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ABSTRACT

The calculation of value-at-risk (VAR) for large port-

folios of complex instruments is among the most de-

manding and widespread computational challenges fac-

ing the �nancial industry. Current methods for cal-

culating VAR include comparatively fast numerical

approximations|especially the linear and quadratic

(delta-gamma) approximations|and more robust but

more computationally demanding Monte Carlo simula-

tion. The linear and delta-gamma methods typically

rely on an assumption that the underlying market risk

factors have a Gaussian distribution over the VAR hori-

zon. But there is ample empirical evidence that mar-

ket data is more accurately described by heavy-tailed

distributions. Capturing heavy tails in VAR calcula-

tions has to date required highly time-consumingMonte

Carlo simulation. We describe two methods for compu-

tationally e�cient calculation of VAR in the presence of

heavy-tailed risk factors, speci�cally when risk factors

have a multivariate t distribution. The �rst method

uses transform inversion to develop a fast numerical al-

gorithm for computing the distribution of the heavy-

tailed delta-gamma approximation. For greater accu-

racy, the second method uses the numerical approxima-

tion to guide in the design of an e�ective Monte Carlo

variance reduction technique; the algorithm combines

importance sampling and strati�ed sampling. This

method can produce enormous speed-ups compared

with standard Monte Carlo.

1 INTRODUCTION

The calculation of value-at-risk (VAR) for large port-

folios of complex instruments is among the most de-

manding and widespread computational challenges fac-

ing the �nancial industry. The VAR is de�ned to be

an extreme quantile (typically the 99'th percentile) of

the distribution of portfolio losses over a time hori-

zon of �xed duration (typically one day or two weeks).

Current methods for calculating VAR include compar-

atively fast numerical approximations|especially the

linear and delta-gamma (quadratic) approximations|

and more robust but more computationally demanding

Monte Carlo simulation. The linear and delta-gamma

methods typically rely on an assumption that the un-

derlying market risk factors have a normal (Gaussian)

distribution over the VAR horizon. But there is ample

empirical evidence that market data is more accurately

described by heavy-tailed distributions under which oc-

casional very large market moves are more likely than

a normal distribution would predict. Capturing heavy

tails in VAR calculation has to date required highly

time-consuming Monte Carlo simulation.

This paper gives an overview of methods for com-

putationally e�cient calculation of VAR in the pres-

ence of heavy-tailed risk factors. These methods are

described more fully in Glasserman, Heidelberger and

Shahabuddin (2000b) (henceforth GHS). Theorems re-

lated to these methods are stated here; their proofs

are given in GHS (2000b). The methods model mar-

ket risk factors through a multivariate t distribution,
which has both heavy tails and empirical support. Our

key mathematical result is a transform analysis of a

quadratic form in multivariate t random variables. Us-

ing this result, we develop two computational meth-

ods. The �rst uses Fourier transform inversion to de-

velop a heavy-tailed delta-gamma approximation; this

method is extremely fast, but like any delta-gamma

method is only as accurate as the quadratic approx-

imation. For greater accuracy, we therefore develop

an e�cient Monte Carlo method; this method uses our

heavy-tailed delta-gamma approximation as a basis for

variance reduction. Speci�cally, we use the numerical



approximation to design a combination of importance

sampling and strati�ed sampling of market scenarios

that can produce enormous speed-ups compared with

standard Monte Carlo. Under certain conditions, this

Monte Carlo algorithm possesses the highly desirable

\bounded relative error" property (in the sense Sha-

habuddin (1994)) for estimating the relevant rare event

properties. It also easily adapts to the estimation of

a related useful quantity called the conditional excess

(sometimes also called the conditional VAR; see, e.g.,

Bassi, Embrechts and Kafetzaki(1998) for a discussion).

