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Abstract 
 
A novel memory subsystem called Memory Expansion Technology (MXT) has been built 
for compressing main memory contents.  This allows effectively a memory expansion 
that presents a “real” memory larger than the physically available memory.  This paper 
provides an overview of the architecture and OS support and in-depth analysis of the 
performance impact of memory compression using the SPEC2000 benchmarks.  Our 
results show that the hardware compression of memory has a negligible penalty 
compared to a non-compressed memory. We also show that most applications’ memory 
contents can be compressed usually by a factor of two to one.  We demonstrate this using 
industry benchmarks, webserver benchmarks, and the contents of popular web sites.  
 

1. Introduction 
Data compression techniques are extensively used in computer systems to save storage 
space or bandwidth.  Both hardware and software based compression techniques are used 
for storing data on magnetic media or for transmission over network links.  While 
compression techniques are prevalent in various forms, hardware compression of main 
memory contents has not been used to date due to its complexity.  The primary motivator 
of a compressed main memory system is savings in memory cost.  Recent advances in 
parallel compression-decompression algorithms coupled with improvements in the silicon 
density and speed now makes main memory compression practical [1,2,8,9]. A high-end, 
Pentium based, server class system with hardware compressed main memory, called the 
Memory Expansion Technology (MXT), has been designed and built [8].  We ran 
numerous benchmarks on this new system.  In this paper, we present the performance 
results and main memory compressibility of these benchmarks.  Our results show that 
two to one compression (2:1) is practical for most applications.  Results also show that 
performance impact of compression is insignificant.   Two to one compression effectively 
doubles the amount of memory; or in cost sensitive applications it provides the expected 
amount of memory at ½ of the expected cost. 
 
Observations show that main memory contents of most systems, operating system and 
application memory included, are compressible.  Only few applications’ data, which are 
already compressed or encrypted, cannot be further compressed.  In the MXT system, the 
Compressed Memory/L3 cache controller chip is central to the operation of the 
compressed main memory [8].  The MXT architecture adds a level to the conventional 
memory hierarchy.  Real addresses are the conventional memory addresses seen on the 
processor external bus.  Physical addresses are the addresses used behind the controller 
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chip for addressing the compressed memory.   The controller performs the real to 
physical address translation and compression/decompression of L3 cache lines.  The 
processors are off-the-shelf Intel processors. They run with no changes in the processor 
or bus architecture.  Standard operating systems, Windows NT, Windows 2000 and 
Linux, run on the new architecture with no changes for the most part.  However, a 
boundary condition exists where compressed memory may be exhausted due to 
incompressible data.  This boundary condition and the compressed memory management 
is handled by small modifications in the Linux kernel [9] and by a device driver in the 
Windows NT and Windows 2000 operating systems.   
 
Main contributions of this paper are as follows: 
1. We give an overview of the MXT architecture and the compressed memory 

management software.  
2. Using industry benchmarks, we show that the performance penalty of compression on 

the MXT hardware is 1.5% on the average, although the effective size of the memory 
is doubled. 

3. We further show that a number of applications main memory contents and the 
contents of several popular websites can be compressed by a factor of 1.78 to 2.68. 

 
In related work [3,4], the authors describe a method of estimating the number of page 
frames as a function of physical memory utilization. They further model the residency of 
outstanding I/O as they transfer data into the memory through the L3 cache, thus 
potentially forcing cache write backs that could increase the physical memory utilization. 
Using a time decay model they evaluate the system behavior using simulation. In [5], an 
approach is described where a page-based hardware data compression engine sets aside a 
part of physical memory as a compressed paging space. In [6], a software solution is 
simulated that sets aside a part of the physical memory as a compressed paging space. In 
both cases, if the compressed paging space is filled up, compressed pages are swapped 
out, thus reducing the I/O overhead incurred. In [9] operating system techniques for 
managing compressed memory are described and demonstrated. 
 
In the following section we give an overview of the MXT hardware and we describe the 
memory compression support added to the Linux operating system.  In Section 3, we 
present experimental results of running SPEC benchmarks on the MXT system.  In 
Section 4, we examine the compressibility of various applications’ memory contents. 
 

