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Abstract
Throughout its history, from the early 4-circuit gate-array chips of the late 60’s to today’s billion-transistor multi-chip
module, IBM has invested in tools to support its leading-edge technology and high-performance product
development.  The combination of demanding designs and close cooperation among product, technology and tool
development has given rise to many innovations in the electronic design automation (EDA) area and provided IBM
with a significant competitive advantage.  This paper highlights IBM’s contributions over the last four decades and
presents a view of the future, where the best methods of multi-million gate ASIC and gigahertz microprocessor design
are converged to enable highly productive system-on-a-chip designs that include widely diverse hardware and
software components.

I - Introduction 
Advances in design automation usually arise during periods of extreme stress created by a product group designing
a high-performance product, using the latest technology with an aggressive schedule.  If at the same time there is a
strong collaboration among the product, technology and tool developers, together with a willingness to take some
risk, sparks can fly.  IBM has long been an incubator for innovation in EDA in their Research and Development
organizations and the sections that follow describe four particularly productive environments.  First was the
development of the bipolar mainframe machines of the 80’s.  This period in IBM produced a remarkable foundation
for predictable and efficient design of complex systems using regular chip and package layouts with a
highly-automated design system.  In the 90’s, processor design evolved into today’s competitive battle to produce
extremely complex “microprocessor” systems, while exploiting custom layout and new circuit families to operate at
gigahertz clock frequencies.  This shift in design style has led to the development of new classes of transistor-level
analysis and optimization tools in IBM along with a much more flexible and extensible design system, which allows
more rapid reaction to ideas of gifted designers.  The 90’s also gave rise to IBM’s development and commercial
offering of extraordinary high-performance and high-density application-specific integrated circuits (ASICs).  The
combination of leading-edge technology and tremendous time-to-market demands have created a highly efficient
design methodology, supported by a tightly-integrated set of modular tools operating incrementally on a shared,
in-memory data model and capable of supporting 40 M-gate chips.  The future promises to be even more exciting.
Technology advances will provide larger chips with a wide diversity of components that can be integrated into a
single chip or multi-chip package.  Success in this future will require a highly integrated design system capable of
allowing a designer to optimize at many levels of abstraction from hardware and software behaviors to devices and
shapes, all within an even shorter schedule.   

II - EDA Milestones in IBM 
IBM has a rich history of contribution to the field of design automation that spans four decades.  Tables 1, 2 and 3
list the more significant advances in verification, design and test, respectively.  The following sections provide more
insight into the nature of these advances.

A - Verification
Progress in verification has always been driven by the largest and most complex products.  During the 80’s these
designs were the S/370 class mainframes.  The synchronous design style used for the 3081 project [1] laid the
foundation for a verification methodology for the next two decades.  The 3081 was the first product to rely on
simulation for functional verification and found 84% of all logic design problems before the hardware was developed
(today’s standard is above 96% [2]).  The 3081 verification methodology was based on the following objectives:
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� Design specification in a high-level (RT-Level) hardware design language
� Complete separation of functional verification from timing verification
� Cycle-based simulation 
� Simulation coverage analysis using properties of the high-level language specification 
� Formal Boolean equivalence proof of gate-level implementation vs. high-level design 

The S/370 design team realized the benefits of these innovations long before the rest of the industry:
� A formal functional specification at the outset of logic design.
� Compact, high-performance simulation models 
� Coverage measures for clear feedback on simulation quality and verification completeness
� RT-level verification wit proven equivalence to the gate-level design avoided costly gate-level simulation

Throughout the 90’s, microprocessors and the associated systems were the drivers of the verification technology.
The function to be verified in these projects was at least as complex as the driver designs in the 80’s.   Key factors for
the evolution of the verification methodology include:
� Explosion of processor and system complexity 
� Large scale SMP systems
� Superscalar processors with out-of-order and speculative execution
� Custom circuit implementations

� Proliferation of Unix (AIX) workstation 
� Emergence of Industry-Standard VHDL and Verilog
� Development of practical functional formal verification

Design Specification
IBM developed a series of hardware-description languages [3] that focused on abstract specification of control flow,
deliberately neglecting any correlation with the physical structure of the hardware.  As logic synthesis was applied to
hardware description language (HDL) designs, the style of HDL entry began to change from purely functional coding
for simulation to a style that would let the designer “steer” synthesis by providing structural information.   IBM was
among the first supporters of the DoD effort to create VHDL, even though its focus on an event-driven simulation
paradigm did not fit well with IBM’s established synchronous design methodology.  For several years the internal
languages provided superior capabilities, but the desire for an open standard HDL led to improved support and
widespread use of VHDL.  Today VHDL and Verilog have fully displaced the earlier in-house languages. 

Cycle-Based Simulation
Hardware simulation was traditionally done with simulators that used event-driven algorithms.  IBM’s synchronous
design style allowed the separation of timing verification from functional verification.  This enabled simulation that
can evaluate the state of the simulated logic only by the end of each machine cycle.  Such a zero-delay evaluation of
the Boolean logic gates between state elements was organized in a rank-ordered fashion such that much of the
overhead of the event-driven algorithm was eliminated.  This cycle-based simulation method increased simulation
speed by one to two orders of magnitude beyond event-driven simulators, with the additional advantage that
performance and memory requirements scaled at most linearly with the problem size.  Cycle-based simulation evolved
from early forms of direct interpretations of the hardware description, to an algorithm that used rank-ordered logic
evaluation [4] and on to a simulator that applied limited compiler techniques to map many Boolean operations into
single machine instructions [5],[6].  Most of the complexity of these cycle-simulators was in the process that
produced executable machine code for the model.  

The development of the RS/6000 workstations provided an ideal target for compiled-model simulation.  A compiled
cycle-simulation model consists mostly of Boolean operations that can be executed in a single cycle.  The new
Unix(AIX) environment also prompted a more efficient implementation of all the algorithms for model creation.  The
new simulator was named “Texsim” [7], [8].  Texsim gained its efficiency from a Boolean network database optimized
for mapping HDL descriptions to machine instructions.  Model build is related to logic synthesis and the
code-generation back-end of a programming language compiler but has different tradeoffs than these.  Turnaround
time is important as large optimized simulation models of 100-200MB in size need to be generated in minutes. 
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The second generation of Texsim, implemented in the mid-90’s, included two innovations: 1) a multi-value (0,1,x,z)
code-generation mode was developed which largely eliminated the need for any event-driven logic simulation and 2)
the idea of using the vectored, 32-bit word for the evaluation of 32 ‘parallel patterns’ was developed in a new way [9].
 Model size had exploded not only because of denser chip technology, but also because the emergence of
microprocessor based SMP systems.  The ‘parallel instance’ feature allowed the automated vectorized packing of
multiple instances of the same module in a model by 1997.  For example, while a 601 PowerPC (1 million transistors)
model takes less than 2 minutes to build from HDL source and shows a simulation throughput of 350 cycles/sec, it is
possible to build an 8-way Power3 (16M transistors per processor, or 128M transistors per system) model in less 15
minutes with a resulting throughput of 10 cycles/sec (all numbers based on an RS/6000 595).  All of IBM’s
microprocessor systems have been simulated with Texsim since 1992 [8].  

The availability of inexpensive workstations resulted in a workstation under every designer’s desk which in turn led
to the concept of a ‘simulation farm’.  Simulation jobs are submitted through a batch system The advantage was to be
able to run testcases on hundreds and thousands of workstations in ideal parallelization and with direct scalability
[7].  Even with today’s large complex SMP models it is still possible to achieve 1 Billion simulation cycles over a
weekend with software simulation alone.

Simulation Acceleration Hardware 
An important component of the massive simulation horse power needed to verify IBM’s complex systems were
special purpose hardware accelerators.  After developing two early models [10], [11], a robust production system was
developed, the Engineering Verification Engine (EVE) [12].  EVE used a massive network of Boolean function
processors which each were loaded with up to 8192 logic instructions.  Typically, each run through the sequence of
all instructions in all logic processors in parallel constituted one machine cycle, this implementing the cycle-based
simulation paradigm.

The theoretical speed of EVE was many orders of magnitude faster than any software implementation - 2.2 billion gate
evaluations per second.  In practice, throughput in cycles/sec (cps) for any given processor model determined the
value of EVE for a project.  Throughput was determined by the slowdown of the engine by model load, setup, results
analysis, and most importantly by the amount of interaction between engine and compute host.  The importance of
spending most of the runtime in the engine at full speed led to innovations like synthesis of checker and testcase
driver logic into ‘virtual hardware’ [12].  A multiprocessor model with the full storage hierarchy and I/O boards
achieved between 250cps to 1000cps compared with 0.5cps for the software model run on an S/370 mainframe [2].  At
the peak use there were nine EVE machines shared among IBM’s product designs [5], [8], [13]. 

In the late 90’s, “Awan”, was built as a low-cost system which improved on both the capacity and performance of
EVE.  Awan is much like the EVE machine, but it is made with smaller, faster components and has a much-improved
interconnection strategy.  Models exceeding 31 million gates have been simulated.  Speed depends on the
configuration, model size, model complexity, and the amount of host interaction.  The raw model performance of the
Power4 chip running on Awan exceeds 2500 cycles/sec.  Awan is marketed by Quickturn under the name Radium.

Utilizing the base EVE concepts, a hyper-acceleration and emulation machine called ET3 [14] was developed in IBM’s
CMOS technology.  ET3 uses logic processors which evaluate 3-way input gates.  In contrast to AWAN, ET3 has a
larger number of processors and a lower depth of sequential 3-way-gate instructions per processor (256 vs. 8k in EVE
or 128k in AWAN).  The resulting higher degree of parallelization leads to dramatically higher speed (50k-1M
cycles/sec), but at a much higher hardware price.  The model build for the accelerator and emulator system taps into
the Texsim system using it as a common front-end.  This makes the selection of the target simulation engine a simple
option for the user.  Acceleration has its traditional place in IBM’s verification flow.  Emulation has been successfully
used in graphics processor and MPEG projects.  The breakthrough of this technology in the microprocessor and
server system space occurred after the latest capacity improvements [14].  ET3 is marketed by Quickturn under the
name CoBalt.