2 Heavy Tails and Market Data

The multivariate normal distribution is the most widely

model of changes in market prices and rates, in large

part because of its many convenient mathematical prop-

erties. Even in GARCH and related models the inno-

vations are commonly assumed normal, and the incre-

ments of any di�usion process are approximately nor-

mal over a su�ciently short time horizon. In contrast,

virtually all empirical studies report systematic devia-

tions from normality in market data. (An early refer-

ence is Blattberg and Gonedes (1974); recent studies

�nd the same patterns.) One of the most pervasive fea-

tures observed across equity, foreign exchange, and in-

terest rate markets is excess kurtosis. This means that,

compared to a normal distribution with the same mean

and standard deviation, the true distribution assigns

greater probability to extreme market moves. Clearly,

extreme moves are of paramount importance in risk

management and should be modeled accurately in the

calculation of VAR.

To contrast the normal and t distributions, it is useful

to consider �rst the univariate case. If Z is a standard

normal random variable (mean 0, standard deviation

1), its tail is described by

P (Z > x) �
1

x
p
2�

e�x
2
=2; x!1;

in the sense that the ratio of the two sides approaches

1 as x increases. In contrast, if X has a t distribution

with degrees-of-freedom parameter �, then

P (X > x) � constant � x�� : (1)

Thus, the two distributions have fundamentally di�er-

ent tail behavior. The power-law decay of the t distribu-

tion's tail is far slower than the decay in the normal tail,

con�rming that large moves will have much greater fre-

quency in a t-based model. Equation (1) further shows

that the parameter � controls the heaviness of the t dis-

tribution's tail, with smaller values producing heavier

tails. Empirical evidence suggests that � in the range

of 4{6 is appropriate for market returns over short time

horizons. As � ! 1, the t distribution converges to

the normal distribution, so the normal may be viewed

as a special, limiting case of the t family.

Modeling the joint distribution of multiple risk fac-

tors requires multivariate versions of these distribu-

tions. For simplicity we assume a mean of 0; both the

normal and t distributions can be translated to pro-

duce a nonzero mean. In this case, a multivariate nor-

mal density is completely determined by its covariance

matrix � or, equivalently, by the standard deviations

of its components and the correlations between them.

The fact that a multivariate normal density is summa-

rized by its standard deviations and correlations is very

convenient in modeling market data; this rather spe-

cial feature is shared by the multivariate t (see, e.g.,

Anderson (1984)), which has density

f(x) =
�(1

2
(n + �))

(��)n=2�(1
2
�)j�j1=2

�
1 +

1

�
x0��1x

�
�

1
2
(n+�)

(2)

for x 2 <n. If (X1; : : : ; Xn) has this density with � > 2,

then its covariance matrix is ��=(� � 2); the factor

�=(� � 2) may be viewed as re
ecting the heavier tails

of the t marginals. A further important distinction be-

tween the t distribution and the normal is that uncor-

related normal random variables are mutually indepen-

dent, whereas the components of a multivariate t are

in general dependent even if they are uncorrelated. In

modeling market data, this makes it possible to cap-

ture a situation in which two risk factors exhibit little

dependence in ordinary market conditions but tend to

move together in extreme conditions.

In GHS (2000b) we also work with an extension of (2)

that allows di�erent marginals to have di�erent degrees

of freedom. This is useful in modeling the joint distri-

bution of returns with varying degrees of heaviness in

their tails.

3 Quadratic Approximation: Heavy-Tailed

Delta-Gamma

Calculating VAR entails �nding the distribution of

losses over the VAR horizon (e.g., one day or two

weeks). Let the random variable L denote the loss on a

portfolio over a �xed horizon; �nding VAR means �nd-

ing a point xp for which P (L > xp) = p with, e.g.,

p = 1%.



