
RC 21799 (98138) 19 July 2000 ComputerScience/Mathematics

IBM Research Report

Performance of Hardware Compressed Main Memory

Bulent Abali, Hubertus Franke, Dan E. Poff, T. Basil Smith
IBM T. J. Watson Research Center

P. O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Performance of Hardware Compressed Main Memory

Bulent Abali, Hubertus Franke, Dan E. Poff, and T. Basil Smith
IBM T.J.Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598
{abali,frankeh,poff,tbsmith}@us.ibm.com

Abstract

A novel memory subsystem called Memory Expansion Technology (MXT) has been built
for compressing main memory contents. This allows effectively a memory expansion
that presents a “real” memory larger than the physically available memory. This paper
provides an overview of the architecture and OS support and in-depth analysis of the
performance impact of memory compression using the SPEC2000 benchmarks. Our
results show that the hardware compression of memory has a negligible penalty
compared to a non-compressed memory. We also show that most applications’ memory
contents can be compressed usually by a factor of two to one. We demonstrate this using
industry benchmarks, webserver benchmarks, and the contents of popular web sites.

1. Introduction
Data compression techniques are extensively used in computer systems to save storage
space or bandwidth. Both hardware and software based compression techniques are used
for storing data on magnetic media or for transmission over network links. While
compression techniques are prevalent in various forms, hardware compression of main
memory contents has not been used to date due to its complexity. The primary motivator
of a compressed main memory system is savings in memory cost. Recent advances in
parallel compression-decompression algorithms coupled with improvements in the silicon
density and speed now makes main memory compression practical [1,2,8,9]. A high-end,
Pentium based, server class system with hardware compressed main memory, called the
Memory Expansion Technology (MXT), has been designed and built [8]. We ran
numerous benchmarks on this new system. In this paper, we present the performance
results and main memory compressibility of these benchmarks. Our results show that
two to one compression (2:1) is practical for most applications. Results also show that
performance impact of compression is insignificant. Two to one compression effectively
doubles the amount of memory; or in cost sensitive applications it provides the expected
amount of memory at ½ of the expected cost.

Observations show that main memory contents of most systems, operating system and
application memory included, are compressible. Only few applications’ data, which are
already compressed or encrypted, cannot be further compressed. In the MXT system, the
Compressed Memory/L3 cache controller chip is central to the operation of the
compressed main memory [8]. The MXT architecture adds a level to the conventional
memory hierarchy. Real addresses are the conventional memory addresses seen on the
processor external bus. Physical addresses are the addresses used behind the controller

2

chip for addressing the compressed memory. The controller performs the real to
physical address translation and compression/decompression of L3 cache lines. The
processors are off-the-shelf Intel processors. They run with no changes in the processor
or bus architecture. Standard operating systems, Windows NT, Windows 2000 and
Linux, run on the new architecture with no changes for the most part. However, a
boundary condition exists where compressed memory may be exhausted due to
incompressible data. This boundary condition and the compressed memory management
is handled by small modifications in the Linux kernel [9] and by a device driver in the
Windows NT and Windows 2000 operating systems.

Main contributions of this paper are as follows:
1. We give an overview of the MXT architecture and the compressed memory

management software.
2. Using industry benchmarks, we show that the performance penalty of compression on

the MXT hardware is 1.5% on the average, although the effective size of the memory
is doubled.

3. We further show that a number of applications main memory contents and the
contents of several popular websites can be compressed by a factor of 1.78 to 2.68.

In related work [3,4], the authors describe a method of estimating the number of page
frames as a function of physical memory utilization. They further model the residency of
outstanding I/O as they transfer data into the memory through the L3 cache, thus
potentially forcing cache write backs that could increase the physical memory utilization.
Using a time decay model they evaluate the system behavior using simulation. In [5], an
approach is described where a page-based hardware data compression engine sets aside a
part of physical memory as a compressed paging space. In [6], a software solution is
simulated that sets aside a part of the physical memory as a compressed paging space. In
both cases, if the compressed paging space is filled up, compressed pages are swapped
out, thus reducing the I/O overhead incurred. In [9] operating system techniques for
managing compressed memory are described and demonstrated.

