
RC 21858 (98373) 20 October 2000 Computer Science

IBM Research Report

A Characterization of Java Server Benchmarks

Michael Kalantar
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598
kalantar@us.ibm.com

Sandra Johnson Baylor
IBM Silicon Valley Laboratory

55 Bailey Avenue
San Jose, CA 95141

sandrajb@us.ibm.com

Xin Li
Department of Electrical and Computer Engineering

Northwestern University
Evanston, Illinois 60208

lix@ece.nwu.edu

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

��������

With its promise of “write once, run anywhere” development, the Java platform has the potential

to revolutionize computing,. However, in order to realize this potential, Java applications, or those using

Java extensions, frameworks, or components, must exhibit a competitive level of performance. In

addition, in order to optimize the performance of Java applications, there must be some level of

understanding of the generic trends that exist in these applications which are amenable to performance

improvements. This paper presents preliminary results of a study conducted to characterize the workload

of Java server benchmarks. The study is motivated by a desire to understand some of the general

behaviors of these types of programs in order to develop more effective compiler optimizations, memory

subsystem designs, garbage collectors, etc., resulting in better performance. The results we present

characterize the frequency of various method invocations exhibited by these benchmarks. They show that

the most frequently invoked methods are from the Java classes, particularly, java.lang, java.util

and java.io. Also, within java.lang, the most frequently invoked methods are from the String class.

1. Introduction

The Java platform has the potential to revolutionize computing, with its promise of “write once,

run anywhere” development. This will enable application developers to develop an application

only once, therefore minimizing or eliminating its porting to multiple platforms. In order to

realize this potential, Java solutions must exhibit satisfactory levels of performance. One method

that can be used to optimize performance is to understand the general behavior of a diverse set of

Java server applications and then target specific optimizations, based upon this behavior.

While there has been some activity on the performance evaluation of Java client applications, it

is our belief that Java server applications will dominate in the future. There are issues that are

specific to server applications, such as multi-threaded object allocation and concurrent resource

access from hundreds or thousands of threads. Also, Java server extensions and servlet support

are important components of Java server applications. It is important that we understand the

1

workload characteristics of Java server applications, in order to effectively and efficiently

optimize their performance.

As a preliminary step to characterizing Java server applications, we present the results of a study

conducted to characterize, at a very high level, the workload of several Java server benchmarks.

These benchmarks are thought to be representative of Java server applications and have been

used extensively to guide the development and optimization of Java virtual machines and to

evaluate a variety of platforms’ effectiveness at executing Java server code. The objective of the

study is to understand some of the general behaviors of these types of programs in order to

develop more effective compiler optimizations, memory subsystem designs, garbage collectors,

etc., resulting in better performance.

The next section describes the Java server benchmarks evaluated in this study. Section 3 presents

the methodology used to collect the workload characteristics. Section 4 presents the results and

Section 5 discusses the related work. Finally, Section 6 summarizes the work presented and

suggests directions for further study.

2. Benchmarks

A diverse collection of server benchmarks is used in this study. They include a business object

benchmark for Java (jBOB), a portable business object benchmark (pBOB), and a web server

benchmark (JWeb2). These benchmarks are described and discussed in detail in [BAYLR00];

however, we include general descriptions of them here for completeness.

The jBOB benchmark is a simple transactional server application for a typical electronic business

scenario. The benchmark’s workload is a mixture of read-only and update intensive transactions that

simulate the activities found in complex online transaction processing (OLTP) application environments.

The benchmark is representative of applications exercising a breadth of system components characterized

by concurrent transactions, on-line and deferred transaction execution modes, moderate system and

application execution times, transaction integrity, non-uniform distribution of data access though primary

2

and secondary keys, and databases consisting of many tables with a wide variety of sizes, attributes and

relationships. Application drivers are used in jBOB to generate and submit transaction results from

clients to the server; however, its objective is to quantify the performance of the server-side application.

Therefore, the performance of the client and the network is not included in the quantified metric.