2. Overview of MXT 

The Hardware 
The organization of the MXT system is shown in Figure 1. The main memory (SDRAM) 
contains compressed data and can be up to 16 GB in size.  The third level (L3) cache is a 
shared, 32 MB, 4-way set associative write-back cache with 1 KByte line size. The L3 
cache is made of double data rate (DDR) SDRAM.  The L3 cache contains uncompressed 
cached lines.  It hides the latency of accessing the compressed main memory. The L3 
Cache/Compressed Memory Controller is central to the operation of the MXT system. 



3 
 

The L3 cache appears as the main memory to the upper layers of the memory hierarchy 
and its operation is transparent to the rest of the hardware including the processors and 
I/O.  The controller compresses 1 KB cache lines before writing them to the compressed 
memory and decompresses them after reading from the compressed memory. 
 
The compression algorithm is a parallelized variation of the Lempel-Ziv algorithm 
known as LZ1. The compression scheme stores compressed cache lines to the 
compressed memory in a variable length format.  The unit of storage in compressed 
memory is a 256 byte sector.  Depending on its compressibility, a 1 KB cache line may 
occupy 0 to 4 sectors in the compressed memory.  Due to this variable length format, the 
controller must translate real addresses to physical addresses.  A 1 KB cache line (real) 
address is mapped to 0 to 4 sector (physical) addresses in the compressed memory.  The 
real address is the conventional address seen on the processor chip's external bus.  The 
physical address is used for addressing the sectors in the compressed memory.  The 
memory controller performs real to physical address translation by a lookup in the 
Compression Translation Table (CTT), which is kept at a reserved location in the 

memory.  Each 1 KB cache line address maps to one entry in the CTT, and each CTT 
entry is 16 bytes long.  A CTT entry contains control flags and four physical addresses 
each pointing to a 256-byte sector in the physical memory.  For example, a 1 KB cache 
line, which compresses by 2:1, will occupy two sectors in the compressed memory (512 
bytes) and the CTT entry will contain two addresses pointing to those sectors.  The 
remaining two pointers will be zero.  For cache lines that compress to less than 120 bits, 
for example a cache line full of zeros, a special CTT format called trivial line format 
exists.  In this format, the compressed data is stored entirely in the CTT entry replacing 
the four address pointers.  Therefore, a trivial line of 1 KB occupies only 16 bytes in the 
physical memory resulting in a compression ratio of 64:1.  Another memory saving 

Figure 1: Compressed Memory System Organization 
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optimization implemented in the controller is sharing of sectors by cohort cache lines.  If 
two 1 KB cache lines are in the same 4 KB memory region they are called cohorts.  Two 
cohorts may share a sector provided that space exists in the sector.  For example, two 
cohorts each compressing to 100 bytes may split and share a sector since their total size is 
less than the sector size of 256 bytes.  The compression operations described so far are 
entirely done in hardware with no software intervention. 
 
Note that the selection of the 1KB line size was influenced by many factors.  Directory 
size, which grows inversely proportional to the cache line size for a given cache size, and 
the compression block size that effects the compression efficiency were the two most 
significant factors for the 1KB line size [8].  Shorter lines may not compress well and 
longer lines may impact performance due to longer compress/decompress times. 

The Compressed Memory Management Software 
Since the compressed main memory concept is new, common operating systems do not 
have mechanisms to distinguish between real and physical memory nor do they deal with 
out-of-physical-memory conditions. The compressed memory management software 
addresses this problem.  For Linux, minor changes to the kernel were made [9].  For 
WinNT and Win2000, since kernel source code was not available, a device driver was 
implemented.  The MXT hardware allows an operating system to use a larger amount of 
real memory than physically exists.  During the boot process, the system BIOS reports 
having more memory than the physical memory.  For example, the particular MXT 
system we used has 512 MB of physical memory, but BIOS reports having twice that 
amount, 1 GB of memory.   The main problem in such a system occurs when 
application(s) start filling the memory with incompressible data while the operating 
system had committed more real memory than physically available.  In these situations, 
the common OS is unaware that the physical memory is being exhausted.  The 
compressed memory management software uses the following mechanisms to prevent 
physical memory exhaustion:  
 

1. Receives a warning interrupt from the memory controller that physical memory 
exhaustion is near. 

2. Blocks further memory allocation by reserving pages either explicitly (device 
driver allocation) or implicitly (VMM modifications). Activates the swap daemon 
to shrink file caches and to swap out some user process pages, hence forcing some 
memory freed. 