In the following section we give an overview of the MXT hardware and we describe the
memory compression support added to the Linux operating system. In Section 3, we
present experimental results of running SPEC benchmarks on the MXT system. In
Section 4, we examine the compressibility of various applications’ memory contents.

2. Overview of MXT

The Hardware
The organization of the MXT system is shown in Figure 1. The main memory (SDRAM)
contains compressed data and can be up to 16 GB in size. The third level (L3) cache is a
shared, 32 MB, 4-way set associative write-back cache with 1 KByte line size. The L3
cache is made of double data rate (DDR) SDRAM. The L3 cache contains uncompressed
cached lines. It hides the latency of accessing the compressed main memory. The L3
Cache/Compressed Memory Controller is central to the operation of the MXT system.

3

The L3 cache appears as the main memory to the upper layers of the memory hierarchy
and its operation is transparent to the rest of the hardware including the processors and
I/O. The controller compresses 1 KB cache lines before writing them to the compressed
memory and decompresses them after reading from the compressed memory.

The compression algorithm is a parallelized variation of the Lempel-Ziv algorithm
known as LZ1. The compression scheme stores compressed cache lines to the
compressed memory in a variable length format. The unit of storage in compressed
memory is a 256 byte sector. Depending on its compressibility, a 1 KB cache line may
occupy 0 to 4 sectors in the compressed memory. Due to this variable length format, the
controller must translate real addresses to physical addresses. A 1 KB cache line (real)
address is mapped to 0 to 4 sector (physical) addresses in the compressed memory. The
real address is the conventional address seen on the processor chip's external bus. The
physical address is used for addressing the sectors in the compressed memory. The
memory controller performs real to physical address translation by a lookup in the
Compression Translation Table (CTT), which is kept at a reserved location in the

memory. Each 1 KB cache line address maps to one entry in the CTT, and each CTT
entry is 16 bytes long. A CTT entry contains control flags and four physical addresses
each pointing to a 256-byte sector in the physical memory. For example, a 1 KB cache
line, which compresses by 2:1, will occupy two sectors in the compressed memory (512
bytes) and the CTT entry will contain two addresses pointing to those sectors. The
remaining two pointers will be zero. For cache lines that compress to less than 120 bits,
for example a cache line full of zeros, a special CTT format called trivial line format
exists. In this format, the compressed data is stored entirely in the CTT entry replacing
the four address pointers. Therefore, a trivial line of 1 KB occupies only 16 bytes in the
physical memory resulting in a compression ratio of 64:1. Another memory saving

Figure 1: Compressed Memory System Organization

P6 P6 P6 P6

L3 Cache and
Compressed

Memory Controller

L3 Cache
32 MB

Compressed
Main Memory
16 GB Max

SDRAM

real addr

physical addr

P6 Bus 133 MHz

I/O Bridge

I/O Bridge

4

optimization implemented in the controller is sharing of sectors by cohort cache lines. If
two 1 KB cache lines are in the same 4 KB memory region they are called cohorts. Two
cohorts may share a sector provided that space exists in the sector. For example, two
cohorts each compressing to 100 bytes may split and share a sector since their total size is
less than the sector size of 256 bytes. The compression operations described so far are
entirely done in hardware with no software intervention.

Note that the selection of the 1KB line size was influenced by many factors. Directory
size, which grows inversely proportional to the cache line size for a given cache size, and
the compression block size that effects the compression efficiency were the two most
significant factors for the 1KB line size [8]. Shorter lines may not compress well and
longer lines may impact performance due to longer compress/decompress times.