Test Program Generation
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While innovative simulators and accelerators can provide enormous simulation capacity, it is just important to use
these cycles wisely through intelligent test case generation.  For small scale simulation at the module or unit level,
individual testcase drivers with random stimuli were used.  Since the design being simulated was usually a processor
it was natural to use processor instructions, loaded into the memory of the simulated machine, as the testcases.   
Early on, these test programs were either manually developed or derived from code fragments from previous
machines.  Random test case generation was also used explore subtle errors [15] and was refined to produce test
targeted at specific conditions. 

A lightweight System Assurance Kernel (SAK) [5] was used in bring-up labs to test the new systems.  SAK allowed
the development of a diverse set of testcase drivers or generators which would dynamically generate test instruction
streams.  The machine would execute the test program and SAK would check the machine state vs. the predefined
correct result.  With the emergence of the EVE hardware accelerator technology it became viable to run parts of the
lab bring-up process in cycle-simulation before the design was committed to silicon.  Several projects used this
process for full-system simulation [16].

A key focus for test program generators in the 90’s is the increased complexity of the micro-architectures which
employ ever more advanced schemes to improve processor performance, such as deeper pipelining, branch
predictions, and more aggressive superscalar and speculative execution.  To address these advances in design
complexity with higher quality tests, 3 different generators were developed.  The combination successfully advanced
high quality testing into the realm of complex SMP systems and allowed the efficient utilization of the software
simulation workstation farms. 

AVPGEN was specifically developed for S/390 verification [8], [17].  It uses symbolic instruction graphs as a format
for the verification engineer to specify templates for test programs to be generated.  The templates are a powerful
format to target classes of test cases.  Symbolic values are used to express constraints and value dependencies and
are also used to leave the generator options to let its constraint solving algorithm choose concrete values as late as
possible to reach interesting corner cases.

Genesys [18] separates the generator into several distinct components.  An independent reference model provides an
instruction-set execution model of the machine An architectural model both encapsulates and abstracts machine
architecture specifics in the form of instruction trees.  Testing knowledge is encapsulated in C routines written by
verification engineers and called by the generators at appropriate times during the traversal of the architectural
instruction trees.  Tree traversal is at the heart of the generation process.  Constraint solvers are guaranteed to
generate correct values as they are bound to the instruction tree.  Genesys has been used successfully on the
AS/400 and RS/6000 processors. [18] quantifies the beneficial effect of creating higher-quality test cases.  

MPTG [19], [20] is another generator that addresses multiprocessor cache coherency verification.  The reference
machine model of MPTG is a combination of memory hierarchy and its associated coherency protocols and is
declarative.  The test specifications control the occurrence of specific sequences of cache events.  In contrast to
Genesys, test results are verified by inspecting storage locations in the memory hierarchy and monitoring coherency.
Since its creation, MPTG has been used in all PowerPC and PowerPC-AS system verification projects.

Boolean Equivalence Checking
IBM has explored formal methods since the 70’s [21] and succeeded in applying them to a product design in 1978
[22].  But the tool that had the most impact in IBM was the Boolean equivalence checker called SAS for Static
Analysis System [23].  It was based on the use of Shannon’s expansion.  It had a simple but powerful user-interface
which allowed the designer explicit control of equivalence-point, or cut-point, selection and other bookkeeping
measures to address the inevitable problems with large designs.  SAS was remarkable for its very early use of formal
methods in production computer design.  For large synchronous designs, such as the 3081 and ES/9000, SAS
eliminated the need to do functional verification at the gate level. 

With the emergence custom transistor implementations, a new approach was necessary to guarantee the correctness
closure on which the complete HDL-level methodology is founded.  One of the contributions of Verity [24] was to
use a mixed-mode circuit extractor that is adaptable to a wide variety of circuit design styles.  Extraction was
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combined with the application of consistency checks which validate the extraction model.  The extracted model was
verified against an HDL specification using a variety of algorithms which combine the application of BDDs with
graph hashing, automatic insertion of multiple cut points and a controlled elimination of false negative results caused
by the cuts.  A unique innovation of Verity was that it uses different algorithms seamlessly to prove equivalency.
These different algorithms, implemented as separate engines, play out different tradeoffs to the comparison problem
depending on how structurally different the two input designs are.  

While Verity is used on flat netlists, its capability to support hierarchical formal verification ties well into the design
flow.  Leaf cells of the design hierarchy are completely compared, and these results are used in processing the higher
levels of the design hierarchy.  Since custom-circuit implementations often exploit macro input constraints, Verity
supports an assume-guarantee scheme for these constraints: on macro-inputs the constraints are assumed in the
equivalency check, on the macro-output they are required to hold and are therefore proven by Verity.

Model Checking
Extending the reach of formal methods became practical with the success of BDD-based model checkers.  Based on
the Symbolic Model Verifier, SMV [25], ‘RuleBase’ [26] was developed in the early 90’s.  Many RuleBase innovations
involve methods that address the model size problem of BDD-based model checking.  As a result, RuleBase was
successfully applied to designs [27] like bus bridges, cache controllers, bus interface units and functional units of
microprocessors, and pushed this new technology into the mainstream verification process.

Micro-Architectural Modeling 
Today’s HDL models are aimed at describing implementations and fail at capturing a designer’s real intent.  It is
necessary to raise the level of abstraction and create a model that captures the design at the micro-architectural level.
Many verification tasks could be improved with such a ‘high-level’ model: simulation (speed), formal verification
(model size, easy separation of control logic), coverage (obvious structures to instrument for coverage models), and
test program generation (project specific reference model for focused test generation).  This high-level, executable
specification would have benefits for the overall design process beyond verification.  At IBM, work is proceeding
based on early success with a modeling framework, called “Faust”.  This C/C++ environment enabled the
micro-architects of the Power4 project [28] to write an efficient, concise micro-architectural model.  The system
allowed the designers to use VHDL for the structural specification of the upper levels of the design hierarchy.
Sharing the same source between physical and high-level functional design is highly desirable.  The lower-level of a
Faust model is C/C++ code, which relies on the support of base class library.  The library supports model partitioning,
simulation control flow, built-in elements like latches and performance-related constructs.

While development of the approach continues, the initial experience of micro-architectural modeling on the Power4
project was very successful.  Not only were reliable performance measurements derived from the model, but the
verification process of Power4 benefited in major way:
� A machine-readable, executable specification proved early on that the processor over all ‘hangs together’.
� Verification infrastructure and the verification team got an early start with an executable model that was

available 1 year earlier than the actual HDL model.
� The exercise of developing the model increased the team’s understanding of the design, leading faster to the

more robust RTL implementation.

Verity[24]Boolean equivalence checking extended to transistor level1994
RTPG[18]Production use of biased-random test program generation1990
TEXSIM[13]Production use of cycle-base simulation on RISC workstation farms1990
SAK[16]Production use of function test program generation in simulation1982
SAS[23]Production use of automatic Boolean Equivalence Checking1982
YSE[11], LSM[10] First simulation accelerator1982
EFS[1]First production use of cycle-based simulation1982
Effigy[21]Symbolic execution used for software and hardware verification1978
MCS[ 22]First formal micro-code verification of product1978

Table 1 - Verification Milestones in IBM 
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ET3[14]Ultra-parallel high-performance emulation machine 1999
TEXSIM[8]Multi-value and vectored SMP cycle-based simulation1996
Genesys[18]Dynamic test program generation1995
RuleBase[26]Production use of Model checking1994

B - Logic Design
Timing Analysis 
In the early 1970’s simulation provided the major means of timing verification, and it was clear that a new capability
was needed to avoid reliance on patterns and exponential blowup.  To avoid these problems, the PERT-based Timing
Analysis (TA) program was developed [29] as part of the IBM 3081 design verification methodology.  In order to give
significant run-time improvements over path enumeration, TA used a block-oriented algorithm in which the blocks in
the design were topologically sorted to allow a single-pass computation of all signal arrival times and required arrival
times, their differences giving a slack value on a node to indicate timing criticality.  Static timing analysis techniques
could be applied so successfully because of the design discipline imposed by the LSSD test methodology, which
clearly separated clock and data signals and enforced a strictly clocked synchronous design.  TA propagated rising
and falling timing values separately to model asymmetric circuit characteristics.  A crude form of statistical timing
analysis was provided in which the mean, sigma, and sigma squared of the arrival times were all propagated and
combined with correlation information to compute slacks and perform tests at storage elements.    As wire delay
became more significant a change was made from considering only block delays to considering both block and net
delays, with a set of timing values computed on each block port rather than on each net.  To accommodate
hierarchical timing analysis, abstraction capabilities were also introduced. 

TA expanded the blocks in the design into a set of interconnected delay blocks, similar to the expansions used for
test generation.,   Each block in the expansion had a single delay computed by an equation specified in the delay rule.
The set of available delay equations and their corresponding delay coefficients were fixed, but tended to be extended
over time as new delay dependencies arose.  These delay coefficients were computed from curve fits to circuit
simulation results.  Delays were calculated for the 3 sigma worst case process and the 3 sigma best case process to
ensure that all functional chips could be used in machines, since no delay sorting of chips was done.  The SRAMs
and embedded logic macros (e.g., register stacks) were handled with behavioral rules that were manually coded to
provide the required functional and timing information.  Paths that left the chip had partial delays calculated.  These
delays would subsequently be used by the TA program when all of the package interconnection data were supplied.

Meanwhile, in the CMOS domain, a separate timer had been developed to support the more complex clocking
schemes used in CMOS designs [30].  In 1990, motivated by demands for more accurate timing, consistent timing
throughout the design process, convergence of the timing analysis approaches, and workstation-based tools, IBM
embarked on the EinsTimer [31] system.  EinsTimer was developed as a timing utility rather than as a standalone tool.
As such, it could be used standalone or as part of a variety of tools, including logic editing, logic synthesis, and
placement.  An incremental capability was provided which automatically invalidated timings when design changes
which affected timing were made, and which minimized the recomputation needed when new timing information was
required [32].  This efficient incremental capability enabled closer integration of synthesis, timing and physical
design.  To better support transparent latch design, EinsTimer was able to break loops which violated the acyclic
graph assumption on which block-oriented static timing analysis depended, introducing new constraints to safely
bound the timing at these loop-breaking points.  It could then perform an iterative slack stealing across the loop
breaking points to further reduce timing pessimism [33].  In EinsTimer early and late timing values were propagated
separately using different delays reflecting the expect delay variation within a chip, to avoid the optimistic
assumption of perfect on-chip delay correlation.  This could introduce unnecessary pessimism when a common clock
path fed the launch and capture latches of a critical path.  As clock delays became more significant this pessimism
became unacceptable, and capabilities were added to selectively remove this pessimism when needed [34].  

