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Abstract

A multidimensional interval tree supports orthogonal range
searching on d-dimensional intervals (i.e., isothetic hyper-
parallelepipeds). The problem is also known as 'rectangle
intersection searching' or 'orthogonal intersection searching'.
In two dimensions it requires O(n) space and O(n log(n))
construction time. Finding all k rectangles in a set of
n rectangles that intersect a given query rectangle takes
O(
p
n+ k log(n)) time.

In d dimensions a multidimensional interval tree re-

quires O(d2n) space and O((d+log(n))dn) time for construc-

tion. An orthogonal range search �nding k d-dimensional

intervals intersecting the d-dimensional query-interval takes

O(d24dn1�1=d + d(d+ log(n))k) time.

1 Introduction

Let S be a set of d-boxes ([a0; b0] � [a1; b1] � : : : �
[ad�1; bd�1]) in a d-dimensional universe U0 � U1 : : : �
Ud�1 (we use 'd-box' as a shortcut for d-dimensional
isothetic hyper-parallelepiped). Given a query d-box
q 2 U0 � : : : Ud�1, the problem of �nding a set A =
fv 2 S j v\ q 6= fgg of elements that intersect q is called
orthogonal range searching or windowing. This type of
problem arises in computational geometry as well as in
databases, where Ui denotes a set of properties with a
linear order, e.g. last names and dates of birth.

In VLSI design the problem of orthogonal range
searching on sets of rectangles is an essential component
of computations regarding the lithographic masks of mi-
crochips. Layouts of recent microprocessors contain 108

shapes or more, even in a hierarchical representation,
and require an eÆcient solution for range searching us-
ing linear space.

In the early days of computational geometry orthog-
onal range searching was one of the most important top-
ics. This lead to a large number of results, but most of
the reported data structures target special cases. Either
the elements of S are reduced to points (range search-
ing on sets of points) or the query is reduced to a point
(stabbing queries). For an overview of these structures
with results and analysis refer to [12],[13],[11].
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One of the �rst data structures dealing with multi-
ple dimensions was the quad-tree, developed by Finkel
and Bentley in 1974 [1]. Every node in a quad-tree
corresponds to a rectangle, the children of a node corre-
spond to the equal quadrants of this rectangle. Already
for orthogonal range searching on sets of points quad
trees may become quite unbalanced. The depth of a
quad tree on a set of N points is O(N) in the worst
case.

Kd-trees, �rst described by Bentley [2], solve the
problem of balancing by partitioning the points into
sets of equal size with respect to alternating direc-
tions. A 2d-tree answers an orthogonal range query
in the plane on a set of N points returning k 'hits'
in O(

p
N + k) time. The range tree reduces the query

time to O(log2(N)+k) using O(N log(N)) space [4], the
query time was reduced to O(log(N) + k) by fractional
cascading [5]. All these structures have extensions to
higher dimensions. Chazelle described a structure for
the two-dimensional case that reduces the storage to
O(N log(N)= log(log(N))) maintaining the query time
of O(log(N) + k) and showed that this is optimal [6][7].

Edelsbrunner [9] and McCreight [8] introduced
the interval tree. An interval tree operates on one-
dimensional intervals, requires O(N) space and allows
to �nd all intervals in a set S that intersect a query
interval q in O(log(N) + k) time. There are combina-
tions of priority trees and intervals trees etc. that solve
the problem for axis-parallel line segments [12]. An ex-
tension of the segment tree [3] solves orthogonal range
searching on a set of disjoint line segments in the plane
with O(N log(N)) storage in O(log2(N) + k) time [12].
There is no higher dimensional version of an interval
tree described in the literature [12]. Edelsbrunner and
Maurer reported on how to combine range, segment and
interval trees to solve the rectangle intersection search
problem in O(logd�1(N) + k) time and O(N logd(N))
space [10]. There is no data structure described in the
literature that solves the orthogonal range query for sets
of d-boxes using linear space and less than O(N) time.

In this paper we introduce multidimensional inter-
val trees. Two-dimensional interval trees solve the prob-
lem of orthogonal range searching in two dimensions in
O(
p
N + k log(N)) query time and O(N) space. Con-

struction requires O(N log(N)) time. Additionally, the
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individual universes Ui do not require arithmetic, only
a comparison de�ning a linear order on the elements is
necessary. Many descriptions of interval trees for exam-
ple require the computation of the center of an interval
for the determination of separators. Compared to these,
our de�nition of multidimensional interval trees is fea-
sible for database applications with very general data
types.

The extension of two-dimensional interval trees to
higher dimensions is analogous to the extension of 2d-
trees to Kd-trees. In d dimensions a multidimen-
sional interval tree requires O(d2N) space and O((d +
log(N))dN) time for construction. An orthogonal range
search takes O(d24dN1�1=d + d(d+ log(N))k) time.

Since orthogonal range searching on d-boxes is
decomposable { the solution of a query on S = A [ B
is the union of the solutions to identical queries on A
and B { dynamization is possible and analogous to the
dynamization of Kd-trees.

In section 2, 3 and 4 we de�ne the multidimensional
interval tree and analyze the orthogonal range search for
d = 2 dimensions. Section 5 covers the generalization
into d dimensions.

2 The data structure

The two-dimensional case covers all crucial concepts of
multidimensional interval trees. In the following de-
scriptions we map the universes U0 and U1 to orthogonal
coordinates in the plane, if necessary by introducing an
arti�cial metric, to allow for easier visualization.

A 'two-dimensional interval tree' consists of three
di�erent types of trees, in the following called primary,
secondary and tertiary trees. The primary tree parti-
tions the plane in alternating directions analogously to
a 2d-tree. Each primary node contains a secondary tree,
which stores rectangles intersecting its 'separation line'
similar to an interval tree. Each secondary node con-
tains two tertiary trees analogous to the ordered ex-
trema lists of an interval tree.