The delta-gamma method (e.g., Britten-Jones and

Schaefer (1999), Rouvinez (1997), and Wilson (1999))

is based on making a quadratic approximation to L of

the form

L � c + b0X +X0AX (3)

� c +Q: (4)

Here, X is a vector of changes in underlying market

prices over the VAR horizon, c is a constant, b is a

vector, and A is a matrix. In the usual delta-gamma

method, X is assumed normal (Du�e and Pan (1999)

use a Poisson mixture of normals) and b and A are

obtained from the �rst- and second-order sensitivities

of the instruments in the portfolio with respect to the

underlying market prices. In other words, the \deltas"

and \gammas" of individual instruments are combined

to get the overall sensitivities of the portfolio and (3)

is a Taylor approximation to the loss. We will take the

slightly more general view that some approximation of

the form (3) is available.

Our �rst goal is to approximate the distribution of

the portfolio loss L by the distribution of the quadratic

c + Q in (4) when X has a multivariate t distribution.

Through an orthogonal transformation of the coordi-

nate axes, we may without loss of generality assume

that both A in (3) and � in (2) have been diagonalized.

In this case, we have

Q =
X
i

biXi +
X
i

�iX
2
i
;

where the Xi are uncorrelated risk factors; changes in

the actual risk factors are then linear combinations of

changes in these risk factors. In the normal case, the

analysis proceeds as in Rouvinez (1997) by �nding the

characteristic function of Q. Because uncorrelated nor-

mals are independent, the characteristic function of Q

factors into a product of one-dimensional characteristic

functions and is thus easy to �nd. This method does

not extend to the multivariate t because the Xi will

not in general be independent, even if they are uncor-

related. Also, due to the heavy tail, the characteristic

function of each Xi has a complicated form. Hence the

charateristic function of Q is intractable and a di�erent

approach is needed. To this end, note that Xi can be

generated as Xi = Zi=
p
Y=� where the Zi's are inde-

pendent normals with mean 0 and variance �ii and Y is

a chi-square random variable with � degrees of freedom,

independent of Z. Next, for any x de�ne the random

variable

Qx = (Y=�)(Q� x)

and let Fx(y) = P (Qx � y). One of our key mathemat-

ical results is the following:

Theorem 1. P (Q � x) = Fx(0) and Fx is the distribu-

tion with characteristic function F̂x(!) = �x(!
p
�1),

�x(�) =
1

(1 + �(�))�=2

Y
i

1p
1� 2��i

(5)

where

�(�) =
2�x

�
�

1

�

X
i

�2b2
i

1� 2��i
: (6)

Thus, we have an indirect way of computing the dis-

tribution of the quadratic approximation. This result

leads to the followingmethod to approximate P (L � x)

using P (c+Q � x):

1. set xc = x� c with c the constant in (3);

2. numerically invert the Fourier transform F̂xc ;

3. evaluate Fxc(0) = P (c+ Q � x) � P (L � x).

The procedure can be repeated for multiple values of x

in order to approximate the complete distribution of L

and �nd VAR. This method thus combines much of the

computational convenience of the traditional normal-

based delta-gamma method with greater empirical va-

lidity of the multivariate t distribution.

Figure 1 illustrates the potential danger of using a

normal-based delta-gamma approximation in a world

with heavy-tailed risk factors. Compared with the

exact portfolio (horizontal axis), the normal-based

delta-gamma approximation (vertical axis, left panel)

severely underestimates the magnitudes of large losses.

The t-based approximation (right) shows a much bet-

ter �t. This relationship is also useful in accelerating

Monte Carlo, as we discuss next.

4 Fast Monte Carlo Estimation of VAR

The transform inversion method presented above is

very fast, but it is only as accurate as the underly-

ing quadratic approximation. The �rst four columns

of Table 1 illustrate the e�ectiveness of the method in

approximating loss probabilities near 1% for a set of op-

tion portfolios. The parameters of these test portfolios

are detailed in GHS (2000a). The third column gives

the P (L > x) estimated using simulation to within 2%

accuracy (more precisely the 99% con�dence interval

half-width is always within 2% of the simulation esti-

mate of the probability). The fourth column gives the
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Figure 1: Comparison of delta-gamma approximations and actual portfolio losses when risk factors are multivariate t with
� = 5, based on 10,000 scenarios. The portfolio is the one labeled \0.1yr ATM" in GHS (2000a) and contains 150 options. The
approximation in the left panel is based on assuming normally distributed risk factors with volatilities scaled up by �=(�� 2);
notice that it greatly underestimates losses in scenarios where the true loss is large. The t-based approximation gives a much
better �t.