To handle the rapidly growing set of delay dependencies and to isolate them from the underlying timing analyzer, the
Delay Calculation Language (DCL) was developed.  DCL provided this flexibility through a mechanism whereby the
delay rule could make queries back to the timing analyzer for necessary values upon which delay values depend.    
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The DCL language has been accepted as an IEEE standard 1481 and has been expanded to include power calculation.
More information is available from the Silicon Integration Initiative at www.Si2.org.

Early Synthesis 
IBM has a long history of contributions to logic synthesis.  Beginning in 1953 with Karnaugh Maps [35], through
Alert[36], MINI [37] and YLE[38], IBM made progress in easing the task of designing logic.  While these methods
provided needed improvements, they were all PLA-based and therefore suffered from exponential behavior.  They
also did not match the dominant, library-based design style currently in use.

Production Synthesis
In 1979, development of the Logic Synthesis System (LSS) [39] was begun.  A key observation was that the design
did not need to be optimal - after all, the manually designed logic wasn’t - but it did need to meet the same
requirements (e.g. of speed, area, testability) that the human designers had to meet.  Rather than basing the system
on PLA minimization, the team proposed to use local transformations to simplify the logic.  This would avoid an
exponential run time, fit well with the multilevel library-based design style, and would avoid the complete structural
collapsing associated with forming PLAs.   LSS optimized logic at an abstract Boolean level and followed this by
technology-mapping and timing correction scenarios to convert the design into the technology library primitives and
to achieve timing constraints.     

LSS was first used in production in 1982 on the bipolar chips used for the ES/9000 mainframe.  In production use, it
quickly became evident that it was necessary to have an incremental logic timer integrated with the logic synthesis
system to allow it to make area-timing tradeoffs.   Timing correction was applied at the early Boolean level to
restructure the logic and also after technology mapping to take advantage of technology features.  It was also
realized that there were some problems, such as redundancy removal, which were global phenomena and would
require solutions not limited to local transformations.  This lead to pioneering work on redundancy removal [40], and
on global flow analysis [41], which contributed to rewiring methods used in logic synthesis today.  

Second Generation Synthesis
In 1989 it was decided to implement a new, workstation-based logic synthesis system   An important feature of this
new system, BooleDozer [31], was that   its internal data model was also used within the IBM timing analysis and
physical design systems.  The data model provided general object annotation capabilities and a callback mechanism
to notify applications of model changes.  This eased the integration of multiple incremental applications operating on
the model, and positioned BooleDozer for the integration of logical and physical design.  

In the realm of technology-independent optimizations, BooleDozer provided improvements to the redundancy
removal process were made by integrating a full-feature test generation program [42] within synthesis.  For
technology mapping, the limited pattern generation and covering algorithms used in LSS were extended and refined.
Pattern generation was more aggressive, and the covering algorithm used a tiling method to choose the final
implementation.   Both programs were sensitive to timing as well as to area.

Timing correction was a particular emphasis in BooleDozer.   An important advance was the development of a method
to improve its decisions about where correction transformations could most profitably be accomplished.  Other
improvements in gaining timing closure were also incorporated into BooleDozer.  Some examples are the use of
recovering for timing, in which a timing-critical section of logic is translated back to technology-independent form
and then re-technology mapped for better timing, and the use of checkpoints and hill climbing. 

Incremental synthesis was another important feature in BooleDozer.  One downside of using automated synthesis
was its tendency to be unstable in the face of “small” design changes.  A designer would make what seemed to be a
trivial change, and the synthesized results might be completely different.  Incremental synthesis overcame this
difficulty. by reading both the previous and changed designs and “protecting” unchanged logic, encouraging
minimal changes to the design.  This was especially useful when there had been considerable downstream work in
tuning the design, and was also helpful in easing the task of verification.
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In the mid 90’s, the emphasis on very high-performance circuits and the advent of sub-micron technologies caused
some fundamental changes in logic synthesis.  While it had always been a challenge to synthesis to obey timing
constraints, the new, more stringent timing requirements and the shift of delay from the gates to the wires called for
new synthesis techniques.  The BooleDozer team responded with work in synthesis of dynamic logic [43], to allow
synthesis to exploit the advantages of specific circuit families, such as domino logic; gain-based synthesis to
improve the timing characteristics of the design, especially by fanout correction [44] and wavefront technology
mapping [45], and to allow simplified libraries; and transistor-level synthesis, to optimize time and area on critical
segments at the detailed transistor level.

Placement-Driven Synthesis (PDS)
PDS was an important new technique that combined, BooleDozer, the EinsTimer timer, and physical design
capabilities to overcome the problems of achieving timing closure To merge logic synthesis and placement, it was
necessary to have both operate incrementally and independently.  The process started as a pure synthesis process,
but the goal was to bring placement in as soon as possible.  It is especially important to have physical information
during significant logic restructuring phases in order to control wire lengths and delay.  An example of restructuring
enabled by PDS is physically-based buffer insertion capabilities [46].  Standard buffering methods considered only
logical connectivity, but the new capability was based on Elmore delays, dynamic programming, and a sink to source
walk of the global route for the net to be buffered.  

The overall strategy of PDS in merging the two applications was to place the logic on a grid.  Initially, the grid regions
were large, so the granularity of the placement was very coarse.  As the process continued and the logic began
taking on its final form, more cuts were done to reduce the granularity, and increase the accuracy, of the placement.
Wire lengths [47] were estimated using Steiner trees.

To reduce the time required to achieve timing convergence on large chips, Parallel Hierarchical Timing Correction
(PHTC) capabilities were developed [31].  An hierarchical design was read into BooleDozer processes running on
several different machines, and a complete chip timing analysis was performed in each.  Each process then selected a
macro to work on (with locking to prevent selection collisions) based on the worst slack in the macro and on the
number of times it has been chosen.  The process improved the timing of the macro, treating the surrounding macros
as frozen.  When finished it wrote back the updated macro, read in any updated macros, and repeated the process.
The incremental timing analysis capability in EinsTimer ensured that timing results were updated when new versions
of macros were read in.

Behavioral Synthesis
The success of logic synthesis in raising designer productivity naturally led to the goal of raising the level of
abstraction even more, from the register-transfer level to the behavioral level.  Work on high-level synthesis began in
1984 and resulted in the HIS system [48].  Used throughout IBM, HIS provided a single port of entry for VHDL
designs, which encouraged IBM designers to use higher levels of abstraction in their specifications.  Unlike other
dataflow-centered approaches, HIS emphasized the synthesis of efficient control structures.  A major technical
contribution was the work done in resource sharing [49], which used interleaved register and functional unit merging
in a global clique-partitioning-based framework, accurate estimations of the costs of interconnect and unit merging,
use of relative control cost and efficient false loop elimination.  The results obtained showed significant
improvements in the delay of designs, while also minimizing area.

C - Transistor-level Design  
The earliest form of EDA software was developed to analyze and characterize high-speed computer circuits.   In the
early sixties, logic circuits were analyzed using ad-hoc equations.  As circuits grew in size and complexity IBM
pioneered the systematic use of EDA tools and revolutionized the way that circuit design was performed.  The
development of EDA in the circuit area started with computer programs and methods for network analysis,
progressed to optimization of circuits using computers, and finally to complete automatic layout of circuits.  

Over the last two decades the needs of IBM circuit and system designers have driven the development of circuit and
transistor level tools.  In the 80’s, IBM engineers were designing chips in bipolar current-switch-emiter-follower
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circuits in a gate-array structure with 4 levels of metal.  Hence, the focus was primarily on accurate circuit simulation
for relatively small circuits and accurate modeling of interconnect due to the reliance on mult-chip modules for
integration.  As designers began using CMOS VLSI with greater integration on chip, initially the approach adopted
was to use standard cells with limited need for transistor level tools.  In the late 90’s, the demand for higher
performance, with gigahertz clock speeds, both in the S390 class servers as well as PowerPC based UNIX servers, has
led to a greater emphasis on custom design requiring the range of IBM tools to expand to include a myriad of
transistor level tools, while still providing increased capabilities in traditional circuit and interconnect analysis.

Circuit Simulation
Franklin Branin at IBM Kingston was one of the first to point out how EDA was changing the modus operendi of
circuit design [50].  He described the topology of a circuit as a linear graph, and superimposed an algebraic structure
on the graph based on the interrelationships between nodes, branches and meshes of the graph.  The algebraic
structure could be compactly reduced to a matrix of equations, which was amenable to computer manipulation.  This
work represented the foundation of circuit simulation, which continues to be used today, with two decades of
improvements to formulations and matrix solution techniques.  

The “Sparse Tableau Approach to Network Analysis and Design” [51] was one such advance, and although this
technique is not used in present day circuit simulators, this was the first complete incorporation of sparse matrix
techniques into automated network optimization.  Another major contribution was the Modified Nodal Approach
(MNA) [52] which was a generalized formulation that enabled circuit simulators to handle current-dependent
elements while improving program speed and memory utilization.  MNA continues to be used today in most circuit
simulators, including all present day SPICE simulators.  With these advances came the first circuit simulator, ASTAP
[53], which was widely used throughout IBM.  With circuit sizes growing exponentially, there was an increasing need
to continually improve speed and reduce memory requirements for circuit simulators.  One breakthrough was
development of “waveform relaxation” techniques which enabled partitioning of large circuits into smaller sub
circuits, and thereby allowed independent analysis of these sub circuits [54].   

In the 90’s, the continuing focus on circuit simulation of ever larger circuits required the use of new numerical
techniques as well as the leveraging of multiprocessing capability.  Both these trends led to the incorporation of 
the waveform relaxation algorithm [54] in PowerSPICE, the simulator which is currently in use in IBM [55].  As the
computer industry moved from bipolar to CMOS for high performance digital designs, and the area of conventional
circuit simulation continued to evolve, a more approximate “timing simulation” technique which bridged the gap
between logic simulation and detailed circuit simulation was started at AT&T Bell Laboratories with the development
of MOTIS [56] for MOS devices.  MOTIS was the first to incorporate table models to represent MOS devices, rather
than simple ‘1’ and ‘0’ used in logic simulation, or the detailed, time-consuming evaluations of analytic equations
used in analog circuit simulation.  Timing simulation was introduced in IBM with SPECS [57], which used
piecewise-constant device models and event driven simulation to provide speed and variable accuracy.  Timing
simulation was further advanced with the introduction of ACES [58], which incorporates piecewise-linear device
models and a novel integration algorithm to improve performance and accuracy.