3. Fills those freed pages with zeros to reduce physical memory utilization, since 
zero filled cache lines occupy only 1/64th of their actual size in the physical 
memory.   

4. Activates a set of busy spinning threads to stall the execution of processes that 
exhaust physical memory if items 2 and 3 above cannot offset the increase in the 
physical memory utilization. 

 
An MXT system running out of physical memory behaves similar to a conventional 
system with insufficient memory and therefore may have increased swap activity.  We 
refer readers to [9] which explains these mechanisms in detail. 
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3. Performance Impact of Compression 
The MXT memory system uses a relatively long 1 KB compression block size to be able 
to compress efficiently, since shorter blocks may not compress well.  Due to the 
compression and decompression operations performed on these blocks in the memory 
controller, memory access times are longer than the usual.  The 32 MB L3 cache contains 
uncompressed (1 KB) lines to reduce the effective access times by locally serving most of 
the main memory requests.  Since this type of memory organization is new, we used 
industry standard CPU benchmarks to measure its performance impact.  We present the 
results of this study in the next section. 

Methods 
In these experiments, we used an MXT system with 512 MB physical memory, 

effectively having 1 GB real memory.  The Compression Translation Table is placed by 
BIOS at the end of the physical memory and occupies about 8 MB space (16 bytes/cache 
line or 64 bytes/page) in the physical memory.   The processor external bus (P6 bus) 
shown in Fig.1 ran at 91 MHz in this early hardware prototype, although it was designed 
for a 133 MHz operation.  The system is comprised of a single 455 MHz Xeon processor 
and a single disk drive.   

 
We used the SPEC CPU2000 benchmark suite designed to measure the performance of 
the memory as well as processor speed (http://www.spec.org/osg/cpu2000/), and in 
addition requires at least 256 MB of RAM.  There are 12 integer benchmarks in the 
SPEC2000 suite.  These are the GZIP data compression utility, VPR circuit placement 
and routing, GCC compiler, MCF minimum cost network flow solver, CRAFTY chess 
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Figure 2:  Memory footprints of SPEC2000 benchmarks 
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program, PARSER natural language processing, EON ray tracing, PERLBMK perl 
utility, GAP computational group theory, VORTEX object oriented database, BZIP2 data 
compression utility, and TWOLF place and route simulation benchmarks.  Figure 2 
shows the memory utilization of these benchmarks, measured in terms of the increase in 
the system memory utilization after a benchmark was started.  Thus, the memory used by 
the operating system and other processes is excluded from the values shown in the figure.   
Figure 2 shows that all but three of the benchmarks have a memory footprint larger than 
the 32 MB L3 cache. Therefore, they do exercise the compressed main memory.  
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Figure 3: Execution Overhead on Compressed Memory Hardware 

Results 
Benchmarks were run and execution times were recorded twice with the compression on 
and off.  The difference of the two execution times gives the penalty of compression.  
The MXT system has a boot option that permits compression to be turned off.  In that 
case, the system operates as an ordinary system with an L3 cache and with non-
compressed memory.  Since compression/decompression circuitry is out of the way, the 
memory access latency is smaller in the compression-off case.  Figure 3 shows the 
difference in execution times of compression on and off cases.  As expected, in the 
compression-on mode the system runs slower; the last column shows that the average 
execution time is 1.5 percent longer for the compression-on case.  This is a negligible 
quantity considering that the memory size is doubled.  Throughput increases more than 
1.5 percent in many systems when memory size is doubled. 
 
