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Abstract

The ADSTAR Distributed Storage Manager (now the Tivoli Storage Manager) is a client/server
system that provides backup and storage archival functionality to customers in multi-vendor computer
environments. To improve the performance of the ADSM system this paper describes experimental
results for an ADSM production product enhanced with a hardware based data compression system
built of commodity components. We demonstrate that threaded hardware compression improves the
performance of ADSM by 2X while reducing the CPU loading by at least one-half, when using high
bandwidth network communications. Previously, the CPU load was at 100% forcing the user’s client
offline for backup purposes. The method described can also be applied to multi-threading software data
compression across multiple CPUs in a shared or distributed memory parallel program environment.
Furthermore, this methodology can be applied to many other compute intensive algorithms, such as data
encryption, that limit the performance of client/server systems.

Subject Areas: Innovative hardware/software tradeoffs, High-Performance I/O architectures, Intercon-
nection networks and network interfaces, Novel architectures for emerging applications, Simulation and
performance evaluation.

Keywords:Multi-threaded hardware accelerators, Backup, Restore, archival systems, e-Commerce, web
serving.
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1 Introduction

The goal of this study is to improve the performance of the IBM ADSM ? product [5] by offloading the backup
client’s data compression function to a hardware accelerator card. We observed that hardware compression
improves ADSM backup performance by three times over the existing software compression implementation.
This improvement includes the time that ADSM must buffer and DMA this data through the PCI interface
for access to the compression hardware. Moreover, hardware compression reduced the CPU loading by at
least half in all experimental studies.

The main motivation for supporting data compression is that reducing the size of backup data, through
compression, helps the overall backup system performance. Compression reduces the required space to store
the backup data in ADSM servers which allows the backup server to handle compressed data more efficiently
than when uncompressed. Additionally, compression reduces the data transferred on the network between
ADSM clients to ADSM servers, and hence has the effect of making any network appear faster. However,
there are trade-offs since the compute intensive nature of data compression can be a performance bottleneck
and potentially degrade the performance of other services and applications running on the same system.
This can limit system scalability if the backup server performs compression (or any other compute intensive
operation) and attempts to service multiple clients simultaneously.

To insure scalability of the ADSM client/server system, (i.e. the ability of a single server to service 100’s
to 1000’s of simultaneous clients) all compute intensive data operations are performed within the client.
One of the most compute intensive operations that a client can perform is data compression of the archival
data. Software compression limits performance of the client/server system when fast networks, such as 1000
Mbit/sec Ethernet, are used for data transfers. This is because, at a compression rate of 1-2 Mbytes per
second in a 133Mhz machine, it takes longer to compress the data than to send the data across networks
capable of sustaining transfer rates 10X the speed of software data compression.

This paper provides a system overview and reports experimental results produced by augmenting a product
level version of ADSM with the ability to use a hardware compression accelerator. Section 2 provides a
description of the software compression system as it applies to ADSM. Section 3 describes our hardware
compression implementation and it’s integration into ADSM. Section 4 describes or experimental results
for backup and archival using no compression, software compression and hardware compression. Section
provides comparison using actual client data with high end client server hardware chosen to eliminate any
potential bottlenecks in the datapath. Section 6 provides our Conclusions and Recommendations for future
work.

2 Software Data Compression in ADSM

The ADSM backup client has five stages of operation and uses these stages to exploit parallelism in computer
system components of storage, CPU and network. These pipeline stages are: user authentication, read data,
optional data compression, send data, and the final commit of data to archival storage. To exploit the backup
system’s pipelined parallelism, the compression is performed in “chunks” of data, one buffer at a time. In
this way, while the CPU is performing compression, local storage can be read for the next chunk of data and
network transfers can be overlapped.

To archive data, the ADSM backup client reads the datafile in chunks (Typically set at 32K bytes per
chunk) and passes each one to the compression routine. The compression routine compresses the data in the
input buffer and places the result in the output buffer. Multiple chunks of input data are compressed, in
this way, until the designated output buffer is full. When the output buffer is full, ADSM begins the send

2ADSM is now the TSM (Tivoli Storage Manager) ADSM is a shorthand for ADSTAR Distributed Storage Manager, which
is a client/server program that provides storage management solutions to customers in multi-vendor computer environments.




data stage, which transfers the data in the output buffer to the remote backup server. The program then
repeats this process until the file is completely read, compressed and transferred to the remote server.