The jBOB implementation contains three logical tiers. The first tier, the clients, generates data access

requests modeled after specific transaction types. The second tier, a thin layer of Java code, acts as a

front end to the third tier database server. The benchmark exercises the JDBC, or the Structured Query

Language (SQL) embedded in Java (referred to as SQLJ), interface, Java communication using Java

sockets, core JVM and class level synchronization, data conversion, multi-threading, object serialization,

object creation, and garbage collection. The benchmark reports the performance metrics of throughput

and transaction response time.

The pBOB benchmark simulates a typical transaction-oriented workload. It was designed to analyze the

processor/memory subsystem, and associated software, for typical server-based business applications.

This is in contrast to jBOB, which is used to study the complete server configuration. To achieve a pure

Java implementation, pBOB replaces third-tier database tables with in-core Java classes and records.

There is no persistence or transaction control; instead, all transaction domain instances live only for the

duration of the JVM instance. pBOB does not perform terminal emulation or communication. Instead,

Java threads represent terminals in pBOB, where each thread independently generates random input

before calling transaction specific logic. pBOB has no external dependencies and is portable to any

compliant JVM.

The pBOB workload is controlled by varying the number of warehouses, the object population per

warehouse, the number of threads (representing terminals) per warehouse, keying and think times,

3

number of order lines per order, and whether initial and transaction result screens are displayed. pBOB

also supports a "steady state" mode where the creation of new objects is balanced by the removal of old

objects. This allows long duration tests to run in finite heap space.

JWeb2 is a dynamic web-serving benchmark that characterizes the behavior of a simple e-commerce

application whose clients are HTTP-based web browsers. JWeb2 is derived from the SpecWeb99

[SPEC99] benchmark, in which simulated clients access a series of URL-specified HTML pages. JWeb2

has enhanced this by simulating an e-commerce application and supplying implementations of this

application as a servlet. JWeb2 exercises web server based Java program execution, multiple threads,

session management, file I/O, and a server’s capability to handle high HTTP traffic and memory access

bandwidth.

JWeb2 is designed to return 50% dynamic content and 50% static content, based on the assumption that

each dynamic page will typically refer to at least one image. Second, the sizes of the static files and the

results of related dynamic requests follow a distribution similar to that expected on a typical web server.

In particular, distributions were chosen to match those used by the SPECWeb99 benchmark [SPEC99].

However, in our experiments for this study, we reconfigured the benchmark to return 100% dynamic

content.

A typical e-commerce web site uses cookies or URL rewriting to maintain session state information

about each user. If passwords or cookies are used, the web server may rely on a database of individual

preference. Typical web server application activities include text manipulation, page development, data

lookup (either via a database or file access) and table generation. Communication with clients may or

may not be encrypted. Most interactions with an e-commerce web site involve a number of steps. The

user first logs on, creating a new session. Second, the user may search the web site, access information,

4

or engage in a transaction. Finally, the user logs off. Each of these activities may be carried out by a

different dynamic program.

The JWeb2 benchmark abstracts the above activities into a single Java servlet. This servlet first manages

session information: it uses a cookie to identify the session, creating a new one if necessary. Second, the

session state, a record of all previous accesses during the current session and the number of rows in the

reply, is read and the contents output to a newly created HTML page. Third, the parameters to the

dynamic request are used to access a file. The file is read and is used to generate a summary table.

Finally, if the session is to be terminated, all session state is invalidated. Otherwise, information about

the current request is added to the session.

3. Collection Methodology

We ran our experiments in a Windows NT 4.0 (SP4 4) environment on a 4-way Pentium Pro

200MHz machine with 2 GB of main memory. Each of benchmarks detailed above have different

requirements. pBOB, is entirely self-contained; it runs within a single java virtual machine. Both

clients and server are bundled together. The other two are servlet based. Each is accessed from

remote clients through a web server (Internet Information Server (IIS), version 4) which passes

Figure 1. Package Method Invocation Frequency for jBOB.

servlet requests to a web application server (WebSphere Application Server (WSAS), version

2.02). JWeb2 uses the file system, while jBOB uses a database (DB2, version 5.2). JWeb clients

are run on AIX machines on the same local area network (16Mbit/s token ring) and jBOB clients

are run on NT workstations also on the same local area network. We found that successfully

running our experiments, despite the use of Java, remained a challenge. In part this is a

5

consequence of the fact that most measurement software requires a specific virtual machine.