Definition 2.1. A binary tree with orthogonal exten-

sions B0 on a set

S = f~v = (xv ; [yv; zv]) jxv 2 U0 ^ [yv; zv] � U1g

with

xv 6= xw 8 ~v 6= ~w; ~v; ~w 2 S

and

[yv ; zv] \ [yw; zw] 6= fg 8 ~v; ~w 2 S

consists of a root node t with

� an element ~t = (xt; [yt; zt]) 2 S

� a left child l, which is the root of a binary tree with
orthogonal extensions B0< on the set

S< = f~v 2 S j xv < xtg

� a right child r, which is the root of a B0> on

S> = f~v 2 S j xv > xtg

� an orthogonal extension

[�t; �t] = [yt; zt] [ [�l; �l] [ [�r; �r]

such that [�l; �l] and [�r; �r] are the orthogonal
extensions of l and r, respectively.

An empty binary tree with extensions consists out of the
node NIL. The extension of an empty tree (or NIL) is the
empty set. B0 is called ordered in U0 with extensions in
U1. B1 is de�ned analogously.

Definition 2.2. An interval tree with orthogonal exten-

sions I0 on a set

S = f~v j [pv; qv] � U0 ^ [yv ; zv] � U1g

~v = ([pv ; qv]� [yv; zv])

with
[yv; zv] \ [yw; zw] 6= fg 8 ~v; ~w 2 S

consists of a root node t with

� a separator Æt 2 U0

� a left child l, which is the root of an interval tree
with orthogonal extensions I0< on the set

S< = f~v 2 S j qv < Ætg

� a right child r, which is the root of I0> on

S> = f~v 2 S j pv > Ætg

� two binary trees with orthogonal extension B0L and
B0R, called extrema trees, such that

S= = f~v 2 S j pv � Æt � qvg

S=p = f(pv; [yv; zv]) j ~v 2 S=g
S=q = f(qv; [yv; zv]) j ~v 2 S=g

{ B0L is a binary tree with extensions on S=p
ordered in U0

{ B0R is a binary tree with extensions on S=q
ordered in U0
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such that each node holds a reference to the two-
dimensional interval that de�ned its key.

� the orthogonal extension

[�t; �t] = [�l; �l] [ [�r; �r] [
[
v2S=

[yv ; zv]

such that [�l; �l] and [�r; �r] are the orthogonal
extensions of l and r, respectively.

An empty interval tree with orthogonal extensions con-
sists of the node NIL. The extension of an empty tree
(or NIL) is the empty set. I0 is called ordered in U0

with extensions in U1. The interval tree with orthogo-
nal extension I1 is de�ned analogously.
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Figure 1: An interval tree with orthogonal
extension on a set of rectangles.

The de�nition of the interval tree with orthogonal
extensions I0 requires that the elements of the set of
left extrema are disjoint and that the elements of the
set of right extrema are disjoint for each extrema tree.
This is achieved by enumeration of the elements of each
tertiary tree B with integers �(~a) > 0 8 ~a 2 B, such that
�(~a) 6= �(~b) 8 ~a;~b 2 B. If the extrema of a pair ~a;~b of
entries in a tertiary tree B0L are equal, the comparison
places them in descending order with respect to their
numbers �(~a) and �(~b), i.e., if pa = pb and �(~a) > �(~b)
then the comparisons results in ~a < ~b. If extrema of
a pair of entries in a tertiary tree B0R are equal, the
comparison places them in ascending order with respect
to their number. Entries in tertiary trees B1L and B1R

are treated analogously.
Note that any set D of separators such that for each

[p; q] 2 S there exists a Æ 2 D such that Æ 2 [p; q] is
feasible for an interval tree with orthogonal extensions.
The choice of D as a subset of the set of left extrema
fpv j ([pv ; qv] � [yv; zv]) 2 Sg allows the data structure
to operate based on comparisons within U0 and U1, no
arithmetic is required.

Figure 1 shows an example for an interval tree
with orthogonal extensions. The set of rectangles is
enumerated and the nodes in the corresponding tree
carry the numbers of the rectangles stored in their
extrema trees. The separators are a subset of the left
boundaries of the rectangles, the bidirectional arrows
visualize the orthogonal extension for each node in the
tree.

Definition 2.3. A two-dimensional interval tree T0 on
a set

S = f~v j [pv; qv] � U0 ^ [yv ; zv] � U1g
~v = ([pv ; qv]� [yv; zv])

consists of a root node t with

� a separator Æt 2 U0

� a left child l, which is root of T1< on

S< = f~v 2 S j qv < Ætg
� a right child r, which is root of T1> on

S> = f~v 2 S j pv > Ætg
� an interval tree with orthogonal extension I1 on

S= = f~v 2 S j pv � Æt � qvg
An empty two-dimensional interval tree consists of the
node NIL. T1 is de�ned analogously.

Thus, the tertiary nodes are nodes in the binary
trees with extensions and the secondary nodes are the
separator nodes in the interval trees with extensions.
Primary nodes correspond to the separation lines.

Figure 2 shows a set of rectangles in the plane
with separations lines and the corresponding two-
dimensional interval tree. Rectangles not intersecting
separation lines are denoted with integers, separation
lines with letters. The secondary trees ITa, ITb and
ITc contain the rectangles intersecting the separation
lines A, B and C, respectively.

Definition 2.4. A two-dimensional interval tree is
called ideal, if the following conditions are satis�ed:

� Let t be the root of a two-dimensional interval tree
with N elements ~v 2 S. Then the left subtree of t
contains at most N=2 elements and the right subtree
of t contains at most N=2 elements.

