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Abstract

We study certain generalized covering polytopes that we call \clopped
cubes". These polytopes generalize the clipped cubes which Coppersmith
and Lee used to study the nondyadic indivisibility polytopes. Our main
results are (i) a totally dual integral inequality description of the clopped
cubes, and (ii) an eÆcient separation procedure.
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Introduction

We assume familiarity with the basics of polytopes (see Ziegler [5]) and integer
programming (see Nemhauser and Wolsey [4]).

Let N be a �nite nonempty set with n = jN j. Let F be a set of partitions
(S; T; U) of N satisfying F0:

U 6= N; 8 (S; T; U) 2 F :

We associate with each (S; T; U) 2 F , the set of points

F (S; T; U) := fx 2 f0; 1gN : xj = 1; 8 j 2 S; xj = 0; 8 j 2 Tg:

We note that jF (S; T; U)j = 2jU j. Let F̂ (S; T; U) := conv(F (S; T; U)). Then
F̂ (S; T; U) is a face of the n-cube [0; 1]N having dimension jU j. In particular,
when U = ;, we have jF (S; T; U)j = 1 and dim(F̂ (S; T; U)) = 0 | i.e.,
F (S; T; U) consists of a single extreme point of [0; 1]N .

From the set F , we de�ne the polytope

Q(F) := convfx 2 f0; 1gN : x 62 F (S; T; U); 8 (S; T; U) 2 Fg:

Obviously the simple bound inequalities

�xj � 0; (1)

xj � 1; (2)

8 j 2 N are valid for Q(F). We also have the clopping inequalities C(S; T; U):X
j2S

xj �
X
j2T

xj � jSj � 1; (3)

8 (S; T; U) 2 F , which are valid forQ(F). Interpreting the inequalityC(S; T; U)
in the context of propositional logic, where xj is a literal and �xj is a negated
literal, the inequality indicates that at least one literal indexed from S is false
or at least one indexed from T is true.

The polytope Q(F) is a generalized covering polytope (see Cornu�ejols [2],
for example), since each inequality (3), multiplied by �1, looks like a covering
inequality when S = ;. If Q(F) is the real solution set of (1{2) 8 j 2 N , (3)
8 (S; T; U) 2 F , then the constraint matrix for the system (3) 8 (S; T; U) 2 F
is called ideal. For example, if the constraint matrix of (3) 8 (S; T; U) 2 F
is balanced (i.e., each square nonsingular submatrix with exactly two �1's in
each row and column has the sum of its entries divisible by 4), then it is ideal
as well (see Cornu�ejols [2]).

Another situation for which the system (3) 8 (S; T; U) 2 F is ideal is
described in Coppersmith and Lee [1]. In the remainder of this paper, we
describe a generalization of their property on F which yields idealness.
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1 Clopped Cubes

Let F be a set of partitions (S; T; U) of N satisfying F0. If F satis�es F1:

jS1 \ T2j+ jS2 \ T1j � 2;

8 distinct (S1; T1; U1); (S2; T2; U2) 2 F ;

then F is cloppable. If F is cloppable, then we call Q(F) a clopped cube.
If U1 = U2 = ;, then F1 amounts to jS14S2j 6= 1, so this generalizes

the central idea of \clippable" from Coppersmith and Lee [1]. Without spe-
ci�c reference, all of the results below generalize corresponding results from
Coppersmith and Lee [1].

The �rst result explains the property F1.

Proposition 1 Let F be cloppable. Then no point of [0; 1]N violates both
C(S1; T1; U1) and C(S2; T2; U2), for distinct (S1; T1; U1), (S2; T2; U2) 2 F .