These virtual machines may not be compatible with the middleware used (in our case, the version

of WSAS we used required JDK 1.1.7).

To collect the high-level data we were initially interested in, we considered using the following

tools: JINSIGHT [JIN99], Jprobe [JPRBE99], OptimizeIt [OPT99], and VTune [VTUNE99].

These tools are similar in that they are interactive tools designed for program performance, heap

analysis and optimization. Each requires a tool specific virtual machine which produces the

Figure 2. Package Method Invocation Frequency for pBOB.

necessary profiling information. Furthermore, JINSIGHT, JProbe and OptimizeIt all interpret

byte code: they can not run JIT'ed code. As a consequence, we found that our benchmarks run up

to 30 times slower when using these tools. Of these tools, JINSIGHT and OptimizeIt are strictly

interactive tools; they do not provide a means for extracting data for later analysis. We selected

JProbe for our study because it proved to be the most stable and we were able to collect profiling

6

number of calls

java.*

jeb

com.ibm.servlet

com.sun.server

sun.security

sun.rmi

sun.misc

package distributions (jBOB)

data. In the case of jBOB, the slowdown caused by using JProbe eventually results in client

time-outs and an assumption of transaction failures. We were able to run VolanoMark [VOL99]

using JProbe, but were unable to collect profiling data for this benchmark.

JProbe is capable of collecting two types of data: performance and heap data. This data can be

displayed interactively as it is collected or periodically collected in snapshots. Data can be

collected on a method by method or a line by line basis. We collected our data on a method by

method basis. For each method five types data are collected; the number of calls made, the

Figure 3. Package Method Invocation Frequency for jWeb.

cumulative execution time, the method execution time, the cumulative number of objects

allocated and the method number of objects collected. The cumulative time (number of objects

allocated) represents the time spent (number of objects allocated) in the method and its sub-tree

in the call graph. A method time (number of objects allocated) represents the time (number of

objects allocated) in the method itself not including the time spent in the sub tree of the call

7

number of calls

pBOB

java.util

java.lang

sun.io

java.io

java text

java.text.resources

package distributions (pBOB)

graph. Times can be collected as either CPU time or elapsed time. Further, data collection can be

filtered to either include or ignore native methods, and can be filtered to either include or ignore

the execution of an application server (JProbe is designed to be aware of many application

servers, including WebSphere). In all cases, we collected data which included the execution of

the native methods and the application server.

JProbe collects further data that enables one to interactively construct method call graphs

instrumented by frequency of path execution. We have not yet been able to use this information.

We believe a characterization of call graph behavior would be helpful in compiler construction

[FINK00]. Rather, we analyze the raw numbers without call graph information.

8

number of calls

java.*

sun.servlet

javax.servlet

com.sun.server.*

com.ibm.servlet.*

sun.io

sun.security

sun.rmi

sun.misc

package distributions (JWeb)

number of calls

Thread.sleep(long)

String.startsWith(String, int)

String.endsWith(String)

Object.<init>()

String.<init>(char[])

String.length()

String.charAt(int)

String.getChars(int, int, char[], int)

StringBuffer.append(String)

SecurityManager.currentClassLoader()

StringBuffer.setShared()

StringBuffer.length()

StringBuffer.getValue()

String.<init>(StringBuffer)

StringBuffer.toString()

StringBuffer.<init>(int)

StringBuffer.<init>(String)

StringBuffer.append(int)

Throwable.fillInStackTrace()

Throwable.<init>(String)

Exception.<init>(String)

IndexOutOfBoundsException.<init>(String)