quadratic approximations. Note that the quadratic ap-

proximation, though fairly good in some cases, is as

much as 80% to 90% o� in other ones. Also, with-

out the (near) exact estimates of P (L > x) there is no

way of judging their accuracy for each case, which may

be a problem in practice. More accurate estimation

of VAR (together with estimates of the error) requires

precise revaluation of a portfolio in each market sce-

nario and this can generally only be achieved through

Monte Carlo simulation. Because portfolio valuation

can be very time consuming, the number of scenarios

generated must be kept fairly small.

In GHS (1999c,2000a) we developed a method for

strategically sampling scenarios in order to obtain pre-

cise estimates of loss probabilities using far fewer sce-

narios than would be required using standard Monte

Carlo sampling. The method in GHS (1999c,2000a)

assumes that the market risk factors are normally dis-

tributed and uses the delta-gamma approximation to

guide the sampling of scenarios. Here, we address the

problem of e�cient Monte Carlo when the risk factors

are modeled by a multivariate t distribution. We use

the t based delta-gammaapproximation analyzed above

as a basis for a combination of importance sampling and
strati�ed sampling.

The heavy-tailed property of the t distribution has

fundamental implications for the design of variance re-

duction techniques in a simulation. In GHS (1999a,

1999b, 1999c, 2000a), we have demonstrated that im-

portance sampling based on an idea known as exponen-
tial twisting can be extremely e�ective in simulations

driven by normal random variables. This approach is

not, however, applicable to heavy-tailed distributions

because it requires the existence of a moment generat-

ing function, which is incompatible with the power-law

behavior illustrated in (1).

We circumvent this di�culty by applying the earlier

mentioned representation result: if X has the multi-

variate t distribution in (2), then X has the same dis-

tribution as Z=
p
Y=�, where Z is multivariate normal

with covariance matrix � and Y is a chi-square random

variable with � degrees of freedom, independent of Z.

The advantage of this representation is that Z and Y

each permit exponential twisting, though X does not.

Our key result for Monte Carlo simulation is the follow-

ing exact relation between the portfolio loss L and the

quadratic approximation Q.

Theorem 2. For any x and y, and any � for which

�xc(�) <1, the portfolio loss distribution satis�es

P (L > x) = E�

�
e��Qxc�xc (�)I(L > x)

�
(7)

where I(�) denotes the indicator function, xc = x �
c, �x is as in (5), and E� denotes expectation under

which Zi are conditionally normal given Y with mean

��iibi
p
Y=�=(1� 2��i) and variance �ii=(1� 2��i), Y

has a gamma distribution with shape parameter �=2



Variance Ratios

Portfolio x P (L > x) P (c+Q > x) IS IS-Strat

0.5yr ATM 311 1.02% 1.17% 53 333

0.1yr ATM 469 0.97% 1.56% 46 134

Delta hedged 617 1.07% 1.69% 42 112

0.25yr OTM 355 1.02% 1.17% 53 242

0.25yr ITM 355 1.02% 1.17% 53 242

Large �1 1474 1.10% 1.58% 21 70

Linear � 3464 1.11% 1.75% 37 100

100, � = 0:0 4993 1.06% 1.88% 58 346

100, � = 0:2 5195 1.12% 1.99% 36 158

Index 2019 1.04% 1.22% 26 93

Table 1: Comparison of variance reduction methods based on delta-gamma approximations for heavy-tailed risk factors, using
test portfolios from GHS (2000a). The number of risk factors ranges from 10 to 100; the number of options per portfolio
ranges from 150 to 2000. All cases use � = 5. Variance ratios are estimated from 40,000 replications; the strati�ed estimator
uses 40 strata and 1000 samples per stratum. Variance ratios are estimates of the computational speed-up relative to standard
Monte Carlo.

and scale parameter 2=(1+ 2�(�)), and the risk factors

are given by Xi = Zi=
p
Y=�.

