30):

∆Vg =
ε∞i
2F 2i

2eε∞SiNDg
=

ε∞SiF
2
s

2eNDg
, (37)

where NDg is the donor concentration in the gate,

∆Vs = 2kBT ln

(
NAs

ni

)
, (38)

which is the strong-inversion limit, ni being the intrinsic
carrier concentration and NAs the homogeneous acceptor
concentration in the p-type substrate,
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tg =

(
2∆Vgε

∞
Si

eNDg

)1/2
, (39)

ts =

(
2∆Vsε

∞
Si

eNAs

)1/2
, (40)

Fs = e
nds + ns

ε∞Si
, (41)

where nds = NAsts is the areal density of charges in the
depletion layer of the substrate, and

Fi =
ε∞Si
ε∞i

Fs . (42)

When specifying ng and ns, we only require the addi-
tional specification of NAs, of the insulator thicknes tox,
and Eq. (41). When specifying NDg instead of ng, we
make use of Gauss’ law

ns − nds = tg(NDg − ng) (43)

and Eqns. (37), (39), and (41) to solve for ng.
Having determined the surface field Fs, the energies Eµ

and wavefunctions ζµ(z) of the subbands in the inversion
are obtained from the well-known expressions31:

Eµ =

(
h̄2

2mzµ

)1/3 [
3πeFs

2

(
µ +

3

4

)]2/3
, (44)

where mzµ is the effective electron mass in subband µ
along the direction perpendicular to the interface,

ζµ(z) = N Ai

[(
2mzeFs

h̄2

)1/3(
z − tox − Eµ

eFs

)]
,

(45)

where Ai(x) is the Airy function, which we express in the
following integral form suitable for its numerical evalua-
tion:

Ai(x) =
1

π

∫ ∞
0

cos

(
z3

3
+ zx

)
dz , (46)

and N is a normalization costant such that∫ ∞
tox

| ζµ(z) |2 dz = 1 . (47)

Finally, non-parabolic corrections, Fermi levels, and sub-
band occupations are evaluated as in Ref. 32.

Let us start with the long-wavelength approximation
(Sec. II F) assuming for now isotropic band structure
both in the gate (using an effective mass m∗ = 0.32m0,
where m0 is the free electron mass) and in the sub-
strate (using an ‘in-plane’ – or density-of-states – effec-
tive mass mµ = mt = 0.19m0 and a ‘quantization mass
mz,µ = ml = 0.91m0 for the ‘unprimed’ µ-th subband

and mµ = (mlmt)
1/2 = 0.42m0 and mz,µ = 0.19m0 for

the ‘primed’ µ-th subband). Let us take ng = 5 × 1019

cm−3 and ns = 1013 cm−2. As shown by the dotted lines
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FIG. 5. (a) Theoretical limits for the gate and substrate
plasma frequencies as functions of plasmon wave vector Q:
ωg is the long-wavelength bulk Si plasma frequency, ωgi the
plasma frequency at the Si/SiO2 interface, ωgs(Q) the fre-
quency of the optical mode at the bulk-Si/inverted-Si inter-
face (i.e., the zero-oxide-thickness limit), ωs(Q) is the fre-
quency of the plasma oscillations of an isolated Si 2DEG,
while two curves are shown for ωsi(Q), the frequency of the
acoustic mode at the interface between inverted-Si and a
thick or thin (tox = 1.0 nm) insulator. The latter curve is
truncated since Eq. (51), used in this figure, is valid only
in the limit of small Qtox. (b) Acoustic (lower energy)
and optical (higher-energy) branches of the plasmons in a
bulk-Si/SiO2/inverted-Si system in the long-wavelength limit
for three oxide thicknesses (tox = 50, 7.5, and 1.0 nm). The
curves labeled ωLD,g(Q) and ωLD,s(Q) mark the onset of the
zero-temperature Landau damping in the gate and substrate
respectively.

in Fig. 5(a), when fully isolated, the gate will exhibit
the bulk plasma frequency ωg = [e2ng/(m∗ε∞Si)]

1/2 while
the 2DEG in the substrate, assuming only the ground-
state subband is populated, will oscillate at the fre-
quency ωs(Q) = ωP,2D(Q) = [e2nsQ/(2ε∞Simt)]

1/2 given
by Eq. (36). Note that ωs(Q) vanishes in the limit of
long wavelengths for a simple physical reason: When ig-
noring inter-subband processes, the electron gas cannot
respond with a redistribution of charge purely along the
z-direction, since the electrons are ‘frozen’ in their sub-
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bands. The 2DEG can repond only if the perturbing
potential exhibits variations on the plane of the inter-
face, that is, if there are nonvanishing perturbations at
nonzero Q.

When placing the gate and substrate next to an insu-
lating layer, but leaving the gate and substrate decoupled
(that is, in the limit of tox → ∞), the plasma frequency
at the gate-insulator interface drops to the value

ωgi =
ωg

(1 + ε∞i /ε∞g )1/2
, (48)

and similarly for the 2DEG:

ωsi(Q) =
ωs(Q)

(1 + ε∞i /ε∞s )1/2
, (49)

as shown by the dashed lines in Fig. 5(a). In the opposite
limit of a very small (but non-zero) oxide thickness, the
gate and substrate modes become fully coupled. The first
of the two resulting modes represent a stiffer (optical)
mode in which excess negative charges oscillate in phase
on the two sides of the interface. The frequency of this
coupled optical interface mode, present even for tox = 0,
is given by

ω2gs(Q) =
ε∞s ωs(Q)2 + ε∞g ω2g

ε∞s + ε∞s
. (50)

This is shown by the higher-energy solid line in Fig. 5(a).
The second mode is a lower-energy acoustic branch rep-
resenting excess negative charges on the two sides of the
interface oscillating out-of-phase. The frequency of this
mode in the limit of small Qtox is given by:

ω2si(Q) ≈ e2nstoxQ
2

mtε∞i
, (51)

shown for tox =1 nm by the lower-energy solid line in
Fig. 5(a), arbitrarily truncated at Q = 2× 108/cm.

In Fig. 5(b) we show the two solutions of the secular
equation (20) ignoring TO-phonons in the insulator (i.e.,
using εi(ω) ≈ ε0ox), and using the long-wavelength ex-
pressions (34) and (35). In this case Eq. (20) becomes a
simple second-degree algebraic equation in ω2 with solu-
tions given by:

ω2Q =
1

2αQ

[
βQ ± (β2Q − 4αQγQ)1/2

]
, (52)

where

αQ = (ε∞g + ε∞i )(ε∞s + ε∞i ) eQtox

−(ε∞g − ε∞i )(ε∞s − ε∞i ) e−Qtox , (53)

βQ = −[(ε∞g + ε∞i )ε∞s ω2s(Q) + (ε∞s + ε∞i )ε∞g ω2g ] eQtox

+[(ε∞g − ε∞i )ε∞s ω2s(Q) + (ε∞s − ε∞i )ε∞g ω2g ] e−Qtox , (54)

γQ = ε∞g ε∞s ω2g ω
2
s(Q) (eQtox − e−Qtox) , (55)

Solutions relative to three insulator (SiO2) thicknesses
are shown: tox = 50, 7.5, and 1.0 nm. Notice how the

optical branch for the thick-oxide case (tox = 50 nm) ex-
hibits the expected thick-oxide limit ωQ ≈ ωgi, Eq. (48),
for all wavelengths shorter than the oxide thickness, ap-
proaching the limiting ‘thin-oxide’ fully-coupled limit,
ωgs(Q) only for values of Q << 1/tox. The acoustic
branch is also practically indistinguishable from the value
ωsi(Q) expected from Eq. (49). In the opposite case
of a very thin oxide, tox = 1.0 nm, the optical branch
approaches the frequency ωgs(Q) of Eq. (50), while the
acoustic branch approaches the small-Qtox limit ωsi(Q)
of Eq. (51).