Proof: Let (S1; T1; U1), (S2; T2; U2) 2 F be distinct. Suppose that x 2 [0; 1]N

satis�es

�
X
j2Si

xj +
X
j2Ti

xj < 1� jSij;

for i = 1; 2. Adding these together, we get

�2
X

j2S1\S2

xj �
X

j2S1\U2

xj + 2
X

j2T1\T2

xj +
X

j2T1\U2

xj

�
X

j2U1\S2

xj +
X

j2U1\T2

xj < 2� jS1j � jS2j:

Adding in appropriate positive multiples of the simple lower bound inequalities
(1) to kill o� the variables with positive coeÆcients, and adding in appropriate
positive multiples of the simple upper bound (2) inequalities to kill o� the
variables with negative coeÆcients, we get

0 < 2� jS1j � jS2j+ 2jS1 \ S2j+ jS1 \ U2j+ jU1 \ S2j;

which is just

jS1j � jS1 \ S2j � jS1 \ U2j+ jS2j � jS1 \ S2j � jU1 \ S2j < 2;

or

jS1 \ T2j+ jS2 \ T1j < 2;

in direct contradiction to F1. �
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Proposition 2 Let F be cloppable. Then

voln(Q(F)) = 1�
X

(S;T;U)2F

1

(jSj+ jT j)!
:

Proof: The clopping inequality excludes from [0; 1]N the set that is the cross
product of the jU j-cube [0; 1]U with the simplex of points in [0; 1]S[T violating
C(S; T; ;). As was indicated in Coppersmith and Lee [1], this simplex has
volume 1

(jSj+jT j)! . The result follows from Proposition 1. �

As an alternative to the clopping inequality C(S; T; U), we could exclude
the points of F (S; T; U), one by one, with the 2jU j \clipping inequalities"

X
j2S[K

xj �
X

j2Nn(S[K)

xj � jS [Kj; 8 K � U:

Each of these clipping inequalities excludes volume 1
n! , so the maximum volume

excluded by them as a group is 2jUj

n! (whether or not F is cloppable). For
large jU j, this is much less than the volume of 1

(jSj+jT j)! that is excluded by

C(S; T; U). This is, then, a simple situation which analytically supports the
general empirical observation that relatively simple valid inequalities (here
\simple" manifests itself as \sparser") like C(S; T; U) with jU j large, can be
relatively strong.

The next result will prove useful in establishing our main result.

Proposition 3 Let F be cloppable, let (S; T; U) be in F , and let x(W ) be in
F (S; T; U). Then

(i) S �W � S [ U ;

(ii) x(W + k) 2 Q(F), 8 k 2 T ;

(iii) x(W � l) 2 Q(F), 8 l 2 S.

Proof: (i) is just a restatement of the de�nition of F (S; T; U). We also note
that (i) is equivalent to

S �W; W \ T = ;:

From (i), we see that for k 2 T , x(W +k) satis�es C(S; T; U). If x(W +k)
violates C(S0; T 0; U 0), then x(W + k) 2 F (S0; T 0; U 0). So, again by (i), S0 �
W + k � S0 [ U 0, or

S0 �W + k; (W + k) \ T 0 = ;:
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So we conclude that S \ T 0 = ; and jS0 \ T j � 1 (the only possible element in
S0 \ T is k). Therefore, by F1, (S0; T 0; U 0) =2 F and (ii) holds.

Applying (i) again, we see that for l 2 S, x(W � l) satis�es C(S; T; U). If
x(W � l) violates C(S0; T 0; U 0), then x(W � l) 2 F (S0; T 0; U 0). So, again by
(i), S0 �W � l � S0 [ U 0, or

S0 �W � l; (W � l) \ T 0 = ;:

So we conclude that jS \T 0j � 1 (the only possible element in S\T 0 is l), and
S0 \ T = ;. Therefore, by F1, (S0; T 0; U 0) =2 F and (iii) holds. �

And now we get to our main result.

Proposition 4 Let F be cloppable. Then (1{2) 8 j 2 N , (3) 8 (S; T; U) 2 F ,
is a totally dual integral system describing Q(F).