Ordinary Monte Carlo would estimate the left side

of (7) by randomly sampling scenarios from the mul-

tivariate t distribution and calculating the fraction of

these scenarios in which L > x. Using our importance

sampling method, we instead estimate the right side

of (7) by changing the distribution of the Z and Y in

the representation of the risk factors as X = Z=
p
Y=�

and evaluating the expression inside the expectation in

each scenario. This change of distribution samples large

portfolio losses far more frequently than does ordinary

Monte Carlo, and this leads to more precise estimates

of VAR. We choose the scalar � = �x by solving the

equation d�xc(�)=d� = 0; this choice puts the average

loss near x.

Let m2(�; x) denote the second moment of the im-

portance sampling estimate de�ned on the right hand

side of (7). The next theorem states that if the delta-

gamma approximation is exact (and if �i > 0 for all

i), then the method satis�es the bounded relative er-

ror property. As described in Shahabuddin (1994), this

means that only a �xed number of samples are required

to estimate P (L > x) to within a speci�ed relative er-

ror, no matter how large x is (equivalently, no matter

how small P (L > x) is). With standard simulation, the

required sample size to obtain a speci�ed relative error

grows without bound as P (L > x)! 0.

Theorem 3. If L = c+Q and �i > 0 for all i, then for

all su�ciently large x there exist positive constants c1,

c2 and c3, such that

c1x
��=2 � P (L > x) � c2x

��=2; (8)

m2(�x; x) � c3x
��: (9)

Thus with standard simulation, the second moment,

which is simply P (L > x), is of order x��=2 whereas

the importance sampling estimator has second moment

of order x��, which is the best possible exponent for

any unbiased estimator.

If L = c + Q and �i > 0 for some i, then the up-

per bounds on P (L > x) and m2(�x; x) in (8) and (9)

remain true; in this case, there is a constant c4 such

that

m2(�x; x) � c4P (L > x)x��=2 (10)

for large x. Thus the second moment of the importance

sampling estimate is greatly reduced in this more gen-

eral situation as well, although it may not have bounded

relative error since the lower bound in (8) has not been

established.

To obtain still more variance reduction, we stratify
the random variable Qxc appearing in the exponent in

(7). For example, to generate N scenarios, we construct

N intervals, each having probability 1=N for Qxc and

sample one value from each interval. Construction of

the bins relies on the transform inversion developed in

Section 3 above. This eliminates much of the variance

due to the exponent in (7). Moreover, since c+Q is the

quadratic approximation to L, strati�cation can also

reduce the variance in the portfolio loss itself.

The last two columns of Table 1 illustrate the e�ec-

tiveness of the method in estimating the loss proba-

bilities for the portfolios in that table. In particular,



they report the ratio of the variance using standard

Monte Carlo relative to using our importance sampling

method (IS) and our combination of importance sam-

pling and strati�cation (IS-Strat). These variance ra-

tios show how many times larger the number of scenar-

ios using standard Monte Carlo has to be to achieve the

same precision as the corresponding variance reduction

technique. They are thus estimates of the computa-

tional speed-up resulting from our methods, with larger

ratios indicating greater speed-ups. These examples in-

dicate the potential for enormous speed-ups from our

methods. Additional experimental results, that include

cases where the marginals of the multivariate t have dif-

ferent degrees of freedom, are reported in GHS (2000b).

If L is the loss then the conditional excess is de-

�ned to be E(LjL > y) where y is some �xed constant

(maybe the VAR). Both the IS and IS-Strat can eas-

ily be adapted to the estimation of this quantity. GHS

(2000b) gives theoretical e�ciency results and presents

experiments.
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