Interconnect Modeling and Signal Integrity Analysis 
While breakthroughs were being made in the circuit simulation arena in IBM, a parallel effort was underway for
accurate modeling of interconnect - the results of which were used for more accurate circuit simulation.  IBM was a
pioneer in the analysis of coupling noise, delta-I noise and timing delay which occur due to interconnect parasitics.
Static capacitance and inductance computations which result in networks, which could be simulated practically, were
first computed using the PEEC (partial element equivalent circuit) method [59], [60], [61], [62].  These were used for
on-chip and off-chip delay or coupling or delta-I noise calculations.  For packages, the electrical length of
interconnect required a more complex transmission line analysis to compute delay and noise.  IBM was one of the
first companies to model package parasitics using both lossless and lossy transmission line analysis [63], [64].  The
result of all these innovations was a CAD tool package COSMIC [65] which included tools for two and three
dimensional capacitance, inductance and lossy transmission line coefficient calculations.  COSMIC continues to be
widely used within IBM for parasitic computation. 
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Until recently, noise analysis was performed only on small subsections of a macro using circuit simulators, as timing
analysis used to be years ago.  Harmony [66], the first exhaustive “static” noise analysis approach was initiated at
IBM in 1996 and continues to be developed today.  This allows large functional units, with tens of thousands of
gates to be analyzed for all types of noise-related problems including coupling, charge-sharing and leakage.  The
analysis at the functional unit or macro level is encapsulated in noise abstractions that are used at the chip level,
where coupling noise is calculated for all global wires, using fast model order reduction methods, and can be
compared to the acceptable level of noise at any macro input to verify its susceptibility.   In conjunction with the
noise analysis tools, fast and highly accurate parasitic extraction tools have been developed by IBM both at the
transistor level and the chip level.  At the chip level IBM’s extraction tool 3DX was one of the first tools to accurately
extract coupling capacitances for noise analysis and frequency dependent self inductances for timing analysis [67].   

Power Management and Distribution
At the chip level power supply collapse due to simultaneous switching and voltage drops is a major concern.  A tool
called NOVA[68] was developed to analyze power supply drop across the whole chip, using a distributed R, C and L
model of the power supply rails as well as the first-level package together with estimates for the switching loads
across the chip.   This tool has also been used in IBM microprocessors to optimally place de-coupling capacitors to
minimize the power supply noise.  As power dissipation becomes a major metric for high performance designs, IBM
has leveraged its expertise in fast circuit simulation techniques to perform power analysis on large function units.   
This has been done using ACES which due to its fast speed and large capacity (multi-million FET’s), can analyze
large functional units at the transistor level with an accuracy unrealized by older techniques based on simplified
switch level tools. 

Transistor-Level Timing
Due to the push to meet aggressive timing requirements, transistor-level timing analysis has become a necessity.   
IBM has leveraged its investment in the static timing tool EinsTimer by extending its capabilities to the transistor
level by incorporating a transistor-level timing tools (EinsTLT) as part of the EinsTimer system.  EinsTLT in turn uses
the fast simulation capabilities of ACES to perform timing analysis at the transistor level and seamlessly provides this
to EinsTimer.   EinsTLT used its circuit topology recognition methods to add the capability to perform static timing
analysis on SOI circuits, which have unique behaviors such as the floating body history effect.  

Beyond accurate analysis, meeting timing goals has required optimization tools for transistor and interconnect sizing.
Jiffytune [69] a dynamic tuner using a highly-sophisticated general-purpose non-linear optimization engine has been
developed for optimizing critical paths and has been used successfully to optimize critical paths in IBM
microprocessors.  A novel approach to circuit tuning using static timing has also been recently pioneered at IBM
[70], [71].   The circuit tuning work was recognized by the operations research community as part of the INFORMS
award to IBM for its pervasive and innovative use of optimization techniques across the corporation.  
 
Memory Array Design
An increasing portion of a chip’s content is on-chip memory, and this is driving significant tool development.
Systematic timing, noise and power analysis have been used for a long time on logic designs, and are now beginning
to be employed on array designs.  A key advance is the use of behavioral models in ACES, which abstracts away the
details of each memory cell while keeping the transistor level description where necessary, allowing the simulation of
the whole array at a level of accuracy hitherto available only for small circuits.  The timing and noise abstracts
generated this way can then be used in higher levels of analyses.   

Package Design and Analysis 
The board and MCM designs for IBM’s enterprise servers continue to be among the most complex in the industry
[72], with up to 29 chips, over 600 meters of wire and 4200 I/O, and CPU frequencies of over 600MHz.  To perform the
package design and analysis for such systems IBM has utilized a combination of internal and external tools for
physical design and analysis.  External tools such as Allegro from Cadence Design are used for design entry but
internal tools are used for routing, timing and noise analysis.   The noise tools use a novel statistical cross talk
algorithm [73] which has been shown by extensive use in production designs to be much less pessimistic then
traditional deterministic approaches.  This algorithm includes the effect of timing variations in aggressor nets on near
and far end noise.  
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Circuit Quality and Robustness
With the increasing use of aggressive dynamic circuits and large functional units, IBM has developed tools to
guarantee that custom designs adhere to a uniform design style and to improve their robustness against process and
timing variation.   Einscheck is a flexible and extensible tool that performs static and dynamic checks on a custom
design.  It checks topology, electrical constraints, beta ratios, latch styles and signal waveforms to insure that design
rules are followed.  It can be customized to new technologies and design methodologies.  

D - Physical Design  
IBM’s constant pursuit of the highest performance chip and packaging technologies has demanded repeated
innovation and sound software engineering in the physical design arena.  Fortunately, IBM has been able to develop
highly automated design systems to support a remarkable advance in ASICs:  1) <1K gates in 1972 [74], 40K gates in
1984 [75], 3) 300K gates in 1990 [76], 4) 3.3M gates in 1994 [77], 5) 24M gates in 1999 [78] and 40M gates planned for
2000. 

IBM began using automated module placement in the mid-60’s and by 1972 had developed a fully automated physical
design system to support the S/370 product line.  This production system consisted of a set of host-based batch
tools which handled cards, boards, and multi-chip modules as well as chips.  Use of a common, hierarchical database
allowed design details, such as I/O assignments, timing, and noise, to be passed between levels of packaging.    A
strict methodology was enforced by audited checking functions.  The system prevented such things as running
detailed wiring unless detailed placement had been previously run and checked.    

In the 90’s a new workstation-based design system, ChipBench, was developed as a suite of tightly-integrated tools
sharing a common in-memory model of the entire design [78].  Tools operated incrementally, allowing a designer to
monitor the impact on timing as a floor plan is being modified and as logic optimizations are being performed.  The
increase in density has led to hierarchical chip physical design and the system had to handle different design
methodologies for 40 million gate ASICs and 200 million transistor microprocessors.  Designers needed the flexibility
to run tools out of order for early analysis, such as running global wiring to get better net delay and congestion
estimates between large blocks prior to placing some of the smaller functions.  A strict audited methodology could no
longer be used.  The technology and library descriptions were made more accessible, allowing designers to customize
them when needed.   Area planning helps predict the size each piece of the logic hierarchy will require.  Early floor
planning resolves timing and congestion problems prior to detailed logic design based on assertions.  The system
supports automatic floor planning, as well as manual editing to resize and reshape the blocks.

In the early 90’s, IBM began a cooperative effort with the Institute for Discrete Mathematics, headed by Professor
Korte at the University of Bonn, to explore the application of large scale optimization methods to the challenges of
chip physical design.  The result is a set of tools including placement, wiring, timing optimization, and a continuous
gate and wire sizing algorithm along with capabilities for clock scheduling and optimal timing analysis with
transparent latches [79].  These tools have been used extensively in IBM on many of the most demanding designs. 

Placement 
The early placement tool was a collection of interchange techniques, each focusing on different criteria, such as
congestion, net length, and voltage drop [74].  As additional constraints were added, a simulated annealing
technique was adopted, which allowed all of the constraints to be handled simultaneously in a single cost function
[80].  Nets which would be optimized in a later step, such as clock trees, scan chains, and re-powering trees, were
ignored during the first placement run.  By the mid-80’s, the delay of on-chip nets was becoming significant.  Initial
static timing analysis was run using rough predictions of net delays based on net type and number of pins.  These
timing results were used to generate the minimum and maximum capacitance constraints for the first placement run.
After placement, improved net delay estimates were generated and fed back into timing analysis.  The logic designers
started running this placement/timing analysis iteration themselves, rather than waiting for feedback from the
physical design center.  
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Placement programs now have to handle flat designs with over two million placeable objects, which include a mix of
large macros and medium cells plus some very small cells.  The PDS system, described earlier, uses a combination of
min-cut techniques with multi-layer partitioning and simulated annealing.  Even a hierarchical design may be placed
flat with placement constraints transferred from floor planning.  Specialized techniques have been developed to
handle bit stacks.  Another effective placement tool uses quadratic optimization and a new quadrisection algorithm,
which minimizes movement instead of cut-nets [81].  A minimum cost flow approach has also been added [82].  In all
cases, the placement functions are tightly coupled with timing analysis and the other optimization functions that
operate at this stage of design, such as clock tree generation, scan chain reordering, circuit power level assignment,
and buffer insertion [47].  

For placing chips on modules, an interactive graphic tool has been developed that supports manual placement of
over 130 chips on multi-chip modules and also places modules on boards [83].  An integrated set of analysis tools
was used to guide the manual placement.  These included static timing analysis, simultaneous switching noise, and
cross talk noise [84].  