Two additional lines of great physical significance are
also shown in Fig. 5(b): Labeled by ωLD,s(Q) and
ωLD,g(Q) are the two frequencies defined by

E(kF + Q)− E(kF ) = h̄ωLD,g(Q) , (56)

and

E0(KF + Q)− E0(KF ) = h̄ωLD,s(Q) , (57)

where kF = (6π2ng/gv)1/3 and KF = (4πns/g0)
1/2

are the zero-temperature Fermi wave vectors in the gate
and inversion layer in the extreme quantum limit (only
the subband µ = 0 being occupied), respectively. In
Eqns. (56) and (57) the wave vectors kF and KF are
taken to be parallel to Q. For a given wave vector Q, col-
lective modes oscillating at a frequency ωQ smaller than
ωLD,g(Q) will decay into single-particle excitations in the
gate, by exciting an electron at the Fermi surface and
placing it at an energy E(kF +Q) given by Eq. (56). Sim-
ilarly, collective modes oscillating at a frequency smaller
than ωLD,s(Q) will decay into single-particle excitations
in the inversion layer. These processes, known as ‘Lan-
dau damping’, are not captured by the long-wavelength
limit employed so far, since in Sec. II F we have explic-
itly ignored the imaginary part of dielectric functions.
However, when we retain the imaginary parts of ε̃g(Q,ω)

and ε̃
(2D)
s (Q,ω), the secular equation (20) will, in gen-

eral, admit complex solutions ωQ. The imaginary part
of ωQ represents the damping of the oscillations as their
energy is drained by exciting electrons at higher energies.
Within the long wavelength approximation, we may as-
sume that excitations associated with a field mainly lo-
calized at the gate/insulator interface will be damped by
the Landau processes occurring mainly in the gate, and
vice-versa for modes whose field is localized mainly at
the insulator/substrate interface. Figure 6 shows the po-
tential associated with the optical and acoustic modes
for a system with tox = 2.5 nm, ng = 3 × 1019 cm−3
and ns = 1013 cm−2. For a relatively short wavelength,
Q = 2/tox (dashed lines in the Fig. 6) the optical and
acoustic potentials are indeed strongly confined around
either interface. Only at a wavelength four times as large,
Q = 1/2tox, do the two modes begin to act as strongly
coupled oscillations, a significant fraction of their energy
being present throughout the insulator.

Despite these considerations, some uncertainty re-
mains: First, Eqns. (56) and (57) are zero-temperature
expressions. The damped/undamped boundary marked
by the curves ωLD,g(Q) and ωLD,s(Q) in Fig. 5(b) will
become softer at finite temperatures. Secondly, interface

9



plasmons can still be considered sufficiently well-defined
excitations whenever Im ωQ ≤ Re ωQ (see note 33). Fi-
nally, an approximation often used in the literature is to
assume that the Landau-damping wave vector qLD, given
by E(kF+qLD)−E(kF ) = h̄ωP (qLD) for the bulk case, is
of the order of the screening parameter βs,3D (See refs. 26
and 27). While this is qualitatively correct, numerical
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FIG. 6. Electrostatic potential energy associated with in-
terface plasmons at the indicated electron densities. The
dashed lines show the dependence of the potential φQ(z) as-
sociated with the optical and acoustic branches at a rela-
tively small wavelength ≈ πtox: The two branches appear
largely decoupled, the optical branch being localized mainly
at the SiO2/inverted-Si interface, the acoustic branch at the
bulk-Si-gate/SiO2 interface. At a larger wavelength (≈ 4πtox)
the two modes (shown by solid lines) appear more strongly
coupled, exhibiting a potential energy distributed throughout
the MOS structure.
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FIG. 7. Dispersion of the interface plasmons for three oxide
thicknesses obtained employing the dielectric function evalu-
ated in the long-wavelength approximation (lines) or using
the RPA approximation using a single subband and having
ignored the form-factors and the screening effects appearing
in Eq. 19 (i.e., having set ΦQ,ω;µµ′ = Φ

(0)

Q,µµ′ = e−Qtox) (sym-
bols).

differences of a factor of 2 or so can affect profoundly our
mobility calculations, as we shall see below.

In order to clarify this issue, we should ideally em-
ploy the RPA expressions for the dielectric functions and
solve Eq. (20) in the complex plane. In practice, numeri-
cal difficulties force us to simplify the problem: We shall
indeed employ the RPA, but consider only the real part
of the secular equation evaluated for real ω. The problem
is now reduced to finding the real zeroes of a real func-
tion. However, solutions will be found only in the ‘un-
damped’ region: Oscillations which are Landau-damped
appear spuriously within the long-wavelength limit, not
within the RPA, since the imaginary part of ε̃g(Q,ω) and

ε̃
(2D)
s (Q,ω) are now explicitly accounted for. Even in this

form, the problem is numerically challenging and we can
obtain the RPA dispersions ωQ only laboriously and in a
limited number of cases. From these, however, we can es-
timate the errors we shall make in computing the electron
mobility employing the long-wavelength limit below.

Figure 7 shows the tox-dependence of the dispersion
obtained in the long-wavelength limit, as in Fig. 5(b),
and using the full RPA expressions for the dielectric
functions. In both cases, a single subband has been

considered and the ‘form factors’ Φ
(0)
Q;µµ′ and ΦQ,ω;µµ′

have been approximated with their values for the zero-
thickness limit of the inversion layer. This allows a com-
parison by isolating the effect of the full Q-dependence of

ε̃g(Q,ω) and ε̃
(2D)
s (Q,ω). Note that both the optical and

the acoustic branches deviate from the long-wavelength
limit for wavelengths comparable to the screening lengths
in the gate (optical) and inversion layer (acoustic). In-
deed, if in Eq. (32) we retain terms of order q4, we find
the leading correction to the bulk plasma dispersion

ωP → ωP

(
1 +

3

2

q2

β2s,3D

)
. (58)

Similarly, Eq. (36) would be modified as follows:

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200
ng = 5x1019cm–3

ns = 1013 cm–3

lines: long–wavelength limit
symbols: RPA

tox = 1.0 nm
tox = 7.5 nm
tox = 1.0 nm

Q (108 m–1)

ω 
(m

eV
)

FIG. 8. As in Fig. 7, enlarging the long-wavelength region
in order to show the range of wavelengths over which the
long-wavelength limit is valid. The dashed-dotted line at left
is the Si light-line, showing that retardation effects are im-
portant only for very large wavelengths.
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FIG. 9. Dispersion of the interface plasmons evaluated
using the long-wavelength limits of the gate and sub-
strate dielectric functions (dashed lines, as in Fig 5 for
the case tox = 1 nm), using the RPA expression in the
one-occupied-subband, no form-factors approximation (solid
lines), as in Fig 7, also for the case tox = 1 nm), using the
RPA expression, many subband occupied, no form-factors
(open circles), or, finally the full RPA with the form-factor
and screening corrections of Eq. (19) for tox = 1 nm.

ωP,2D(Q) → ωP,2D(Q)

(
1 +

3

2

Q

βs,2D

)
. (59)

All RPA results in Fig. 7 show this behavior. Figure 8
shows in more detail the low-Q region. The RPA dif-
fers from the long-wavelength approximation especially
as far as the thin-oxide acoustic-branch is concerned.
Note also the Si light-line (the almost vertical dot-dashed
line) ωlight(Q) = cQ/(ε∞Si/ε0)

1/2, where c is the speed of
light and ε0 the permittivity of the vacuum. Retarda-
tion effects, as noted above, are important only in the
small region for ωQ > ωlight(Q). In addition, note in
Fig. 7 that the acoustic branches are truncated by Lan-
dau damping in the substrate at approximately the ex-
pected wavelength.