Note that due to strict run rules and reporting requirements of the SPEC consortium, we 
cannot publish the actual execution times. In Fig.3 results are presented as the ratio of 
execution times of the compression-on mode over compression-off mode. 
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4. Compressibility of Applications  
Now that the performance of the MXT system is established, we turn our attention to the 
compressibility of main memory contents of various applications.  We analyzed the 

SPEC2000 CPU benchmarks, the contents of several web sites, and a webserver 
benchmark.  We measured the compression ratios on the actual hardware.  Results show 
that most of these applications’ main memory contents can be compressed usually by a 
factor of 2:1, justifying the real to physical memory ratio chosen for the MXT systems. 

Methods 
For the SPEC2000 benchmarks, the real and physical memory utilizations were sampled 
every two seconds using an instrumentation register of the memory controller.  The 
Sectors Used Register (SUR) reports to the operating system the amount of physical 
memory in use.  We exported this register to the user space through the /proc file system 
of Linux.  The sampler program reads every two seconds the SUR register and the real 
memory utilization as reported by Linux OS and saves them in a file to be processed 
later.  The measured memory values are for the entire memory.  Therefore, in addition to 
the benchmark application’s memory utilization, the measurements include possibly large 
data structures such as file cache and buffer cache that the OS maintains for efficient use 
of the system.  In a post-processing step we took the average of the samples to produce 
the average compression ratio of a given benchmark.   
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For web content and webserver benchmarks, we used additional methods and we will 
postpone their discussion until after the next section. 
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Figure 5: Average compression ratio of SPEC2000 benchmarks 

Results 
Figure 4 demonstrates the operation of the MXT system while executing the BZIP2 
benchmark of the SPEC CPU2000 suite.  The system memory utilization is initially at 
about 300 MB, before the benchmark starts.  At time t=0.034, real memory utilization 
reaches about 520 MB, and remains nearly constant until the end, except for the two 
points at times t=0.314 and t=0.69 at which memory has been freed and allocated again.  
It can be observed from Fig.4 that while the real memory utilization has been nearly 
constant, the physical memory utilization varies between 170 and 300 MB as the 
application changes the contents of the memory. The ratio of real to physical memory 
utilization over time gives the dynamic compression ratio of this application.   
 
Figure 5 shows the average compression ratio for each benchmark run.  We defined the 
average compression ratio as the time averaged real memory utilization over time 
averaged physical memory utilization.  In this set of 12 benchmarks, the smallest 
compression ratio of 1.78 was observed for PERLBMK and the largest compression ratio 
of 2.68 was observed for the VORTEX benchmark.  The average of all 12 benchmarks 
was 2.30.  Thus, the real to physical memory ratio of 2.0 used by the MXT system is well 
justified for this set of applications.  All benchmarks had a compression ratio better than 
2.0 except for PERLBMK.  
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Methods for Web Content and Webserver Benchmarks 
Web applications require a special treatment for determining the compressibility, because 
memory contents of the system depends on the web content as well as caching policies of 
the webserver, and the file system policies of the operating system.  We analyzed the 
webserver benchmarks WebBench 3.0, SPECweb99, and the contents of well known sites 
www.yahoo.com, home.netscape.com, and www.ibm.com.  In this section we discuss 
some of the issues in determining compression characteristics before presenting our 
results. 
 
A problem that we encountered while analyzing webserver benchmarks is the method 
with which web content has been generated.  SPECweb99 benchmark uses synthetic 
content created during installation.   The installation program generates a large number of 
files filled with randomly chosen characters.  Random strings are generally 
incompressible.  Since SPECweb99 content was not realistic we eliminated it from 
further consideration.  WebBench 3.0 benchmark’s content, on the contrary, contains a 
mixture of HTML and GIF files that have been copied from a real web site.   
 
Another issue is GIF and JPEG files widely used on web pages.  These are graphics files 
that use compressed file formats, and therefore it was generally assumed that they would 
be incompressible on the MXT hardware.  However, our measurements indicate 
otherwise. The primary reason for the better than expected 1.0 compression ratio is the 
fact that graphics files on webpages are often small (few hundreds of bytes each), yet 
they may have a larger memory footprint.  Operating systems such as Linux and NT 
generally allocate memory for file objects in increments of a page size (4096 bytes) in 
order to organize their file cache.  Therefore, a small file would occupy one page in the 
memory regardless of its size.  To prove this point we did the following experiments.   
 