Wiring
Two-layer wiring for the early bipolar chips involved global routing, vertical track assignment, horizontal line packing,
followed by a cleanup maze runner [85].  Circuit density doubled in the early 80’s with the addition of a third wiring
layer.  With this complex circuit layouts began blocking more of the wiring space.  A new wiring technique was
invented to handle this [83].   The global router focused on congestion, capacitance, voltage drop, and min/max
timing constraints, so the detailed router could focus on pin access.  The detailed router used a unique packing
technique, with access from every pin to the upper wiring bays being monitored as wires were added.  Priority was
given to connections with poor pin access.  Partial connections were routed to prevent pins from becoming blocked
by the wires of other nets.  Vertical packing was done first for each global routing column.  The same technique was
then used to route the global rows.  This technique lent itself to parallel processing, and a graphic monitor was
developed to display the wires as they were being generated.  The cleanup maze runner was enhanced to allow rip-up
and reroute of existing connections while not violating the constraints.  The maze runner also divided the chip into
overlapping regions to reduce memory and allow parallel processing.  Long connections were wired in pieces rather
than one large maze run covering the entire chip.  As densities increased, so did the focus on the signal wire’s impact
on yield and reliability.  The wiring tool was enhanced to prevent conditions known to cause manufacturing problems
such as spreading wires to reduce the probability of shorts.  

While the bipolar chips used a single wire width, wide wires are now used with CMOS to reduce resistance on critical
nets.  The width of each wire segment can be tuned to meet clock skew and electomigration targets.  Critical nets can
also be given a larger spacing to reduce capacitance and noise.  Early noise analysis is used to guide detailed
wiring’s noise avoidance.  The Bonn local routing is based on optimum Steiner trees and shortest path search with an
interval-based routing grid data structure [78].

An important aspect of designing gate-array chips was wirability analysis [86], [87].  The amount of wiring space
needed for hundreds of future designs had to be estimated as part of the gate-array image design.  Extensive
experiments were run to improve the wirability theories.  These experiments covered the impacts of aspect ratio,
additional wiring layers, perimeter versus column driver cells, and embedded SRAM macros.  Every circuit layout was
reviewed by a wiring tool developer to recommend pin access improvements.  Since the automatic tools could not
guarantee 100% wiring for the over 700 gate array designs, an interactive graphic wiring tool was developed [88].  It
allowed a user to manually modify the wiring while performing physical and electrical checks.  A maze runner assisted
the process of adding wires.  

While bipolar gate-arrays used a fixed and predefined power distribution layout, CMOS power grids are automatically
customized to handle large macros and off-chip driver placement.  The final power distribution can be analyzed for
voltage drop, electromigration, and noise [89].  The results of the noise analysis are used to guide the placement of
decoupling capacitors on the chip.      

High-performance chips demand high-performance packaging and by the late 80’s, modules for the IBM ES/9000 had
69 ceramic layers with nearly 3000 pins and 400 meters of wiring.  For package wiring, the pins of each net are ordered
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to meet timing and transmission line constraints.  Each two pin connection has a minimum and maximum length along
with a range of wiring layers which it could use.  Clock nets are routed first and manually fine tuned before the
remaining nets are wired.  In addition to the length and layer constraints, the wiring tool handles cross talk noise
avoidance.  The early work on these packages forced design tools to handle large designs and to deal with
interconnect effects such as inductance and noise avoidance that help in handling today’s large high frequency SoC
designs.      

Logic Optimization in Physical Design 
In the 70’s, no logic changes were made during the physical design process, but it soon became apparent that some
changes could significantly improve the results, like swapping equivalent inputs to better align pins for wiring.  As
the ability to verify correctness improved, more complex changes were made.  Clock trees and scan chains were
generated as part of the placement process.  Circuit power was adjusted based on the wiring load it had to drive.  As
clock frequencies increased and interconnect delay became significant, clock distribution became an important issue.
A variety of techniques were developed to generate delay-balanced routing of clock nets [90], [91], and to optimize
the assignment of clock sinks to nets in buffered clock trees [92].  Initially, buffered clock tree generation was done
using simulated annealing.  As clock tree sizes grew and designer demand for fast clock tree optimization in an ASIC
design methodology increased, this was replaced with by a combination of initial greedy clustering followed by
iterative merging and re-partitioning of the sinks of pairs of adjacent clock nets.  For high-speed microprocessors,
more specialized techniques were used, based on detailed clock net analysis and including wire routing, widening,
and shielding [93].

E - Manufacturability
IC manufacturing in the 50’s was accomplished with the use of photomasks designed by hand with colored plastic
sheets and mylar tape.  The first computer aided layout design tools allowed the design of mask geometries in the
form of punch cards which drove numerically controlled film cutting machines [94], [95].  Manufacturability of a
design required that geometric shapes did not exceed minimum size limits, shape overlays satisfied process variation
tolerances and the interconnects and devices embodied by the design accomplished the desired function.  These
requirements were verified by visual inspection and post-manufacturing testing.

In the mid 60’s and early 70’s, IBM developed the industry’s first tools for interactive design of mask geometries [96],
a the first design rule (DRC) and layout vs. schematic (LVS) checking tools [97], and the first hierarchical mask
geometry database (GL/1)[98].  These advances allowed for IC designs to be stored, audited and verified, such that
manufacturability of the design was guaranteed through verification before actual release to manufacturing. 

IC manufacturing shape data preparation (DataPrep) transforms the mask layouts in the geometry database to the
geometric data used to drive the lithographic patterning steps of manufacturing.  Until the early 90’s, DataPrep was
limited to mask fracturing in which polygonal shapes were converted into mask making tool representations.  During
the 90’s, the increasing complexity of mask and wafer fabrication and the use of aggressive lithographic patterning
required new data preparation techniques, including optical proximity corrections, density effect compensations, and
phase shift mask generation [99].  Thus, modern design manufacturability depends on the effectiveness of DataPrep.

These requirements in addition to the enormous growth in geometry database sizes was anticipated by the
development of a hierarchical, universal and programmable shapes processor, Niagara[100].  The Niagara shapes
processing engine now includes DRC, LVS, CAA (see below), DataPrep and technology migration among its many
applications.

DataPrep techniques also found novel uses in the 90’s.  As the race to shrink critical dimensions heated up, the need
to reuse IC designs with newer technologies becomes critical.  The process of converting a layout to a new
technology, called technology migration, involves complex layout mapping including layer generation, shape scaling
and biasing and changes in layout topologies, which have been accomplished with Niagara applications.  As new
technologies become more dissimilar, even more sophisticated mapping techniques are necessary such as the
minimum perturbation compaction method developed at IBM [101].
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Design for Manufacturability
Manufacturability has long been defined by the pass/fail criteria of DRC and LVS checking, even though it was soon
realized that the actual fraction of good parts, or yield, depends on the detailed photomask design.  Stapper [102] at
IBM pioneered the techniques to predict the yield of a part before manufacturing by Critical Area Analysis (CAA) of
the design masks.  The work of Stapper on yield enhancement of memory arrays [103] by the use of redundant
layouts also demonstrated that design and layout can strongly improve IC yields.  The concept that
manufacturability can be measured and improved through design practices is called design for manufacturability
(DFM).  Initially DFM was applied in IBM with DataPrep techniques using Niagara [104].  DFM requires a robust
yield prediction capability, and therefore the CAA techniques at IBM have been enhanced to become a massively
distributed, full-chip yield prediction tool [105].  With the aide of the yield prediction capability in CAA, a novel
yield-aware maze routing technique has been developed [106].  Further work on yield-aware routing and compaction
techniques have shown as much as 20% combined yield increases are possible.  The concept of design for
manufacturability has also been demonstrated through the manufacturing of a yield-enhanced PowerPC 750
microprocessor [107].

The trends of pricing and cost pressures, increased pace of new, increasingly complex and aggressive technologies
combined with shortened design cycles are setting a new pace for the future of manufacturability and EDA tools.
These pressures are now demanding early estimates of yield, cost and reliability.  In addition, traditional tools such
as synthesis, placement and wiring are becoming increasingly yield aware.  Furthermore, technology migration tools
will increasingly be used to optimize layouts for manufacturability.  Clearly, manufacturability is a critical metric for
designers and is being incorporated throughout the design process. 
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[112]First design-for-manufacturing enhanced PowerPC 750 microprocessor1998
Niagara[99]Hierarchical manufacturing data preparation with OPC1993
CAA[43]Yield Prediction from mask data using Critical Area Analysis1980
USC[97]DRC and LVS using Universal Shapes Checker1974
IGS 1130[96]Interactive, graphical mask editor1972
GL/1[95], [98]Hierarchical mask data model: Graphics Language/One1966

Release to Manufacturing

[78]     - 24M gates1999
[77]     - 3.3M gates1994
[76]     - 300K gates1990
[75]     - 40K Gates   1984

Physical Design System to support IBM’s high-performance technology
MCMRouterFirst production cross talk avoidance wiring1989
XAWire[83]First four level metal chip wiring 1983
MCPlace[80]Simulated Annealing applied to placement in production1981
[74], [84], [85], [88]Integrated Physical Design System for chips, modules, cards, and boards1972

Physical Design

EinscheckComprehensive custom logic circuit checking1998
3DX[68]Full chip global parasitic extraction Including Inductance1998
Harmony[66]First static noise analysis for digital circuits1997
NOVA[68]Full chip power distribution analysis1996
Jiffytune, Einstuner[69]Production use of efficient automatic circuit tuning1996
Sxtalk[73]Statistical noise estimation for package design1994
SPECS/ACES[57], [58]Production use of piece-wise constant/linear FET models1991
USC[97] Automatic layout checking in Universal Shapes Checker1978
AS/X[52]Modified Nodal Analysis (MNA) used for circuit simulation1975
COSMIC[61]Partial Element Equivalent Circuit used in parasitic extraction1974
ASTAP[51]Sparse tableau approach used for circuit simulation1971
[50]Graph representation of circuit topology1967

Transistor-Level Design

BooleDozed[45]Wavefront technology mapping used in production1998
BooleDozer[44]Gain-based synthesis used in production logic synthesis1997
BooleDozer [47]Demonstration of combined physical/logical optimizations1995
DCL  Common delay calculator for all design tools1990
LSS[41]Global Flow analysis in logic synthesis1986
SlackHoe[32] First use of incremental timing in logic synthesis1986
YLE [38]Seminal publication on multilevel logic synthesis1984
LSS [40]First publication of redundancy removal in logic synthesis1983
LSS [39]First production use of transformation-based logic synthesis1982
TA [29]  First production use of block-oriented timing1979
MINI [37]First use of heuristic PLA minimization1974

Logic Design
Table 2 - Design Tool Milestones in IBM 
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F - Manufacturing Test 
Because of the large volume of chips being designed, IBM, early on, pursued and adopted Automatic Test Pattern
Generation (ATPG) methods based on structure-oriented test methods.  It was found that ATPG would be more
practical if internal registers in complex designs are made accessible by a dedicated scan approach [108].  In the 70’s,
Ed Eichelberger proposed a revolutionary approach, named Level Sensitive Scan Design (LSSD) [109], [110] that
makes timing-robust correct-by-construction test programs for a wide range of products and test equipment
parameters possible.  LSSD quickly became IBM’s methodology of choice [111].  ATPG algorithm advances, like the
PODEM algorithm [112] that succeeded the well-known D-Algorithm [113], became significant drivers for a practical
set of test generation tools that still is used today.  Another tool innovation was the development of design rules
checking software that automatically analyzes a design for compliance with the LSSD architecture requirements [114]
prior to chip release and test generation.