Figure 9 illustrates the significant effect of the finite
extension of the inversion charge and the negligible effect
of considering the occupation of many subbands. The
results labeled ‘RPA, one subband’ (solid line) coincide
with those labeled ‘RPA, multisubband, no form factors’
(circles), the latter differing from the former simply by
permitting the occupation of many subbands. This is
not a surprise at the large electron sheet density consid-
ered here, since about 96% of the electrons populate the
gound-state subband anyway. On the contrary, when em-

ploying the ‘exact’ form factors Φ
(0)
Q;µµ′ and ΦQ,ω;µµ′ , we

see that the acoustic branch becomes slighty stiffer, while
the energy of the optical branch is reduced. Again this
should be expected: As we remove the inversion charge
from the interface, as required by the ‘correct’ spatial dis-
tribution | ζµ(z) |2, we lower the electrostatic repulsion
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FIG. 10. Calculated dispersion of the coupled interface
plasmons/TO-oxide phonon modes for three of the models
described in Fig 9.

of the in-phase optical oscillations while lowering also
the electrostatic attraction of the out-of-phase acoustic
branch. As a result, the ‘gap’ between the acoustic and
the optical branch shrinks.34

Finally, Fig. 10 illustrates the effect of the coupling
between the interface plasmons and the TO phonons in
the insulator. Here we compare the results obtained in
the long-wavelength limit (solid lines), those obtained us-
ing the RPA but using a single subband and ignoring
the form factors (circles), and finally, those obtained by
using the more correct RPA model and accounting for
the screened form factors (dots). The RPA dispersion
appears more ‘interesting’ since various branches repel
each other as their dispersions in the uncoupled approx-
imation (i.e., no TO-phonon/plasmon coupling) would
otherwise cross, as a comparison with Fig. 9. shows.
Of interest is to note that while the acoustic and opti-
cal mainly-plasmon branches are Landau-damped at the
expected wavelengths, the lowest-energy branch disap-
pears at the Landau-damping wave vector in the sub-
strate, as expected, but reappears at shorter wavelengths.
This is caused by the fact that at sufficiently large Q
the lowest-energy mode represents a low energy optical
phonon mode with an ever decreasing plasmon content.
Thus Landau damping will not affect this mode, once the
plasmon content becomes sufficiently small.

We can draw a few conclusions from the results shown
in Figs. 5 through 10: The long-wavelength limit yields
an adequate dispersion only up to wave vectors of the
order of 2×107 m−1 to 4×107 m−1 (see Fig. 8) for insu-
lators as thin as 1 nm. The use of the RPA yields notice-
able deviations for wave vectors of the order of the Fermi
wave vector of the 2DEG at the sheet densities ns of in-
terest here. However, these corrections are larger for the
acoustic branch, which we shall see plays a smaller role in
fixing the electron mobility, than for the optical branch.
Therefore, the use of the long-wavelength limit in the

11



following, while dictated purely by numerical necessities,
should not result in major errors. In addition, the disper-
sions computed using the RPA push the Landau-damping
limit to shorter wavelengths, as seen clearly in Fig. 7:
The acoustic branch, which enters the Landau-damping
region at Q ≈ 1.2 × 108 m−1 in the long wavelength
limit, extends undamped all the way to Q ≈ 2.6 × 108

m−1 in the RPA. This is due to the higher plasma fre-
quencies obtained within the RPA which pushes qLD to
larger values. The inclusion of the electronic form fac-
tors (that is, accounting for the thickness of the inversion
layer) and their screening, while numerically hard, results
only in a minor correction to the dispersion relations (see
Fig. 9). Finally, the coupling between interface plasmons
and SiO2 TO phonons results in the expected ‘repulsion’
of the branches where they would cross (in the uncoupled
model) and in a reduction of the phonon frequency from
h̄ωLO to h̄ωTO at short wavelengths (see Fig. 10), as we
had already found in the past32.

III. EFFECTIVE MOBILITY OF THE 2D
ELECTRON GAS

In this section we calculate the effective mobility of
the 2DEG in the inversion layer of the Si substrate, ac-
counting for scattering with phonons and interface plas-
mons. Scattering with the TO-phonon content of the
coupled interface-plasmons/TO-phonon modes has been
dealt with in the past32 and has been shown to account
for a small effect, of the order of 5% or so. Thus, we shall
consider only scattering with the interface plasmons. The
long-wavelength limit is used to determine their disper-
sion relation.

A. Effective mobility

The inversion layer is treated in the triangular-well ap-
proximation described above in Sec. II G (see Eqns. (44)
and (45)).

From the linearization of the two-dimensional Boltz-
mann transport equation one can obtain the mobility
tensor as:

µij = − e
h̄

〈
τp,iυi

(
∂f

∂Kj

)
1

f

〉
th

, (60)

where the indices i and j run over the real-space coordi-
nates x, y, υi(K) is the electron group velocity, τp,i(K)
is the relaxation time for the i-th component of the crys-
tal momentum h̄K, f(K) is, as always, the equilibrium
distribution function, and < X >th denotes the thermal
average of the dynamic quantity X (K),

< X >th =
∑
µ

gµ

nµ

∫
dK

(2π)2
X (K) fµ(K) , (61)

where nµ is the electron sheet-density and fµ the equi-
librium distribution function in subband µ.

We consider the Si/SiO2 interface to be parallel to the
< 100 > crystal plane and the x-axis along the (100)

direction. Thus, we shall consider only the component
µxx of the mobility defined as

µxx =
1

ns

∑
µ

nµ µ(µ)xx , (62)

where µ
(µ)
xx the xx component of the mobility tensor in

subband µ.
For the general case of elliptical subband structures (as

is the case in the ‘primed’ subbands), we have:

µ(µ)xx =
egµ

4π2m2µ,xkBT nµ

∫ 2π
0

dβ

∫ ∞
Eµ

dE K2 cos2 β

× τp,x(K,β)fµ(E)[1 − fµ(E)]

×1 + 2α(E − Eµ) + 2α < Eµ − V >µ

cos2 β/mµ,x + sin2 β/mµ,y

, (63)

where the (anisotropic) momentum relaxation time,
τp,x(K,β) has been expressed as a function of energy and
angle β between the K-vector and the x-axis, mµ,x and
mµ,y are the electron effective masses along the x and
y axes, respectively. Note that we must consider three
seperate ’kinds’ of subbands: The ‘unprimed’ ladder is
doubly-degenerate and isotropic with mµ,x = mµ,y = mt,
while the ‘primed’ ladder consists of doubly-degenerate
high-mobility subbands for which mµ,x = mt and mµ,y

= ml, and of those of lower mobility for which mµ,x =
ml and mµ,y = mt, also doubly degenerate. We have
also assumed a nonparabolic band structure character-
ized by a nonparabolicity parameter α= - 0.5 eV−1, and
have used first-order perturbation theory to express the

nonparabolic subband structure32: If E
(0)
µ is the (unper-

turbed) bottom of the µ-th subband in the parabolic-
band approximation, in the triangular well approxima-
tion the non-parabolic electron dispersion will be

Eµ(K) = E(0)µ +
1

5
αE(0)µ

2

+ γµ(K)

[
1 + αγµ(K) +

2

3
αE(0)µ

]
. (64)

having denoted with γµ(k) the parabolic dispersion.
Moreover, we shall use the following expectation values

< E(0)µ − V >µ =
1

3
E(0)µ , (65)

< (E(0)µ − V )2 >µ =
1

5
E(0)µ

2
. (66)

Here and in Eq. (63) the expectation value in subband µ
is defined as:

< X >µ =

∫ ∞
tox

X(z) ζµ(z)2dz , (67)

for wavefunctions normalized as in Eq. (47). Note that
for spherical and parabolic subbands Eq. (63) reduces
to the familiar two-dimensional Kubo-Greenwood expres-
sion
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µ(µ) =
e

mµkBT nµ

∫ ∞
Eµ

dE (E − Eµ) ρµ(E)

× τ(E)fµ(E)[1 − fµ(E)] , (68)

where, for E > Eµ, ρµ(E) is the energy-independent two-

dimensional density of states gµmµ/(2πh̄2).