We populated the file system with thousands of 100 byte size incompressible files.  (An 
incompressible file can be created easily by compressing any file with a software utility 
such as zip, gzip, or compress.)  We forced the 100 byte files into the OS filecache by 
copying them to /dev/null.  We repeated this experiment with 256, 1000, 2000 and 4000 
byte size incompressible files.  We calculated the compression ratio in the following 
manner: the increase in the real memory utilization after the experiment has been started 
is divided by the increase in the physical memory utilization.  Figure 6 shows the 
compression ratio measured on the MXT hardware for this experiment.  For small 
incompressible files it can be seen that the compression ratio is much larger than 1.0 for 
the reasons discussed above. For the 4000 byte size incompressible files, the compression 
ratio is much closer to the expected value of 1.0.   
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Figure 6: Compressibility of "incompressible" files in memory 

 
Given our discussions on small files above, one would expect the compression ratio to be 
much higher than what was measured in Fig.6.  For example, a 100 byte file should 
occupy one 256 byte sector in the physical memory, thereby resulting in a compression 
ratio of 4096/256=16 vs. the measured 4.40.  For small files, certain filesystem 
characteristics come into play.  In Linux, when files are read from a block device (i.e. 
disk) into the file cache, the smallest unit of transfer is 1024 bytes. Clearly more than 100 
bytes are read into the file cache, which may affect the compression ratio.  Other factors 
may also play a role: some disk blocks may be prefetched and the inode structures 
maintained for of each file take up memory space.  To summarize, small files are 
wasteful in real memory due to the file system overhead and therefore the memory 
footprints of small incompressible files can still have better than 1.0 compression ratio. 
 
In order to determine the compressibility of important websites, we mirrored their content 
to a local disk. Several software tools exist for mirroring a web site.  We used Wget on 
Linux and WebReaper on Windows (http://www.otway.com/webreaper). Given a root 
URL, these tools follow all the links in the root page down to a specified depth and create 
a local copy of all the files retrieved.  The local mirror allows browsing of the web site 
while disconnected from the network.  For example wget http://www.yahoo.com will 
create a mirror of the popular Yahoo web site. Once a local mirror was obtained, we 
copied all the files to the device /dev/null to force them into the file cache.  Then, the 
compression ratio is simply determined as the real memory utilization over the physical 
memory utilization as reported by the MXT controller.  
 
It should be mentioned that the approach we used here is an approximation.  It is not 
possible to mirror an entire website as it would have taken very long time.  Depending on 
the website we selected a link depth between 4 and 10 to obtain a sizeable local copy. 
Only static pages can be mirrored; for example, pages with dynamic content, executables 
or pages that require user input are not handled by this approach.  Also, all the files on a 
webserver are not necessarily resident in the memory at once, because some files are 
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accessed with much less frequency than others. Therefore the memory contents may be 
different than the disk contents. 

Results 
We mirrored three well-known sites, www.yahoo.com, home.netscape.com, and, 
www.ibm.com on the local disk of the MXT system.  Figure 7 shows the measured 
compression ratios for these web sites’ content as well as the WebBench 3.0 content.   
Results show that websites compress well and near the real to physical memory ratio of 2 
chosen for the MXT hardware (1GB/512MB.) 
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Figure 7: Compression ratios of well-known websites 

6. Conclusion 
 
In this paper we described and evaluated a computer system with hardware main memory 
compression that effectively doubles the size of the main memory. We gave an overview 
of the software support for main memory compression.  We measured the impact of 
compression on the application performance using industry benchmarks and determined 
that the hardware compression has a negligible penalty over a non-compressed hardware.  
We measured real and physical memory utilization of industry benchmarks and 
determined that main memory contents can be compressed by a factor of 2.3 on the 
average.  We mirrored contents of few popular web sites and determined that main 
memory contents of webservers carrying such content can be compressed by a factor of 
1.85 to 2.10.   
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