The Compressed Memory Management Software
Since the compressed main memory concept is new, common operating systems do not
have mechanisms to distinguish between real and physical memory nor do they deal with
out-of-physical-memory conditions. The compressed memory management software
addresses this problem. For Linux, minor changes to the kernel were made [9]. For
WinNT and Win2000, since kernel source code was not available, a device driver was
implemented. The MXT hardware allows an operating system to use a larger amount of
real memory than physically exists. During the boot process, the system BIOS reports
having more memory than the physical memory. For example, the particular MXT
system we used has 512 MB of physical memory, but BIOS reports having twice that
amount, 1 GB of memory. The main problem in such a system occurs when
application(s) start filling the memory with incompressible data while the operating
system had committed more real memory than physically available. In these situations,
the common OS is unaware that the physical memory is being exhausted. The
compressed memory management software uses the following mechanisms to prevent
physical memory exhaustion:

1. Receives a warning interrupt from the memory controller that physical memory
exhaustion is near.

2. Blocks further memory allocation by reserving pages either explicitly (device
driver allocation) or implicitly (VMM modifications). Activates the swap daemon
to shrink file caches and to swap out some user process pages, hence forcing some
memory freed.

3. Fills those freed pages with zeros to reduce physical memory utilization, since
zero filled cache lines occupy only 1/64th of their actual size in the physical
memory.

4. Activates a set of busy spinning threads to stall the execution of processes that
exhaust physical memory if items 2 and 3 above cannot offset the increase in the
physical memory utilization.

An MXT system running out of physical memory behaves similar to a conventional
system with insufficient memory and therefore may have increased swap activity. We
refer readers to [9] which explains these mechanisms in detail.

5

3. Performance Impact of Compression
The MXT memory system uses a relatively long 1 KB compression block size to be able
to compress efficiently, since shorter blocks may not compress well. Due to the
compression and decompression operations performed on these blocks in the memory
controller, memory access times are longer than the usual. The 32 MB L3 cache contains
uncompressed (1 KB) lines to reduce the effective access times by locally serving most of
the main memory requests. Since this type of memory organization is new, we used
industry standard CPU benchmarks to measure its performance impact. We present the
results of this study in the next section.

Methods
In these experiments, we used an MXT system with 512 MB physical memory,

effectively having 1 GB real memory. The Compression Translation Table is placed by
BIOS at the end of the physical memory and occupies about 8 MB space (16 bytes/cache
line or 64 bytes/page) in the physical memory. The processor external bus (P6 bus)
shown in Fig.1 ran at 91 MHz in this early hardware prototype, although it was designed
for a 133 MHz operation. The system is comprised of a single 455 MHz Xeon processor
and a single disk drive.

We used the SPEC CPU2000 benchmark suite designed to measure the performance of
the memory as well as processor speed (http://www.spec.org/osg/cpu2000/), and in
addition requires at least 256 MB of RAM. There are 12 integer benchmarks in the
SPEC2000 suite. These are the GZIP data compression utility, VPR circuit placement
and routing, GCC compiler, MCF minimum cost network flow solver, CRAFTY chess

0

32

64

96

128

160

192

224

256

CRAFTY

TWOLF EON

PARSER
VPR

MCF

VORTEX

PERLB
MK

GCC
GAP

BZIP2
GZIP

M
eg

ab
yt

es

Figure 2: Memory footprints of SPEC2000 benchmarks

6

program, PARSER natural language processing, EON ray tracing, PERLBMK perl
utility, GAP computational group theory, VORTEX object oriented database, BZIP2 data
compression utility, and TWOLF place and route simulation benchmarks. Figure 2
shows the memory utilization of these benchmarks, measured in terms of the increase in
the system memory utilization after a benchmark was started. Thus, the memory used by
the operating system and other processes is excluded from the values shown in the figure.
Figure 2 shows that all but three of the benchmarks have a memory footprint larger than
the 32 MB L3 cache. Therefore, they do exercise the compressed main memory.