B. Momentum relaxation time

We must now deal with the momentum relaxation
time, τp,x(K,φ), appearing in Eq. (63). Scattering with
plasmons is an anisotropic and inelastic process, so that
the derivation of a rigorous relaxation time is a trouble-
some issue. This has been discussed in detail elsewhere
in the context of bulk-plasmons35. We start with the ex-
pression provided by Chattopadhyay and Queisser36. In
the case of bulk semiconductors, we can rephrase their
analysis as follows: We expand the nonequilibrium dis-
tribution function f (ne)(k) around its equilibrium value
f(k) to first order in the magnitude of the homogeneous
external field F :

f (ne)(k) ≈ f(k) +
eh̄F

m∗
Φ(k)

∂f

∂E
. (69)

Using this expansion and detailed balance,

S(k,k′)f(k′)[1− f(k)] = S(k′,k)f(k)[1 − f(k′)] , (70)

where S(k′,k) is the transition rate from a state k to a
state k′, the collisional term of the Boltzmann equation,(
∂f (ne)

∂t

)
coll

=
1

(2π)3

∫
dk{S(k,k′)f (ne)(k′)[1 − f (ne)(k)]

− S(k′,k)f (ne)(k)[1 − f (ne)(k′)]} , (71)

can be rewritten as:(
∂f (ne)

∂t

)
coll

≈ − f (ne)(k)− f(k)

τp,x(k)
, (72)

where the relaxation time τp,x(k) is defined as:

1

τp,x(E, θ)
=

1

4π2

∫
dk k2

∫ π

0

dθ′ cos θ′S(k′, k; θ, θ′)

× 1− f(E′)
1− f(E)

{
1− Φ(k′)

Φ(k)

}
. (73)

The problem stems from the fact that the function Φ(k)
is proportional to kτp,x(k) cos θ, where θ is the angle be-
tween the wave vector k and the field F (assumed to be
along the x-axis) and thus it depends on the relaxation
time itself, so that Eq. (73) is actually an integral equa-
tion for τ retaining the full complexity of the original
Boltzmann equation. For isotropic band-structures Φ(k)
is a function of E(k) cos θ only. Thus, assuming that
S(k,k′) does not depend on the azimuthal angle and us-
ing the fact that S(k′, k; θ, θ′) = S(k′, k;−θ,−θ′) in cubic
crystals, the troublesome second term within the curly
bracket in Eq. (73) becomes [k′τ(k′)/(kτ(k)] cosφ where
φ is the angle between the intial and final wave vectors k

and k′. For isotropic scattering this term vanishes upon
integration over the polar angle, while for elastic scat-
tering E = E′ and this term simplifies to (k′/k) cosφ.
In general, though, there is no simplification and one
should solve the full integral equation Eq. (73). Fortu-
nately, often sufficiently accurate results are obtained by
setting Φ(k′)/Φ(k) ≈ (k′/k) cosφ, since anisotropic cor-
rections due to scattering are typically small in diffusive,
equilibrium situations in which isotropy (or a possible
band-structure anisotropy) dominates.

In two-dimensional transport we encounter an identical
situation and we shall approximate the relaxation time
as

1

τ(E, β)
=

1

4π2

∫
dKK

∫ π

0

dφ S(K ′,K;β, β′)

× 1− f(E′)
1− f(E)

{
1− K ′

K
cosφ

}
, (74)

where β (β′) is the angle between the wave vectorK (K′)
and the field (aligned along the x-axis), and φ = β − β′.

C. Plasmon scattering

We can now calculate the scattering kernel
S(K ′,K;β, β′) from the matrix element of the plasmon
potential over the wavefunctions {ζµ}. From Eqns. (3),
(20), and (24), the potential associated with an interface
mode of frequency ωQ in the Si substrate (z ≥ tox) is

φQ(z) =
εi(ωQ)− ε̃g(Q,ωQ)

εi(ωQ) + ε̃
(2D)
s (Q,ωQ)

(
h̄ωQ

2QDQ

)1/2
e−Qz

(75)

We must spend a word of caution about the use of this ex-
pression as a scattering potential for the electrons in the
inversion layer. Equation (75) represents the potential
energy associated with modes resulting from the coupling
of modes oscillating both in the gate and in the inversion
layer itself. It is not trivial to establish how much net loss
of momentum of the 2DEG results from scattering with
this last component. Indeed, as an electron of the 2DEG
emits a plasmon localized at the insulator/substrate in-
terface, the transfered momentum is simply redistributed
among the electrons of the 2DEG. If things were this sim-
ple, processes of this kind would have no effect on the mo-
bility. But, as also discussed in the past32,35, plasmons
can decay either via Landau damping or via collisions. If
Landau damping dominates, indeed the ‘lost’ momentum
is reabsorbed by 2DEG. But if collisional damping domi-
nates, the momentum is indeed lost (to phonons, impuri-
ties, etc.). In this case, one would have a net contribution
to the momentum relaxation time associated with these
modes. On the contrary, momentum transfered from the
2DEG to plasmons localized at the gate-insulator inter-
face does constitute a net loss of momentum. As shown in
Fig. 6, the field of Eq. (75) is due to a mixture of oscilla-
tions localized at both interfaces. For this reason here we
take a ‘conservative’ approach: We assume that modes
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localized at the substrate/insulator interface do not con-
tribute to the momentum relaxation processes. Thus, we
shall evaluate an upper bound for the effective mobility.
As a result of this discussion, we consider an ‘effective’
scattering potential: For optical modes we consider only
the fraction of the potential which can be attributed to
oscillations localized at the gate-oxide interface. From
Eq. (3) this is

RQ =
| bQ,ωQ |
| dQ,ωQ |

. (76)

Indeed, for optical modes, whose potential is due to the
sum of in-phase oscillations at both interfaces, the con-
tributions to φQ(z) due to oscillations at both interface
add constructively, so the RQ < 1. For acoustic modes,
we take the same fraction if the amplitude of the field
at the oxide/substrate boundary is actually larger than
the field at the gate/oxide. This is the case when the
field due to larger oscillations at the oxide/substrate in-
terface is mostly screened by gate charges, as shown in
Fig. 6 by the longer wavelength acoustic mode (lower
solid line). Thus, we effectively ignore the oscillation of
the 2DEG and account only for the ‘screening’ oscilla-
tions induced at the gate/oxide interface. In the opposite
case, as shown by the ‘left-peaked’ dashed line in Fig. 6, it
is actually the 2DEG which oscillates while screening the
potential induced at the gate/oxide interface. Therefore
we leave the potential (75) unchanged, since in this case
RQ > 1, and rescaling Eq. (75) by the factor RQ would
amount to incorrectly ignoring the screening effects of
the 2DEG. Thus, summarizing, in all cases the ‘effective’
scattering potential we consider is given by Eq. (75) mul-
tiplied by the correction factor min(1, RQ).