� Each secondary tree I is balanced, i.e., if I contains
N secondary nodes, then its depth is bounded by
O(log(N)).

� Each tertiary tree B is balanced, i.e., if B contains
N tertiary nodes, then its depth is bounded by
O(log(N)).
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Figure 2: Example con�guration of rectangles
and separation lines and the corresponding two-
dimensional interval tree. Circular nodes repre-
sent vertical separation lines, rectangular nodes
represent horizontal separation lines and dots rep-
resent leaves corresponding to interval trees with
one element.

3 Construction

To construct a two-dimensional interval tree on a set S
the median  in S with respect to the 'left', i.e., lower,
extremum in Ui, i 2 f0; 1g is determined. The point set

f(x; y) j x =  ^ x 2 Ui ^ y 2 Ui+1mod 2g
de�nes a 'separation line'. An interval tree Ii+1mod 2

with extensions is constructed for the elements inter-
secting the separation line. Two-dimensional interval
trees with respect to Ui+1mod 2 are constructed for the
elements completely to the 'left' and completely to the
'right' of the separation line. Note that there are at
most N=2 elements completely to the left and at most
N=2 elements completely to the right of the separation
line. Since the median out of the set of left extrema de-

�nes the 'separation line', there is at least one element
that intersects the separation line.

3.1 Secondary and Tertiary Trees

The construction of an interval tree with extensions
requires the computation of a set of separators for a set
S = f[p; q] j p; q 2 Uig of intervals. The set of left
extrema of all intervals is a feasible set of separators, but
in most cases a subset of this set of separators suÆces.
The following procedure results in an interval tree with
orthogonal extensions in which every node contains at
least one interval:

1. Start with an empty dynamic balanced tree.

2. For each interval [p; q]

� Search for a separator Æ in the tree such that
Æ 2 [p; q]. This is achieved by searching for p
and searching for q. The two search paths are
identical until a node with Æ 2 [p; q] is found.

� If no such node is present, insert the left
extremum p as a separator into the tree.

This �rst pass on the intervals produces the sec-
ondary tree.

3. For each interval [p; q], �nd the �rst node a on the
common search paths to p and q with Æa 2 [p; q]
and store [p; q] in its tertiary trees.

4. Compute the orthogonal extensions by depth �rst
search.

Note that only comparison of extrema of intervals is
necessary, no arithmetic is required. Note also that the
union of any set of extensions in an interval tree with
orthogonal extensions or a binary tree with orthogonal
extensions is always a single interval since all extensions
have at least one point in common.

A rotation in a tertiary tree changes the extension
for exactly the two nodes a and b adjacent to the
rotated edge. Since the new extensions of a and b
depend only on the values of these two nodes and
their direct children, a rotation in a binary tree with
orthogonal extension takes O(1) time. Thus, any type
of dynamically balanced binary tree based on rotations
is a feasible choice for the tertiary trees.

3.2 Complexity

Since a tertiary tree is a balanced binary tree
in which rotation is possible in constant time, the
construction of a tertiary tree with N nodes takes
O(N log(N)) time and it requires O(N) space.

The computation of the secondary tree and its
separator values for N elements as described in section
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3.1 takes O(N log(N)) time. It will contain M � N
separator nodes, such that we need 2M extrema trees,
which contain altogether N1+ : : : NM = N nodes when
we �ll in the intervals with their extensions. Because of

MX
j=1

Nj log(Nj) � log(N)

MX
j=1

Nj

the construction of an interval tree with orthogonal
extensions for N entries takes O(N log(N)) time and
2N +M secondary and tertiary nodes and hence O(N)
space.

For the construction of the primary tree for N el-
ements we determine at most log(N) times the medi-
ans for at most N=2 disjoint sets of elements that con-
tain together at most N elements. A median can be
determined in linear time [11], such that computing
m medians on m sets with together N elements takes
O(N) time. Thus, the primary tree is constructed in
O(N log(N)) time. It will contain P � N secondary
trees, which hold at most N elements altogether.

The observations in this subsection lead to the
following theorem:

Theorem 3.1. For any set

S = f~v j [pv; qv] � U0 ^ [yv; zv] � U1g

~v = ([pv ; qv]� [yv; zv])

with jSj = N a two-dimensional interval tree can be
constructed in O(N log(N)) time and O(N) space, if
comparison between elements of Ui takes O(1) time for
all Ui.

4 Orthogonal Range Search . . .

Let

~f = ([pf ; qf ]� [yf ; zf ]) j [pf ; qf ] � U0 ^ [yf ; zf ] � U1

be a rectangle in U0 � U1. Orthogonal range searching
in two dimensions on a set of two-dimensional intervals
is the problem of �nding the set

A = f~v 2 S j ~v \ ~f 6= fgg

of elements that intersect ~f . In the following we use
the convention, that if a child l(a) or r(a) of a node
a does not exist, l(a) or r(a) returns the value NIL,
respectively. If a is set to be the root of an empty tree,
primary, secondary or tertiary, a obtains the value NIL.

4.1 . . . In a Two-dimensional Interval Tree

W.l.o.g. we choose the two-dimensional interval
tree T0 to start with a separator in U0.

1. Set a = t, i.e., set actual position to the root of the
primary tree T0

2. If a = NIL return.

3. If qf < Æa:

� Range search in I1(a).

� Range search in T1< rooted in l(a)

4. If pf > Æa:

� Range search in I1(a).

� Range search in T1> rooted in r(a)

5. If pf � Æa � qf :

� Range search in I1(a)

� If qf > Æa range search in T1> rooted in r(a)

� If pf < Æa range search in T1< rooted in l(a)

Note that we do not descend into proper subtrees if
the query is a subset of a separation plane.