An LSSD-based logic Built-In Self-Test (BIST) architecture called STUMPS, the prototype of most logic BIST
schemes used in the industry, was introduced in the 80’s [115].  New fault simulation technologies that evaluate
multiple test patterns in parallel using compiled code [116], [117] and event-driven interpreted methods (Parallel
Pattern Single Fault Propagate, PPSFP) [118] were pioneered for BIST.  In a related development, IBM engineers also
created a innovative chip-level test method called Weighted Random Pattern (WRP) test [119], which uses encoded
test patterns to improve the memory utilization of the test equipment.

At-speed test capabilities were devised for scan and LSSD early on [120], [121].  In the early 80’s a simple, very
pragmatic method to convert static LSSD tests into timed tests [122] was introduced for chip and module testing.  A
comprehensive automatic delay test generation system [123] for production use followed in the early 90’s.  Among
the key innovations for this system are the transition fault model [124], a small delay fault model and simulator [125],
and a timing tool to determine the appropriate test for an at-speed test [123].  Another significant technical
contribution of the time pioneered robust delay test criteria for path delay faults [126].

Embedded Memory and Macro Test
Many embedded memories are designed for density, leading to very specific failure modes and, sometimes, the need
for repair.  Such memories are best tested and diagnosed with specialized highly regular algorithms.  IBM pioneered
an approach and supporting tools for accessing embedded memories or other macros, such as embedded processors,
through surrounding logic [127] for testing.  Early on, it was suggested that memory tests, due to their simple and
regular nature, could be implemented in BIST hardware right next to a memory macro on a chip or module [128].  This
idea evolved into more sophisticated architectures with flexible test algorithms that can be tuned to the particular
memory configuration under test on a chip [129].  ABIST today is used in virtually all of IBM’s chips.

Boundary Scan
Boundary Scan uses special scan cells associated with the chip pins [130].  IBM has used LSSD-based boundary
scan cells and associated test methodologies in practice at least since the early 80’s [131].  It is also worth noting that
the chips described in [131] contained an On Chip Monitor (OCM) port that standardizes access and control of all
boundary scan, internal scan, logic BIST, ABIST, and other test resources.

IBM today extensively uses boundary scan in innovative I/O test strategies for IC manufacturing test.  IBM’s unique
I/O wrap test features support a very cost-effective Reduced Pin Count Test (RPCT) approach for wafer sort, where
only a subset of the chip I/Os needs to be contacted [132], [133].  The unique boundary scan implementation
facilitates at-speed wrap-around testing at wafer sort and DC parametric testing of the I/Os at final (package-level)
test.  Some very high-performance products use LSSD-based boundary scan at the package level to support at-speed
interconnect testing [134].

TestBench 
TestBench, today’s workstation-based suite of IBM test tools, includes a Design-For-Test Synthesis (DFTS) system
that automates the insertion of internal and boundary scan structures, the configuration and insertion of logic BIST
and memory array BIST structures, the configuration and insertion of IEEE 1149.1 TAP controllers, and the
construction of a chip top shell.  The design rules checking and testability analysis tools in TestBench are coupled to
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a graphical netlist browse and edit utility, which automatically extracts relevant pieces of the netlist and creates an
annotated interactive schematic snapshot for the user.  The user can then traverse the netlist, apply simulation and
test generation commands, and even edit part of the circuit for experimentation purposes.  The ATPG, fault
simulation, and logic diagnostic applications in TestBench include a unique fault model concept called pattern faults
[135] that complements the standard fault models in TestBench (including stuck-at faults, transition faults, path delay
faults, I/O faults, and IDDq faults).  Pattern faults are a convenient method to define specific local test conditions for
such failure modes in the netlist that cannot be easily derived from any of the other fault models (e.g., shorts).
TestBench uses a sophisticated Multiple Test Mode (MTM) architecture that allows a user to define and keep track
of different test setup conditions (e.g., for logic, embedded memories, I/Os, and any other special building blocks), to
monitor the associated local and global fault coverage statistics, and to integrate the different tests into a global flow.

ASIC and Microprocessor Test
IBM’s ASIC design sign-off flow is unique in the industry.  By using a ASIC Sign-Off Kit (ASOK) that includes
robust DFTS and DFT structure verification tools, customers are completely relieved from having to generate chip
manufacturing tests themselves [136].  A small manufacturing support team, taking full advantage of the LSSD,
ABIST, macro test, Reduced Pin Count Test, and MTM features in TestBench, performs all ATPG runs, even for the
most complex ASICs with embedded processors.

Processor design today produces very complex custom CMOS using a combination of HDL Synthesis and
hand-optimized transistor-level design techniques.  Processor design teams are very concerned about achieving
gigahertz performance and tight layouts by applying very aggressive circuit-level design “tricks” (like pass-gate
logic, dynamic logic, self-timed or self-resetting logic, and complex multi-phase clocking styles).  Although
TestBench can accommodate some transistor-level models it is much more practical to derive a suitable gate-level
model from the transistor-level design and let the DFT/ATPG tools operate on this derived model.  The TestBench
tool suite includes a sophisticated model extraction tool called Gatemaker [137] for this purpose.

One key problem with clock frequencies approaching the GHz level is the lack of affordable test equipment that can
handle such high frequencies.  IBM has over the years pioneered and developed a number of On-Product-Clock
Generation (OPCG) techniques for at-speed test [138].  With OPCG, the tester only needs to send a reference clock,
optionally multiplied by an on-chip Phase-Locked Loop (PLL), and the test timing edges are generated on the chip
under test itself.  Some tests, like the measurement of embedded memory access, setup, and hold times, use
programmable on-chip delay lines and associated calibration techniques for higher-resolution signal edge placement
[138].

Logic Diagnostics
A significant industry trend is that semiconductor processes are being brought up with logic products, making logic
diagnostics and failure analysis increasingly important for early process learning and yield improvement.  The
simulation-based diagnostics first pioneered by IBM in the Tester Independent Chip Diagnostics System (TICDS) in
the 80’s [139] are a significant improvement over traditional dictionary-based methods.  The TICDS approach can
also be used for logic BIST and WRP [140].  To enable logic BIST and WRP diagnostics, IBM pioneered a simple
method to dump the contents of all scan cells out to the tester for later detailed analysis after a signature mismatch
indicates defect detection.  TestBench includes a number of advanced graphical visualization tools, wave-form
display tools, circuit trace, simulation, and analysis tools for logic diagnostics.

Defect Based Testing
The purpose of test is to find and diagnose defects.  Test generation and diagnostic tools, on the other hand, use
fault models.  The ability to establish a strong correlation between defect levels and fault models is vital for assuring
high product quality and to guide the generation of more efficient and effective tests.  IBM has a rich tradition of
defect analysis and fault modeling that includes work on modeling the relationships between defect levels, test
coverage and product quality [141], [142], the modeling of defects and yield as it relates to memory redundancy and
repair [143], and the use of circuit level simulation to help evaluate fault models and testability of logic library
elements [144].  Another important contribution is the use of critical area concepts to model the sensitivity of layout
elements to defects of different sizes [145].  Finally, IBM has always complemented the modeling and theoretical
analysis with empirical test effectiveness and failure analysis work [146].
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[135]Pattern Fault model for non-classical defects1996
[122], [123]Early Industrial Scan-Based AC Delay testing1990
[132], [133]Introduction of Reduced Pin Count Test1989
[119]Production use of Weighted Random Pattern Test1987
[124] Robust Path Delay and Transition Fault Models1985
[116], [117], [118]First Industrial Parallel Pattern Fault Simulators1985
[115]First widely used scan-based Logic BIST(STUMPS)1982
[130], [139]Early Boundary Scan and On-chip Test Interface1982
[124]First simulation-based logic diagnostic system1981
[112]PODEM Algorithm (first with implicit enumeration of decisions)1981
[127], [128]Early Memory BIST and Embedded Macro Test1976
[109]First use of Level Sensitive Scan Design (LSSD)1973
[113]Invention of D-Algorithm for pattern generation1966

Table 3 - Manufacturing Test Milestones in IBM

III - Future
With so many new technology, circuit and architectural developments being explored, no one can accurately predict
the requirements for a future design system.  But, it seems certain that in the near future the embedded processor and
System-on-a-Chip (SoC) markets will continue to explode as processing power and increased integration is delivered
to every segment of the electronics industry, including consumer (set-top boxes, game machines), wireless (cellular
handsets), wired (Internet infrastructure), pervasive (printers, GPS), storage (SAN, RAID) and server (Internet
infrastructure).  Continued advances in technology are enabling the design of larger and denser chips, but are out
pacing designer productivity.  Multi-chip packages and single multi-technology chips, with a growing diversity of
technology (RF, Analog, FLASH, FPGA, CMOS, embedded-DRAM, SiGe, …), will be deployed to insure the lowest
manufacturing cost for each technology.  Embedded RISC processor performance will surpass the 1GHz clock rate
utilizing embedded DRAM for L2/L3 cache and re-configurable instruction sets.  Time-to-market pressures will drive
integration at the expense of both area and performance optimization for many applications.   The time to verify new
and unproven logic will continue to be the critical path for getting a product to market.  The need for extended battery
life and low power requirements will continue to be a challenge as technologies continue to lower the threshold
voltage to combat the increased clock frequencies and associated increases in power dissipation.