The software compression component in ADSM constructs a new compression dictionary for each file to be
transferred. This compression dictionary is allocated and initialized at the start of each new file transfer and
referenced throughout all the iterations of data chunk compression. When compression of the file is complete,
a cleanup routine is called to deallocate the compression dictionary. Since the dictionary is generated from
sequential processing of the file, parallelism within the compression operation can not be exploited in the
current design of ADSM. The same is true for decompression.

In ADSM archival, each backup file has associated descriptor data, known as metadata, that describes
attributes of the user’s archived data. This metadata identifies that the archived data has been compressed
by ADSM in software of hardware. If it has been compressed, subsequent data recovery operations will
decompress the data based using the data encapsulation protocol to identify boundaries of each data original
chunk of data. /footnote To insure robust operation, a software decompression algorithm that emulates the
hardware compression algorithm was developed to provide uses with the ability to recover data without the
use of hardware decompression.

ADSM currently uses a variant of the LZW [4] algorithm for software compression. LZW is based on
dictionary based adaptive compression algorithms and is very efficient for software implementations. 3 As
the encoder scans through the data file, all the unique substrings are entered into the dictionary. If the string
occurs more than once, the second and latter occurrence will be encoded as the dictionary entry number,
which has a more compact representation than the original string. Note that resultant compressed files
don’t have to carry the dictionary. The dictionary is represented implicitly. Entry numbers of the strings in
the dictionary are in the order of appearance of these strings. The decoder can reconstruct the dictionary
incrementally as it is decoding the compressed file. To improve performance, LZW optimizes compression
speed by pruning the dictionary.

3 Implementation of Threaded Hardware Compression in ADSM

To provide hardware data compression within the ADSM product three alternative designs were considered.
Namely, the “whole file method”, the “Compression object replacement method” and the “data encapsulation
method”. The “whole file method” as the name denotes, compresses the entire file in hardware and then
transfers it using the traditional ADSM stages with the software compression stage disabled. The second
“compression object replacement method” has ADSM invoke to hardware compression objects in place of
the legacy software objects when the card is detected. The “data encapsulation method”, described below,
overcomes limitations of the above methods with very little overhead.

The whole file method is, conceptually, the easiest to implement and support. Unfortunately, it does not
match the existing architecture of ADSM for overlapping operations between Storage, CPU and Networks.
This design serializes the hardware compression operation and forces data compression to complete before
any other ADSM operation can begin. Additionally, compression of very large files requires large amounts
of virtual memory resources to buffer and compress the entire file, at once, through hardware. We did not
implement this approach for the above reasons.

The “compression object replacement method” is a straightforward way to include hardware compression
into a system such as ADSM. The objective of this method is to replace the software compression routine
by the LCS hardware compression. However, retaining the history buffer between data chunks requires
additional coordination between the application and compression hardware since there is no direct way to
reset all the data and control registers and keep the history buffer intact. This approach was prototyped but
the CPU to PCI card coordination overhead was so large that performance improvements were limited.

3The LZW algorithm is used by many popular compression software such as the program “compress” in UNIX because of
it’s high efficiency for software compression.



10 Mb/sec Ethernet 1000 Mb/sec Ethernet

File Size | Software  Hardware None Software  Hardware None

500K 1002-1620 719-1585  581-788 | 1091-1735 1219-2707 1253-2221
1M 1373-1823 1219-1843 756-870 | 1355-1855 2170-3497 1741-2266
2M 1908-2155 1617-1826 826-903 | 1711-2358 3260-3690 2033-2636
4M 2044-2385 2004-2148 876-937 | 2214-2520 3834-4551 2454-2767
8M 2320-2567 2085-2287 934-965 | 2276-2576 5017-5148 2690-2826
16M 2508-2652 2185-2268 927-970 | 2358-2708 4829-5360 2786-2837

Figure 1: Performance of ADSM Client/Server backup operation in Mbytes/sec with hardware, software and
no compression.