RuntimeException.<init>(String)

ArrayIndexOutOfBoundsException.<init>(String)

System.getSecurityManager()

Object.wait(long)

Object.notify()

String.hashCode()

Number.<init>()

System.getProperty(String)

Long.getLong(String, long)

Long.getLong(String, Long)

Long.<init>(long)

Long.intValue()

Thread.currentThread()

Thread.interrupted()

Thread.isInterrupted(boolean)

String.compareTo(String)

String.<init>(int, int, char[])

57 Others

java.lang (jBOB)

Figure 4. Java.lang Method Invocation Frequencies for jBob.

number of calls

Object.<init>()

String.length()

String.getChars(int, int, char[], int)
String.<init>(String)

Integer.<init>(int)

Number.<init>()

Integer.hashCode()

String.<init>(char[], int, int)

String.indexOf(String)
String.indexOf(String, int)

Math.min(int, int)

String.compareTo(String)

StringBuffer.append(String)

String.charAt(int)

Integer.intValue()
Integer.equals(Object)

StringBuffer.length()

StringBuffer.setShared()

String.<init>(StringBuffer)

StringBuffer.toString()

StringBuffer.getValue()
StringBuffer.<init>(int)

StringBuffer.<init>(String)

String.toString()

String.valueOf(Object)

String.<init>(char[])

Integer.toString(int)
String.equals(Object)

StringBuffer.expandCapacity(int)

Integer.toString(int, int)

String.valueOf(int)

StringBuffer.append(int)

Math.max(int, int)
String.indexOf(int)

String.indexOf(int, int)

String.<init>(int, int, char[])

StringBuffer.append(char)

FloatingDecimal.countBits(long)
FloatingDecimal.toJavaFormatString()

65 Others

java.lang (pBOB)

Figure 5. Java.lang Method Invocation Frequencies for pBOB.

9

number of calls

String.length()

String.getBytes(int, int, byte[], int)
String.charAt(int)

String.indexOf(int)
String.indexOf(int, int)

Object.<init>()
Character.toLowerCase(char)

String.getChars(int, int, char[], int)

StringBuffer.append(String)
StringBuffer.append(char)

String.hashCode()
String.equalsIgnoreCase(String)

String.<init>(char[])
StringBuffer.toString()

StringBuffer.getValue()

StringBuffer.setShared()
StringBuffer.length()

String.<init>(StringBuffer)
String.startsWith(String, int)

String.endsWith(String)
StringBuffer.<init>(int)

StringBuffer.<init>(String)

String.valueOf(Object)
String.toString()

StringBuffer.expandCapacity(int)
String.<init>(int, int, char[])

String.substring(int, int)
String.toLowerCase(Locale)

String.toLowerCase()

Class.forName(String)
Class.newInstance()

Integer.intValue()
Character.toUpperCase(char)

Object.equals(Object)
StringBuffer.append(int)

String.regionMatches(boolean, int, String, int, int)

StringBuffer.setLength(int)
String.<init>(byte[], int, int,
ByteToCharConverter)

String.getBytes(String)
82 Others

java.lang (JWeb)

Figure 6. Java.lang Method Invocation Frequencies for jWeb.

4. Results

Illustrated in Figures 1-3 are the Java package method invocation distributions for jBOB, pBOB

and JWeb2, respectively. The figures show the Java classes exhibiting the largest fraction of

method invocations for jBOB and JWeb. The next highest number of method invocations are for

the jeb classes for jBOB and servlets for JWeb2. This reflects the fact that JWeb2 is

implemented as only a few methods. Further, it makes heavy use of the servlet classes to extract

session information, cookies and parameters. jBOB requests, on the other hand, have few

parameters, do not use sessions or cookies, and require more internal processing. In contrast, for

pBOB, the largest fraction of method invocations are from the pBOB class, followed by a

number of Java classes. Methods in the pBOB benchmark are called so frequently due to the

inclusion of many pieces into the benchmark: the server processing, an in-core database and

client processing. If the pBOB classes are ignored, methods from the Java class library represent

10

nearly 70% of all method calls. In general these results show the Java classes exhibiting the

largest fraction of method invocations.