Successful companies in the future will require the capability to rapidly develop complex hardware and software
systems by utilizing and customizing existing components as well as generating and designing new high-performance
components, all with an extremely productive and predictable process.  It will be necessary and possible to implement
these systems with a productivity much greater than today, despite the design problem becoming more complex due
to the diversity of chip components.  Figure 1 depicts a vision of SoC design in the future.  The sections below
describe the requirements and initial thinking for the four major elements: 
� System Specification and Verification 
� Design Mapping 
� Design Implementation and Optimization  
� Release to Manufacturing and Test 

A - System Specification and Verification
A SoC designer in the future will begin by developing a functional specification that captures the desired behavior at
the highest possible level of abstraction that can be simulated, along with a set of constraints on the many design
parameters for the specific product.  The specification format needs to be as unrestrictive as possible, but will
most-likely be based on interconnecting a set of functional units or components that can be drawn from a library of
parameterized representations.  More important than the format is a sound and simple semantic foundation that is
appropriate to both the designer’s decision process and the verification tools.  As this specification is being
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developed, a suite of verification tools will be
used to confirm not only the correct behavior, but
also the correct values for other design
parameters, such as power dissipation,
performance, or cost.  Ideally, the SoC designer
with this high-level specification will be able to
confirm the product’s desired behavior through
functional verification, and determine an early
estimate of the values of the key design
parameters, such as cost, power, performance and
testability, through a set of design parameter
verification tools.  As the design progresses from
specification to manufacturing, bounds for the
design parameters will converge to accurate
predictions of the final product’s performance.
New equivalence checking tools will confirm that
the specified function is preserved as the design
is transformed into a final manufacturable
implementation.  

SoC functional verification will require significant
advances in simulators targeted at specific
component types, such as RF, analog, digital and
mechanical, plus a standard environment for
coupling these tools together without sacrificing
efficiency.  Some relief will come from new
hardware accelerators and emulators as the race
for improved capacity continues.  Formal
verification will advance and play an even larger
role in proving of important properties of the
specification, raising confidence in it’s
“correctness”.  There is work on increasing tool
speed and capacity and also on improving the
user interfaces to make model checking more
attractive for designers to easily and exhaustively
explore their design space.  Combining methods of
simulation with formal verification is a promising
area of research in IBM with the potential of
applying high-speed simulation to drive a design
into ‘interesting state conditions’ and then
continue with formal, exhaustive evaluation
methods from that point on.  Finally, a

methodology is needed to capitalize on the body of prior verification results when an existing component is reused.
It must not be necessary to reverify the entire system, as if it were all new.

Design parameter verification will require calibrated estimation tools that produce a range of values to check against
the design constraints.  The calibration is with the software and hardware implementation tools that follow.  They
must be able to reliably deliver results within the estimated ranges to avoid time consuming redesign loops.  While
many research breakthroughs may be required to achieve these capabilities, the potentially dramatic improvement in
productivity certainly justifies their pursuit. 

Equivalence Verification  
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Regardless of the level of automation following System Specification and Verification, it is essential that equivalence
be preserved between the specification and the implementation as it progresses through Design Mapping and
Implementation/Optimization to final realization.  Rerunning the specification tests will provide some confidence, but
what is needed is new high-level equivalence checking tools that can be used in this context and also after each of
the later Mapping and Implementation/Optimization steps.  A verified architectural model can be used to confirm
component and system behavior and performance, to develop expanded test cases, to support pre-silicon software
development, and to be used as a pre-silicon marketing vehicle.

B - Design Mapping
Design Mapping refers to that part of the process where critical early design decisions and tradeoffs are made that
determine the fundamental nature of the end product.  That is, the functions specified above must be mapped to
generic hardware and software components, which in turn must be translated to specific hardware that can be
manufactured.   

Hardware-Software Partitioning
As the specification is being developed, the SoC designer will create an implementation “architecture” as a network
of generic hardware and software components.  This assignment of function to hardware and software will largely
determine the values of all design parameters and will be done by expert designers with the assistance of high-level
analysis and estimation tools together with a set of optimization tools to help meet the specified design constraints.
Software components are bound to hardware components that establish their performance, power, and other
parameters.  At this point the generic components can be positioned in a system floorplan to guide later analysis.  

Functional Mapping
Functional mapping is similar to the technology mapping step in logic synthesis, but for larger elements.  This step
will use algorithms for mapping a technology independent system specification onto a library of specific hardware
components that can realize the system.  The mapping may be to a single component or a combination of
components.  This step also uses algorithms and tools for optimizing the mapping to achieve the cost, area, timing
and other design constraints.

System Stitching
In addition to selecting components, appropriate interconnect, converters and other infrastructure elements will need
to be added to complete the implementation.  This will be accomplished with a set of tools that understand the
components and their requirements for assembly to be able to be able to put them together quickly and efficiently.
System stitching will take advantage of predefined architectures to quickly produce efficient implementations.
Following this step the refined floorplan should enable more accurate estimates for the design parameters.

C - Design Implementation and Optimization 
During the mapping process, a specific hardware component may not be available and a new implementation will be
required.  The required implementation could use a range of design styles including ASIC, custom and semi-custom,
depending on the specific requirements of its environment.  Even for those components which are available, some
may exist as logic-only (i.e. “soft”) components which will be open for further optimization during implementation.  In
the final assembly of the hardware and software, newly implemented, logic-only, and library (i.e. “hard”) components
will be incorporated along with the needed interconnect adapters and converters.  Hardware component placement
will be finalized on chip and the required power and clocking circuitry will be added.  In addition, there are
opportunities for optimization as the design progresses towards manufacturing.  The design system to support these
implementation and optimization steps will require simultaneous use of the complete set of analysis functions and
comprehensive optimizations capabilities, all cooperating on a shared design representation.  This requires a new
design system architecture.   

New Design System Architecture  
Earlier, Section II.B. describes an evolution of the IBM design process through the 90’s towards an integration of the
previously separate logical and physical design capabilities.  While design times have been improved with
placement-directed synthesis, more is required and can be achieved.  The step by step integration of timing with
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synthesis and then with placement has been generalized into a vision of a high performance SoC design
methodology enabled by new application modules integrated through a new design system architecture.   In IBM,
tools from the logical and physical environments are being redesigned following the guidelines of the Unified
Physical Design and Synthesis (UPS) architecture.   A unified development environment is being established for
migrating the existing capabilities and developing new ones, as more of the critical design methodology segments are
addressed, all fitting within this new architecture.  To be specific, the objectives set forth at the start of the UPS
development were to eliminate the duplication of environments between synthesis and physical design, making it
much easier for designers to do a full synthesis and placement run from one system, and to improve the turn-around
time of one iteration through the design closure loop by employing tightly-integrated, smaller algorithmic steps, early
bailout of unfruitful corners of the design space, elimination of duplicate timing environments, and unnecessary
database transfers.  The resulting system has the following attributes:
� A single execution environment, called Nutshell, which enables dynamic loading and binding of modular

functions at runtime.  This allows the execution to be dynamically configured and easily extended to address
specific design tasks.  

� A single runtime data model, the Integrated Data Model (IDM), which provides a generalized callback
mechanism to enable function interoperability and incremental processing.

� A common electrical subsystem to support of parasitic modeling, model reduction and delay calculation.
� A common user interface and common handling of application parameters.
� Rich sets of granular, reusable functions covering the following areas: 
� logic optimization (synthesis, design-for-test)
� physical optimization (placement, global wiring, detailed wiring)
� clock-scan optimization
� gate sizing, buffer insertion, wire sizing, layer assignment, Steiner estimation, etc.
� incremental analysis (timing, noise, power, extraction, checking, etc.)
� logic and physical editors and browsers

� All functions, including IDM, are supplied with command language bindings to enable easy customization.

With UPS as the base, we must shift our focus towards the future where the design system must allow designers to
rapidly assess the status of the design and apply a wide variety of incremental optimizations to drive the design
toward the acceptable criteria. 

Design Analysis
Traditionally, designers have considered relatively few factors, perhaps only performance and area.  However, even
today’s designer is faced with a large and growing number of constraints including battery life, weight, noise, and
yield.  To support automatic or manual optimization, the design system must provide incremental analysis of many
design parameters [147].  Before describing some examples, we discuss some methods for efficient computation.  

Demand-driven analysis is one aspect of this, in which we start by querying for a particular analysis result and then
recursively compute the necessary information to answer the query.  For example, if in a static timing analyzer we are
interested in clock skew, we would need to compute the arrival times at all clock inputs of latches, which would in
turn require computation of the arrival times and delays in the cones of logic feeding these clock inputs.  This
demand-driven computation can cross analysis domain boundaries, so the delay calculator might in turn ask for
electrical information which would in turn ask for estimated routing information, etc.

A second way to reduce analysis computation cost is to compute answers with only the level of accuracy required.
For example, if the analysis is to verify compliance of a physical design constraint, the requirement may be for a
simple yes or no answer.  An initial fast, low accuracy analysis can be performed to identify regions of the design
which clearly violate constraints, and those which clearly do not.  A more expensive and accurate analysis can then
be performed only on the uncertain regions.  An analysis domain executive can control the local accuracy level used,
hiding local accuracy selection from the requester (the designer or another tool).  Sensitivity information can be used
to determine the level of accuracy needed for intermediate analysis results (e.g., electrical parameters) contributing to
the final answer of interest (e.g., timing slacks).
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System Performance: Performance modeling is commonplace in the design of processors and certain mature
application areas, such as analog-digital converters, filters, and switches.  But such predictive models are the result
of an expensive and lengthy development process.  Part of the SoC development process will require the ability to
rapidly assemble accurate performance estimators to provide feedback during system-level partitioning and
optimization.  Some required performance measurements are: average and peak CPU utilization, worst case critical
interrupt latency, average and peak bus utilization, measures of the interaction between bus utilization and CPU
utilization, maximum depths in hardware and software queues, RTOS overhead.

Timing: The future will pose many new challenges to static timing analysis.  Larger chips and higher clock
frequencies will require increased use of asynchronous interfaces.  New circuit families, which use pass-gates and
reduce the ability to isolate the delay calculation of consecutive gates.  Limited swing differential signals used to
reduce power consumption can also place new burdens on accurate delay calculation.  Analog components like
PLLs, whose “delays” depend on external paths [148], impose new interdependencies between timing analysis and
delay calculation.  Also, the acyclic nature of the timing graph is compromised by interactions which are not explicit
in the netlist, such as capacitive and inductive coupling between wires, and local voltage and temperature variations.