4.2 . . . In an Interval Tree with Extensions

In this section we describe the orthogonal range
search in an interval tree with orthogonal extensions,
i.e., given

~f = ([pf ; qf ]� [yf ; zf ]) j [pf ; qf ] � U0 ^ [yf ; zf ] � U1

�nd
A = f~v 2 S j ~v \ ~f 6= fgg

W.l.o.g. I0 is chosen to be an interval tree with
orthogonal extensions ordered in U0 with extensions in
U1.

� Set a = t, i.e., set actual position to root of I0

� If a = NIL return.

� If [�a; �a] \ [yf ; zf ] = fg return
� If qf < Æa:

{ Left range search in B0L(a) with (qf ; [yf ; zf ])

{ Range search in I0< rooted in l(a)

� if pf > Æa:

{ Right range search in B0R(a) with
(pf ; [yf ; zf ])

{ Range search in I0> rooted in r(a)

� If pf � Æa � qf :

{ Range DFS in B0R(a)

{ If qf > Æa Range search in I0> rooted in r(a)

{ If pf < Æa Range search in I0< rooted in l(a)
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4.3 . . . In a Binary Tree with Extensions

W.l.o.g. we describe the left range search in a binary
tree with orthogonal extensions B0L, i.e., given

S = f~v = (xv ; [yv; zv]) jxv 2 U0 ^ [yv; zv] � U1g

and

~f = (xf ; [yf ; zf ]) j xf 2 U0 ^ [yf ; zf ] � U1

�nd

A = f~v 2 S j xv � xf ^ [yf ; zf ] \ [yv; zv] 6= fgg

The search walks down the path in the tree de�ned
by a search for xf and traverses all subtrees of left chil-
dren along this path, using the orthogonal extensions as
an additional stop criterion.

� Set a = t, start with root of tree

� If a = NIL, return.

� If [yf ; zf ] \ [�a; �a] = fg return
� If xf = xa

{ If [yf ; zf ] \ [ya; za] 6= fg add a to A

{ Range DFS on l(a)

� If xa < xf

{ If [yf ; zf ] \ [ya; za] 6= fg add a to A

{ Range DFS on l(a)

{ Left range search with (xf ; [yf ; zf ]) on subtree
rooted in r(a)

� If xa > xf

{ Left range search with (xf ; [yf ; zf ]) on subtree
rooted in l(a)

To deal with sets of extrema whose elements are
not disjoint, the elements are enumerated and the key is
extended to (�(a); xa; [ya; za]). As mentioned in section
2, the appropriate comparison function is used for left
and right extrema trees, respectively. The search key is
extended to (0; xf ; [yf ; zf ]).

4.4 Range DFS in Binary Tree with Extensions

W.l.o.g. we describe the range DFS in a binary
tree ordered with respect to U0. The problem is to �nd
all nodes ~v in the binary tree with [yf ; zf ] \ [yv; zv] 6=
fg. The range DFS performs a depth �rst search
without entering subtrees with an extension that does
not intersect with [yf ; zf ].

� Set a = t, i.e., start with root, if a = NIL return.

� If [yf ; zf ] \ [�a; �a] = fg return.
� Range DFS on subtree rooted in l(a).

� Range DFS on subtree rooted in r(a).

4.5 Correctness

Lemma 4.1. The range search in a two-dimensional
interval tree T visits every primary node a 2 T that
contains an element ~v 2 A. A primary node is
called visited if a range search in its interval tree with
extensions is performed.

Proof. The recursive range search in a two-dimensional
interval tree visits every node v except nodes in subtrees
T (u) rooted in nodes u such that w.l.o.g. T (a) is ordered
on U0 and one of the following cases holds:

� u = r(a) ^ qf < Æa
) pv > Æa � qf 8 v 2 T (u)

) ~v \ ~f = fg 8 v 2 T (u)

� u = l(a) ^ pf > Æa
) qv < Æa � pf 8 v 2 T (u)

) ~v \ ~f = fg 8 v 2 T (u)

Any primary node that is not visited cannot contain an
element intersecting the query ~f . q.e.d.

Lemma 4.2. The range search in an interval tree with
orthogonal extensions I visits every secondary node a 2
I, which contains an element ~v 2 A. A secondary
node is called visited if a range search or range DFS
is performed in at least one of its tertiary trees.

Proof. W.l.o.g. we choose I to be ordered on U0. The
range search in I visits all secondary nodes except nodes
in subtrees I(u) rooted in nodes u such that one of the
three following cases holds:

� [�u; �u] \ [yf ; zf ] = fg
) [yv; zv] \ [yf ; zf ] = fg 8 v 2 I(u)

) ~v \ ~f = fg
� u = r(a) ^ qf < Æa
) pv > Æa � qf 8 v 2 I(u)

) ~v \ ~f = fg
� u = l(a) ^ pf > Æa
) qv < Æa � pf 8 v 2 I(u)

) ~v \ ~f = fg
q.e.d.
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Lemma 4.3. The range DFS in a binary tree with
extensions B visits every tertiary node a 2 B, which
contains an element ~v 2 A.

Proof. W.l.o.g. we choose B to be ordered on U0. The
range DFS in B visits all tertiary nodes in B except
nodes in subtrees B(u) rooted in nodes u 2 B such that

� [yf ; zf ] \ [�u; �u] = fg
) [yv; zv] \ [yf ; zf ] = fg 8 v 2 B(u)

) ~v \ ~f = fg
Note that no assumption about the disjointness of
extrema in U0 is necessary. q.e.d.