We took a closer look at these Java classes and observed that the overwhelming majority are

found in java.lang, java.util and java.io for all benchmarks evaluated. We then

examined the method invocation frequencies for each of these classes. Presented in Figures 4-6

are the method invocation distributions for java.lang. In these figures, each slice of the pie

represent the percentage of java.lang method invocations that are attributed to the specific

sub-class (slice).

number of calls

Vector.isEmpty()

Vector.elementAt(int)

HashtableEnumerator.hasMoreElements()

Vector.size()

HashtableEnumerator.nextElement()

HashtableEnumerator.<init>(HashtableEntry[],
boolean)

Hashtable.get(Object)

Hashtable.keys()

Vector.<init>(int, int)

Vector.<init>(int)

Vector.<init>()

Vector.copyInto(Object[])

Properties.getProperty(String)

Hashtable.elements()

Vector.addElement(Object)

Vector.setSize(int)

Vector.elements()

VectorEnumerator.<init>(Vector)

VectorEnumerator.hasMoreElements()

Hashtable.isEmpty()

Hashtable.clear()

Hashtable.<init>(int, float)

Vector.indexOf(Object, int)

Hashtable.<init>()

Dictionary.<init>()

Stack.<init>()

StringTokenizer.hasMoreElements()

StringTokenizer.<init>(String, String, boolean)

StringTokenizer.<init>(String)

StringTokenizer.skipDelimiters()

StringTokenizer.hasMoreTokens()

Vector.removeElement(Object)

Vector.removeElementAt(int)

Vector.contains(Object)

HashtableEntry.<init>()

Hashtable.remove(Object)

Hashtable.put(Object, Object)

VectorEnumerator.nextElement()

Vector.indexOf(Object)

java.util (jBOB)

Figure 7. Java.util Method Invocation Frequencies for jBOB.

11

number of calls

Random.next(int)

Random.nextInt()

Calendar.internalSet(int, int)

Calendar.internalGet(int)

Hashtable.put(Object, Object)

Date.<init>(long)

Date.<init>()

HashtableEnumerator.hasMoreElements()

HashtableEntry.<init>()

HashtableEnumerator.nextElement()

Calendar.complete()

Calendar.get(int)

Calendar.getTimeZone()

SimpleTimeZone.compareToRule(int, int, int, int, int, int, int,
int, int)

Calendar.getFirstDayOfWeek()

Calendar.getMinimalDaysInFirstWeek()

GregorianCalendar.weekNumber(int, int)

GregorianCalendar.julianDayToDayOfWeek(long)

SimpleTimeZone.getRawOffset()

SimpleTimeZone.getOffset(int, int, int, int, int, int)

GregorianCalendar.computeFields()

GregorianCalendar.millisToJulianDay(long)

Calendar.setTimeInMillis(long)

GregorianCalendar.timeToFields(long)

GregorianCalendar.isLeapYear(int)

Date.getTime()

Calendar.setTime(Date)

Random.nextFloat()

TimeZone.clone()

SimpleTimeZone.clone()

Hashtable.get(Object)

TimeZone.getDefault()

Locale.hashCode()

Locale.equals(Object)

Calendar.<init>(TimeZone, Locale)

Calendar.setWeekCountData(Locale)

GregorianCalendar.<init>(TimeZone, Locale)

Locale.getDefault()

GregorianCalendar.<init>()

64 Others

java.util (pBOB)

Figure 8. Java.util Method Invocation Frequencies for pBOB.

number of calls

Hashtable.get(Object)

StringTokenizer.skipDelimiters()

Locale.getDefault()

Locale.getLanguage()

StringTokenizer.hasMoreTokens()

StringTokenizer.hasMoreElements()
StringTokenizer.nextToken()

Hashtable.remove(Object)

HashtableEntry.<init>()

Hashtable.put(Object, Object)