Since the above approaches provided limited potential for performance improvements, we developed a
novel “data encapsulation method” that supports threaded hardware parallelism within the existing ADSM
architecture. The approach treats each chunk of data as an completely independent unit, or quantum,
for compression. Since each quantum is independent, or stand alone, no compression history table state
is required across quantum boundaries. This reduces the coordination between the PCI hardware and
the ADSM application to a minimum. Furthermore, the difference in the compression ratio of a file with
independent history tables within data chunks vs. whole file history is small. We have observed this difference
to be less than 2% on average and never more than 5%. This is because the size of these data chunks are
typically 32K bytes in size. This is sufficiently large enough to develop a useful history table and maintain
a reasonable compression ratio over varying data types.

To separate and identify the compressed data chunks within an archived file, we added a data encapsulation
protocol. This protocol consists of a header for each compressed buffer which, at minimum, contains the
length of the compressed buffer. In this way, we have enabled multi-threaded compression with a penalty
of 2% difference in compression ratio. Files of arbitrary size can be divided into many parts and handed
to many threads, the compressed data from each thread are then encapsulated and put together to form
the finished output file. Additionally, this allows the use of multiple hardware accelerators that increase
performance through parallelism and data chunks within a file can be compressed and decompressed out of
order, if the application so desires.

The hardware compression chip ALDC [3] uses the LZ1 algorithm. In the LZ1 algorithm, the encoder
carries a history window which is the last N bytes that the encoder has seen. If the encoder sees a string
that matches a substring in the history window, it will encode the string as a copy pointer referencing the
substring in the history windows. A copy pointer has two fields, an offset between the two strings and the
length of the strings, which provide enough information for the decoder to reconstruct the original string. *

4 Experimental Results

Our testbed implementation is based on Version 3.1 of the ADSM product release for Microsoft Windows
NT and the updated client (for hardware compression) compiled using version 6.0 of Microsoft Visual C++
Universal Edition Compiler. The client and server machines are Pentium IT 366 Mhz desktop workstations
with 64K RAM and IDE disk drives running version 4.0 of Windows NT Workstation with Service Pack 4.

41t is worth noting that L.Z1 is an asymmetric compression algorithm in that sense that decompression is much easier than
compression. This is because while compression generally involves exhaustive search for matched substrings in the history
windows, decompression requires only lookups. While software implementations of LZ1 are generally slow hardware implemen-
tations can be made very efficient by exploiting parallelism in Content Addressable Memory (CAM) for string matching.




FEach machine is connected to a building supported 10 Mbps Ethernet as well as a dedicated point-to-point
1000 Mbps link. The client machine has associated drivers and the custom PCI card to support hardware
compression when necessary.

To implement hardware based compression, we selected an efficient commodity compression chip offered
by IBM Microelectronics. This chip, termed ALDC, performs data compression by scanning through the
input buffer at the rate of one byte every clock cycle. Annapolis Micro System Inc. makes the Lossless
Compression System board, (LCS), by mounting ALDC ICs to their WILD ONE (tm) boards. Two chips
are clocked at 20 Mhz providing potential compression bandwidth of 40 MBps. The compression chips are
interfaced to the ADSM client application through a custom API and device driver we previously defined in
[1] provided with the LCS PCI Card.

Test data is made up of 7 files provided by IBM Microelectronics that exercise a range of compression
ratios. Test data files include postscript files, jpeg images, GIF files and plain text documents. Although,
each file varied in size from several kilobytes to megabytes, exact file sizes for analysis were created using
concatenation and truncation of each file type. File sizes we considered were 500K bytes, and 1, 2, 4, 8, 16
Megabytes as shown in Figure 1. The range of performance for each experiment in Figure 1 shows the best
and worst of archiving each of our collection of test files.

As described above, our testbed contained IDE storage disks which are slow (reduced cost to provide
affordable computing) compared to a server with SCSI based storage. To eliminate the delay for disk access,
we insure each file is resident is pre-fetched in memory prior to invocation of the ADSM backup operation.
5 Otherwise, we find that bandwidth is limited by the IDE disk drives and the only benefit of hardware
compression is that CPU usage is reduced from 60to 10both bandwidth and CPU usage. The limiting factor
for software compression with the file resident in memory is CPU usage.

Experiments we repeatedly run for client server backup for software compression, hardware compression
and no compression for the same dataset. These we done using a 10 Mbps and 1000 Mbps Ethernet.