1.012 1.014 1.018 1.026 1.014 1.016 1.031
1.012 1.013 1.007 1.013 1.008 1.015

0.50

0.60

0.70

0.80

0.90

1.00

1.10

bz
ip2 gz

ip

pe
rlb

mk
ga

p
mcf gc

c
vo

rte
x vp

r
tw

olf

pa
rse

r
cra

fty eo
n

av
era

ge

C
om

pr
es

si
on

 O
N

/O
FF

 R
un

 T
im

e

Compresssion ON Compression OFF

Figure 3: Execution Overhead on Compressed Memory Hardware

Results
Benchmarks were run and execution times were recorded twice with the compression on
and off. The difference of the two execution times gives the penalty of compression.
The MXT system has a boot option that permits compression to be turned off. In that
case, the system operates as an ordinary system with an L3 cache and with non-
compressed memory. Since compression/decompression circuitry is out of the way, the
memory access latency is smaller in the compression-off case. Figure 3 shows the
difference in execution times of compression on and off cases. As expected, in the
compression-on mode the system runs slower; the last column shows that the average
execution time is 1.5 percent longer for the compression-on case. This is a negligible
quantity considering that the memory size is doubled. Throughput increases more than
1.5 percent in many systems when memory size is doubled.

Note that due to strict run rules and reporting requirements of the SPEC consortium, we
cannot publish the actual execution times. In Fig.3 results are presented as the ratio of
execution times of the compression-on mode over compression-off mode.

7

4. Compressibility of Applications
Now that the performance of the MXT system is established, we turn our attention to the
compressibility of main memory contents of various applications. We analyzed the

SPEC2000 CPU benchmarks, the contents of several web sites, and a webserver
benchmark. We measured the compression ratios on the actual hardware. Results show
that most of these applications’ main memory contents can be compressed usually by a
factor of 2:1, justifying the real to physical memory ratio chosen for the MXT systems.

Methods
For the SPEC2000 benchmarks, the real and physical memory utilizations were sampled
every two seconds using an instrumentation register of the memory controller. The
Sectors Used Register (SUR) reports to the operating system the amount of physical
memory in use. We exported this register to the user space through the /proc file system
of Linux. The sampler program reads every two seconds the SUR register and the real
memory utilization as reported by Linux OS and saves them in a file to be processed
later. The measured memory values are for the entire memory. Therefore, in addition to
the benchmark application’s memory utilization, the measurements include possibly large
data structures such as file cache and buffer cache that the OS maintains for efficient use
of the system. In a post-processing step we took the average of the samples to produce
the average compression ratio of a given benchmark.

0

100000

200000

300000

400000

500000

600000

0.000 0.200 0.400 0.600 0.800 1.000
Time (normalized)

M
em

or
y

U
sa

ge
 (k

by
te

)

1.5

2.5

3.5

4.5

5.5

C
om

pr
es

si
on

 R
at

io

Physical Memory Real Memory Compression Ratio

Figure 4: Real and Physical Memory Utilization for the BZIP2 benchmark as a function of time

8

For web content and webserver benchmarks, we used additional methods and we will
postpone their discussion until after the next section.

1.78

2.08
2.15

2.21
2.25 2.28

2.38 2.40 2.43
2.49 2.51

2.68

2.30

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

PERLB
MK

BZIP2
GZIP

TWOLF VPR
MCF

GCC
GAP

PARSER

CRAFTY
EON

VORTEX

AVERAGE

Av
er

ag
e

C
om

pr
es

si
on

 R
at

io

Figure 5: Average compression ratio of SPEC2000 benchmarks

Results
Figure 4 demonstrates the operation of the MXT system while executing the BZIP2
benchmark of the SPEC CPU2000 suite. The system memory utilization is initially at
about 300 MB, before the benchmark starts. At time t=0.034, real memory utilization
reaches about 520 MB, and remains nearly constant until the end, except for the two
points at times t=0.314 and t=0.69 at which memory has been freed and allocated again.
It can be observed from Fig.4 that while the real memory utilization has been nearly
constant, the physical memory utilization varies between 170 and 300 MB as the
application changes the contents of the memory. The ratio of real to physical memory
utilization over time gives the dynamic compression ratio of this application.