Lemma 4.4. The range search in a binary tree with
orthogonal extensions B visits every tertiary node a 2
B, which contains an element ~v 2 A. A tertiary node is
called visited if the test for adding it to A is performed.

Proof. W.l.o.g. we choose B to be ordered on U0 and a
left range search.

Using Lemma 4.3, the range search in B visits all
tertiary nodes in B except nodes in subtreesB(u) rooted
in nodes u 2 B such that

� [yf ; zf ] \ [�u; �u] = fg
) [yv; zv] \ [yf ; zf ] = fg 8 v 2 B(u)

) ~v \ ~f = fg
� u = r(a) ^ xa � xf
) xv > xa � xf 8 v 2 B(u)

) ~v \ ~f = fg
Note that the pre�xing of the keys in the tree with

unique positive integers and the pre�xing of the search
key with zero ensures that all elements in the tree with
the same extremum as the search key are smaller than
the search key with respect to the comparison on U0 for
a left extrema tree because of the descending order with
respect to the enumeration.
q.e.d.

During the search in a secondary tree, we perform
a left range search in B0L(a) of the actual position a if

qf < Æa, i.e., the interval of ~f in U0 is completely to the
left of the separator of a. Analogously, we perform a
right range search in B0R(a) if pf > Æa, i.e., the interval

of ~f in U0 is completely to the right of the separator of
a. This is suÆcient since all intervals stored in a that
intersect [pf ; qf ] 3 Æa have a left extremum pv � qf , if
qf < Æa or a right extremum qv � pf , if pf > Æa.

Thus, the lemmas 4.1 to 4.4 ensure that every
tertiary node that may contribute to the solution is
visited. For nodes v that are not visited it holds
~v \ ~f = fg. This leads to the following theorem:

Theorem 4.1. Given

~f = ([pf ; qf ]� [yf ; zf ]) j [pf ; qf ] � U0 ^ [yf ; zf ] � U1

a range search for ~f in a two-dimensional interval tree
T on the set

S = f~v j [pv; qv] � U0 ^ [yv ; zv] � U1g
will return

A = f~v 2 S j ~v \ ~f 6= fgg

4.6 Complexity

The analysis is based on the analysis for Kd-trees
in [11]. The number of operations of a range search is
proportional to the number of primary, secondary and
tertiary nodes visited. Let k be the number of 'hits'
returned by the search. Each hit is reached through a
path with at most 3 log(N) nodes (there is one subpath
in the primary tree, one subpath in a secondary tree
and one subpath in a tertiary tree). Thus, the number
of nodes visited on paths to hits is O(k log(N)) (already
a binary tree with extensions requires this time for the
successful part of its range search). To complete the
analysis we determine the number of visited nodes that
are not on a path to a hit.

Definition 4.1. Let T be the set of primary nodes of
a two-dimensional interval tree. The region Reg(v) of a
node v 2 T is a rectangle in U0 � U1 such that

� If v 2 T is the root, then
Reg(v) = U0 � U1.

� If v 2 T is left child of w 2 T and w.l.o.g. Æw 2 U0

is the separator of w, then

Reg(v) = Reg(w) \ f(x; y) 2 U0 � U1 j x < Æwg

� If v 2 T is right child of w 2 T and w.l.o.g. Æw 2 U0

is the separator of w, then

Reg(v) = Reg(w) \ f(x; y) 2 U0 � U1 j x > Æwg

For primary nodes with a separator in U1 the partition-
ing is analogous.

A search for a query rectangle that is degenerated
to a point x 2 Reg(v) goes through Reg(v). Let R be a
query rectangle. For nodes v 2 T there are the following
cases:

� Reg(v) \ R = fg
) v is not visited during the range search. There
exists a separator line such that R is completely on
the opposite side of the separator line than Reg(v).
Thus, no rectangle stored in the subtree rooted in
v may intersect with R.
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� Reg(v) � R
) Everything in the subtree rooted in v is a hit
since all rectangles in that region are subsets of R.
All the elements in subtrees rooted in nodes v with
Reg(v) � R are covered by the paths to hits.

Note that traversing a tertiary tree with n nodes
takes O(n) time. A secondary tree whose tertiary
trees hold together n nodes has at most n secondary
nodes, hence its traversing takes O(n) time. Fi-
nally, a primary tree that contains n tertiary nodes
has at most O(n) primary nodes. Altogether, the
traversing of a two-dimensional interval tree with
n nodes takes O(n) time. Thus, collecting all jAv j
rectangles in subtrees with Reg(v) � R by iterating
through the three levels of subtrees takes O(jAv j)
time.

� Reg(v) \ R 6= fg ^ Reg(v) 6� R
) The query region R intersects Reg(v) partially.
The node v is visited during the range search, but it
is not necessarily accounted for through the paths
to hits.

Partial intersection between R and Reg(v) means
that at least one of the borders of R intersects with
Reg(v). Let Ph be the number of regions at depth h
in the tree formed by the primary nodes v such that
Reg(v) intersects a axis-parallel line L. Then it holds:

P0 � P1 � 2

Ph+2 � 2Ph

This recursion resolves to

Ph � 2
h

2+1

For an ideal two-dimensional interval tree the depth
of the primary tree is limited by log(N). Thus, the
number of primary nodes v that were visited and
for which Reg(v) intersects the border of the query
rectangle is

M � 4

log(N)X
h=0

2
h

2+1(4.1)

since there are four lines separating the query rectangle.
The sum covers all possible depths of the primary tree.
The subtree rooted in a primary node v at depth h
carries at most N

2h elements. For each of these nodes, a
range search is performed in its secondary tree.