4.1 Software Compression vs. No Compression

The ADSM product allows the backup administrator to specify when to use compression. QOur studies
show that slow backup client/server network connections benefit from software compression and fast backup
client/server networks do not. This is because, when the storage subsystem can support the bandwidth, the
limiting factor in current systems is the slow network. Comparing the 10 Mbps Software vs. No Compression
columns we find that the Mbyte/sec rates are nearly double for Software Compression. Note that the effective
backup bandwidth of the software compression column exceed the peak rate of the network on all file size
experiments. This is because software helped make the network more efficient in moving client/server backup
data.

Removing the network bottleneck by using a point to point 1000 Mbps Ethernet connection, we find that
software compression (CPU overhead) is now the bottleneck. In these columns, we find that no compression
is more efficient than software compression. In all these experiments, the CPU loading was at 100% for all
software based compression.

4.2 Software Compression vs. Hardware Compression

Examining the 10Mbps results for Software vs. Hardware compression we find that software actually out-
performs the hardware based card in backup bandwidth. This is because the transfer is limited by the
network bandwidth and not CPU resources. Since the software algorithm compress data at a higher ratio.
This difference is due to the size of the compression history tables available in virtual memory vs. ALDC
hardware. This means that every byte transferred across the fully loaded network is more meaningful than
for the hardware compression implementation. Therefore, with less data to transfer across the fully loaded

5This is realistic to work with since Windows N'T Server has a prefetch option which allows data to be cached in memory
prior to use.



network, software compression appears more effective. Although, we find that hardware compression reduces
the CPU loading from 100% to 40%.

Examining the 1000Mbps results for Software vs. Hardware compression we find that hardware outper-
forms software for all File Sizes and, once the CPU for software compression becomes fully loaded, we find
the improvement grows to 100% in performance improvement. We also find that hardware performance
improves as file size increases due to CPU loading.

4.3 Hardware Compression vs. No Compression

Comparison of the 10Mbps results for Hardware Compression vs. No Compression shows improvement over
all File Sizes. The larger file sizes show an improvement of in excess of 100%. The 1000 Mbps results show
that removing the network bottleneck allows for performance improvements of 18% to 89% from small to
large files, respectively.

5 Application Benchmark Studies

Our testbed implementation for application benchmark characterization is based on Version 3.1 of the ADSM
product release for Microsoft Windows NT and compiled using version 6.0 of Microsoft Visual C++ Universal
Edition Compiler. The client and server machines are IBM Netfinity Servers Model 7000M10 running
Microsoft Windows NT version 4.0 with Service Pack 4. The backup client includes up to four Intel Pentium
III Xeon processors (450Mhz/1MByte L2 cache) with 4096MByte RAM, 18.2GByte of SCSI Disk Drives, one
Alteon ACENic2 Gigabit Ethernet Card, and one Annapolis Micro Systems WildOne3 hardware-accelerated
Lossless compression PCI card. Note that the Ethernet card was configured to use standard Ethernet packets
(1518Bytes). The server includes up to four Intel Pentium IIT Xeon processors (450Mhz/1MByte L2 cache)
with 2048MByte RAM, 27GByte of SCSI Disk Drives, configured in RAIDO, and one Alteon ACENic2
Gigabit Ethernet Card. The client and server are connected with the dedicated gigabit Ethernet link.

Test data is made up of large blocks of archived data used for benchmarking of ADSM provided by IBM
Storage Subsystem Division. This data consists of files consistent with a majority of customers using ADSM
for backup and archival and the mix and distribution is proprietary information. Several directories were
created in the client to hold 2.5 gigabytes of files with the following sizes, 256 Mbytes, 128 Mbytes, 64
Mbytes, 32 Mbytes, and a sampling of small files in the range of 16K bytes and below.

All resonable efforts were made to remove any bottlenecks that could restrict the flow of information from
client to server. As described above striped SCSI disk arrays were used instead of a single IDE drive. The
client and server were configured for single processors with 2048 Megabytes of memory available for each.

5.1 Backup Benchmark Execution Times

Figure 2 provides a table of results for the execution of the 2.5 Gbyte ADSM application backup benchmark
in seconds. All times shown are for 2.5 Gigabytes of data transferred. Each row represents a different fix of
file sizes from 10 separate 256 Megabyte files to 80 separate 32 Megabyte files. The Small row represents a
mix of 1000’s of small files in the range of 1 to 16 kilobytes in length for a total of 2.5 Gigabytes of data for
backup as well.