Using the Fermi golden rule, the momentum relaxation
time due to emission or absorption of an interface plas-
mon of either the acoustic or the optical branch caus-
ing electrons with wave vector k in subband µ to make
an intra-valley, intra- or inter-subband transition to sub-
band ν is

1

τ
(SP,±)
p,x;µν (K,β)

=
e2

2πh̄3

∫ 2π
0

dφ

× 1− 2α(E′ − Eν)− 2α < E
(0)
ν − V >ν

cos2 β′/mν,x + sin2 β′/mν,y

×
{

nQ
1 + nQ

}
1− fν(E′)
1− fµ(E)

| AQ |2| Fµν(Q) |2

×
[
1− K ′

K
cosφ

]
1

| g | θ(E′ − Eν) , (77)

where the upper (lower) sign/symbols refer to absorption
(emission), and θ(x) is the step function. Other symbols
in the equation above are defined as follows:

AQ =
εi(ωQ)− ε̃g(Q,ωQ)

εi(ωQ) + ε̃
(2D)
s (Q,ωQ)

(
h̄ωQ

2QDQ

)1/2
× e−Qtox min(1, RQ) , (78)

is the ‘effective’ amplitude of the plasmon field,

Fµν(Q) = e−Qtox Φ(0)µν (Q)

=

∫ ∞
tox

dz ζµ(z) e−Q(z−tox) ζν(z) , (79)

is the electronic form factor,

E′ = E ± h̄ωQ (80)

is the final energy after emission (−) or absorption (+)
of an interface plasmon of energy h̄ωQ,

K ′ =
{2(E′ − Eν)[1 − α(E′ − Eν)− 2α < E

(0)
ν − V >ν}1/2

h̄(cos2 β′/mν,x + sin2 β′/mν,y)
,

(81)

is the final electron wave vector in the ν-th subband,
Eν being the nonparabolic energy of the bottom of the

subband related to the parabolic energy E
(0)
ν via Eq. (64)

for γµ(K) = 0, and

Q = (K2 + K ′2 − 2KK ′ cosφ )1/2 (82)

is the transferred wave vector. When using the long-
wavelength limit for the plasmon dispersion, Landau
damping must be accounted for ‘by hand’ by restrict-
ing the range of integration in Eq. (77) to values of Q
(given by Eq. (82) above) smaller than a cut-off wave
vector qc. We shall discuss below the possible choices for
qc. Note that Eqns. (80)-(82) constitute a system of non-
linear equations which must be solved in order to obtain
the final energy and wave vector satisfying their respec-
tive conservation laws. We have used an iteration process
which has proven to be very efficient: An initial guess is
made for the plasmon energy h̄ωQ, the resulting energy
E′ is employed to compute the final wave vector K ′ and
the wave vector transfer Q. The new plasmon energy
h̄ωQ is computed and the iteration process is repeated
until energy changes from one iteration step to the next
are smaller than a preset error (typically, 1 µeV). Very
few iterations (order of 5 to 10) are usually required. The
term

g = 1± dωQ

dQ

(
1− K ′

K
cosφ

)

× 1− α(E′ − Eν)− 2α < E
(0)
ν − V >ν

h̄Q(cos2 β′/mν,x + sin2 β′/mν,y)
, (83)

is the Jacobian resulting from the change of variable
required to integrate the energy-conserving δ-function.
This term is responsible for the ‘spikes’ observed in
the relaxation rate vs. wave vector already observed
by Hawrylak and co-workers37 when computing the in-
verse lifetime of quasiparticles in layered electron gases.
Finally, the plasmon frequency, computed in the long-
wavelength limit, is given by Eq. (52).

A simplified expression can be obtained using a
parabolic approximation (i.e., setting α =0), in the limit
in which only the ground-state subband is occupied,
and using the variational expression for the wavefunction
ζ0(z) (see Ref. 31):
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ζ0(z) ≈
(
b3

2

)1/2
(z − tox) e−(b/2)(z−tox) , (84)

where b = [12mte
2n∗/(ε∞s h̄2)]1/3, with n∗ = nds +

(11/32)ns. In this case we obtain the isotropic expres-
sion by a much simpler evaluation (since in Eq. (63) the
angular integral becomes trivial):

1

τ
(SP,±)
p;00 (K)

=
e2mt

2πh̄3

∫ 2π
0

dφ
b6e−2Qtox

(1 + Q/b)6

{
nQ

1 + nQ

}

×1− fν=0(E
′)

1− fµ=0(E)
| AQ |2

[
1− K ′

K
cosφ

]

×
∣∣∣∣1± mt

h̄Q

dωQ

dQ

(
1− K ′

K
cosφ

)∣∣∣∣
−1

, (85)

E′, K ′, and Q being defined by Eqns. (80)-(82) as func-
tions of the scattering angle φ.

D. Electron-phonon scattering

Other additional scattering mechanisms which con-
tribute to the total relaxation rate are intra- and inter-
valley phonon emission and absorption processes and
scattering with roughness at Si/SiO2 interface. We treat
them as described elsewhere31,32. In particular, intraval-
ley scattering with acoustic phonons is described by an
anisotropic process. Using the elastic and equipartion
approximation, the relaxation rate for a transition from
an electron of wave vector K in subband µ to any state
in subband ν assisted by an acoustic phonon of branch i
= transverse (TA) or longitudinal (LA), is:

1

τ
(i,±)
p,x;µν(K,β)

=
kBT

2πρh̄3c2i
θ(E − Eν) ×

[1 − 2α(E − Eν)− 2α < Eν − V >ν ] ×∫ ∞
−∞

dqz

2π
| Fµν(qz) |2

∫ 2π
0

dφ
Ξ2i (ηQ)

[
1− K′

K
cosφ

]
cos2 β′/mx,ν + sin2 β′/my,ν

(86)

where ci is the longitudinal (i=LA) or transverse (i=TA)
sound velocity, ρ is the Si density, φ = β−β′ is the scat-
tering angle, β (β′) the angle between the initial (final)
wave vector K (K′) and the x-axis, the magnitude of the
final wave vector K′ is given by Eq. (81) with E = E′,
thanks to the elastic approximaton, and, finally, the ‘de-
formation potential’ Ξi is the anisotropic expression ob-
tained by Herring and Vogt38

Ξi(ηQ) =

{
Ξd + Ξu cos2 ηQ (i = LA)
Ξu cos ηQ sin ηQ (i = TA)

, (87)

Ξu and Ξd being the uniaxial-shear and dilatation de-
formation potentials, respectively, and ηQ is the angle
between the emitted/absorbed phonon and the longitu-
dinal axis of the ellipsoidal equi-energy surface of the
valley, that is:

cos ηQ =
K cosβ −K ′ cosβ′

(Q2 + q2z)1/2
. (88)
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FIG. 11. Effective phonon- and plasmon-limited elec-
tron mobility at 300 K – using the single-subband and
long-wavelength limit for the dielectric functions – as a func-
tion of electron density in the gate at a fixed electron density
in the channel (a) and in the opposite case, as a function of
electron density in the channel for a fixed density in the gate
(b). The dotted lines represent the phonon-limited mobility
in this model, the solid line has been calculated damping the
interface phonons at the zero-T Landau-damping parameter
qLD in the gate, the dashed lines damping the plasmons at
the Thomas-Fermi screening wave vector β = βs,3D in the
gate.