Consider the number of secondary nodes visited
during a range search in an interval tree with orthogonal
extension with n nodes. Analogously to the search in an
interval tree, they can be partitioned into two groups,
w.l.o.g. let the query be [pf ; qf ] 2 U0:

� The �rst group of secondary nodes consists of nodes
on the two search paths in the secondary tree to
pf and qf . These nodes are visited although they
might not contain a hit with respect to U0.

� The second group of secondary nodes consists of
nodes with separator Æa such that pf � Æa � qf
that are not element of group one. All these nodes
are in subtrees, which are rooted in right children of
nodes on the path to pf or which are rooted in left
children of nodes on the path to qf . All intervals
stored in these nodes are a hit with respect to U0,
since each such interval contains the separator Æa.

All nodes in the second group are potential hits
with respect to U0 in an interval tree with extensions
I0. Thus, we only descend into a secondary subtree, if
it contains at least one hit. For each of the binary trees
with orthogonal extensions stored in a secondary node
in the second group we have to perform a range DFS. We
only descend into a tertiary subtree, if it is guaranteed
to contain a hit. Thus every path taken through a node
of group two is accounted for by the paths to hits.

The length of the two paths that de�ne group one
is at most O(log(n)). For each of these nodes a range
search in one binary tree with extensions is necessary.
The range search in the binary tree with orthogonal
extensions partitions the visited tertiary nodes in that
tree into two groups. The �rst group consists of nodes
on the search path to the extremum of the search, the
second group consists of nodes left or right of that path
for a left or right range search in the binary tree with
extensions, respectively. Again all the nodes in group
two are accounted for by the paths to hits and there are
O(log(n)) nodes on the path. Altogether an orthogonal
range search in an interval tree with extensions takes
O(log2(n) + k log(n)) time.

Using equation 4.1 the number of nodes W (pri-
mary, secondary and tertiary) that is visited during an
orthogonal range search due to paths that are not guar-
anteed to end in a hit is

W �
log(N)X
k=0

2
k

2+1 2

�
log(

N

2k
)

�2

= 4
p
N

log(N)X
k=0

2
k�log(N)

2 (log(N)� k)2

= O(
p
N)

since the sum converges to

2 +
p
2

(
p
2� 1)3

for N !1 .
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Altogether, the observations in this section lead to
the following theorem:

Theorem 4.2. A range search in a two-dimensional
interval tree holding N two-dimensional intervals i 2
U0 � U1 that returns k elements intersecting the query
interval takes O(

p
N + k log(N)) time.

5 Higher Dimensions

In order to perform an orthogonal range search on a
set of d-dimensional d-boxes such that the query itself
is a d-dimensional d-box, the primary tree is extended
analogously to the extension of a 2d-tree to a Kd-tree.

Definition 5.1. Let x0; : : : x� be the orthogonal axes
in a (� + 1)-dimensional universe U0 � : : : � U�. A
multidimensional interval tree Th(x0; : : : xd�1;xd; : : : ; x�)
of dimension d with orthogonal extensions in Ud� : : :�U�
on a set

S = f([p[0]v ; q[0]v ]� : : :� [p[�]v ; q[�]v ]) j [p[i]v ; q[i]v ] � Uig

~v = ([p[0]v ; q[0]v ]� : : :� [p[�]v ; q[�]v ])

of �-boxes consists of a root node t with

� A separator Æt 2 Uh with h 2 f0; : : : ; d� 1g.
� A left child l, which is root of
T<
h+1modd(x0; : : : xd�1;xd; : : : x�) on

S< = f~v 2 S j q[h]v < Ætg

� A right child r, which is root of
T>
h+1modd(x0; : : : xd�1;xd; : : : x�) on

S> = f~v 2 S j p[h]v > Ætg

� An improper child m. If d = 2 then the node
m is the root of an interval tree with orthogo-
nal extensions Ih+1modd. If d > 2 then m is
the root of a (d � 1)-dimensional interval tree
Th+1modd(x0; ::; xh�1; xh+1; ::; xd�1;xh; xd; ::; x�)
In both cases the orthogonal extensions are in
Uh �Ud : : :�U� and the tree rooted in m contains
the set

S= = f~v 2 S j p[h]v � Æt � q[h]v g

of �-boxes that intersect the hyperplane de�ned by
xh = Æt.

A d-dimensional interval tree T (x0; : : : ; xd�1; ) is conse-
quently a multidimensional interval tree with extensions
in which the subspace of the orthogonal extensions has
dimension zero.

A multidimensional interval tree is called ideal, if
the size of the subproblems rooted in proper children is
not larger than half of the size of the problem rooted in
the parent and if the improper subtrees are ideal.

In a d-dimensional interval tree T (x0; : : : ; xd�1; )
each node u in the primary tree de�nes a partition of
the set fx0; x1; : : : ; xd�1g:

X (u) = fxj1 ; xj2 ; : : : ; xjd�eg
Y(u) = fxjd�e+1 ; : : : ; xjdg

X (u) [ Y(u) = fx0; x1; : : : ; xd�1g
such that Y(u) is the subset of coordinates in the
orthogonal extension of u, which generates the inactive
subspace of u. X (u) is the set of coordinates generating
the active subspace of u. Consequently, the orthogonal
extension of a node u is the projection of the smallest
d-box that contains all elements stored in the subtree
rooted in u into the inactive subspace.

Described in geometric terms, a separator Æt 2 Uh
de�nes a hyperplane orthogonal to axis xh. The proper
children are the roots of trees on subproblems located
'left' and 'right' of the hyperplane. The improper child
is the root of a tree on a subproblem intersecting the
separation hyperplane.