Figure 5 shows the average compression ratio for each benchmark run. We defined the
average compression ratio as the time averaged real memory utilization over time
averaged physical memory utilization. In this set of 12 benchmarks, the smallest
compression ratio of 1.78 was observed for PERLBMK and the largest compression ratio
of 2.68 was observed for the VORTEX benchmark. The average of all 12 benchmarks
was 2.30. Thus, the real to physical memory ratio of 2.0 used by the MXT system is well
justified for this set of applications. All benchmarks had a compression ratio better than
2.0 except for PERLBMK.

9

Methods for Web Content and Webserver Benchmarks
Web applications require a special treatment for determining the compressibility, because
memory contents of the system depends on the web content as well as caching policies of
the webserver, and the file system policies of the operating system. We analyzed the
webserver benchmarks WebBench 3.0, SPECweb99, and the contents of well known sites
www.yahoo.com, home.netscape.com, and www.ibm.com. In this section we discuss
some of the issues in determining compression characteristics before presenting our
results.

A problem that we encountered while analyzing webserver benchmarks is the method
with which web content has been generated. SPECweb99 benchmark uses synthetic
content created during installation. The installation program generates a large number of
files filled with randomly chosen characters. Random strings are generally
incompressible. Since SPECweb99 content was not realistic we eliminated it from
further consideration. WebBench 3.0 benchmark’s content, on the contrary, contains a
mixture of HTML and GIF files that have been copied from a real web site.

Another issue is GIF and JPEG files widely used on web pages. These are graphics files
that use compressed file formats, and therefore it was generally assumed that they would
be incompressible on the MXT hardware. However, our measurements indicate
otherwise. The primary reason for the better than expected 1.0 compression ratio is the
fact that graphics files on webpages are often small (few hundreds of bytes each), yet
they may have a larger memory footprint. Operating systems such as Linux and NT
generally allocate memory for file objects in increments of a page size (4096 bytes) in
order to organize their file cache. Therefore, a small file would occupy one page in the
memory regardless of its size. To prove this point we did the following experiments.

We populated the file system with thousands of 100 byte size incompressible files. (An
incompressible file can be created easily by compressing any file with a software utility
such as zip, gzip, or compress.) We forced the 100 byte files into the OS filecache by
copying them to /dev/null. We repeated this experiment with 256, 1000, 2000 and 4000
byte size incompressible files. We calculated the compression ratio in the following
manner: the increase in the real memory utilization after the experiment has been started
is divided by the increase in the physical memory utilization. Figure 6 shows the
compression ratio measured on the MXT hardware for this experiment. For small
incompressible files it can be seen that the compression ratio is much larger than 1.0 for
the reasons discussed above. For the 4000 byte size incompressible files, the compression
ratio is much closer to the expected value of 1.0.

10

4.40

4.00

2.19

1.80

1.04

0.00

1.00

2.00

3.00

4.00

5.00

100 byte files 256 byte files 1000 byte files 2000 byte files 4000 byte files

C
om

pr
es

si
on

 R
at

io

Figure 6: Compressibility of "incompressible" files in memory

Given our discussions on small files above, one would expect the compression ratio to be
much higher than what was measured in Fig.6. For example, a 100 byte file should
occupy one 256 byte sector in the physical memory, thereby resulting in a compression
ratio of 4096/256=16 vs. the measured 4.40. For small files, certain filesystem
characteristics come into play. In Linux, when files are read from a block device (i.e.
disk) into the file cache, the smallest unit of transfer is 1024 bytes. Clearly more than 100
bytes are read into the file cache, which may affect the compression ratio. Other factors
may also play a role: some disk blocks may be prefetched and the inode structures
maintained for of each file take up memory space. To summarize, small files are
wasteful in real memory due to the file system overhead and therefore the memory
footprints of small incompressible files can still have better than 1.0 compression ratio.