Vector.size()

Vector.elementAt(int)

StringTokenizer.<init>(String, String, boolean)

StringTokenizer.<init>(String, String)
Vector.addElement(Object)

Hashtable.clear()

Vector.<init>(int, int)

Vector.<init>(int)

Vector.<init>()

HashtableEnumerator.hasMoreElements()

Hashtable.containsKey(Object)

Hashtable.<init>(int, float)
Dictionary.<init>()

Hashtable.<init>()

HashtableEnumerator.nextElement()

Properties.getProperty(String)

VectorEnumerator.hasMoreElements()

HashtableEnumerator.<init>(HashtableEntry[], boolean)

Hashtable.contains(Object)

Vector.removeAllElements()
Hashtable.keys()

VectorEnumerator.<init>(Vector)

Vector.elements()

VectorEnumerator.nextElement()

Hashtable.<init>(int)

Vector.copyInto(Object[])

Hashtable.elements()

Vector.setSize(int)
Hashtable.isEmpty()

8 Others

java.util (JWeb)

Figure 9. Java.util Method Invocation Frequencies for jWeb.

12

number of calls

BufferedInputStream.read()

ObjectInputStream.read()

ByteArrayOutputStream.write(int)
ObjectOutputStream.write(int)

DataInputStream.readUnsignedByte()

File.list(FilenameFilter)
File.list()

File.list0()

File.isAbsolute()

File.getAbsolutePath()

ObjectInputStream.setBlockData(boolean)
ObjectInputStream.peekCode()

ObjectOutputStream.setBlockData(boolean)

ObjectOutputStream.writeByte(int)
DataOutputStream.writeUTF(String)

ObjectStreamClass.forClass()

ObjectInputStream.readCode()

ObjectOutputStream.writeCode(int)

DataInputStream.readInt()
ObjectOutputStream.drain()

ObjectInputStream.readObject(boolean)

ObjectOutputStream.serializeNullAndRepeat(Object)
ObjectStreamClass.swap(Object[], int, int)

ObjectInputStream.readObject()

DataInputStream.readUnsignedShort()

DataInputStream.readUTF(DataInput)

DataInputStream.readUTF()
ObjectStreamClass.doCompare(Object, Object)

ObjectOutputStream.writeUTF(String)

ObjectInputStream.readUTF()
ObjectStreamClass.getFieldSequence()

DataInputStream.readByte()

ObjectStreamClass.quicksort(Object[], int, int)

ObjectOutputStream.findWireOffset(Object)

ObjectOutputStream.writeObject(Object)
ObjectInputStream.assignWireOffset(Object)

BufferedOutputStream.write(byte[], int, int)

ObjectOutputStream.hashInsert(Object, int)
ObjectOutputStream.assignWireOffset(Object)

103 Others

java.io (jBOB)

Figure 10. Java.io Method Invocation Frequencies for jBOB.

number of calls

BufferedWriter.ensureOpen()

PrintStream.ensureOpen()

OutputStreamWriter.ensureOpen()

OutputStream.flush()
BufferedOutputStream.flushBuffer()

BufferedOutputStream.flush()

Writer.write(String)

BufferedWriter.flushBuffer()

BufferedWriter.write(String, int, int)

OutputStreamWriter.flushBuffer()
FileOutputStream.write(byte[], int, int)

OutputStreamWriter.write(char[], int, int)

PrintStream.write(byte[], int, int)

BufferedOutputStream.write(byte[], int, int)

BufferedWriter.newLine()

PrintStream.newLine()
PrintStream.write(String)

PrintStream.print(String)

PrintStream.println(String)

PrintStream.println()

PrintStream.flush()

OutputStream.<init>()
Writer.<init>(Object)

FileOutputStream.<init>(String)

BufferedWriter.<init>(Writer, int)

FilterOutputStream.<init>(OutputStream)

FileDescriptor.<init>()

PrintStream.<init>(OutputStream, boolean)
PrintStream.<init>(OutputStream)

BufferedWriter.<init>(Writer)

OutputStreamWriter.<init>(OutputStream,
CharToByteConverter)

OutputStreamWriter.<init>(OutputStream)
FileOutputStream.<init>(FileDescriptor)

java.io (pBOB)

Figure 11. Java.io Method Invocation Frequencies for pBOB.