In the de�nition the partitioning through separation
planes is applied recursively until the problem has
dimension d = 1, which is solved through an interval
tree with orthogonal extensions. Note that a problem of
size N = 1 and dimension d0 takes O(d0) time with this
convention. Note also that not all nodes at depth t in
the primary tree have separator hyperplanes orthogonal
to the same axis, this is only the case if they are in a
subtree formed by 'proper' edges, since the 'cycle length'
is di�erent in subtrees with di�erent sizes of X (u).

5.1 Construction

A multidimensional interval tree will contain M �
N interval trees with extensions that contain at most
N elements altogether. The complete set of these
interval trees with extensions can be constructed in
O(dN log(N)) time, since the evaluation of an orthogo-
nal extension takes O(d) time. Altogether they require
O(dN) storage since an orthogonal extension requires
O(d) space.

The construction of the primary tree is a subset
of the construction of a regular Kd-tree, which takes
O((d + log(N))N) time [11]. The depth of the primary
tree in d dimensions is bounded by d + log(N), an
edge either reduces the dimension of the subproblem
by one or reduces the size of the subproblem by a
factor of 1=2. For each level of the tree { i.e., nodes
at depth i { medians (with respect to one coordinate)
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are determined for m0 sets of elements that altogether
contain at most N elements. The computation of the
orthogonal extensions takes O(d) time per node. Thus,
the construction of a multidimensional interval tree on
a set of N d-boxes takes O((d + log(N))Nd) time. A
multidimensional interval tree requires O(d2N) storage
since its primary tree contains O(dN) nodes each of
which holds an orthogonal extension.

5.2 Orthogonal Range Search

The orthogonal range search in d dimensions is
analogous to the range search in 2 dimensions, except
that the improper child may be a multidimensional
tree itself and that the coordinates for separators cycle
through larger sets than just two coordinates.

Correctness is shown analogously to the two-
dimensional case. We only avoid descending into a sub-
tree, if it is guaranteed that there exists a hyperplane
between the elements in the subtree and the query Q
(this hyperplane may touch Q, but is disjoint from the
region of the pruned subtree). Such a hyperplane is ei-
ther given through a separation hyperplane of the tree
or the existence is guaranteed since an orthogonal ex-
tension of a subtree does not intersect the corresponding
projection of Q into the same subspace the extension is
de�ned in.

The regionReg(v) of a node v is de�ned analogously
to the two-dimensional case. It is a d0-box in the active
subspace of v, which may be partially unbounded. The
projections of all d-boxes stored in the subtree T (v)
rooted in v into the active subspace de�ned through
X (v) are inside of Reg(v). The boundaries of Reg(v)
are separation hyperplanes on the path to v. Note
that for nodes in an improper subtree the regions are
contained in the separation hyperplane of the node with
the improper child.

The combination of Reg(v) with the orthogonal
extension of v forms a d-box. The range search enters
the subtree rooted in v only if this 'combination-d-box'
intersects the query d-box Q due to the check of the
orthogonal extensions. If everything in a subtree is a
hit with respect to the active subspace, then each path
entering such a subtree must end in a hit.

The length of the path to any hit is O(d+ log(N)).
Therefore gathering k hits takesO(k(d+log(N))d) time.
To complete the analysis it is necessary to establish an
upper bound for the number of nodes that are visited,
but not on a path to a hit.

5.2.1 Some Properties

Lemma 5.1. Let T be an ideal multidimensional inter-
val tree of dimension d. The subtree rooted in a node at
depth t, the root being at depth zero, contains at most

N=2(t�d) nodes.

Proof. On each path are at most d improper edges, for
which it is not guaranteed that the child contains at
most half of the nodes of the parent.
q.e.d.

Lemma 5.2. Let B be a tree with two children per node
except that in each downward path de�ned by a set of
edges starting in nodes vq ; : : : vq+d�1 there exists at least
one vi in vq ; : : : vq+d�1 with at most one child. Then for
the number Ph of nodes at depth h is holds

Ph � 2(2d�1)h=d

Figure 3: Tree transformation that leaves the
number of leaves constant.

Proof. Consider a binary tree with depths 0; : : : ; d with
two children per node, such that in each path from the
root to a leaf there is a set of nodes such that there is one
node with exactly one child. With the transformation
shown in �gure 3 any tree with the given properties can
be transformed into a tree with the same number of
leaves in which all the nodes in depth d�1 have exactly
one child. Obviously all trees of depth d with the given
property have at most 2d�1 leaves.

Consider a 'slice' of depth h; : : : ; h + d in a binary
tree in which the paths satisfy the criterion given in
the lemma. The slice is composed of a set of n binary
trees with depth 0; : : : ; d each of which has at most 2d�1

leaves. Thus it holds

Pi � 2i 8 i 2 f0 : : : d� 1g
Ph � 2d�1Ph�d

which resolves to

Ph � 2(2d�1)h=d

q.e.d.

5.2.2 The Bound

Let T be a multidimensional interval tree of dimen-
sion d. An orthogonal range search visits a subtree T 0

of this tree. We compute an upper bound for the size of
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the subtree T 00 � T 0, which consists of all visited nodes
that are no hits and paths from the root to these nodes.
A node is considered as 'visited' if the extension-check
was performed on its children. Performing the exten-
sion check for all the children of a node v takes O(d)
time and is considered to be part of the visit of v. An
upper bound for the number of nodes in T 00 will be an
upper bound for the number of investigated nodes that
are not covered by a path to a hit.

T consists of a set of subtrees Ti of proper edges,
which are connected through improper edges. The
trees Ti are called proper subtrees and T 00

i = Ti \ T 00

are the subtrees of proper subtrees that were 'inves-
tigated unsuccessfully'. Let the index of Ti denote
the dimension of its orthogonal extension. Then T0 is
the proper subtree including the root node of T and
X(T0) = fx0; : : : ; xd�1g and Y (T0) = fg. Let di be the
dimension of the space de�ned by X(Ti).