Finally,

Fµν(qz) =

∫ ∞
tox

dz ζµ(z) eiqzzζν(z) (89)

is the electronic form factor.
Intervalley phonon scattering is approximated as an

isotropic process, so that the momentum relaxation rate
coincides with the scattering rate, given by Eq. (31)
of Ref. 32. Scattering with interface roughness is as-
sumed to be an elastic process, so the associated mo-
mentum relaxation time will be similar to the scattering
rate given by Eq. (49) of Ref. 32, with an extra factor
1−(K ′/K) cosφ appearing in the integrand. The param-
eters employed to treat these scattering processes will be
discussed in the following section.
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E. Numerical results

It is convenient to consider first the simplified model
of Eq. (85), using also a simplified form of Eq. (86)
with an isotropic deformation potential, Ξi(ηq) =
∆ac = 10 eV for both transverse and logitudinal acous-
tic phonons. In this case the momentum relaxation
time due to electron-phonon scattering becomes simply
3mtb∆

2
ackBT/(64h̄3ρc2s), where cs = 5.6×105 cm/s is an

average sound velocity, and the mobility reduces to the
form (68) with a single subband (µ = 0), amenable to a
fast numerical evaluation.

Figure 11(a) shows the electron mobility for a fixed car-
rier concentration in the channel (1013 cm−2), at 300 K
for an oxide thickness of 1 nm as a function of electron
concentration in the Si gate, ng. Two curves are shown
in the figure, corresponding to two different choices for
the Landau damping wave vector qc. A first possible
choice, corresponding to the solid lines in Figs. 11, 12,
and 13, is the zero-temperature Landau-damping pa-
rameter qLD, the solution of h̄ωQ = h̄ωLD,g(Q), where
h̄ωLD,g(Q) is given by Eq. (56). Indeed, since we are
effectively suppressing the insulator/substrate modes via
the factor RQ given by Eq. (76), we have to worry only
about gate/insulator modes decaying into single-particle
excitations in the gate. A second choice, which we make
only to conform to a practice commonly employed in the
literature, is to approximate qc with the screening wave
vector βs,3D in the gate. This choice results in the dashed
lines in the figures.

At small ng the mobility approaches its phonon-limited
value (dotted line), since the squared amplitude of the
field associated with the gate/insulator interface plas-
mons (proportional to their frequency, in turn porpor-

tional to n
1/2
g ) is small. As the concentration of the gate

electrons increases, the coupling with the gate/insulator
plasmons increases. If we chose qc = qLD, at sufficiently
large ng the frequency of the optical interface plasmons
becomes too large: Electrons in the channel cannot ab-
sorb them, since their thermal occupation decreases fast
with their energy, and cannot emit them once the energy
of the optical modes exceeds the Fermi energy of the elec-
trons in the channel. Acoustic modes, on the other hand,
could couple to the 2DEG, but they are strongly Landau-
damped. Therefore, the mobility rises again towards its
phonon-limited value. However, the choice qc = βs,3D
allows undamped acoustic modes up to very short wave-
lengths. This results in a reduced mobility even at large
values of ng, since now the 2DEG can scatter with the
undamped acoustic modes.

Figure 11(b) shows the complementary situation of the
mobility calculated for a fixed ng, chosen approximately
at the minimum of the solid line in Fig. 11(a), but vary-
ing the sheet carrier density in the channel. Now the
phonon-limited mobility decreases with ns, because of
the decreasing electronic form factor (89). At low ns the
Fermi energy of the 2DEG is so small that only acoustic
plasmons can contribute to the mobility. When chosing
qc = qLD these are mostly Landau-damped and the mo-
bility remains phonon-limited. When chosing qc = βs,3D,
instead, their contribution is noticeable even at small ns.
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FIG. 12. The effective electron mobility as in Fig. 11, but
computed at fixed electron densities in the gate and in the
channel, but varying the oxide thickness (top) or the insula-
tor dielectric constant (bottom) while maintaining the same
‘oxide-equivalent’ insulator thickness of 1 nm.

For large values of the electron sheet density in the chan-
nel the amplitude of the plasmon field in the channel,
Eq. (78), decreases as the high-density 2DEG screens
charge oscillations at the gate/insulator interface. Note
that the ‘dips’ observed in the curves of Fig. 11 corre-
spond to the peaks of the drag-rate calculated by Flens-
berg and Hu16. These are the signature of the plasmon-
induced drag occurring whenever the mismatch between
the Fermi velocities of the electron gases in the substrate
and in the gate is minimized.

Figure 12 shows the dependence of the mobility at fixed
ng and ns on the oxide thickness (a) and on the permit-
tivity of the insulating layer for a fixed ‘effective’ insula-
tor thickness tox,eq = toxε

∞
i /ε∞SiO2 , (b). In Fig. 12(a)

notice that the influence of interface plasmons disap-
pears for oxides thicker than about 3.5 to 4 nm. Re-
sults for oxides thinner than about 1 nm show an increas-
ing mobility, as acoustic plasmons become more severely
damped for thin insulators. The calculations have not
been pushed to the tox → 0 limit since many assump-
tions we have made explicitly and implicitly break down
in this limit. Most notably, as tox → 0 and the electron
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FIG. 13. (a): The effective electron mobility as Fig. 11,
computed as a function of temperature at fixed electron den-
sities in the gate and in the channel. (b): The Coulomb drag
rate 1/τD, rescaled by T 2, as a function of temperature.

wavefunction penetrates into the oxide, an increasingly
larger fraction of charge resides within the oxide layer.
This will undoubltely alter the coupling between the gate
and substrate electron gases and so the plasmon disper-
sion. Note in Fig. 12(b) how high-dielectric insulators
show a beneficial effect.

Figure 13(a) shows the temperature dependence of the
effective electron mobility in this simple one-subband
model. As expected, the phonon-limited mobility in-
creases linearly with 1/T , while the effect of the inter-
face plasmons disappears at low temperatures. This is
illustrated in more detail in Fig. 13(b). Here we plot
the ‘drag rate’ 1/τD (defined as 1/τD = e/(µPmt),
where µP is the plasmon-limited mobility of Eq. (68))
rescaled by the squared temperature, as usually done
in the literature10,16. The plot shows the ‘usual’ peak
at temperatures slighlty lower than the Fermi tempera-
tures TF of the 2DEG in the substrate (≈ 256 K at the
density employed in the figure) or of th 3DEG in the
gate (TF ≈ 725 K). The T 2-dependence of the drag-rate,
observed experimentally8 in some systems at low tem-
perature (T < TF ), is reproduced only qualitatively, in
agreement with previous theoretical results accounting
for long-range (plasmon) effects16. The behavior of
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FIG. 14. Effective electron mobility in Si channels as a
function of electron sheet density while also varying the aver-
age electron density in the gate depletion layer as required by
Gauss’ law. Scattering with intra- and inter-valley phonons,
surface roughness, and interface plasmons has been included.
The solid line shows the mobility in the thick-oxide limit (no
interface plasmons), the dotted line accounting for interface
plasmons damped at the wave vector qLD, the dashed line
damping them at the screening wave vector in the gate. Ex-
perimental data for lightly-doped substrates and thick oxides
are as in Fig. 12 of Ref. 32.

1/τD at very low temperatures agrees with the results
presented in Fig. 4 of Ref. 16 when using the plasmon-
pole approximation. Indeed, we have not accounted
for short-range Coulomb effects, being interested mainly
in the behavior of the system at room temperature.
But, like for all other Coulomb scattering processes, at
sufficiently low T short-range electron-electron interac-
tions cannot be ignored, since the origin of the the T 2-
dependence is Pauli’s exclusion principle acting on these
processes.

Finally, Fig. 14 shows the electron mobility as a func-
tion of sheet carrier density ns while also varying the
electron density in the gate according to Eqns. (37)-
(43). An oxide thickness of 1.5 nm has been assumed
and the poly-Si gate has been taken to be n-type doped
to a concentration of 1020 donors/cm3. In this case, we
have still used the long-wavelength limit, but have ac-
counted for the occupation of many subbands, have em-
ployed the anisotropic expressions (63), (77) and (86),
and have treated scattering with interface roughness with
the model described in Ref. 32. One should keep in mind
that, in Fig. 14, as we move along the ns-axis we move
also in the direction of decreasing ng, as the poly-Si gate
becomes more and more depleted. Roughly speaking, we
walk through Fig. 11(b) right-to-left while walking along
Fig. 11(a) in the opposite direction.