Power: Power is an increasingly important product consideration, both for battery powered applications and high-end
products constrained by heat density.  Accurate system-level abstractions that predict power consumption under
varying usage scenarios will be essential.  New hardware components are being designed using new circuit styles
with multiple voltages and thresholds all to reduce power dissipation.  It is important that these components also be
characterized so that they can be exploited by logic synthesis.  While simulation results give the most accurate
switching factor information, this information is difficult to obtain incrementally during design optimization and new
hybrid methods must be developed.  Clock networks are a major contributor to chip power dissipation requiring
careful layout of clock gating [149].  Leakage power is increasing with shorter transistor channel lengths.  Pass-gate
synthesis may help reduce power since there is no short circuit during the gate transition.

Noise: As advancing technology enable faster chips, noise analysis will become more commonplace in SoC design.
Furthermore, noise will have an increasing effect on timing and timing analysis.  This will result in a tight integration
of timing and noise analysis.  Noise effects will be considered early in the design flow requiring system-level
estimation methods that can operate even with partial layout information.  The combination of digital and analog or
RF components will impose new demands on noise analysis.  Instead of separate analog and digital analysis used
today, tomorrow’s SoC designs will require rigorous analysis of substrate noise, and the temporal and frequency
domain effects of combining digital and analog noise sources.  New tool capabilities will have to be developed to
tackle these complex problems

Manufacturability: Manufacturability will become a more important consideration, especially for high-performance
products, and will demand early estimates of yield, cost, and reliability, factors that at the same time will become
harder to predict.  Simultaneously, post-design data manipulation will expand to meet the needs of more complex
semiconductor processes.   Growing design complexity combined with the increased importance of previously
second-order effects and a reduced willingness to accept “guard-banding” will cause a rapid increase in the time
required for design analysis.  New analysis algorithms, such as reduced-order interconnect modeling, have helped to
control this growth but the key is to do only enough computation to obtain the required answer.

Design Optimization 
Additional sets of optimization modules must also be provided to help the designer modify a design to satisfy the
large set of design constraints.  Examples of these modules are described below. 

Hardware-Software Tradeoffs: Probably the most important and difficult optimization is the assignment of function to
hardware and software.  There are four possible implementation modalities for any given function: 1) fixed hardware,
2) reconfigurable hardware, 3) programmable hardware or 4) software.  The objective is to find the “best”
implementation mode for each function such that the system meets all design constraints and minimizes several other
functions such as cost, power and delay.  Performance considerations might dictate that a dedicated hardware
solution be used, while a set of multiple mutually-exclusive algorithms might require reconfigurable hardware for the
best tradeoff between area and performance.  For reconfigurable hardware, it might be necessary to store and reload
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configuration data, and this reconfiguration time must be taken into account when choosing an implementation.
Occasionally, acceleration of specific functions is needed and special instructions may be added and supported by
special-purpose hardware units.  Finally, software may be used where flexibility is of paramount importance or when
performance is not critical.

The future design system must support the designer in determining the modality for each function specified by:
�  Interacting with the designer in selecting an implementation
� Automatically choose an implementation mode
� Generate an instruction set for the processor
� Generate a function library for some identified software components
� Generate RTL specification for a new hardware component
� Generate code for the software components

� Using other analysis and optimization modules complete the selected component implementation

Software Optimization: Both electronic design automation and software technology are well-established disciplines
with their own methods and infrastructures.  For software, this includes such things as programming languages,
compilers, runtime environments, function libraries, and debuggers.  The advent of hardware-software co-design will
cause some merging between these two disciplines.  Without integration, the goal of improving product time to
market cannot be achieved.  A future problem is to determine what sorts of communications there must be and the
best way of achieving commonality.  One clear challenge for DSP-like designs is to be able to generate software tools
(compilers, etc.) for the DSP instruction set which has been specified by the designer.

Test Optimization: The new challenge for the DFT developers is to deal with chips containing not just a million gates
but over a million flip-flops.  At the same time, the mapping of high-level designs to physical implementations is
becoming more and more sensitive to physical design aspects.  In such an environment, the current practice of
post-synthesis DFT insertion and DFT debug becomes awkward.  We therefore see a strong trend toward moving
the DFT insertion and design correction further up into the pre-synthesis domain.  This requires both the
development of new high-level DFT insertion/analysis/correction tools and tight integration with the other steps of
the front-end design process.  The physical design planning and timing tools must consider the inserted test
structures as an integral part of the design to be implemented.  The functional verification and timing analysis tools
must be made aware of how the increasingly complex test structures can be disabled to force the design into the
functional mode of operation.  And, the test structures themselves are getting so complex and function-rich [150] that
the different test modes must be verified for functional correctness, robust timing, and interaction with the functional
logic.

For example, in the gigahertz performance domain, any embedded test structures for delay test must be designed for
performance.  An ABIST engine for test and characterization of embedded memory array timing, for example, may
actually have to run faster than system cycle time.  The distributions of scan control and clock signals across a large
chip, as well as the partitioning and stitching of scan chains, must take placement and timing into account as never
before.  The DFT tools may have to automatically add re-timing and pipelining elements and automatically generate
appropriate timing, design planning, and synthesis constraints.

Logic and Circuit Optimization: Besides the challenges raised by test, logic and/or circuit optimization will be
continually challenged by the increasingly detailed needs of place and wire (see next item), ultimately carrying into
the transistor domain with transistor level synthesis, circuit tuning, and other similar capabilities.  In addition, at least
logic optimization will need to address the growing proliferation of circuit styles (e.g. static, dynamic, transistor level,
gain-based, FPGA) and not only synthesize within each of them but, to be most effective, should be able to choose
among them.  In addition, synthesis will need to support more exotic logic such as asynchronous and analog. 

Place and Wire Optimizations: Physical design will continue to be driven by timing, yield, and reliability.  First, the
accuracy of measuring inductance, crosstalk, power distribution, noise, temperature, and similar factors needs to
improve and be properly accounted for in the timing, yield, and reliability analysis.  Next, the physical design tools
need to incrementally use the measurement tools to reduce the impact of these factors.  This can involve such things
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as fine tuning the width and spacing of signal and power wires or adjusting placement to prevent thermal hot spots.
These factors also need to be predicted during the early planning stages, with the later stages constrained by these
predictions to prevent surprises late in the design schedule.  This all needs to be done while reducing the design time
as chips exceed two hundred million transistors.

D - Release to Manufacturing and Test
At the end of this process, the design will be released to manufacturing with accurate estimations of the
manufacturabilty, testability, yield, and reliability along with the data for production testing.  With the growth of SoC
complexity, the supporting test methodology will become more complex and multifaceted.  More test function will be
embedded into each chip, becoming a part of the normal design process and enabling a new level of cooperation
between the embedded test functions and the external test equipment and test environment.

The Automatic Test Equipment (ATE) industry is making large strides towards much lower cost-per-pin while
increasing the ATE functionality.  The DFT and ATPG tools today largely ignore the more powerful capabilities of
the ATE.  Logic scan-based test data, for example, typically are generated in a way that makes it more or less
impossible to exploit the data compression features available on some modern ATE.  And, the ATPG tools often have
no understanding of the specific timing features on the ATE.  We foresee that future DFT and ATPG tools will be
more ATE-aware and tests will be generated and validated in the context of the circuit under test and the ATE.

Just as DFT and ATPG tools are expected to become more aware of the ATE, we anticipate that the ATE will have to
become more aware of the embedded test support functions.  For example, we already have micro-coded ABIST
engines [151] with a high degree of algorithm-level, timing-level, and diagnostic programmability.  That is, the
embedded test functions are beginning to have software content.  Today, this functionality is not directly visible to,
and accessible by, the test engineer running the ATE.  We expect that in the future highly programmable and flexible
test, measurement, and instrumentation functions inside the product under test will be treated as natural extensions
of the external ATE functions.  This requires the definition of architecture standards, data models, and interface
standards that allow the embedded test functions to be automatically integrated into the ATE software.  We expect
similar integration between embedded test functions and the software in lab-debug stations for functional debug.
Likewise, we anticipate that many of the embedded test features will be remotely accessible through
industry-standard physical and logical test interface standards.

IV - Summary 
Throughout the decades of continuos advances in semiconductor technology there have always been concerns
about the ability of design automation tools to keep pace.  In IBM there certainly have been challenging periods, but
looking back, it is remarkable that critical advances in EDA have occurred and allowed IBM products to be developed
on ever shorter schedules with smaller design teams.  In the 80’s, a series of key decisions about design practices
enabled true RT-level design, and the development of many innovative tools including cycle simulation, simulation
accelerators, Boolean equivalence checking, static-timing analysis, production-quality logic synthesis, and automatic
test analysis and pattern generation.  These new facilities combined with precise circuit analysis tools and full layout
automation and checking for gate-array chips and complex packages gave IBM a strong design capability in 80’s and
provided a solid foundation for the emerging CMOS technology.  

CMOS gave rise to ever larger and denser standard-cell chips that began to displace bipolar technology in
workstation and midrange products.  With the help of custom design techniques even the S/390 machines moved to
CMOS.  Building on work of AS/400 and RS/6000 designers, a team from S/390 and the Research Division led the
development of a predictable and productive custom-design methodology and drove the development of a suite of
new tools.  The Power design team provided further refinements as they began work on the gigahertz Power 4 chip.
New formal verification methods along with dramatic capacity increases for simulators and accelerators were all
needed.  New transistor-level tools were created for timing, power, signal integrity, noise, synthesis, layout and
checking.  The growth in importance of wire delays forced a tight integration of not only logic and physical design
tools, but most analysis tools.  At the same time IBM’s began marketing very large and high-performance ASICs
commercially.  This required an expansion of IBM’s methodology and tools to support 40 M-gate chips with 27 ps
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gates and 7 layers of copper interconnect.  Design planning and high-level synthesis were developed to raise the
level of design.  

Once again IBM’s design system evolved to support leading-edge processor and ASIC designs with competitive
schedules.   Looking to the future there are many difficult challenges ahead - most without clear solutions.  But we
see a convergence of the previous experience and tool capabilities into a tightly-integrated design system that will
enable designers to rapidly translate high-level functional specifications into an architecture of software and
hardware components and efficiently realize a high-performance system-on-chip implementation. 
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