These figures show a large fraction of the java.lang methods invoked are from the String

class. Also, for jBOB, the Thread.sleep method is invoked the majority of the time and for

pBOB, Object.init is invoked frequently, as many objects are allocated as a part of the in-core

database calculations.

13

Presented in Figures 7-9 are the java.util method invocation distributions for the

benchmarks evaluated. Also, Figure 10-12 illustrates the java.io method invocation

distributions for these benchmarks. These results show that only a few methods dominate in the

number of times they are invoked. They include Vector.IsEmpty for jBOB, Random.next and

Random.nextInt for pBOB, and Hashtable.get and StringTokenizer.skipDelimiters for JWeb2 for

java.util. In the case of pBOB, the high number of calls to Random methods is a side effect

of the in-core database simulation. In JWeb2, the calls to frequent methods are related to session

state information and user request parsing. Such costs would, we believe, be typical for a servlet

taking full advantage of such facilities. For java.io, they include BufferedInputStream.read

for jBOB and JWeb2 and several BufferedWrite and OutputStream methods for pBOB. In the

cases of jBOB and JWeb2, input from a database and from the file system are major components

of the benchmarks. Because pBOB is self contained, it does not include input methods. Rather,

its output methods are weighted higher.

5. Related Work

Several studies have evaluated the workload characteristics of Java applications. Conte, et. al.

[CONTE98], characterized Java application and applet workloads as it relates to the reuse and

sharing of Java codes at the program, class and method levels. They used the SPECjvm98

benchmarks and 3 extensive searches of the Internet. Their objective was to determine potential

compiler optimizations, based upon any observed general trends. They found sufficient code

reuse to warrant further research on optimizations, based upon the results.

14

number of calls

BufferedInputStream.read(byte[], int, int)

FileInputStream.readBytes(byte[], int, int)

FilterInputStream.read(byte[])

FileInputStream.read(byte[], int, int)

InputStream.<init>()

FileInputStream.close()

OutputStream.flush()

FilterInputStream.<init>(InputStream)

FileDescriptor.<init>()

BufferedInputStream.<init>(InputStream, int)

FileInputStream.finalize()

FileInputStream.open(String)

FileInputStream.<init>(String)

FilterInputStream.close()

ByteArrayOutputStream.write(int)

BufferedInputStream.read()

ObjectInputStream.read()

ObjectOutputStream.write(int)

DataInputStream.readUnsignedByte()

File.list()

File.list0()

File.getAbsolutePath()

File.isAbsolute()

File.list(FilenameFilter)

ObjectInputStream.setBlockData(boolean)

ObjectInputStream.peekCode()

DataOutputStream.writeUTF(String)

ObjectOutputStream.setBlockData(boolean)

ObjectOutputStream.writeByte(int)

ObjectStreamClass.swap(Object[], int, int)

ObjectStreamClass.doCompare(Object, Object)

ObjectStreamClass.forClass()

ObjectStreamClass.quicksort(Object[], int, int)

ObjectInputStream.readCode()

ObjectOutputStream.writeCode(int)

DataInputStream.readInt()

ObjectOutputStream.drain()

ObjectOutputStream.serializeNullAndRepeat(Object)

ObjectInputStream.readObject(boolean)

111 Others

java.io (JWeb)

Figure 12. Java.io Method Invocation Frequencies for jWeb.

Chow, et. al. [CHOW98] examined the branching characteristics of about 1000 instruction traces

of both Java and non-Java workloads. Their objective was to do a functional examination and to

apply any knowledge gained to the design of current and future computer systems. They used

multivariate analysis and determined that Java workloads tend to have a greater number of

indirect branches and no significant differences between direct and conditional branching

characteristics.