Lemma 5.3. Let T 00

i be a proper subtree of a d-
dimensional interval tree as de�ned above with dimen-
sion di > 1. Then for the number of nodes Ph(T

00

i ) at
depth h of T 00

i it holds

Ph(T
00

i ) � 2di2
�
2di�1

� h

di

Proof. Let Q be the d-box of the query. The nodes in
T0 can be partitioned into three groups:

� Reg(v) � Q: It is guaranteed, that every node in
the subtree rooted in v is a hit, thus the subtree
does not belong to T 00

0 .

� Reg(v) \Q = fg: Such nodes are not visited since
there exists a separator �0 such that v is located
in a subtree that was 'pruned' due to �0. �0 is a
hyperplane in the space de�ned by X(T0).

� Reg(v) \ Q 6= fg ^ Reg(v) 6� Q: Such nodes
are visited but do not necessarily belong to a
path to a hit. Additionally, parts of the subtrees
rooted in their improper children may be visited
unsuccessfully.

Thus, all nodes for which it holds

Reg(v) \Q 6= fg ^ Reg(v) 6� Q

may be part of T 00

0 , but no others.
For a proper subtree T1, for which Y (T1) = fxhg

with 0 � h < d the situation is similar. All the regions
in T1 are contained in a separator hyperplane �0 in the
space de�ned by X(T0) = fx0; : : : xd�1g that is de�ned
by �xing one coordinate to a given value, i.e. xh = Æ0.
Let [Q ! X(T1)] be the projection of the query d-box
Q into the hyperplane de�ned by xh = Æ0. Again the
nodes are partitioned into three groups.

� Reg(v) � [Q ! X(T1)]: All nodes in the subtree
rooted in v (not only the proper subtree!) are hits,
if their orthogonal extension intersects with the
corresponding projection of Q. Thus, every path
into such a subtree is covered by a path to a hit
and hence not in T 00

1 .

� Reg(v) \ [Q ! X(T1)] = fg: These nodes are not
visited because of a separator hyperplane �1 in the
space de�ned by X(T1).

� Reg(v) \ [Q ! X(T1)] 6= fg ^ Reg(v) 6� [Q !
X(T1)]: These are again the nodes that may be in
T 00

1 .

Note that for proper subtrees T2; T3; : : : Td�1 rooted in
improper children of proper subtrees with a higher di-
mension the same partitioning applies, only the dimen-
sion df of the space de�ned by X(Tf ) is d� f .

Thus, in a proper subtree Ti only nodes v such that
Reg(v) intersects the surface of [Q ! X(Ti)] without
being a complete subset of the projection of Q may
be part of T 00

i . There are 2di surface planes in the
projection of Q.

Consider a hyperplane Fh in the space de�ned by
X(Ti) that contains a surface plane of [Q ! X(Ti)]
orthogonal to axis xh 2 X(Ti). Then in a path
vq : : : vq+di�1 there exists at least one node vi with a
separator that �xes the coordinate xh. In this node
the separator plane is orthogonal to xh and thus Fh
intersects with the region of at most one proper child.
Thus Ph � 2di�1Ph�di and using lemma 5.2 concludes
the proof.
q.e.d.

The depth of T is bounded by d+log(N). A proper
subtree T 00

i of unsuccessfully visited nodes starts at a
certain depth g but may not reach the full depth of
d + log(N) � g. We assume that it is extended such
that lemma 5.3 still holds and such that it reaches
d+ log(N)� g. This may only increase jT 00j. Consider
the proper subtree T 00

0 . Adding improper subtrees T 00

i

such that on any path from the root to a leaf there are
at most d improper edges increases the size of T 00

0 at
most by a factor of 2d, if all T 00

i are extended to the
maximum depth.

For each visited primary node there is at most one
improper child with an interval tree with extensions.
The number of nodes in this interval tree is limited by
lemma 5.1. Thus it holds

jT 00j � 2d2d
d+log(N)X

h=0

2
�
2d�1

�h=d
log2

�
N

2h�d

�
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= 2d2d
d�1X
h=0

2
�
2d�1

�h=d
log2

�
N

2h�d

�

+2d4d
log(N)X
h=0

2(1�1=d)h (log(N)� h)
2

� O(d4d log2(N))

+2d4dN1� 1
d

log(N)X
h=0

2
1
2 (h�log(N)) (log(N)� h)2

and consequently it holds

jT 00j = O(d4dN1�1=d)

since the sum in the last expression is a constant in the
limit N !1.

Since a visit to a node costs O(d) operations in
the worst case to evaluate the orthogonal extension, an
orthogonal range search takes

O((d24dN1�1=d + d(d+ log(N))k)

in a multidimensional interval tree of dimension d.

6 Conclusion

Multidimensional interval trees solve the problem of
orthogonal range searching on sets of d-boxes using
linear space. In comparison to Kd-trees, which solve
orthogonal range searching on sets of points in linear
space and O(d4dn1�1=d + dk) time, multidimensional
interval trees require O((d24dN1�1=d+d(d+ log(N))k))
time.

In practice the additional factor of log(N) per hit is
rather pessimistic. For larger numbers of hits the paths
to the hits are not disjoint. Additionally, for 'fat' query
rectangles there is a signi�cant portion of the hits that
is computed in O(dk) time through the subtrees rooted
in nodes v such that Reg(v) is a subset of the query.

Multidimensional interval trees are the �rst data
structure solving orthogonal range searching on d-boxes
in linear space and less than O(N) query time in the
worst case.
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