In order to determine the compressibility of important websites, we mirrored their content
to a local disk. Several software tools exist for mirroring a web site. We used Wget on
Linux and WebReaper on Windows (http://www.otway.com/webreaper). Given a root
URL, these tools follow all the links in the root page down to a specified depth and create
a local copy of all the files retrieved. The local mirror allows browsing of the web site
while disconnected from the network. For example wget http://www.yahoo.com will
create a mirror of the popular Yahoo web site. Once a local mirror was obtained, we
copied all the files to the device /dev/null to force them into the file cache. Then, the
compression ratio is simply determined as the real memory utilization over the physical
memory utilization as reported by the MXT controller.

It should be mentioned that the approach we used here is an approximation. It is not
possible to mirror an entire website as it would have taken very long time. Depending on
the website we selected a link depth between 4 and 10 to obtain a sizeable local copy.
Only static pages can be mirrored; for example, pages with dynamic content, executables
or pages that require user input are not handled by this approach. Also, all the files on a
webserver are not necessarily resident in the memory at once, because some files are

11

accessed with much less frequency than others. Therefore the memory contents may be
different than the disk contents.

Results
We mirrored three well-known sites, www.yahoo.com, home.netscape.com, and,
www.ibm.com on the local disk of the MXT system. Figure 7 shows the measured
compression ratios for these web sites’ content as well as the WebBench 3.0 content.
Results show that websites compress well and near the real to physical memory ratio of 2
chosen for the MXT hardware (1GB/512MB.)

2.10

2.00
2.04

1.85

1.70

1.80

1.90

2.00

2.10

2.20

WebBench 3.0 home.netscape.com www.yahoo.com www.ibm.com

C
om

pr
es

si
on

 R
at

io

Figure 7: Compression ratios of well-known websites

6. Conclusion

In this paper we described and evaluated a computer system with hardware main memory
compression that effectively doubles the size of the main memory. We gave an overview
of the software support for main memory compression. We measured the impact of
compression on the application performance using industry benchmarks and determined
that the hardware compression has a negligible penalty over a non-compressed hardware.
We measured real and physical memory utilization of industry benchmarks and
determined that main memory contents can be compressed by a factor of 2.3 on the
average. We mirrored contents of few popular web sites and determined that main
memory contents of webservers carrying such content can be compressed by a factor of
1.85 to 2.10.

Acknowledgements:
Brett Tremaine and Mike Wazlowski described us the operation of the L3 Cache/Memory
Compression Controller chip.

12

References:
[1] Hovis et al., “Compression architecture for system memory application,” US

Patent 5812817, 1998.
[2] Franaszek, P, Robinson, J., Thomas, J. “Parallel Compression with cooperative

dictionary construction,” In Proc. DCC’96 Data Compression Conf., pp.200-209,
IEEE 1996.

[3] Franaszek, P., Robinson, J., “Design and Analysis of Internal Organizations For
Compressed Random Access Memory,” IBM Research Report RC21146,
Yorktown Heights, NY 10598.

[4] Franaszek, P., Heidelberger, P., Wazlowski, M.: “On Management of Free Space
in Compressed Memory Systems”, Proceedings of the ACM Sigmetrics, 1999.

[5] Wilson, P, Kaplan, S., Smaragdakis, Y.: “The Case for Compressed Caching in
Virtual Memory Systems”, USENIX Annual Technical Conference, 1999.

[6] Kjelso, M, Gooch, M., Jones, S.: “Empirical Study of Memory Data:
Characteristics and Compressibility,” In IEEE Proceedings of Comput. Digit.
Tech, Vol 45, No. 1, pp 63-67, IEEE, 1998.

[7] Vahalia, U: “Unix Internals, The New Frontiers”, Prentice Hall, ISBN 0-13-
101908-2, 1996

[8] Arramreddy, S., Har, D., Mak, K., Smith, T.B., Tremaine, B., Wazlowski, M.:
“IBM X-Press Memory Compression Technology Debuts in a ServerWorks
NorthBridge,” To appear at the HOT Chips 12 Symposium, Aug.13-15, 2000.

[9] Abali, B., and Franke, H.: “Operating System Support for Fast Hardware
Compression of Main Memory”, Memory Wall Workshop, Intl. Symposium on
Computer Architecture (ISCA2000), Vancouver, B.C., July 2000.