Dieckmann and Holzles [DIECK99] conducted a study that focused on the allocation of Java

applications to identify methods to better identify and optimize the performance of garbage

collectors. An analysis of the memory usage was conducted for several programs in the

SPECjvm98 benchmark suite. They found that Java objects are relatively small, they tend to live

longer than objects in other object-oriented languages and more than 50% of the allocated space

is represented by non-pointer data.

These studies all examined Java workloads, based upon specific and diverse objectives.

However, all of them used Java client applications. This is in contrast with our workloads, which

are based on Java server applications. In addition, we plan to focus on possible optimizations

from compilers, architecture and systems. While there is some high-level overlap between our

15

optimization objectives and those of a few of these studies, our potential optimizations are not

limited to compiler optimizations to exploit code reuse or architectural designs to optimize

branching.

6. Conclusion and Future Work

This worked presented is a characterization of Java server benchmarks. The results show that the

most frequently invoked methods are from the Java classes, particularly, java.lang, java.util and

java.io. Also, within java.lang, the most frequently invoked methods are from the String class.

Calling frequencies were more closely matched between jBOB and JWeb2 than between either one and

pBOB. This reflects design choices in the benchmarks. Given the design choices, and the results here, it

seems likely that the pattern frequency of method calls for pBOB will also differ from real Java server

applications.

This work represents only the commencement of a meaningful characterization of Java server

software. The next step is to augment the benchmarks studied with real applications under

development. This will address the crucial question of whether or not the benchmarks are

representative of Java server applications. A second step is to reexamine the behavior when

executing JIT'ed code. Our current results are most accurate in identifying the proportion of

various method calls made. Execution times do not consider optimizations of good JITs. A third

step is to find more effective metrics for characterizing the applications. We would like, for

example, to find a general way to characterize the call graph generated. Further, we would like to

characterize the demands on the underlying system made by Java methods. Lastly, we would like

to characterize object allocation, similar to [DIECK99].

REFERENCES

[BAYLR00] Baylor, S.J., et. al., “Java Server Benchmarks,” IBM Systems Journal, Vol. 38, No. 1,
2000.

[CHOW98] Chow, K., Wright, R., and Lai, K., “Characterization of Java Workloads by
Principal Components Analysis and Indirect Branches,” Workshop on Workload
Characterization, Micro-31, pp. 11-19, November, 1998.

16

[CONTE98] Conte, M.T., Trick, A.R., Gyllenhaal, J.C., and Hwu, W-M, “A Study of Code
Reuse and Sharing Characteristics of Java Applications,” Workshop on Workload
Characterization, Micro-31, pp. 3-10, November, 1998.

[DIECK99] Dieckmann, S. and Holzle, U., “A Study of the Allocation Behavior of the
SPECjvm98 Java Benchmarks,” European Conference on Object-Oriented
Computing (ECOOP99), 1999,

[FINK00] Arnold, M, Fink, S., Sarkar, V. and Sweeney, P., “A Comparative Study of Static
and Dynamic Heuristics for Inlining”, Dynamo Workshop, January, 2000.

[JIN99] “Jinsight”, International Business Machines Corporation,
http://alphaworks.ibm.com/

[JPRBE99] “JProbe ServerSide Suite,” KLGroup,
http://www.klgroup.com/jprobe/serverside/index.html.

[OPT99] “OptimizeIt,” Intuitive Systems, Inc., http://www.optimizeit.com.
[SPEC99] “SPECweb99 Benchmark,” Standard Performance Evaluation Corporation,

http://www.spec.org/osg/web99/.
[VOL99] “VolanoMark 2.0,” Volano LLC, http://www.volano.com/benchmarks.html.
[VTUNE99] “VTune Performance Analyzer,” Intel Corp., Santa Clara, CA,

http://www.intel.com/vtune/analyzer/.
[WSAS99] “Web Application Servers,” International Business Machines Corporation,

http://www-4.ibm.com/software/webservers/.

17