Proof: Let c be in ZN. Consider the primal linear program P:

max
X
j2N

cjxj

subject to
X
j2S

xj �
X
j2T

xj � jSj � 1; 8 (S; T; U) 2 F ;

xj � 1; 8 j 2 N ;

xj � 0; 8 j 2 N;

and its dual linear program D:

min
X
j2N

yj +
X

(S;T;U)2F

(jSj � 1)zS;T;U

subject to yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U � cj ; 8 j 2 N ;

yj � 0; 8 j 2 N ;

zS;T;U � 0; 8 (S; T; U) 2 F :

We will give a recipe for constructing integral optimal solutions to the linear
programs P and D. Let

S+ := fj 2 N : cj > 0g:

Case 1: If x(S+) satis�es (3) 8 (S; T; U) 2 F , then we let yj := cj for j 2 S+,
and we let all other dual variables equal 0. It is easy to see that (y; z) is
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dual feasible with objective value equal to
P

j2S+ cj ; therefore, by the weak

duality theorem of linear programming, x(S+) is primal optimal and (y; z) is
dual optimal. Moreover, our construction provides integer optimal solutions
to P and D.
Case 2: Suppose then that x(S+) violates a clopping inequality. By Proposi-
tion 1, there is a unique ( ~S; ~T ; ~U ) 2 F such that x(S+) 2 F ( ~S; ~T ; ~U ). By part
(i) of Proposition 3, we have

~S � S+ � ~S [ ~U:

Let k := argmaxfcj : j 2 ~Tg (so ck � 0; note that ck = �1 is possible), and
let l := argminfcj : j 2 ~Sg (so cl > 0; note that cl = +1 is possible).
Subcase 2a: Suppose that �ck � cl (including the case of �nite ck with cl =
+1). By part (ii) of Proposition 3, we have x(S+ + k) 2 Q(F). The primal
objective value of x(S+ + k) is ck +

P
j2S+ cj . Let

yj :=

�
cj + ck ; for j 2 ~S;

cj ; for j 2 S+ n ~S;

let z ~S; ~T; ~U := �ck , and let all other dual variables equal 0.
We begin to check dual feasibility, by �rst checking nonnegativity. For

j 2 ~S, we have

yj = cj + ck (by the de�nition of yj)

� cj � cl (by the hypothesis of Subcase 2a)

� 0 (by the de�nition of l).

For j 2 S+ n ~S, we have

yj = cj (by the de�nition of yj)

> 0 (by the de�nition of S+).

Also, we have

z ~S; ~T ; ~U = �ck (by the de�nition of z ~S; ~T; ~U )

� 0 (by the de�nition of k and the selection of ( ~S; ~T ; ~U)).

So the dual solution is nonnegative.
We continue our check of dual feasibility, by checking the structural con-

straints of D. For j 2 ~S, we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = yj + z ~S; ~T ; ~U

= (cj + ck) + (�ck) = cj :
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For j 2 S+ n ~S, we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = yj = cj :

For j 2 ~U n S+, we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = 0 � cj ;

since cj � 0 8 j 2 N n S+. For j 2 ~T , we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = yj � z ~S; ~T ; ~U

= 0� (�ck) = ck

� cj (by the de�nition of k).

Therefore, (y; z) is dual feasible.
The dual objective value is

yj +
X

(S;T;U)2F

(jSj � 1)zS;T;U

=
X
j2 ~S

(cj + ck) +
X

j2S+n ~S

cj + (j ~Sj � 1)(�ck)

= ck +
X
j2S+

cj ;

which is precisely the primal objective value of x(S+ + k). Therefore, by the
weak duality theorem of linear programming, x(S++k) is primal optimal and
(y; z) is dual optimal. Moreover, our construction provides integer optimal
solutions to P and D.
Subcase 2b: Suppose that cl � �ck (including the case of �nite cl with ck =
�1). By part (iii) of Proposition 3, we have x(S+ � l) 2 Q(F). The primal
objective value of x(S+ � l) is �cl +

P
j2S+ cj . Let

yj :=

�
cj � cl ; for j 2 ~S;

cj ; for j 2 S+ n ~S;

let z ~S; ~T; ~U := cl , and let all other dual variables equal 0.
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We begin to check dual feasibility, by �rst checking nonnegativity. For
j 2 ~S, we have

yj = cj � cl (by the de�nition of yj)

> 0 (by the de�nition of l).

For j 2 S+ n ~S, we have

yj = cj (by the de�nition of yj)

> 0 (by the de�nition of S+).

Also, we have

z ~S; ~T ; ~U = cl (by the de�nition of z ~S; ~T; ~U )

> 0 (by the de�nition of l).