The first observation we must make is that the phonon-
limited mobility itself (solid line) reproduces satisfacto-
rily experimental data for thick oxides and lightly-doped
substrates (symbols as in Fig. 12 of Ref. 32). This is
the result of a choice of the deformation potentials, both
intra- and inter-valley, different from Ref. 32. Previous
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work on strained Si and on the calculation of electron
and hole mobility in bulk Si has allowed us to obtain the
values Ξd = 1.1 eV and Ξu = 10.5 eV for the dilatation
and uniaxial deformation potentials.39 Similarly, the high
electron mobilities observed in strained Si have dictated
the use of the intervalley deformation potential originally
employed by Canali and co-workers40. It is no surprise
that results regarding the electron mobility in strained Si
should bear implications on the mobility in Si inversion
layer: In both cases, the degeneracy of the six ellipsoidal
valleys is removed, either by strain or by quantization,
thus allowing a separate determination of the f - and g-
scattering intervalley processes.

When scattering with interface plasmon is accounted
for, the mobility is significantly depressed at large ns.
At smaller electron sheet densities the Fermi level of
the 2DEG decreases, so that electrons in the channel
can interact only with the acoustic branch of the inter-
face plasmons. Similarly to what is found in Fig. 11(b),
when strongly damping the acoustic branch (dotted line,
qc = qLD), the mobility approaches its phonon-limited
value. When leaving the acoustic branch largely un-
damped (dashed line, qc = βs,3D), the effective electron
mobility remains low even at small ns.

IV. DISCUSSION AND CONCLUSIONS

Figure 14, the main result of our work, shows that long-
range Coulomb interactions between electrons in the Si
channel and electrons in the depletion layer of the gate
affect significantly the electron mobility for thin oxides.
For sheet electron densities of technological importance
(often exceeding 1013 cm−2), this can be a 30% effect for
1.5 nm oxides, independent of the choice of qc. At smaller
densities the ‘truth’ will probably lie between the dashed
and the dotted lines of Fig. 14. On the one hand, the
RPA calculations show that the choice qc = qLD may be
too restrictive when using the long-wavelength limit. The
choice qc = βs,3D, however, may err in the other direc-
tion. Recall also, as discussed above, that we have com-
pletely ignored the effect of the oscillations peaked at the
channel/oxide interface, and this may result in an over-
estimation of the mobility. Sadly, despite the complexity
of our work, we are not able to provide an unambigous
result at small electron sheet densities.

A degradation of the electron mobility in thin-oxide
MOS structures has been reported by several groups, but
it has been attributed to alternative scattering processes:
Chin and co-workers41 have observed a reduction of the
effective electron mobility by a factor of 2 even at low ns
going for tox = 7 nm to tox = 2 nm. Although the au-
thors themselves warn us that a portion of this reduction
may be only ‘apparent’, originating from an erroneous
evaluation of the charge density ns, they proposed re-
mote scattering with impurities in the depletion region
of the poly-Si gate as a possible mechanism. Calculations
based on the proposal have been made by Krishnan and
co-workers42, using what they call the Remote Coulomb
Scattering (RCS) model, prompting more experimental
work showing an even more dramatic reduction of the

mobility in the 1.4 to 1.0 nm range43. More recently,
Yang and colleagues44 have seen more moderate effects
(a 15%-to-20% mobility reduction at large ns going from
a 3.2 nm to 1.5 nm-thick oxide). Their samples had a
rather large substrate doping, so that low-ns effects, if
present at all, would be masked by Coulomb scattering
with ionized impurieties. They went on to show that
the RCS model cannot account for this variation, giving
at most 5% effect, and blame enhanced scattering with
surface roughness for the degradation of the mobility. Fi-
nally, Timp and co-workers45, have observed a degrada-
tion of the saturated drain current in n-MOSFETs with
oxides both thicker and thinner than an ‘optimum’ value
of about 1.3 nm. While the poorer performance of devices
with a thicker oxides can be easily understood, at least
qualitatively, in terms the obvious reduction of the gate
capacitance, they did not explain the loss of performance
observed for oxides thinner than 1.3 nm.

Our (obviously biased) opinion is that the Coulomb
channel-gate interaction can easily explain those find-
ings. Indeed neither of the proposed mechanisms (RCS
or enhanced scattering with surface roughness) seems too
plausible. Scattering with interface roughness can easily
be confused for the effect shown in Fig. 14, especially if
we have to believe the qc = qLD-results (dotted line), and
‘fitting’ the data with any surface-roughness model does
not necessarily prove that this is the ‘right’ mechanism:
From a practical point of view, two empirical parame-
ters (the rms step-height ∆ and the correlation length
λ) must be ‘fitted’ to the data in order to evaluate the
roughness-limited mobility, thus ‘explaining’ almost any
high-ns mobility degradation by definition. In addition,
theoretical estimates do not justify this claim: the de-
pendence of the roughness-limited mobility on tox, while
strong at small ns, becomes negligible at the electron
sheet densities of interest46. On the other hand, the RCS
model, as considered either in Ref. 42 or in Ref. 44, is also
likely to overestimate its effect on the mobility: Indeed,
both versions of the model assume that the scattering
centers in the depletion region of the gate are screened
by the 2DEG, but not by the gate electrons. In typ-
ical cases, the gate ‘depletion’ region is not really ‘de-
pleted’, strictly speaking: It simply exhibits an electron
concentration smaller than what charge-neutrality would
demand, and should be viewed as a quite thin region with
a significant ‘average’ density of free carriers, ng, so that
its screening effects – as accounted for by the Green’s

function G̃(g)Q of Appendix B of Ref. 1 – should depress
significantly the strength of the interaction.

In conclusion, there is no experimental evidence clearly
supporting the oxide-thickness dependence of the elec-
tron mobility. There is ‘circumstantial’ evidence, but in-
consistent in terms of the size of the effect (factors of 2
versus 15%) and the range of ns over which the effect
is most sensitive. Nevertheless, the results of Yang and
co-workers44 are consistent with our results: Considering
the large amount of impurity-scattering present in the
samples of Ref. 44 (which partially masks the effect we
are interested in since it leads to an increasing impurity-
limited mobility for decreasing tox), the observed 15-20%
effect compares favorably with the 20-25%-effect pre-
dicted in Fig. 14 at large ns for tox = 1.5 nm.
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APPENDIX A: DIELECTRIC FUNCTION OF A
TWO-DIMENSIONAL ELECTRON GAS

In this appendix we derive the dielectric response of
a two-dimensional electron gas (2DEG). Let us consider

an external potential φ
(ext)
Q,ω (z)eiQ·Reiωt applied to the

2DEG. The total potential will be

φQ,ω(z) = φ
(ext)
Q,ω (z) +

∫
dz′ G(s)Q (z, z′)

δρQ,ω(z′)
ε∞s

,

(A1)

where ε∞s is the valence-band permittivity of the semi-

conductor, G
(s)
Q (z, z′) the Green’s function derived in

Appendix B of Ref. 1, and ρQ,ω(z) is the polarization
charge induced by the external potential. Assuming that
all Fourier components of the potential can be consid-
ered independently, since their phases vary wildly so that
‘cross terms’ mixing different wavelengths cancel (‘ran-
dom phase approximation, RPA), and that the perturba-

tion φ
(ext)
Q,ω is ‘weak’ compared to the free electron Hamil-

tonian, the polarization charge can be evaluated by com-
puting the change induced by the full (external plus po-
larization) potential on the ‘unperturbed’ wavefunctions.
For a given subband µ, these are written as