We find that the Software Compression times for file sizes of 32M to 256M are roughly the same between
332 and 340 seconds. Using no compression offers an improvement of 7-8 percent over Software compression.
This is because the network and striped storage subsystem has sufficient bandwidth to absorb the additional
data across the link when the data is not compressed. Using the hardware method described, we reduced
the time by over 58 percent for all large file benchmarks.



Dedicated Backup Operation
File Sizes Software  Hardware None
256M 340(99.94) 139(27.72) 319(14.27)
128M 334(99.95) 138(29.08) 313(13.39)
64M 337(99.79) 138(28.24) 336(13.64)
32M 332(99.72) 139(28.36) 345(15.69)
Small 569(60.80) 600(33.69) 569(26.71)

Figure 2: Time to execute the 2.5 Gigabyte ADSM Client/Server Backup Benchmark in Seconds with
hardware, software and no compression. CPU percent utilization during the backup operation shown in ().

Dedicated Restore Operation
File Sizes | Software Hardware None
256 M 298 222 196
32M 351 327 317
Small 515 486 449

Figure 3: Time to execute the 2.5 Gigabyte ADSM Client/Server Restore Benchmark in Seconds with
hardware, software and no compression.

For small files, the overriding issue is the copying and management of the small files for transfer. These files
are not large enough to offer significant reuse of string patterns to allow compression to help performance.
Hardware compression is shown to be worse in this case by 7-8 percent due to the overhead of passing all
data for compression through the kernel and the PCI card and back to the application for network transfers.

Figure 2 also provides utilization values for the duration of the data transfer in brackets. We find that
large file software compression fully utilizes the CPU throughout the benchmark. This No Compression
studies show that the application is CPU bound in performance for compression since time is not altered
significantly but CPU usages is reduced by 83-85 percent. Using hardware compression we find that CPU
utilization was reduced by 71-73 percent over Software compression. As expected, doing no compression has
less CPU overhead.

5.2 Restore Benchmark Execution Times

Figure 2 provides a table of results for the execution of the 2.5 Gbyte ADSM application restore benchmark
in seconds. All times shown are for 2.5 Gigabytes of data transferred. As before, each row represents a
different fix of file sizes from 10 separate 256 Megabyte files to 80 separate 32 Megabyte files. The Small row
represents a mix of 1000’s of small files in the range of 1 to 16 kilobytes in length for a total of 2.5 Gigabytes
of data for backup as well.

We see that software restore (Figure 3) is generally faster to do in the client server environment than
backup (Figure 2). This is because, recovery or decompression of the files is a simple pointer look-up of
previously used substrings. (The exhaustive search and matching is done on the compression.) This effect
shows up in that hardware assisted restore is faster than software restore but not to the same degree. The
percentage improvements range from 25 to 6 percent for the 32 M to 256M files as well as the small file
sample set. Having backed up the data without compression offers the fastest restore times for all size files.



6 Conclusions and Recommendations for Future Work

Using high speed networks for ADSM backup and archival of data, software compression is a performance
limiting bottleneck. It does not only slow down the compression, but it also imposes significant CPU
overhead. Hardware compression speeds up the ADSM backup client, and off loads compression overhead
from the CPU. We demonstrated that hardware compression improves the performance of ADSM by 2X to 3X
while reducing the CPU loading by at least one-half, when using high bandwidth network communications.
Previously, the CPU load was at 100% forcing the user’s client offline for backup purposes.

Compression ratios can be improved for specific types of data if pre-processing filters are used prior
to invoking hardware compression. These filters, as outlined in reference [2] can easily be placed in the
programmable logic of our compression card. This would make their use transparent to ADSM except for
the fact that additional compression is possible.

Additionally, an investigation into software pipelining of compression using ADSM data chunks is a promis-
ing avenue of research. This improved software design would emulate our novel data encapsulation method
in software over multiple CPUs. Consider a 4, 8 or 16 way processor server that needs to compress a large file
for backup archival purposes. One processor can call upon several idle CPUs to “independently” compress a
chunk of data from the original file. This offers an advantage of speed over traditional, single history table,
in line data compression.

The method described can also be applied to multi-threading software data compression across multiple
CPUs in a shared or distributed memory parallel program environment. Furthermore, this methododology
of threaded hardware acceleration can be applied to many other compute intensive algorithms, such as data
encryption, that limit the performance of client/server systems.
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