So the dual solution is nonnegative.
We continue our check of dual feasibility, by checking the structural con-

straints of D. For j 2 ~S, we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = yj + z ~S; ~T ; ~U

= (cj � cl) + (cl) = cj :

For j 2 S+ n ~S, we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = yj = cj :

For j 2 ~U n S+, we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = 0 � cj ;

since cj � 0 8 j 2 N n S+. For j 2 ~T , we have

yj +
X

(S;T;U)2F:
j2S

zS;T;U �
X

(S;T;U)2F:
j2T

zS;T;U = yj � z ~S; ~T ; ~U

= 0� cl = �cl

� ck (by the hypothesis of Subcase 2b)

� cj (by the de�nition of k).

7



Therefore, (y; z) is dual feasible.
The dual objective value is

yj +
X

(S;T;U)2F

(jSj � 1)zS;T;U

=
X
j2 ~S

(cj � cl) +
X

j2S+n ~S

cj + (j ~Sj � 1)cl

= �cl +
X
j2S+

cj ;

which is precisely the primal objective value of x(S+ � l). Therefore, by the
weak duality theorem of linear programming, x(S+� l) is primal optimal and
(y; z) is dual optimal. Moreover, our construction provides integer optimal
solutions to P and D.
Subcase 2c: Suppose that ck = �1 and cl = +1. That is, ~T = ~S = ;. Then
~U = N which contradicts F0. �

Suppose that F is cloppable. Given a set W � N , a face exclusion oracle
for F either asserts that x(W ) is in Q(F) or it delivers the (S; T; U) 2 F with
x(W ) 2 F (S; T; U).

Proposition 5 Let c be in QN . Given a face exclusion oracle for a cloppable
F , there is an eÆcient algorithm for maximizing hc; xi on Q(F) which requires
only one call to the oracle.

Proof: The result follows from the construction in the proof of Proposition
4. The only call to the oracle is with x(S+) to determine whether we are in
Case 1 or 2. �

Proposition 6 Let x be a point in [0; 1]N . Given a face exclusion oracle for a
cloppable F , there is an eÆcient algorithm requiring at most n+1 calls to the
oracle, that determines whether or not x is in Q(F), and, if not, it identi�es
an (S; T; U) 2 F for which the clopping inequality C(S; T; U) is violated by x.

Proof: Using the well-known results connecting optimization and separation
(see Gr�otschel, Lov�asz and Schrijver [3]), the existence of an eÆcient algorithm
follows from Proposition 5. But this is not enough to deduce that we can solve
this separation problem with at most n+ 1 calls to the oracle. To do this, we
provide an eÆcient direct algorithm, which is practical for computation.
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Let W := fj 2 N : xj >
1
2g, and let W := fj 2 N : xj �

1
2g. If x

violates C(S; T; U), then
X
j2S

(1� xj) +
X
j2T

xj < 1:

So, by the de�nition of W and W , we have

jS \W j+ jT \W j � 1: (4)

The idea, then, is to consider the possibilities for (S; T; U) 2 F that can satisfy
(4), by �xing (0 or 1) elements of (S \W ) [ (T \W ). So we consider each of
the following n+ 1 preliminary choices of (S; T; U):

(i) jS \W j+ jT \W j = 0: S = ;, T = ;, U = N ;

(ii) jS \W j = 1: S = flg for some l 2W , T = ;, U = N � l;

(iii) jT \W j = 1: S = ;, T = fkg for some k 2W , U = N � k,

For each of these preliminary choices, the only exibility that we allow,
is that some elements from U \W might be moved from U to T , and some
elements from U \W might be moved from U to S. Now here is the impor-
tant point: For each preliminary choice, regardless of such subsequent allowed
moves, the inequality C(S; T; U) will be violated by a particular choice of ex-
treme point of [0; 1]N . Namely, respective to the three cases above,

(i) x(W );

(ii) x(W + l) for l 2W ;

(iii) x(W � k) for k 2W .

So we call the face exclusion oracle for each of these n+1 points. Whenever the
oracle returns a set (S; T; U) 2 F , we check whether the clopping inequality
C(S; T; U) is violated. �
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