ψ
(0)
K,µ(R, z) = eiK·R ζµ(z) υK,kz=kz,0(R, z) , (A2)

where ζµ(z) is the ‘envelope’ wave function along the
quantization direction z, υK,kz (R, z) are the (bulk) Bloch
functions evaluated at the wave vector (K0+K, kz,0+kz),
where (K0, kz,0) is the minimum of the valley we are con-
sidering. Second-order perturbation theory gives for the
perturbed (retarded) wavefunctions

ψK,µ(R, z) = ψ
(0)
K,µ(R, z) +

lim
s→0+

∑
K′µ′

e <K′µ′ | φω | Kµ >

Eµ(K)− Eµ′(K′) + h̄ω + ih̄s
ψ
(0)
K′,µ′(R, z) ,

(A3)

where

< K′µ′ | φω | Kµ >

= φK−K′,ω;µµ′ =

∫
dz ζµ(z) φK−K′,ω(z) ζµ′(z) . (A4)

Therefore the charge induced by the perturbation will be:

δρω(R, z)

= − e
∑
Kµ

gµ fµ(K) [| ψK,µ(R, z) |2 − | ψ(0)K,µ(R, z) |2] ,

(A5)

where fµ(K) is the (Fermi-Dirac) equilibrium occupation
of the subband µ at the wave vector K, and gµ is the
degeneracy of the subband including spin. Assuming now
that the external potential is also ‘slowly varying’, so that
all wave vectors K of interest are much smaller than any
wave vector G of the reciprocal lattice, using Eq. (A2)
and (A3), we obtain:

δρω(R, z) = − e2
∑
Q

eiQ·R lim
s→0+

∑
Kµµ′

gµfµ(K)− gµ′fµ′(K+Q)

Eµ(K)− Eµ′(K+Q) + h̄ω + ih̄s

× φQ,ω;µµ′ ζµ(z) ζµ′ (z), (A6)

Eµ(K) being the energy in subband µ at wave vector K.
Thus, for the Fourier component δρQ,ω(z) in Eq. (A1) we
obtain:

δρQ,ω(z) = ε∞s
∑
µµ′

βµµ′(Q, ω) φQ,ω;µµ′ζµ(z)ζµ′(z) ,

(A7)

having defined the ‘screening wave vector’ βµµ′(Q, ω) as:

βµµ′(Q, ω)

= − lim
s→0+

e2

ε∞s

∑
K

gµfµ(K)− gµ′fµ′(K+Q)

Eµ(K)− Eµ′(K+Q) + h̄ω + ih̄s
.

(A8)

Equation (A1) should be regarded as an equation for
the screened potential φQω(z) once the unscreened po-

tential φ
(ext)
Q,ω (z) is known. In particular, we need only

the matrix elements (i.e., the ‘screened form factors’)
φQ,ω;µµ′ , which can be obtained by taking the matrix el-
ements of Eq. (A1) over the basis wavefunctions {ζλ},
obtaining:

φQ,ω;λλ′

= φ
(ext)
Q,ω;λλ′ +

∑
µµ′
G(s)Q;λλ′;µµ′βµµ′ (Q,ω) φQ,ω;µµ′ , (A9)

where

G(s)Q;λλ′;µµ′

=

∫
dz

∫
dz′ζλ(z)ζλ′(z) G

(s)
Q (z, z′) ζµ(z′)ζµ′(z′) . (A10)

Equation (A9) is a matrix equation (in the double in-
dices (µµ′)). Inversion of the dielectric matrix 1 −
Π, where the polarizability Π is Πλλ′;µµ′(Q,ω) =

G(s)Q;λλ′;µµ′ βµµ′(Q,ω), provides directly the desired
screened form factors:

φQ,ω;λλ′ =
∑
µµ′

[1−Π(Q,ω)]−1λλ′;µµ′ φ
(ext)
Q,ω;µµ′ . (A11)
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S. E. Laux, and E. Crabbé, J. Appl. Phys. 78, 1058 (1995)
for the explicit expressions we have used in the two- three-
dimensional cases, respectively.

29 P. J. Price, J. Vac. Sci. Technol. 19, 599 (1981).
30 See for example R. Rios, N. Arora, and C.-L. Huang, IEEE

Electron Device Let. 15, 129 (1995), from whose work one
can derive Eq. (37). This equation is given explicitely by
B. Yu, D.-H. Ju, W.-C. Lee, N. Kepler, T.-J. King, and
C. Hu, IEEE Trans. Electron Dev. 45, 1253 (1998), al-
though with the implicit assumption ε∞Si = 3 ε∞ox and with

the wrong exponent for the oxide field Fi.
31 T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54,

437 (1982).
32 M. V. Fischetti and S. E. Laux, Phys. Rev. B 48, 2244

(1993).
33 In this case the energy-conserving delta-function leading to

the relaxation rate (77) should be replaced by a Lorentzian
of width ∝ Im ωQ. Equivalently stated, for Im ωQ �= 0,
Eq. (77) is the ‘plasmon-pole approximation’ of the exact
result.

34 For thicker oxides, as the coupling bewteen gate and sub-
strate weakens, the effect of the finite thickness of the in-
version layer on the optical mode disappears, while its ef-
fect on the acoustic mode has the opposite trend of re-
ducing its frequency. In the limit of infinitely thick oxides
this has been shown by D. E. Beck and P. Kumar, Phys.
Rev. B 13, 2859 (1976); Phys. Rev. B 14, 5127(E) (1976).
This work, as well as the work by A. K. Rajagopal, Phys.
Rev. B 15, 4264 (1977) and by M. Jonson, J. Phys. C 9,
3055 (1977), also accounts for exchange-correlation effects,
which we have ignored.

35 M. V. Fischetti, Phys. Rev. B 44, 5527 (1991).
36 D. Chattopadhyay and H. J. Queisser, Rev. Mod. Phys.

53, 745 (1981).
37 P. Hawrylak, G. Eliasson, and J. J. Quinn, Phys. Rev. B

37, 10187 (1988).
38 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
39 M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234

(1996).
40 C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and

A. Alberigi-Quaranta, Phys. Rev. B 12, 2265 (1975).
41 A. Chin, W. J. Chen, T. Chang, R. H. Rao, B. C. Lin,

C. Tsai, and J. C.-M. Huang, IEEE Electron Device Let.
18, 417 (1997).

42 M. Krishnan, Y. C. Yeo, Q. Lu, T.-J. King, J. Bokor, and
C. Hu, Int. Electron Dev. Meet. Tech. Dig. 571 (1998).

43 M. Krishnan, L. Chang, T.-J. King, J. Bokor, and C. Hu,
Int. Electron Dev. Meet. Tech. Dig. 241 (1999).

44 N. Yang, W. Kirklen Henson, J. R. Hauser, and J. J. Wort-
man, IEEE Trans. Electron Devices, 47, 440 (2000)

45 G. Timp, A. Agarwal, F. H.. Baumann, T. Boone, M. Buo-
nanno, R. Cirelli, V. Donnelly, M. Foad, D. Grant,
M. Green, H. Gossmann, S. Hillenius, J. Jackson, D. Ja-
cobson, R. Kleiman, A. Kombilt, F. Klemens, J. T. C. Lee,
W. Mansfield, S. Moccio, A. Murrell, M. O’Mally, J. Rosa-
milia, J. Sapjeta, P. Silverman, T. Sorch, W. W. Tai,
D. Tennant, H. Vuong, and B. Weir, IEDM Tech. Dig.
(1997), pp. 930-932.

46 A. Gold, Appl. Phys. Lett. 48, 439 (1985).

20


